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Robust Scene Inference
under Noise-Blur Dual Corruptions

Bhavya Goyal, Jean-Francois Lalonde, Yin Li, Mohit Gupta

Abstract—Scene inference under low-light is a challenging problem due to severe noise in the captured images. One way to reduce
noise is to use longer exposure during the capture. However, in the presence of motion (scene or camera motion), longer exposures lead
to motion blur, resulting in loss of image information. This creates a trade-off between these two kinds of image degradations: motion blur
(due to long exposure) vs. noise (due to short exposure), also referred as a dual image corruption pair in this paper. With the rise of
cameras capable of capturing multiple exposures of the same scene simultaneously, it is possible to overcome this trade-off. Our key
observation is that although the amount and nature of degradation varies for these different image captures, the semantic content
remains the same across all images. To this end, we propose a method to leverage these multi exposure captures for robust inference
under low-light and motion. Our method builds on a feature consistency loss to encourage similar results from these individual captures,
and uses the ensemble of their final predictions for robust visual recognition. We demonstrate the effectiveness of our approach on
simulated images as well as real captures with multiple exposures, and across the tasks of object detection and image classification.

Project: https://wisionlab.com/project/noiseblurdual

Index Terms—Low Light, Motion Blur, Scene Inference, Object Detection, Image Classification

1 INTRODUCTION

Maging trade-offs are a fundamental characteristic of any

computer vision system, and they are often exacerbated
when the imaging conditions are challenging. One such chal-
lenging condition is low-light and motion (scene or camera).
In such conditions, various types of corruptions are bound
to be present in the image, and one can only compromise
between them without ever removing them completely. For
example, low light could cause the images captured by the
camera to exhibit strong noise. While it is possible to mitigate
noise by capturing longer exposures (or larger apertures),
this often results in strong motion (or defocus) blur, leading
to another kind of image quality degradation. Hence, noise
and blur represent “dual corruptions”—reducing one (e.g, by
adjusting the exposure) necessarily increases the other.

All happy families are alike;
each unhappy family is unhappy in its own way.

Leo Tolstoy

Consider a set of images captured under low-light at
varying exposures (Figure 1), thereby spanning the space of
noise-blur “dual corruptions”. Each image, being corrupted
in its own way, offers a different “window” on the scene:
moving objects will appear sharper when the exposure
is lower, while static low-contrast regions will be more
easily perceptible in longer exposures. In order words, while
any single image from the set might never be optimal in
challenging scenarios, the set of images spanning the dual
corruption space contains much richer and complementary
information that can be leveraged for performing robust
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scene inference even under challenging imaging scenarios.

In this paper, we propose the idea of performing scene
inference in the space of noise-blur corruption. Our key
observation is utilizing the “persistence of prediction” across
differently degraded images of the same scene, significantly
higher accuracy can be achieved as compared to performing
inference on individual images. Figure 1 shows an exam-
ple. Although differently degraded images have different
low-level features, the semantic content remains the same
across all images. We develop techniques that encourage
similar predictions from individual captures, and aggregate
the predictions across individual images for robust visual
recognition.

We demonstrate the proposed approaches on two visual
recognition tasks, namely image classification and object
detection. We perform experiments on large scale datasets
of real images with synthetic corruptions and show that
performing inference on a set of dual corruption images
outperforms conventional baselines in extreme low-light
and motion conditions. Finally, we also show improved
performance on real-world experiments using machine vision
Sensors.

Scope and Limitations: While implementing this idea re-
quires capturing multiple exposures, most modern cameras
already allow varying imaging parameters (e.g, exposure,
aperture) in rapid succession. For example, modern cell
phone cameras can take multiple snaps with a variety of
exposures and fuse them to create an aesthetically pleasing
image [1]. Increasingly, machine vision sensors [2] are also
starting to perform exposure bracketing to capture high
dynamic range (HDR) images for autonomous driver assist
systems, while others go further and offer the capability
of simultaneously capturing different exposure images via a
spatially varying exposure sensor for HDR imaging [3] and
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Fig. 1: Multi Exposure Ensemble: Figure shows a scene containing a fast moving object under low-light. Images with short
exposure (a) and long exposure (b) suffer from dual corruption: noise and/or blur. Inference tasks like object detection
on these images are severely affected: numerous false positives and wrong bounding boxes. (c) Our approach leverages
multiple captures of varying exposures for robust inference: accurate and tight bounding boxes. (d) Such multi-exposure
images are easy to capture with machine vision cameras or modern smart phone cameras (eg. Google pixel and iPhone) that

uses burst photography for HDR imaging.

motion-deblurring [4]. These ongoing developments in cam-
era technology, coupled with the proposed computational
techniques can lead to the next generation of computer vision
systems which will perform reliably even in non-ideal real-
world scenarios (e.g, imagine an autonomous car driving on
a dark night attempting to detect pedestrians) where it is
extremely challenging for conventional algorithms to extract
meaningful information reliably.

2 RELATED WORK

Image Corruptions and Benchmarks. There has been some
recent interest in simulating common image corruptions and
benchmarking their adversarial effect on the performance
of computer vision models, especially those relying on
deep models [5], [6]. In parallel, developing robust visual
inference methods has also received much attention. For
example, a teacher-student framework was proposed [7] to
improve image classification performance. Several noise and
corruption models have been considered, including both
physics-based [¢] and learning-based [9]. Efforts in capturing
real datasets of noisy images have also been pursued. A
dataset of images captured in low light with annotations for
object detection [10] has been collected. Another examples is
the dataset containing low-light and corresponding well-lit
cellphone images for denoising [11], which has recently been
extended to videos in [12]. Most previous works simulate or
collect real captures with image degradations like noise in
low-light, but we consider a more challenging and practical
setting where both low-light and motion are presented, and
hence dual image degradation come into play.

Noise Removal and Deblurring. Due to its importance in
image processing, denoising and/or deblurring degraded
images has been a very popular topic for decades. Recently,
numerous works have been proposed using neural networks
for deblurring [13], [14], [15] and denoising [16]. For example,
sparse denoising auto-encoder was considered for robust
denoising [17]. A recent line of work proposes to perform
joint denoising and inference on noisy images [18], [19],
[20]. While existing image restoration methods can obtain
high quality reconstructions, performing inference directly

on the corrupted images does not require any pre-processing
and is thus more efficient and as we demonstrate, can
achieve increased robustness under severe image degrada-
tion. Alternatively, other methods aim to design cameras
that produce better images directly, either by optimizing
the hyperparameters of existing image signal processors
(ISP) [21] or, by designing novel ISPs [22], [23], [24], [25].
These methods may, however, not entirely remove noise
in challenging low-light situations, due to the fundamental
limitation of the optics and sensors.

Inference on Corrupted Images. Many recent works tackle
different inference tasks directly on images with common
corruptions. Rozumnyi ef al. [26] proposed a matting and
deblurring network for faster inference for the detection
of fast moving objects in videos. Cui et al. [27] designed
a multitask auto-encoder for image enhancement, which
leverages a physical noise model and ISP setting in a self-
supervised manner to improve detection performance. Wang
et al. [28] presented a framework for monocular depth
estimation under low-light using self-supervised learning
and demonstrate their results on nighttime datasets. Others
have used knowledge distillation techniques for image
classification under low-light [29], or for object detection by
leveraging bursts of short exposure frames [30]. Goyal et
al. [31] used a single photon camera and proposed to
train on a wide spectrum of images at various SNR, with
encouraging results on image classification and monocular
depth estimation. Song et al. [32] introduced a technique
for image matching using local descriptors and initial point-
matching methods for extremely low-light images in RAW
format. Wang et al. [33] proposed to learn the mapping
relationship between representations of low and high quality
images, and used it as a deep degradation prior (DDP) for
image classification on degraded images. Adversarial Logit
Pairing [34] also provides some robustness to the inference
on noise and blur corruptions [5] by matching logits output
of clean image with adversarial perturbed image.

Our goal is different from all previous approaches. We
propose techniques that leverage the space of noise-blur
dual corruptions rather than looking at a single image



corruption. We show that our approach is versatile for several
downstream tasks, including image classification and object
detection.

Leveraging Multiple Captures. Multiple exposures can be
used to reconstruct high dynamic range (HDR) images [35],
even in the presence of motion [36], [37]. Hasinoff et al. [38],
[39] proposed ways to select settings for these multiple
captures like ISOs and focus settings. The popularity of
mobile photography has led to the further development
of burst photography [1], which has been used for denois-
ing [40], deblurring [41], [42], and super-resolution [43]. In
sharp contrast, we exploit multiple exposures for high-level
inference tasks such as classification and detection, rather
than low-level image reconstruction.

3 DuAL CORRUPTION SPACE

Noise Blur Trade-off in Image Formation. We consider
the relationship of noise and blur with the exposure time
under low-light conditions and in the presence of scene (or
camera) motion. The number of photons incident at a given
pixel during a short exposure time is small under low-light
conditions. Because of this, noise becomes dominant in the
captured images and has to be properly modeled.

In the presence of scene/camera motion, let the photon
flux (photons/second) at a pixel p on time ¢ be ¢,, ;. The key
is to consider that the incident flux at each pixel changes
over time t, since the pixel may image different scene points
due to scene/camera motion, resulting in an image = with
motion blur. Assuming an exposure time At and a linear
camera with quantum efficiency 7, the raw reading at pixel
p (without quantization) is given by

At

I, = Ppan dt + 2y @)

where z, is the noise at pixel p. Here we ignore the non-

uniformity of photon response and noise [44], and consider
three sources of noise.

e Shot noise z, refers to the inherent natural variation of

the incident photons due the Poisson process of photon

arrival P and is modelled as the square root of the signal.

Therefore, z;, ~ P ( OAt Dp M dt).

® Readout noise z,, comes from the process of quantizing the
electronic signal as well as electrical circuit noise, which
is modelled as a zero mean Gaussian with variance o2 at

each readout. Namely, z, ~ N(0,02).

e Dark current zg arises due to thermally generated elec-
trons and also follows a square root relationship with

signal with a variance of o4. We thus have z;f ~ P(ogAt).

We further assume that z;, z;, and z;f are independent of
each other, and follow an additive noise model [45], such that
zp = 25 + 25 4 20 [44]. Thus, Var(z,) = Var(z5) + Var(z)) +
Var(zg’j. This leads to the derivation of the signal-to-noise
ratio (SNR) for the captured images, given by

A 2
( 0 t¢p,t77 dt)
Jot Spam dt + 0% + oalst

Under the presence of both low-light and motion, longer
exposure time leads to improved SNR, as the noise increases

SNR = )

slower than the signal. This, however, comes at a cost of
increased motion blur in the captured images due to the
integral of the incoming flux ¢,, ;. Hence, the exposure time
allows us to trade off noise and blur in the image degradation
space, which we term as Dual Corruption Space.

Dual Corruption. Our key idea is to leverage the spectrum
of dual-corruption images by varying the camera parameters,
resulting in a set Z = {z1,...xn} of images with different
low-level characteristics (e.g, different amounts of blur and
noise). For example, varying exposure time At creates a
sequence of images where noise gradually decreases but
the amount of blur increases. An example such sequence
is shown in Figure 1. Since these images are captured
simultaneously (or in rapid succession), we can assume that
they have similar semantic content.

An Image without Noise and Blur. A special and theoret-
ically interesting case in the dual corruption space is an
ideal clean image T jcqn captured using a very short exposure
time (At — 0) and without noise corruption (z, = 0).
Such an image is free of noise and blur. Despite physically
implausible, this construct is sometimes convenient for our
derivations.

4 ScENE INFERENCE UNDER NOISE-BLUR DuUAL
CORRUPTIONS

We consider scene inference tasks represented as an inference
module f(z) = g o p(z), where, without loss of generality,
() is a feature extractor, and g is a prediction module. Here,
o is the composition operator. f(x), oftentimes represented
by a neural network, maps an input image z into its
semantic label y. This generic formulation covers several
vision recognition tasks, including image classification where
y is a categorical label, and object detection where y is a
set of labeled bounding boxes. We further assume that this
function f(-) is learned from data by minimizing a certain
loss function.

Given a set of N noise-blur dual corruption images X =
{x1,...xn} capturing the same scene, our key intuition is
that despite differences in low-level image features (e.g, pixel
values), their latent features should remain similar. In what
follows we formulate this intuition as a data prior, devise the
training and inference schemes, and demonstrate interesting
properties of the resulting method.

4.1

A simple prior is to assume that the latent features
{¢(x1),...0(x)n} follow a Gaussian distribution, centered
at the ideal clean image Z¢jcqn and with a small variance €2,
This prior ensures that with high probability the distance
between any pair of latent features will stay in a small ¢
radius controlled by €. With such assumption, we arrive
at the following conditional probability p(y|z) for scene
inference.

Robust Inference with Multiple Exposures

p(ylz) o< p(yle(x))p(e(z)|z), ©)

where p(y|p(x)) is given by the prediction module g, and
p(o(x)|z) ~ N(0(Tetean), €) represents the data prior. We
now describe the training and inference schemes based on
this formulation, as illustrated in Figure 2.
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Fig. 2: Architecture Overview: Our approach trains an inference model using multiple captures of varying exposures, all
containing the same semantic content but different amounts of noise-blur dual corruptions. We introduce feature consistency
loss during training to enforce consistency of feature outputs from each individual captures. During testing (dashed lines),
our model returns the ensemble prediction using each individual capture to produce final output for more robust prediction.

Training with Multiple Exposures. Given the ground-truth
label y, minimizing the negative log likelihood of Equation 3
on a training sample (a set of images {x;} spanning the dual
corruption space) leads to the following loss function

£= 3 lans plule@)) ) + 5 3 lplas) = (acean) 3 @

Here, we slightly abuse the notation to replace the first term
—log(p(y|e(x)),y) with a more general task-specific loss
liask(P(ylp(x)), y). It is easier to consider the case of image
classification, where the target y is a categorical variable. The
term of — log(p(y|¢(z)),y) becomes the cross-entropy loss,
commonly used for classification. When y moves beyond
simple categorical or scalar outputs (e.g, for the object
detection task), Equation 4 allows to plug in any loss function
liqsk tailored for the task. On the other hand, the second term
can be interpreted as a feature consistency loss, re-weighted
by a coefficient as the reciprocal of the Gaussian variance
(1/€3).

Our loss function in Equation 4 assumes that a reference
clean image is available during training, as often the case in
our experiments. When such a clean image is not presented,
we simply replace the second term with its equivalent form
that only involves the summation of pairwise distances

between ¢ (x;) and (), i-e, sz Y lp(wi) — (x;)|[5-

Inference with Model Aggregation. At inference time, the
maximum likelihood estimation of Equation 3 is not viable
without the clean image xcjeqn - Instead, we resort to using the
ensemble of the predictions from individual multi-exposure
images as the final output prediction. Our key intuition
is that no individual capture in the dual corruption space
captures all the necessary information that may be required
for the robust inference, but the ensemble output is more
effective as it uses the predictions from individual images

that contribute with the relevant information individually.
This is given by

F(X) =G(f(21), f(z2)...f(zN)) )

where G is an aggregate function to get the ensemble
prediction. G is highly flexible and often task-relevant. For
example, for the image classification task, G could be a
simple average operator over the probability outputs. For
object detection, G might be a voting scheme of detected
objects. By aggregating multiple model outputs, Equation 5 is
conceptually similar to the well-known model ensemble [46].

Certified Robustness. When considering a classification
problem with ¢ categories (e.g, image classification), we
notice an interesting link between our inference scheme
and a well-known robust classifier [47]. Specifically, when G
is an average operator and the decision is made by taking
the category with the highest confidence from f(X), our
inference defined a “smoothed” classifier with certified
robustness [47] under the Gaussian distribution

arg max p(g(p(x)) = c),
where  @(x) ~ N(0(Zetean), €2).

Cohen et al. [47] showed that such a classifier, if passes
additional certification, is robust within a certain ¢, radius
around ¢ (Zeleqn). Intuitively, this indicates that our model
will produce consistent results (the same as ones given by
the clean image) for all corrupted images spanning the
dual corruption space, should the Gaussian assumption is
satisfied. We deem theoretic investigation into this direction
as our future work.

(6)

5 EVALUATION OF ROBUST SCENE INFERENCE
We demonstrate the effectiveness of our method on two
important scene inference tasks: object detection and image
classification.



5.1

Instantiation. Figure 2 shows the overview of our approach
using multi-exposure ensemble for the object detection task.
We implement our approach using the single-stage FCOS
architecture [48]. The output prediction of the FCOS model
for image of size I x W consists of pixel-wise classification
scores (H x W x C) for C object categories, centerness scores
(H xW x1) and bounding box coordinates regression outputs
(H x W x 4). During inference, our ensemble predictor (G),
takes the pixel-wise classification scores, centerness scores
and box coordinates, and returns their average at each
FPN level. Loss function for the inference task (fi,sx) is
the same as defined in FCOS architecture (i.e. sum of focal
loss, regression loss for bounding boxes and centerness loss.
Refer [48] for details). Our feature consistency loss (/i) is the
L2 distance between feature outputs from the CNN network
(final layer after global average pooling).

Object Detection

Datasets and Metrics. We evaluate our approach using three
object detection datasets: Cityscapes [52], MS-COCO [53] and
REDS [54]. Cityscapes consists of street scenes captured from
a vehicle and consists of 8 categories related to autonomous
driving with 2975 training and 500 test images. MS-COCO
consists of 80 categories for general object detection with 118k
training and 5k validation images. REDS consists of 120fps
video sequences of 270 scenes captured by a high speed
camera. Dataset represents images with common objects
(like person, car, chair etc.).

The ground truth annotations provided in Cityscapes
and MS-COCO are used for evaluation. We follow common
conventions, train our models on their training sets, and
report results on the validation sets. In contrast, REDS does
not have object annotations. We thus use a pretrained Faster
R-CNN object detector model [55] available in the Detectron2
platform [56] to obtain pseudo-ground truth annotations to
create our evaluation benchmark containing 270 images with
2160 box annotations.

All results are reported using mean average precision
(mAP) across multiple intersection-over-union (IoU) thresh-
olds, following the COCO evaluation protocol [53].

Low-light and Motion Blur Dataset Generation. All three
datasets mentioned above contain images captured in suffi-
cient light and no noticeable motion blur (scene or camera).
Since there is no publicly available large-scale annotated
dataset containing images captured in low-light and motion
blur conditions, we simulate such conditions using various
strategies, as described below.

e REDS: Since the REDS dataset contains video sequences
captured by a 120fps camera, we first simulate low-light
conditions for each individual frame of the sequence
by adding Poisson noise (shot noise) and read noise.
Multiple frames are then averaged together to generate
images with motion blur that captures realistic motion
conditions of camera or scene. In practice, we select a
random frame from each video sequence, select a varying
number of adjacent frames (from 0 to 3 on each side of the
frame), and compute their average (after adding noise)
to simulate blurry images with motion. This generates
images with different exposures, examples of which are
shown in Figure 3b.
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Fig. 3: Simulated Images: Few examples of images with
simulated noise and blur. CityScapes and REDS dataset
images are generated by simulating low-light frames from
high speed video sequence. MS-COCO and Birds dataset
images are generated using a single frame by adding noise
(shot noise and read noise) and blur (random motion blur
kernel) of varying amounts.

o CityScapes: CityScapes provides low-fps video sequences
around each annotated frame in the dataset (30-frame
sequence captured at 17fps). We use a pretrained video
interpolation network [57] to synthesize high-fps video
sequence by increasing the frame rate by a factor of 4x. A
motion-blurred image is then generated as with the REDS
dataset, that is adding noise to each individual frame,
and averaging a number of adjacent frames. Figure 3a
shows examples of simulated low-light and motion-blur
frames used for training and evaluation on the CityScapes
dataset. The resulting images indeed represent realistic
motion conditions under autonomous driving scenarios
(like fast moving camera/car or moving pedestrians,
other vehicles etc.).

e MS-COCO: As the MS-COCO dataset does not contain
any video sequences, we simulate the blur and noise
from a single image using the same procedure as the
image corruptions benchmark in [5] by selecting varying
severity of shot noise and motion blur. Specifically, the



Method REDS CityScapes MS-COCO

mAP APs APm APl mAP APs APm AP1 mAP APs APm APl
Clean Model 1636 1796 1846 1645 272 022 247 7.02 335 021 251 7.69
Stylized Training [6] 19.13 18.11 21.64 2371 6.75 024 332 20.00 789 025 313 17.07
Single Exposure 30.17 2027 2575 36.88 18.07 396 1577 35.54 2125 658 2239 33.88
Denoising (BM3D) [49] 30.25 2028 2590 37.08 18.01 3.82 1553 3597 21.78 6.76 2278 3443
Denoising (MPRNet) [50] 25.67 1897 2347 31.84 1526 297 1389 34.11 18.78 512 1745 2713
Deblurring [51] 30.68 18.82 26.36 36.02 17.67 3.63 1590 34.67 1242 252 1177 2111
Denoising [49] + Deblurring [51] 2945 1846 2635 34.46 1791 4.01 1534 35.09 22.03 6.79 2289 34.63
Short Exposures (N = 4) 30.81 1841 26.53 36.02 18.46 433 1597 35.86 2217  6.87 2391 3511
Multi-Exposure Ensemble (N = 2) | 33.76 14.67 27.64 40.81 1936 511 1723 37.66 23.11 8.01 2587 36.09
Multi-Exposure Ensemble (N = 4) | 36.17 14.15 29.04 42.17 2097 5.38 1946 38.95 2471 9.3 27.08 37.79

TABLE 1: Object Detection Results: AP results on REDS, MSCOCO, and CityScapes datasets. Our approach of Multi-

Exposure Ensemble (Ours) outperforms all baselines.

noisiest image has a shot noise level of 4 and a motion
blur level 1. Subsequent levels in the dual corruptions are
simulated by increasing the motion blur and decreasing
the shot noise successively to generate 4 levels of dual
corruptions. Figure 3c shows a few examples of simulated
images. We note that, contrary to the other two datasets
above, the blur simulated by this approach is not spatially
varying.

Baselines. We compare our approach with the following
set of baselines. All approaches use the same backbone
for fair comparison. We evaluate all the methods using all
four exposures and report the results for the best exposure
settings.

o Clean Model: This baseline model is trained only on clean
images, and evaluated on noisy images.

o Stylized Training: We follow the data augmentation ap-
proach of [6], who propose to augment training images
with stylization for robustness.

o Single Exposure: We train a model on a dataset containing
varying exposures and clean images, essentially consider-
ing distortions as a way to perform data augmentation [5].
For evaluation, we select the single exposure setting
yielding the best performance and report those results.
This baseline acts as an oracle for the selecting the best
performing exposure time at inference time.

e Denoising: This baseline represents the conventional
approach of denoising the noisy images under low-
light conditions. We perform both training and inference
on denoised images. Here, we experiment with the
BM3D [49] and MPRNet [50] approaches for denoising
the images.

e Deblurring: We also compare with the approach of de-
bluring the images for scene inference, where we use
a deblurring model [51]. We perform both training and
evaluation of our model using deblurred images.

o Denoising + Deblurring: As the test images in low-light
and motion blur have both noise and blur, we also com-
pare with the approach of denoising (BM3D) followed
by deblurring. Model is trained and evaluated using
Denoised+Deblurred images.

e Short Exposures: This baseline compares with the approach
of evaluating using multiple short exposures by using
the ensemble prediction from N short exposure images.
Model is trained with short exposure images.
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Fig. 4: Precision Recall Curve of our approach and baselines
on CityScapes Dataset for all 8 categories with IOU threshold
of 0.5. We see significant improvement for ‘person’ and ‘car’
categories, which are most common in the dataset.

Implementation Details. We used the official implementa-
tion of the FCOS architecture [58] for the object detection ex-
periments, which is based on the Detectron2 framework [56].
ResNet-50 [59] with FPN was used as backbone for training
and initialized with ImageNet pretraining weights for all our
models. We followed the hyperparameters from Detectron2
to train our models. MS-COCO models were trained with
a learning rate of 0.01, batch size of 16 for 90k iterations
whereas CityScapes model were trained with a learning rate
of 0.005, batch size of 8 for 24k iterations. REDS is used
only for evaluation, in this case we use the model trained on
MS-COCO.

Results and Discussions. Table 1 shows the results (in mAP
along with AP of small, medium and large objects) of our
approach on all three datasets. Our method outperforms all
baselines by a significant margin. Our approach beats Single
Exposure baseline by 6% in REDS, 2.9% in CityScapes, and
3.5% in MS-COCO with four exposures. In other words, it
is best to leverage all the dual-corruption images even if
we knew the best possible single exposure ahead of time.
Denoising provides improvements over Single Exposure
baseline in some cases but is not as effective. Deblurring
approaches does not show performance improvement over
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Fig. 5: Object Detection Results for MS-COCO, REDS and CityScapes Dataset. Correct/Incorrect predictions are highlighted
with green/red and ground truth boxes are highlighted with blue in the clean image. First 4 columns show results on single
captures followed by a column with results from multi-exposure captures using our approach. Single Captures have a lot
more false positives (red) while our approach effectively removes those cases (Better viewed on screen).



Method Top-1 Top-5
Clean Model 6.13 13.45
Stylized Training [6] 9.51 17.83
Single Exposure 4118 64.13
Denoising (BM3D) [49] 4334  67.11
Deblurring [51] 3913  60.45
Denoising [49] + Deblurring [51] 4295  66.59
Short Exposures (N = 4) 45.16  69.84
Multi Exposure Ensemble (N =2) 5210 74.13
Multi Exposure Ensemble (N =4) 5527  79.34

TABLE 2: Image Classification Results: Top-1 and top-5
accuracy results on CUB-200-2011 dataset. Our approach of
Multi-Exposure Ensemble outperforms all the baselines.

Single Exposure baseline in most cases. This is because
images contain both noise and blur and deblurring models
are specialized to handle only blur. Deblurring+Denoising
baseline also shows relatively minor performance gain. We
see significant gain with Short Exposures (with 4 exposures)
baseline, highlighting the benefit of ensemble prediction.
However, since all the exposures are short, they all suf-
fer from sever noise and have similar errors, and hence
outperformed by our method. Our method provides large
improvements even with two exposures, and increasing the
number of exposures (from two to four) further increases
the performance. This highlights that our approach benefits
with more number of exposures as different exposures have
a wide variety of dual corruption level.

Figure 5 shows representative qualitative examples of
our approach for object detection and shows direct com-
parison with each individual exposure and its predictions.
The correct/incorrect bounding boxes are highlighted in
green/red and ground truth bounding boxes are highlighted
in blue on the clean image (right). Our approach makes
fewer false positive predictions (red) compared to the Single
Exposure. Since individual single captures make different
false positive predictions, the ensemble is able to remove
those false positive boxes. Figure 4 shows the precision recall
curve on CityScapes dataset for IOU threshold of 0.5 for all 8
categories in the dataset. We see a significant improvement
in area under the curve for person and car category, which is
the most common in the dataset.

5.2

Instantiation. Similar to object detection, our approach uses
a shared CNN architecture as a feature extractor. In partic-
ular, we used a ResNet-18 [59] as the image classification
architecture. The feature consistency loss /¢ is defined as
the L2 distance between the feature map output of the final
layer (after global average pooling) to encourage consistent
predictions. The model returns the average of the predictions
(probability output) from multiple degraded images (as the
ensemble operator G) for the final output.

Image Classification

Datasets, Metrics, and Baselines. We use simulated images
from the CUB-200-2011 image classification dataset [60].
CUB-200-2011 is commonly used for fine-grained image
classification benchmarks and consists of 200 species of birds
with 5,994 training images and 5,794 test images. All results
are reported using top-1/5 accuracy on the test set, following
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Fig. 6: Ablation Studies: Image classification results of our
approach on CUB-200-2011 while varying feature consistency
loss weight and backbone architecture.

the standard evaluation protocol for image classification. A
set of baselines similar to the ones used in the experiments
on object detection (Section 5.1) is considered here.

Simulating Noise and Blur. Since CUB only contains single
images, we employ the same strategy to generate dual
corruption images as for the MS-COCO dataset in the object
detection experiments (Section 5.1). Figure 3d shows a few
examples of simulated images.

Implementation Details. The model is trained with SGD
with momentum of 0.9, base learning rate of 0.1 with cosine
decay and batch size of 32 is used to train for 100 epochs.

Results and Discussions. Table 2 shows top-1 and top-5
accuracy of our approach on the simulated CUB dataset. We
report results of our model using two and four exposure
settings. Our method outperforms both baselines using
a single exposure by a significant margin. Compared to
choosing the single best exposure, our approach, with N = 4,
attains an overall gain of 14.1% and 15.2% in top-1 and top-5
accuracy respectively. Our approach shows significant gains
with only two exposures however having more number of
exposures (from 2 to 4) further helps the overall performance.

Ablation Studies. We study the performance of our ap-
proach with varying weight for feature consistency loss.
Figure 6 shows that our approach performs best for the
weight factor of 5 image classification on CUB-200-2011
Dataset. We also evaluate the performance of our approach
with another backbone architecture. Figure 6 shows similar
performance gain using DenseNet-121 [61] which highlights
the versatility of our approach as it can extend to different
CNN feature extractors.

6 EXPERIMENTS WITH REAL CAPTURES

Finally, we evaluate our approach on real images by captur-
ing multiple simultaneous exposures of the same scene.

Camera Setup: Our setup includes four BlackflyS USB3
cameras [62] by Teledyne Flir. These are machine vision
cameras that can capture colored images with a resolution of
1280 x 1024 with up to 175 frames per second. Same lenses
(Tamron 8mm) are used for all cameras, which are stacked



Fig. 7: Camera Setup for capturing multiple exposure images
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Fig. 8: Examples of Real Captures: Images captured with
varying exposure settings with our multi camera setup.
Images with shorter exposure have severe noise while images
with longer exposure contain motion blur for the moving
objects.

together to get similar (overlapping) fields-of-view. Aside
from an approximate physical alignment of the cameras,
no further alignment of the captured images is done as
all cameras have similar fields-of-view, and the scene is
sufficiently far away. Cameras are connected to a computer
that triggers the simultaneous captures (software sync). Our
complete setup is shown in Figure 7.

We use spinnaker SDK [63] provided by Teledyne to
capture RAW images. Maximum available gain (18dB) for the
camera is used and a gamma correction (y = 2.2) is applied
on the captures to get the final images. We set different
exposure times for each camera and synchronously capture
images using all the cameras.

Exposure Selection: We manually select the exposure
times in order to span a wide range of exposures while
ensuring that images are not too under- nor over-exposed.
Our indoor scenes consist of fast moving objects in a very
dark environment (~0.25lux) lit by a single light source.
We experiment with multiple settings depending on the
lightning conditions including A) 20-30-40-50ms, B) 20-40-60-
80ms, and C) 16-33-66-100ms. When evaluating our approach,
we use two or four exposures, examples of which are shown
in Figure 8.

Results and Discussions. We train our object detection
models with the simulated images from MS-COCO dataset
and evaluate the trained model on real captures. Figure 9
shows sample results with the real captures on two scenes.

Both scenes consists of both fast moving and stationary
objects under low-light. The prediction output from the
individual exposure contain several false positives and
inaccurate boxes. By leveraging the multiple exposures across
the space of dual corruptions, our method is able to correctly
detect all the objects with tight bounding boxes and remove
false positive boxes.

Our approach shows performs better inference even with
two exposures (N = 2). As we increase the number of
exposures, the prediction improves as long as the exposures
are not too noisy or blurry for inference (as that can
deteriorate the performance of the ensemble prediction). One
simple heuristic that performs well with our approach is to
select exposure times around the auto-exposure value, as this
ensures the frames are not too under- or over-exposed. We
show more examples in the supplementary text with two
and four exposures including failure cases.

7 DisScUSSION AND FUTURE OUTLOOK

Multi-Exposure Cameras: We demonstrated our approach
of multi exposure captures by utilizing multiple cameras
with similar (overlapping) fields-of-view. With cameras that
are capable of capturing multiple images with varying
exposures simultaneously [3], [4], multiple exposure images
could be captured with a single camera, thus making it
easier to perform spatio-temporal alignment. Our work
can be considered as a preliminary proof-of-concept for an
eventual implementation where a single camera can capture
multiple exposure images. Demonstrating and evaluating
our approach on such images is an important next step.

Exposure Selection for Multiple Captures: Most modern
cameras have the functionality of auto-exposure that selects the
exposure setting based on the lighting and motion conditions
(light and motion metering) of the scene for the best image
quality. The optimal exposure for inference is a function of
the amount of light and motion (camera/scene) in the scene,
and determining it automatically (for a single exposure) is
an active area of research [64]. With the ability to capture
multiple exposures, an important research problem is to
develop generalized auto-exposure techniques for multiple
captures that result in the best performance for the inference
tasks under these challenging conditions.

Computational Considerations: Capturing, processing and
performing inference on multiple exposures incurs a linear
increase in computational cost. However, since many of
these computations can be done in parallel, the increase
in latency is small which is important for safety critical
applications like autonomous driving. Our approach is
agnostic to the number of exposures during inference,
which allows inference systems to switch between multi-
exposure settings (during challenging conditions of low-
light and/or motion) and single exposure setting during
less challenging conditions (day-time driving or slow/no
motion). In practice, the inference system can operate at no
computational overhead by using single exposure setting
during most of the time (e.g daytime driving) and use multi-
exposure setting during more challenging conditions (e.g
night time driving).
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Fig. 9: Object Detection Results on Real Captures: Scene in the first row contains an indoor scenario with two objects: a
person (moving) and a chair (stationary). Single Exposures are severely affected by noise and/or blur: detects false positives
or inaccurate bounding boxes. Scene in the second row contains a driving scenario with a car (moving) on the left and traffic
light (stationary) in the front. Single Exposures fail to detect the moving car or the stationary traffic light. Multi-Exposure
Ensemble approach (right) leverages multiple exposures and detects all objects with correct labels and tight bounding boxes

in both scenes.

Dual Image Degradations: So far, we have considered the
dual corruptions of noise and blur. In principle, a similar dual
relationship exists between several other image degradation
pairs, such as, rain and defocus blur [65], and snow and
motion blur [66]. A promising research direction is to
evaluate the proposed approach on other such dual pairs
of image degradations, toward the goal of achieving ‘all-
weather’” computer vision systems.
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8 SUPPLEMENTARY REPORT: ROBUST SCENE INFERENCE UNDER NOISE-BLUR DUAL CORRUPTIONS
This document provides additional results that are not included in the main paper.

8.1 Results for Object Detection

Comparison to Baselines: We compare our approach with additional baselines. Table 3 shows performance of the model
trained and evaluated on clean images. We also show the results of training and testing with a single corruption level.
Results are included for four different noise-blur dual corruption levels (from 1 to 4) with increasing motion blur and
decreasing the shot noise image. Comparing with clean images shows the impact of noise and blur degradation as the mAP
drops significantly. Our approach utilizes clean images and corrupted images with feature consistency that helps the model
to learn robust features. Our model outperforms these baselines by a significant margin using the same model capacity.

Method REDS CityScapes MS-COCO

mAP APs APm API mAP APs APm API mAP APs APm APT
Clean Training & Testing \ 7821 5294 7391 84.33 \ 33.36 1040 3226 54.70 \ 3859 229 4228 49.56
Corruption Level 1 (Severe Noise) | 23.46 16.14 24.08 26.27 14.06 1.82  11.80 30.98 2026 6.18 2118 32.73
Corruption Level 2 30.20 2027 2575 36.88 17.19 371 15.36  33.84 2029 559 2119 3221
Corruption Level 3 27.85 19.75 23.80 35.09 17.07 326 1545 32.89 2021 635 2094 3270
Corruption Level 4 (Severe Blur) 26.78 1551 20.13 33.53 1594 421 14.73  30.39 2047 645 2094 3232
Multi-Exposure Ensemble (N = 4) | 36.17 1415 29.04 42.17 | 2097 538 1946 38.95 | 2471 913 27.08 37.79

TABLE 3: Object Detection Results: AP results on REDS, MSCOCO, and CityScapes datasets.

Results Visualization for Object Detection: Figure 10 shows examples where our approach outperforms the baselines. The
first row of Figure 10 shows an example where one baseline predicts correct bounding boxes and our approach is as good as
best single exposure baseline. Figure 11 shows a few result images with real captures using our approach and the baseline.
Our method is more effective in predicting the correct bounding boxes with fewer false positive boxes.

Failure Cases for Object Detection: Figure 12 and 13 shows some failure cases where our approach performs worse than
single exposure baseline. Since our approach relies on the average of output predictions, it fails to perform well when one of
the exposure has too much degradation.

Short Exposure Long Exposure Multi Exposure GT
(Noise) (Blur) Ensemble
(Ours)

Fig. 10: Object Detection Results on MS-COCO dataset: Correct/Incorrect predictions are highlighted with green/red and
ground truth boxes are highlighted with blue in the clean image. Single Exposures have a lot more false positives (red)
while our approach effectively removes those cases. For the first scene, our approach produces tighter bounding boxes than
individual predictions (Better viewed on screen).
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Fig. 11: Object detection results with Real Captures: Single Exposures are severely affected by noise and/or blur. The
model detects false positives and inaccurate bounding boxes. Multi-Exposure Ensemble approach (right) leverages multiple
exposures and detects all objects with correct labels and tight bounding boxes
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Fig. 12: Object Detection Failure Cases on MS-COCO dataset: Figure shows examples where single exposure performs
better than our approach. First scene contains two objects and our approach fails to detect second object. Second scene
contains a lot of overlapping ground truth bounding boxes and our approach fails to detects a few bounding boxes.
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Fig. 13: Object Detection Failure Cases on Real Captures: Figure shows a failure case with the real captures where a
single exposure (60ms) detects all three objects correctly whereas our model a detects false positive box and fails to detect
skateboard object. Our model performs worse in cases when any single exposure has too much degradation.
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