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Fig. 1. Seeing photons in color. (a) In this paper, we propose a photon-counting color imaging system. We design and fabricate a pseudorandom RGBW
color filter array (CFA) for a color SPAD array, which captures mosaicked binary images at 496x254, up to 96.8kfps. (b) A single mosaicked binary image
is highly noisy and does not contain sufficient information for reconstructing colors. (c) One naive idea is to take the average of a sequence of mosaicked
quanta images and them perform demosaicking. However, this approach results in blur when there is considerable motion between the camera and the
scene—especially in low-light scenes which require longer exposure times. (d) We propose an algorithm that aligns the quanta frames, jointly demosaics and
merges them into a single intensity image and applies spatial denoising to generate a clean, blur-free image. Zoom in for details.

Megapixel single-photon avalanche diode (SPAD) arrays have been devel-
oped recently, opening up the possibility of deploying SPADs as general-
purpose passive cameras for photography and computer vision. However,
most previous work on SPADs has been limited to monochrome imaging.
We propose a computational photography technique that reconstructs high-
quality color images from mosaicked binary frames captured by a SPAD
array, even for high-dyanamic-range (HDR) scenes with complex and rapid
motion. Inspired by conventional burst photography approaches, we de-
sign algorithms that jointly denoise and demosaick single-photon image
sequences. Based on the observation that motion effectively increases the
color sample rate, we design a blue-noise pseudorandom RGBW color filter
array for SPADs, which is tailored for imaging dark, dynamic scenes. Results
on simulated data, as well as real data captured with a fabricated color SPAD
hardware prototype shows that the proposed method can reconstruct high-
quality images with minimal color artifacts even for challenging low-light,
HDR and fast-moving scenes. We hope that this paper, by adding color to
computational single-photon imaging, spurs rapid adoption of SPADs for
real-world passive imaging applications.
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1 INTRODUCTION

Single-photon avalanche diodes (SPADs) are an emerging class of
image sensors that can record individual photons with precise tim-
ing. Because of this exciting capability, they have been used for
various active imaging applications such as LiDAR [Li et al. 2017],
non-line-of-sight imaging (NLOS) [Buttafava et al. 2015] and fluo-
rescence lifetime imaging (FLIM) [Bruschini et al. 2019]. Although
SPADs were limited to single-pixel or low-resolution (e.g., 32 X 32)
form-factors in these applications, the last few years have witnessed
a single-photon revolution, culminating in the development of high-
resolution SPAD arrays for the first time (1/4 MPixel [Ulku et al.
2019], 1 MPixel [Morimoto et al. 2020], 3.2 MPixel [Morimoto et al.
2021]). These arrays capture binary frames at high speeds (up to
100kfps), with negligible read noise. Such unique properties make
them a potential alternative to conventional CMOS sensors for pas-
sive imaging, especially for high dynamic range (HDR), fast-moving
scenes. This opportunity to deploy them as general-purpose passive
cameras opens up a considerably wider range of applications for
SPADs (beyond just scientific and 3D imaging), including machine
and robot vision, and consumer photography.

So far, most research on SPAD arrays has focused on monochrome
imaging, with surprisingly little attention paid to color. There is no
doubt that color is important, often critical, not only for capturing
captivating photographs, but also for machine vision tasks such as
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detection and recognition [Khan et al. 2012]. This raises a natural
question: How do we add color to single-photon imaging?

One approach is to fabricate color filter arrays (CFAs) on a SPAD
array, much like conventional cameras. The resulting color SPAD
array will capture color mosaicked binary images. However, unlike
conventional images, single binary (1-bit) frames do not contain
sufficient information to be demosaicked directly with conventional
demosaicking algorithms. One could capture a series of mosaicked
binary images over time, and sum them to create a mosaicked in-
tensity image with sufficient signal and dynamic range, and then
apply demosaicking algorithms to get an RGB image. However, if
there is motion, the photons emitted by a given scene point are
dispersed over multiple pixels across the binary image sequence,
resulting in blur. The blur is especially severe when capturing dark
scenes, where longer sequence (equivalent to longer exposure for
conventional cameras) are needed to gather enough light.

Burst photography with a color SPAD array. The challenge for dark,
dynamic scenes can be summarized as a trade-off between blur and
noise: a short sequence leads to less blur but noisier images due to
photon noise, while longer sequences give cleaner images, albeit
with more significant motion blur. This trade-off can be mitigated by
burst photography [Hasinoff et al. 2016; Wronski et al. 2019], which
divides a long exposure into a number of frames with short expo-
sures, computes and compensates for the motion between frames,
and then merges them into a blur-free, low-noise image. Similar
approaches have been developed for monochrome SPADs [Gyongy
et al. 2018; Iwabuchi et al. 2021; Ma et al. 2020; Seets et al. 2021],
jots [Chi et al. 2020] and spike cameras [Zhao et al. 2021].

The key challenge that prevents applying conventional burst
photography directly to mosaicked binary frames is that brightness
constancy does not hold. It is difficult, if not impossible, to estimate
the motion between mosaicked binary frame directly because a
scene point may “move”, for example, from a green filter to a red
filter across the sequence. To address this challenge, we develop the
first burst photography algorithm for color SPADs, which processes
the raw mosaicked data at the granularity of individual photons.
The proposed approach can be considered a universal demosaicking
algorithm for frame-based SPAD cameras with any CFA consisting
of R, G, B and W pixels, with regular or pseudorandom layouts.

Designing color filter arrays for SPADs. What is the best CFA for
color SPADs? In addition to red, green and blue pixels, white pixels
that are sensitive to all three colors absorb more light and give su-
perior image quality in the dark. Such RGBW patterns are a good
candidate for low-light imaging with SPADs. However, there is one
known challenge for RGBW arrays: Due to the sparseness of color
filters, the reconstructed images are often subject to aliasing artifacts
such as moiré color banding or false colors. Our key observation is
that, when the scene or the camera is moving, the effective color
sampling rate of RGBW arrays is increased, especially due to the
high temporal sampling rate of SPADs, which mitigates the color
artifacts while benefiting from the high SNR of W pixels. Inspired
by previous work on RGB patterns, we design a blue-noise pseu-
dorandom RGBW CFA for color SPADs, which further boosts the
quality of low-light burst photography. We fabricate the CFA with
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photolithography on our SPAD array, resulting in, to our knowl-
edge, the first unconventional RGBW CFA implemented on SPADs.
Our color SPAD prototype, for the first time, offers low-level ac-
cess to mosaicked single-photon binary frames, as opposed to only
time-integrated photon counts [Morimoto et al. 2021].

Scope and limitations. The proposed methods are applicable to
a generalized class of single-photon cameras (SPC) including not
only SPADs, but also jots [Fossum 2005], which have smaller pixel
sizes, but lower frame rates than SPADs. We show via simulations
that jots-based color burst photography complements SPADs in
scenarios where high-frequency spatial details need to be recovered
and only low-speed motion is involved.

Although we show promising image reconstructions with simu-
lated and real color SPAD arrays, the proposed single-photon imag-
ing system is not ready to directly compete with current CMOS
image sensors (e.g., on smartphones). Specifically, image sensors
on mobile devices have strict constraints on pixel pitch, power con-
sumption, processing efficiency, etc, which current SPAD technology
cannot meet yet. We envision that SPAD hardware and processing
algorithms will continue to mature in the coming years, and the
techniques introduced in this work may lead to increased interest
in, and accelerate the future development of, passive SPAD imaging.

2 RELATED WORK

Single-photon cameras. There are two main families of single-
photon cameras: SPADs and jots, often referred to as SPAD-QIS
and CIS-QIS (quanta image sensor) as well, respectively. SPADs
record the arrival of photons by amplifying the weak signal of
single incident photons via avalanche multiplication [Zappa et al.
2007]. As a result, extremely high frame rates are achieved for even
large format SPAD arrays (97.7kfps for 1/4MPixel [Ulku et al. 2019]
and 24kfps for 1MPixel [Morimoto et al. 2020]) with virtually no
read noise. Recent developments have focused on increasing spatial
resolution (3.2MPixel [Morimoto et al. 2021]) and HDR [Ogi et al.
2021; Ota et al. 2022]. Jots avoid photon avalanche and achieve high
sensitivity by using an active pixel architecture with low capacitance
and high conversion gain [Fossum 2005]. As a result, jots have a
smaller pixel pitch, higher quantum efficiency, but capture binary
images at a lower frame rate (1040fps [Ma et al. 2017]). The proposed
approach can be applied to both kinds of sensors as they share the
same mathematical imaging model, described in Sec. 3.

Burst photography for conventional cameras. Conventional burst
photography takes a series of underexposed intensity images and
combines them into a single high-quality image. Motion compensa-
tion can be done by an explicit align-and-merge approach [Hasinoff
et al. 2016; Liba et al. 2019; Liu et al. 2014; Wronski et al. 2019], or
jointly through optimization [Heide et al. 2016, 2014]. Recently, deep
neural networks have been developed for burst denoising, which
either combine frames directly [Bhat et al. 2021; Dudhane et al.
2022; Godard et al. 2018; Liang et al. 2020], or predict kernels that
re-weight and merge images [Mildenhall et al. 2018; Xia et al. 2019].
Learning-based burst photography [Chen et al. 2019, 2018; Dong
et al. 2022; Jiang and Zheng 2019; Karadeniz et al. 2021; Kokkinos
and Lefkimmiatis 2019] operates directly on raw images and shows



outstanding performance for extreme low-light scenes. Neural ra-
diance fields have been applied to burst photography [Mildenhall
et al. 2021; Pearl et al. 2022], which handle large motion and high
noise level well. While this work is inspired by the classical two-step
approach to demonstrate the feasibility and benefits of color burst
photography with SPADs, neural network-based approaches are a
promising future direction, as discussed in Sec. 8.

Image reconstruction for single-photon cameras. Prior work has
analyzed the statistics of single-photon images for static scenes [An-
tolovic et al. 2016; Yang et al. 2012], and developed methods for
reconstructing intensity images via standard denoising techniques
such as total variation and BM3D [Chan et al. 2016; Gnanasam-
bandam et al. 2019], or using end-to-end neural networks [Chan-
dramouli et al. 2019; Choi et al. 2018]. Fossum [2013] first suggested
that sequential binary frames should be shifted to compensate for
relative motion, which is later implemented by assuming simple
global motion models [Gyongy et al. 2018; Iwabuchi et al. 2021, 2019;
Seets et al. 2021]. Chi et al. [2020] leverages student-teacher learning
to achieve both denoising and deblurring for a short quanta image
sequence (8 frames). Inspired by conventional burst photography,
[Ma et al. 2020] makes less restrictive assumption on the motion
(patch-wise 2D translation, smooth in time) and can deal with non-
rigid scene motion over a long sequence (1000-10000 binary frames).
In this paper, we propose the first image reconstruction algorithm
for color SPADs in the presence of scene and camera motion.

Color imaging for single-photon cameras. Color imaging with
single-photon cameras have been demonstrated with active light-
ing [Griffiths et al. 2019; Ren et al. 2018]. Gnanasambandam et
al. [2019] developed the first megapixel jot camera with a Bayer
RGB CFA pattern, and demonstrated promising results for joint
demosaicking-denoising [Elgendy et al. 2021] and image classifi-
cation [Gnanasambandam and Chan 2020]. Elgendy et al. [2020]
studied the spatio-spectral design of CFA for jot cameras using
an optimization-based framework. Shah et al. [2020] built the first
color SPAD array using RGB plasmonic metasurface mosaic filters,
with a resolution of 64x64. Morimoto et al. [2021] demonstrated the
first multi-megapixel color SPAD array with an RGB Bayer pattern,
but does not consider motion. In contrast, this paper analyzes and
implements unconventional RGBW color filters on a large-format
SPAD array, and develops computational approaches for performing
motion-compensation and demosaicking on single-photon frame
sequences captured by a color SPAD array.

3 SINGLE-PHOTON IMAGING MODEL

In this section, we describe the imaging model for single-photon
cameras in the context of color photography. Detailed explanation
and analysis about monochrome photography can be found in pre-
vious work [Antolovic et al. 2016; Ma et al. 2020; Yang et al. 2012].

Consider a single-photon sensor, e.g., a SPAD pixel array. Let the
light incident on a pixel be given by ¢ (A1), the spectral photon flux
which describes the average number of incident photons per second
as a function of wavelength A.! When a photon of wavelength A hits

IStrictly speaking, since A is a continuous quantity, ¢(A) describes the spectral density
of the incident photon flux.
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a SPAD pixel, the probability of triggering an avalanche is called
photon detection efficiency (PDE) n(A). Next, suppose the sensor is
covered with a color filter array so that different pixels have filters
of different colors, which transmit only a selected wavelength band
of light and thus, have different (1). Then, the average number of
photon counts per second is:

m=/¢@wwu,

We call p. color intensity of channel ¢, which is the quantity we
want to estimate at each pixel.

Note that p. only represents the average counts of photoelec-
trons for channel c. The actual number of excited photoelectrons
Z. during an exposure time of 7 seconds is modeled as a Poisson
random variable:

¢c=RGBW. 1)

— (ch)ke_pcr @)
k! ’

A single-photon sensor pixel records at most one photon during
an exposure, returning a binary value B such that B = 1 if the pixel
detects one or more photons, and B = 0 otherwise. B is therefore a
random variable with Bernoulli distribution (for simplicity, we drop
the subscript ¢ in the following):

P{B =0} = e~ (PrH7a7)
P{B=1}=1-¢ (prHrar)

P{Zc =k}

®)

where ry; is the dark count rate (DCR), the rate of spurious counts
unrelated to photon arrivals. We call B(x,y) a mosaicked quanta
image, where (x, y) represents the 2D pixel location.

If the scene and camera are static, the color intensity p can be
estimated by capturing a sequence of mosaicked binary frames, and
then simply adding them together to form a sum image S(x, y):

S(xy) = Y Bi(xy), @
t=1

where B;(x, y) is the binary frame at time ¢, and n is the number of
frames. S(x,y) is the total photon counts at (x,y) over the entire
binary image sequence. Since each binary frame is independent, the
expected value of the sum image is the product of the number of
frames n, and the expected value of the Bernoulli variable B:

E[S(x,y)] = nE[B(x,y)] =n(1—e_(p”rdf)). 5)

The maximum likelihood estimate (MLE) of the color intensity p
is given by [Antolovic et al. 2016]:

plxy) ==In(1=S(x,y)/n)/t = ra(x.y). (6)

Color intensity estimation under motion: So far we assumed
the scene and camera are static such that p is constant during the
capture. When the scene or the camera are moving, the motion needs
to be estimated so that p remains constant after compensating for
motion. This is particularly challenging in the presence of a color
filter array, due to which the photon counts p depends not only
on scene brightness (¢), but also filter spectral properties (). In the
next section, we describe techniques for generating high-quality,
blur-free linear RGB image from the captured mosaicked quanta
image sequences, in the presence of motion.
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4  MOTION AND MOSAICKING IN QUANTA IMAGES

In this section, we propose techniques for reconstructing RGB im-
ages from a sequence of mosaicked quanta frames. Broadly, the
approach consists of two components: First, we adopt a hierarchi-
cal approach to compute motion between a reference frame and
every other mosaicked 1-bit frame, which is challenging due to
extreme quantization (1-bit), low signal-to-noise ratio (SNR) and
bandpass filtering by the CFA. Second, we propose a novel joint
demosaicking and merging algorithm based on the observation that
quanta images, due to their unique characteristics as described
above, are not amenable to sequential demosaicking and merging.
At the end of the section, we propose techniques to address other
challenges, including a pre-processing hot pixel correction step and
a chrominance-focused denoising technique.

4.1 Estimating Motion between Mosaicked Quanta Images

Each captured mosaicked quanta image contains only 1-bit infor-
mation per pixel, which is not sufficient for directly estimating the
motion between them. One potential solution is to divide the entire
sequence into temporal blocks, compute the sum of photon counts
at each pixel for each block to get a multi-bit image [Ma et al. 2020]
which have sufficient SNR, and then estimating motion between
these multi-bit images. However, these multi-bit images are still
mosaicked (we define as mosaicked block-sum images), and not ready
to be directly aligned. Fig. 2 shows a minimal example, with a scene
consisting of a yellow cube. When the cube moves by one pixel, it
shifts to a different set of color filters on the sensor and the mo-
saicked images look completely different, i.e. brightness constancy
is violated, making it challenging to estimate motion.

To address this conundrum, we propose converting mosaicked
block-sum images to grayscale images before matching. Since the
densely sampled W channel (75% W pixels, see Sec. 5) carries suf-
ficient information for alignment, we directly interpolate the W
pixels [Bornemann and Mérz 2007] to get a full-resolution grayscale
image. This approach can be extended to a general class of CFAs.
Please see the supplementary report for details.

We then apply a hierarchical patch-matching algorithm to com-
pute the block-level motion, which is then linearly interpolated to
get the fine-grained frame-level motion [Ma et al. 2020]. The block
size is chosen between 100 and 1000 quanta images, depending on
the camera capture frame rate, scene light level and motion speed.
Fig. 3 visually summarizes the motion estimation step.

4.2 Joint Demosaicking and Merging

After alignment, we merge the binary frames into a high-SNR, low-
blur color image. The merging problem is challenging since the raw
frames are heavily quantized and mosaicked, which necessitates
solving both the merging and demosaicking problems.

One straightforward approach is to demosaic the individual frames,
followed by merging. However, with single-photon cameras, it is
extremely difficult to demosaic individual binary frames since they
lack reliable color information. Another idea is to demosaic the
block-sum images, and then merge them. In this case, the merged
image still contains motion blur within each block, which does not
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Fig. 2. Can we align/warp mosaicked images directly? When a yellow
cube moves by one pixel, the same scene point moves to a pixel with a
different color filter, which results in a completely different mosaicked image.
Therefore, it is impossible to align or warp mosaicked images directly.

I Warp?

Mosaicked
Block-Sum Images

Mosaicked
Quanta Images

Grayscale
Block-Sum Images

““ Divide &
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Fig. 3. Motion estimation algorithm. A sequence of mosaicked quanta
images is divided into temporal blocks and added up to mosaicked block-
sum images, which are then converted to grayscale block-sum images (as
shown in Fig. 2). Block-level motion is estimated between grayscale block-
sum images using a hierarchical patch-matching algorithm, which is then
linearly interpolated to get frame-level motion.

fully utilize the high frame rate of single-photon cameras. In sum-
mary, neither demosaic first and then merge nor merge first and then
demosaic gives satisfactory results.

Joint demosaicking and merging: Since neither of the aforemen-
tioned sequential approaches are adequate, we propose a joint
demosaic-merge technique. Inspired by [Wronski et al. 2019], we
treat pixels in the mosaicked binary frames as 1-bit color samples,
which are warped to the reference frame according to the measured
sub-pixel frame-level motion (super-resolution can be enabled by
choosing a pixel grid of higher resolution). We reconstruct each
pixel on the grid from samples within a spatial neighborhood, using
an anisotropic Gaussian kernel [Takeda et al. 2007]. To estimate
the kernel at each pixel location, we create a reference image by
warping and combining the grayscale block-sum images generated
in the alignment step using a Wiener filter [Hasinoff et al. 2016].
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Fig. 4. Merge algorithm. We first use the estimated block-wise motion to warp the grayscale block-sum images to obtain a reference image, which is then
used to guide the joint demosaicking and merging of mosaicked quanta images into full-resolution R, G, B, and W channels respectively. The four channels are

then combined into an RGB image, where the luminance comes from the W channel and the chromaticity comes from the R, G and B channels. Since the W
channel has higher SNR and spatial resolution, the merged image has improved spatial details and reduced noise as compared to the raw RGB channels.

The reference image also enables robust merging of the binary color
samples, where we design a robust weighting function based on
the binomial statistics. More details about the algorithm can be
found in the supplementary technical report.

Combining R, G, B and W measurements. The proposed joint de-
mosaicking and merging algorithm is applied to each color channel
separately. When an RGBW CFA is used, the algorithm produces
four full-resolution images, one each for R, G, B and W channels.
Although it is possible to simply ignore the W channel and output
the R, G and B channels as the final image, the W channel provides
a more accurate estimate of the luminance of the image. This is
because W pixels receive more light and achieve higher SNR in
low-light environments, especially for CFAs with high fraction of W
pixels. Thus, it is important to use the additional W channel while
reconstructing the final RGB image. Formally, the W channel offers
a per-pixel linear constraint on the color values:

wWRR+wgG+wgB=W, 7)

where (wg, wg, wp) are the color transform coefficients that relate
the R, G, B and W channels and are determined by calibrating the
spectral responses of the pixels [Chakrabarti et al. 2014].

Previous demosaicking algorithms use this constraint in a nonlin-
ear optimization framework and jointly solve the R, G and B for the
entire image [Chakrabarti et al. 2014; Condat 2009]. However, it is
infeasible to solve burst photography with color quanta images as
an optimization problem since several thousands of binary images
are involved. Instead, we first use the proposed joint demosaicking
and merging algorithm to get four channels separately, and then
use the linear constraint in Eq. 7 to scale the R, G and B channels at
each pixel such that their sum is equal to W. This scale factor can
be easily computed as the ratio between the measured W value and
the expected W value from the measured R, G and B value:

W(x,y)

Koy = R G 9) ¥ w60 y) + wB(rg)

®)

With Hot Pixel
Correction

Calibrated Hot Pixel Without Hot Pixel

Map Correction

Fig. 5. Correcting hot pixels. (Left) 3% of total pixels are classified as hot
pixels in our hardware prototype (DCR >30cps). (Center) Without hot pixel
correction, the motion estimate is biased towards zero in dark regions, which
results in blur. In bright regions, the hot pixels “move” together with the
patches, which leaves color streaks in the result. (Right) With the proposed
hot pixel correction, most of the blur and color streaks can be removed.

This two-step approach reduces the computational complexity sig-
nificantly. As shown in Fig. 4, the merged result has sharper edges
and less noise than the reconstruction from RGB channels only.

4.3 Handling Practical Challenges

Challenge of Hot Pixels in Quanta Images. Current SPAD arrays
suffer from spatially-varying dark count rate (DCR), and especially,
“hot pixels” which have exceptionally high DCR as compared to
other pixels [Antolovic et al. 2016]. Identification and correction of
hot pixels is especially important for low-light imaging since a DCR
higher than or comparable to the actual light signal can significant
downgrade the image quality. Fig. 5 (a) shows the calibrated hot
pixel map of a SwissSPAD2 [Ulku et al. 2019], where about 3% of
total pixels are identified as hot pixels. It is critical to remove hot
pixels prior to motion estimation and alignment because hot pixels,
if not alleviated, could strongly bias the motion estimate towards
zero as they have extremely high intensities and do not move despite
the presence of scene or camera motion. This is demonstrated in
Fig. 5. Without hot pixel correction, the motion estimate is zero
in the dark regions, causing motion blur. In the dark regions, the
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Fig. 6. Denoising with chrominance-focused BM3D. By applying dif-
ferent level of denoising to the luminance and chrominance channels,
chrominance-focused BM3D is able to suppress the color noise while main-
tain more structural details in the luminance channel.

hot pixels are warped together with the estimated motion, which
causes color streaks in the reconstruction. The proposed hot pixel
correction algorithm removes most of the blur and color streaks.
Please see the supplementary report for algorithm details.

Chrominance-Focused Denoising. After temporal merging, we per-
form denoising to further improve the SNR by utilizing the spatial
correlations. However, for single-photon cameras with pseudoran-
dom CFAs, it is particularly challenging to find spatial correlations
in individual binary frames. Therefore we apply merging and de-
mosaicking first which generates an RGB image that is amenable to
existing denoising techniques such as BM3D [Dabov et al. 2007].

Classical BM3D assumes the noise variance in the R, G and B
channel is equal. The key difference in our setting is that, for RGBW
color filter arrays, the luminance of an image has a much higher
SNR than the chrominance. To leverage this benefit, we propose
a chrominance-focused denoising approach: Prior to denoising, we
convert the image into a modified YCbCr space [ITU-R 2011], which
allows us to choose a smaller ¢ for the Y channel and apply more
aggressive denoising to the Cb/Cr channels. Fig. 6 shows that the
proposed chrominance-focused BM3D is able to suppress the color
noise while maintaining structural details in the luminance channel.
More details can be found in the supplementary report.

5 ACQUISITION OF COLOR: DESIGN AND ANALYSIS OF
CFAS FOR SINGLE-PHOTON BURST PHOTOGRAPHY

While the previous section proposed computational and algorithmic
approaches for processing the raw single-photon color frames, in
this section, we consider the problem of raw frame acquisition itself.
In particular, we address the following question: What is the right
color filter array (CFA) [Adams et al. 1998] for color single-photon
imaging? Our design of CFA is based on two main observations:
First, the fine-grained motion measurement due to high frame-rate
of SPADs could effectively increase the sampling rate of color, which
allows using RGBW CFA patterns with large fraction of white pixels
(thus increasing the overall SNR). Second, to further reduce color
aliasing artifacts, we design a pseudorandom RGBW pattern which
is inspired by previous blue-noise pattern designed for RGB pixels.

5.1 Burst Photography with RGBW Patterns

In addition to RGB patterns which are commonly used in commercial
cameras, various RGBW patterns have been proposed [Chakrabarti
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2016; Chakrabarti et al. 2014; Oh et al. 2017; Parmar and Wandell
2009]. The key idea is to add a fourth white pixel which is not
color-selective and absorbs more light. Such higher light sensitivity
improves the SNR of reconstructed images, especially relevant for
low-light imaging. The density of RGB pixels is lowered in such
RGBW patterns, which makes it necessary to design demosaicking
algorithms accordingly [Bai and Li 2019; Oh et al. 2017].

Supersampling due to motion. One important observation for burst
photography is that, when the inter-frame motion is correctly mea-
sured and compensated, the color samples measured by each color
filter are dispersed along the motion trajectories. Therefore, the color
information could be sampled at a higher spatial frequency than in
the original CFA. This is especially pertinent for SPADs since pixels
are sampled in time much more frequently, which corresponds to
effectively higher color sampling rate.

To verify this observation, we simulate a challenging binary se-
quence with high-frequency content (fences). We use an existing
RGBW pattern [Kwan et al. 2020] and apply the proposed algorithms
(Section 4) to reconstruct an image, as shown in Fig. 7 (Left). A large
amount of color artifacts can be observed when the scene is static
(Top left). When the camera is moving horizontally (Middle left),
the horizontal color sampling rate increases and the artifacts at the
vertical fences are decreased (red crop). However, artifacts at edges
with other orientations remain (yellow crop). When the camera is
subject to random 2D motion (e.g., handheld motion) (Bottom left),
the color sampling rate increases in both dimensions, and therefore
artifacts at edges with all orientations disappear. To summarize, in
the presence of motion, the proposed computational techniques are
able to leverage the strength of RGBW filters to achieve high SNR
in low light, while not getting adversely affected by the low color
sampling rate. In practice, using our algorithmic pipeline, a CFA
with 75% of W pixels achieves a good balance between light sen-
sitivity and color sampling rate. Please see the supplementary
technical report for more details on CFA design and analysis.

5.2 Periodic vs. Pseudorandom Patterns

Periodic CFAs such as Bayer patterns consist of blocks of fixed per-
mutation of color filters (e.g., RGGB) that are repeated spatially,
while pseudorandom CFAs contain pseudorandomly generated pix-
els without repetitions [Chakrabarti 2016; Chakrabarti et al. 2014;
Condat 2010; Oh et al. 2017; Sharif and Jung 2019]. The benefit of
using pseudorandom patterns is that aliasing artifacts appear as
incoherent noise, which is less perceptible than coherent moiré pat-
terns generated by regular patterns. However, a completely random
pattern makes demosaicking more challenging, leading to severe
color artifacts. Inspired by existing work on pseudorandom RGB
pattern [Condat 2010], we design a novel blue-noise RGBW pattern,
as shown in Fig. 8 (f).

The performance of the proposed pattern can be analyzed in
the frequency domain [Alleysson et al. 2005; Condat 2010]. This
is shown in Fig. 9, where the CFA is decomposed into luminance,
red-green (R-G) chrominance and blue-yellow (B-Y) chrominance
and transformed to Fourier domain (For simplicity, we only show
the R-G chrominance spectrum). When an image is captured with a
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Fig. 7. Color sampling with RGBW CFAs. (Left) Simulated results with a regular RGBW pattern. (Center) Random RGBW pattern. (Right) Proposed
conditioned random RGBW pattern. (Top) When the scene is static, the regular pattern introduces unnatural coherent moiré color artifacts. The random
pattern generates less annoying incoherent artifacts, but becomes noticeable at higher frequencies (red crop). The conditioned random pattern generates fewer
artifacts even at high frequencies. (Middle) When there is horizontal motion, artifacts around vertical edges (fences) are decreased, while artifacts around
edges with other directions still remain. (Bottom) When random 2D motion is present, artifacts at edges with all directions are mitigated.
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Fig. 8. Related color filter arrays. (a) Bayer RGB [Bayer 1976]. (b) 25%
W [Gindele and Gallagher 2002]. (c) 50% W [Tachi 2012]. (d) 75% W reg-
ular [Kwan et al. 2020]. (e) 75% W random [Oh et al. 2017]. (f) 75% W
blue-noise conditioned random (proposed).

CFA, the light signal arrives at the pixels (image irradiance) is con-
volved with the CFA, which, in the Fourier domain, corresponds to
the multiplication of the irradiance spectrum with the CFA spectrum
shown in the figure. For the Bayer pattern (Fig. 9(a)), the luminance
energy is concentrated at [0, 0], while the R-G chrominance energy
is concentrated at high frequencies and therefore can be separated
from the luminance during demosaicking for band-limited image
radiance. A completely random pattern (i.e., pixels generated from
independent uniform distributions) distributes the chrominance en-
ergy uniformly (Fig. 9(b)), which makes the separation of luminance
and chrominance difficult. [Condat 2010] proposed a blue-noise
pseudorandom pattern which has an additional constraint that pix-
els of the same color cannot be contiguous. As a result, the chromi-
nance has minimal energy in the baseband and therefore it can be
separated from the luminance while avoiding structured, coherent
aliasing artifacts, as shown in (Fig. 9(c)). We extend the blue-noise
pattern to get an RGBW pattern with 75% W, as shown in Fig. 9(d).
This periodic distribution of W pixels makes copies of the blur-noise
spectrum and keeps the luminance and chrominance spectra sepa-
rable. This regular arrangement of W pixels also makes inpainting
the W channel easier and therefore eases alignment(Sec. 4.1).
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Fig.9. Spectrum analysis of periodic and pseudorandom patterns. (a)
RGB Bayer pattern: the luminance energy is concentrated at the origin, while
the chrominance energy is concentrated at high frequencies, which means
they can be separated well. (b) A completely random pattern has its chromi-
nance energy uniformly distributed across all frequences, which makes it
difficult to separate from luminance. (c) RGB blue-noise pattern makes
luminance and chrominance separable while avoiding coherent aliasing
artifacts. (d) We propose RGBW blue-noise by padding W pixels between
color pixels, which retain the merits of the RGB blue-noise pattern.

We compare the proposed pattern with two existing 75% W CFAs
with regular [Kwan et al. 2020] and completely random RGB fil-
ters [Oh et al. 2017] in Fig. 7. The blue-noise pattern improves
the image quality for all three motion conditions, which is most
prominent when the scene is static. The regular pattern introduces
unnatural cyan/yellow moiré patterns in the image. The random pat-
tern alleviates moiré patterns, but generates high-frequency color
artifacts [Dippe and Wold 1985] (red crop). The proposed blue-noise
RGBW pattern (conditioned random) ensures that aliasing between
luminance and chrominance components is minimized even for
high-frequency image content, as shown in (Top Right, red crop).

How much motion is needed? While the blue-noise pattern miti-
gate moiré patterns, such artifacts still exist for a completely static
scene with high-frequency content. How much motion is required
by the burst photography to remove them? Fig. 10(Left) plots the
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Fig. 10. How much motion is needed? (Left) We synthesize 10 different
sequences using 2D circular rotation with different radii. The PSNR of naive
averaging keeps decreasing due to motion blur. The PSNR of the proposed
method keeps increasing, but the biggest jump comes when the motion
is increased from 0 to 1 pixel. (Center, Right) Most visible artifacts are
reduced or removed even when there is a 1-pixel motion.

Table 1. Sensor Parameters for Simulation

Sensor Type ‘ Conventional SPAD Jot
Resolution 1024x1000 1024x1000 5120%5120
Frame Rate 240fps 24,000fps 1,000fps
Bit Depth 10 1 1

QE / PDE (R) 59% 9% 71%
QE / PDE (G) 65% 14% 79%
QE / PDE (B) 48% 13% 69%
Read Noise* 2.4e” 0 0.24e~
Dark Current Noise / _ _
Dark Count Rate* le™ /s 2.0cps 0.16e7 /s

*Note: per-pixel.

PSNR of the reconstructed image as a function of motion in pixels. 10
different sequences are synthesized using 2D circular rotation with
different radii. It is clear that the biggest jump in PSNR comes when
the motion is increased from 0 to 1 pixel. This is also demonstrated
by Fig. 10(Center) and (Right): Most visible artifacts disappear when
there is a 1-pixel motion. We conclude that the motion requirement
is minimal for the proposed burst approach.

6 RESULTS
6.1 Simulated Results

To evaluate the performance of the proposed approach under vary-
ing imaging scenarios in a controllable manner, we simulate the
imaging process of single-photon sensors by using an open-source
path tracer (Blender Cycles) to synthesize photorealistic scenes from
high-quality 3D scene models, and then render mosaicked binary
frames according to Eq. 3.

Conventional vs. SPAD color imaging under different lighting con-
ditions. Fig. 11 shows a comparison between conventional CMOS-
based burst photography and the proposed SPAD color imaging.
Imaging parameters of the simulated sensors are summarized in
Tab. 1. Parameters for the conventional CMOS sensor are adapted
from a high-end machine-vision camera?. Parameters for the SPADs

https://www.flir.com/products/grasshopper3-usb3/?model=GS3-U3-12356C-C
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Fig. 11. Comparison of conventional and SPAD burst photography under different lighting conditions on a simulated scene. (Top) For a daytime
scene with sufficient lighting, both conventional camera and SPAD are able to resolve the camera motion and reconstruct a blur-free, high-SNR image.
(Bottom) For a night scene with both unlit regions and strong direct light sources, conventional burst photography cannot recover the entire dynamic range,
while the proposed method can reconstruct both dark and bright regions. RGBW pattern recovers fine structure in the dark better than RGB pattern because
of the higher transmission of W pixels. The same tone-mapping operator [Mantiuk et al. 2006] is applied to all results.

are based on [Morimoto et al. 2020], using a conservative esti-
mate of effective fill factor (50% ) which can be achieved with mi-
crolenses [Bruschini et al. 2023]. We adapt the proposed pipeline
to process conventional images by skipping the motion interpo-
lation within blocks. We keep the total exposure time same for
both sensors, and compare them both visually and quantitatively
by computing the PSNR of the linear reconstructions.

For a well-lit scene (Fig. 11 (Top)), both conventional camera and
SPAD are able to resolve the camera motion and reconstruct a blur-
free, high-SNR image. The same scene captured during nighttime
(Fig. 11 (Bottom)) presents challenges, with both dark (unlit regions
on the left) and bright parts (illuminated signs and lamps) creating
a high dynamic range. Conventional burst photography cannot
recover the entire dynamic range, resulting in noise and blur in the
dark regions (blue window) and saturation in the bright regions
(red window). On the other hand, the proposed method recovers
both the dark and bright intensity ranges. Notice that the proposed
RGBW pattern can better reconstruct the fine structure in the dark
(text in the blue window) than conventional Bayer pattern due to
the higher transmission of the white pixels.

Trade-off between spatial and temporal resolution. Fig. 12 compares
the results of the proposed method on SPADs and jots, with the
same camera motion and total exposure time. Simulated camera

Table 2. Quantitative Evaluation on Interpolated Video Data

| PSNR (1) SSIM (1) LPIPS (])

Naive average (long) 23.87 0.5934 0.5173
Naive average (short) 20.62 0.4361 0.6153
VBM4D [Maggioni et al. 2012] 21.20 0.5342 0.4382
MFIR [Bhat et al. 2021] 23.63 0.6163 0.4230
BIPNet [Dudhane et al. 2022] 25.25 0.6481 0.3357
Proposed 26.06 0.7879 0.2665

parameters are listed in Tab. 1. Recent development of jots-based
quanta image sensors (CIS-QIS) has focused on spatial resolution
instead of fast single-bit readout [Ma et al. 2022]. Here we assume
a high-speed jot device optimized for fast burst photography and
provide a projected set of parameters: We assume a frame rate of
1000 fps as reported in [Ma et al. 2017], and then match the total
bandwidth to SPADs. We wish to emphasize that the goal is not
to directly compare the two technologies, but to understand the
trade-off between spatial and temporal resolution.

Due to their lower temporal resolution, jots cannot resolve motion
blur under fast and complex camera motion. However, when the
camera motion is slow, jots are able to recover sharper image details.
We expect the two kinds of single-photon sensors to complement

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.
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Fig. 12. Comparison of simulated SPAD- and jot-based quanta burst
photography. A naive average of SPAD frames is shown to visualize the
amount of motion. (Left) When the camera motion is extremely fast and
complex, jots fail to resolve the motion blur. (Right) When the motion is
slow, jots are able to recover more spatial image details.

each other in real applications, where SPADs are preferred when
complex or high-speed motion is involved, and jots are preferred
when high-frequency spatial details need to be recovered.

Quantitative evaluation on interpolated video data. In addition
to comparison with other imagers, we also compare with existing
burst denoising methods using synthetic SPAD data. To synthesize
the high frame-rate data captured by a SPAD camera, we temporally
interpolate a 1000FPS video dataset (X4K1000FPS [Sim et al. 2021],
test set only) by a factor of 16x using RIFE [Huang et al. 2022]
and then sample binary images according to Tab. 1. This gives us
fifteen 512-frame binary sequences, with an average flux of 0.1
photons/pixel/frame, which is a very challenging scenario.

We compare with five baselines as shown in Fig. 13 and Tab. 2.
Naive average simply takes the average of either the entire sequence
(long) or a single block used by the proposed method (short). Burst
photography algorithms that take raw images as input cannot be
directly applied to our RGBW CFA. Instead, we first apply a uni-
versal demosaic algorithm [Condat 2009] on block-sum images and
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then run classic (VBM4D [Maggioni et al. 2012]) and pretrained
learning-based (MFIR [Bhat et al. 2021] and BIPNet [Dudhane et al.
2022]) burst denoising algorithms. Naive average results in either
significant motion blur (long) or noise (short). VBM4D smooths
out the noise but leaves low-frequency noise patterns. MFIR and
BIPNet cannot remove the noise perfectly without oversmoothing
the structure (Fig. 13 only shows qualitative results for BIPNet as it
performs better). In contrast, the proposed method is able to com-
pensate for the motion while reconstructing a clean image, which
achieves best PSRN, SSIM and LPIPS. Notice that the performance of
learning-based methods can potentially be improved by optimizing
on raw binomial images captured with the proposed CFA, which we
leave for future work. Details on this comparison can be found
in the supplementary technical report.

6.2 Hardware Prototyping a Color SPAD Array

We follow the CFA design principles as described in Sec. 5, and
fabricate the 75% RGBW BN pattern on a SwissSPAD2 [Ulku et al.
2019] SPAD array as shown in Fig. 1. The pattern contains 75% W
pixels and 8.33% R, G and B pixels each. With this hardware proto-
type, we are able to record 496x254 mosaicked binary images at up
to 96.8kfps. To reduce the amount of data, we capture most of the
scenes at 10kfps, and use 96.8kfps only for HDR scenes. Our proto-
type needs to be connected to two bench power supplies, limiting
its portability. Therefore, we capture scenes that are representative
of different imaging challenges and report qualitative results.

Color filters. The color filters are fabricated with photolithogra-
phy, utilizing colored SU-8 photoresists [Jiang et al. 2020]. Fig. 14
shows the spectral response of the fabricated color filters. To eval-
uate the color reproduction performance, we use a Calibrite Col-
orChecker Classic with a D65 illuminant and plot the reference
and measured color on chromaticity plots. Due to limitations in
our fabrication process, in our current prototype, the color filters
do not have ideal color selectivity, which results in images with
low saturation. Furthermore, the blue filter has an unwanted strong
response at wavelengths greater than 650nm, causing nonideal color
reproduction performance. Fortunately, this is not a fundamental
limitation of photolithography or SPADs, and can be solved with
more iterations of photolithography experiments.

Performance under different light levels. Fig. 15 shows a scene
under two lighting conditions, captured by a handheld SPAD cam-
era moveing randomly in 3D. The proposed method reconstructs a
low-noise, blur-free image, which again outperforms the four base-
lines. Note that some hot pixels are not completely removed by the
preprocessing step and still remain in the baseline results where
there is a cluster of them. The proposed robust merging step treats
the remaining hot pixels as noise and can remove them. BIPNet
results look blurrier since its input size is fixed to 8 frames, causing
more intra-frame motion. The proposed method can interpolate the
motion to each binary frame and resolve motion better.

Performance on challenging objects. Fig. 16 shows results on scenes
with geometrically and radiometrically challenging objects, includ-
ing high-frequency geometric structures (fence), complex occlusions
(plant branches), specular reflection (fake fruits), and thin structures
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Fig. 13. Qualitative comparison on interpolated video data. Here we show two examples from the 15 interpolated sequences. Compared to baseline

methods, the proposed method reconstructs the most clean and sharp image.
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Fig. 14. Color filters. (a) Spectral response of the fabricated color filters.
(b) We evaluate the color reproduction performance using a Calibrite Col-
orChecker Classic and a D65 illuminant. We plot the reference and measured
color for each color patch in a chromaticity plot. (c) Chromaticity plot after
applying an affine color correction matrix.

with depth variations. All these scenes pose stringent challenges for
motion estimation and/or demosaicking algorithms. Nevertheless,
the proposed method is able to reconstruct higher-quality images
than the baseline methods.

High dynamic range. Fig. 17 shows two scenes with high dynamic
range. The mosaicked binary frames show that the density of de-
tected photons varies significantly across the image. To further
illustrate the high dynamic range of the scene, we show the recon-
structed linear images using the proposed method with different
intensity scale factors. Fig. 17 (Top) demonstrates that the proposed
method can reconstruct both the dark (artwork inside the room)
and bright (sky and cloud) regions of the scene, which differ greatly
in intensity such that they cannot be visualized simultaneously in a
single 8-bit image. Fig. 17 (Bottom) shows an even more challenging
example: We put several LED lights in a vase placed in a dark room.
The proposed method can still reconstruct the entire dynamic range,
including the pattern on the backdrop and the detailed reflection
within the lights. The linear images need to be scaled by 500X to
visualize the dark parts. For this scene, we also show the result
of HDR+ [Hasinoff et al. 2016] on 20 DSLR images, which gives
a sense of how commercial cameras perform for the same scene.
DSLR recovers better colors, but lacks details in the bottom half.
Notice this is not intended to be a direct comparison, as the DSLR
has been heavily engineered over the years and has significantly
higher resolution, quantum efficiency, etc.

3Open-source implementation: https://github.com/martin-marek/hdr-plus-swift

Complex scene motion. In addition to rigid camera motion, the
color burst photography approach is also robust to fast, complex
scene motion. Fig. 18 (Top) shows a rotating color wheel. We show
mosaicked binary frames captured at two time instants to illus-
trate the motion. Unsurprisingly, simple averaging over a sequence
blends the color due to motion blur. Despite the proposed method
not explicitly modeling the rotation of objects, it can reconstruct a
high-quality image with no color blending. Fig. 18 (Bottom) shows
the non-rigid waving motion of a feather. The apparent motion
varies considerably across pixels, which is difficult to estimate accu-
rately, especially with the geometric complexity of thin structures.
Nevertheless, the proposed method reconstructs a clean image with
minimal motion blur. Please see the supplementary material
for the full videos, and more results.

7 THEORETICAL ANALYSIS OF DYNAMIC RANGE

In Sec. 6, we demonstrate the HDR capability of the proposed color
SPAD pipeline using qualitative experiment results. Can we quantify
the dynamic range of color SPAD? While the dynamic range of
monochromatic SPAD has been analyzed in the past [Antolovic et al.
2016; Ingle et al. 2021, 2019; Ma et al. 2020], there are important
differences in the case of color SPADs. The distinctions are even
more noteworthy for RGBW filter arrays.

First, consider the dynamic range of a single SPAD pixel. As-
suming the scene motion is perfectly compensated, a closed-form
expression for the SNR has been derived in previous work [Antolovic
et al. 2016; Ingle et al. 2019; Ma et al. 2020]:

B p _ A nt
SNR = RvsE(p) ~ P\ errar 1 ©)

where p is the MLE of color intensity p (Eq. 6), n is the number of
binary frames, 7 is the exposure time for a single frame, and r; is
the dark count per frame. We define the dynamic range as the ratio
between the maximum and the minimum measurable intensities:

Pmax

DR = 20log;g —— . (10)

min

Pmax and ppin are defined as the upper and lower bounds of p where
the SNR is higher than 1. When the intensity is extremely low, the
estimate is inaccurate due to the randomness of photon arrivals (shot
noise). On the other hand, when the intensity is high, the SPAD is
close to saturation and the intensity cannot be estimated reliably.
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Fig. 15. Performance under different light levels. Baseline methods cannot fully remove the noise, especially in the dark scene (brightened 8.5X for
visualization). In contrast, the proposed method reconstructs a clean, blur-free image. (Captured at 10kfps. 100 binary images per block, 20 blocks.)
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Fig. 16. Performance on challenging objects. Scenes with challenging objects, including high-frequency fence structures, complex occlusion between
plant branches, specular reflection on fake fruits, and thin fence at a different depth than the rest of the scene. The proposed method outperforms naive
average and the baseline methods. (Captured at 10kfps. 100 binary images per block, 20 blocks.)

The dynamic range can then be found by numerically solving the
equation SNR = 1.

Next, consider our SPAD covered by RGBW color filters. Since
pixels with different color filters have different PDE curves (1)
(Sec. 3), they have different SNRs even at the same incident photon
flux level, resulting in different pmax and pyin. Fig. 19 (Left) shows
one example where the dynamic ranges of an R pixel and a W pixel
are compared. The R pixel transmits less light and therefore works
at a higher range of photon flux, while W pixel transmits more
light and works for even less light but saturates more quickly. In
other words, the dynamic ranges of pixels with different color filters
are different. Based on this observation, we provide two different
definitions of the dynamic range of the entire SPAD array:
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Definition 7.1. Best-performance DR is defined as the dynamic
range where all pixels (R, G, B and W) have SNR>= 1.

Definition 7.2. Extended DR is defined as the dynamic range
where either the W pixels or the color pixels (R, G, B) have SNR>= 1.

Best-performance DR is given by the intersection of the dynamic
ranges of different pixels, where all pixels give reliable estimate of
the incident intensities. While best-performance DR gives a conser-
vative definition of the dynamic range, it is worth noting that the
photon flux range where only one type of pixel works still contains
valuable information that can be used to generate an image.

o For the lower range where only the W pixel works, it is pos-
sible to reduce the saturation such that although the output
image contains less color, it still carries reliable luminance
information about the scene, which can be beneficial for both
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Fig. 17. High dynamic range. The proposed method is able to reconstruct scenes with high dynamic range. (Top) Both the sharp text in the dark and detailed
shape of the cloud in the sky are reconstructed. (Bottom) Both the texture in the backdrop and the detailed reflection within the lights are reconstructed. 0.7
lux in the darkest region. (Captured at 96.8kfps. 2000 binary images per block, 30 blocks.)
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Fig. 18. Complex scene motion. In addition to rigid camera motion, the proposed method is also robust to complex scene motion. We show mosaicked
binary frames captured at different time instants to visualize the scene motion. (Top) Naive average of a rotating color wheel blends the colors. The proposed
method reconstructs a clear image with no color blending. (Bottom) Naive average of a waving feather creates motion blur. The proposed method is robust
to this nonrigid, spatially-varying motion, and generates an image with significantly reduced motion blur. The blur on the feather tip cannot be perfectly
removed due to faster motion. Please refer to the supplementary video for a video reconstruction.

Putting all the three ranges together, we define the union of the
dynamic ranges of different pixels as extended DR, which is the
range where a reasonable image can be generated at the cost of less
chrominance information in the darker range or possibility of blur
and ghosting in the brighter range.

recognition tasks in machine vision and artistic rendering
for human viewing. Fig. 20 shows one example. Notice that
the saturation is spatially-variant, which mimics human vi-
sion [Kirk and O’Brien 2011]. This approach can be considered
a noise-aware visualization technique, which we elaborate
in the supplementary report.

e For the higher range where only the RGB pixel works, it is
possible to use the RGB pixel measurements only and do not
include the contribution of W pixels during merging (Eq. 8)
to avoid saturation.*

Trade-off between best-performance DR and extended DR.. The gap
between best-performance DR and extended DR depends on the
overlap between the DR of RGB pixels and W pixels, which in turn
depends on the transmission of RGB filters. RGB filters with nar-
rower passbands have more saturated colors and can reproduce the

4Since alignment is still based on the W measurements, there is a possibility of intro-
ducing blur and ghosting artifacts at this higher range.

colors more faithfully, but the overall transmission is lowered. The
transmission can be characterized by the coefficients wg, wg, wp
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Fig. 19. Dynamic range. (Left) RGB pixels (Here we take R as an example)
work at a higher flux range, while W pixels work at a lower flux range.
We define the intersection of both ranges as the best-performance DR,
and the union of both ranges as the extended DR. (Right) The trade-off
between best-performance DR and extended DR is determined by whether
transmission or saturation is preferred when choosing the color filters.
When a color filter with higher saturation is chosen, the extended DR
increases, while the best-performance DR decreases. Dynamic range of
conventional burst photography with Bayer RGB is plotted for reference.
Both conventional camera and SPAD camera are simulated using parameters
in Tab. 1. An exposure time of 1s is used for both cameras.

Original: Heavy Color Noise Desaturated: Less Noisy

Fig. 20. Noise-aware visualization. (Left) The original image contains
significant color noise due to low light. (Right) The proposed noise-aware

visualization reduces saturation of the dark pixels and suppresses noise.

as in Eq. 7; a higher value of wg, wg, wg implies a lower transmis-
sion of the respective filter. We consider a simplified model where
wR = wg = wp = w and plot the best-performance DR and ex-
tended DR in Fig. 19 (Right). For reference, we also plot the dynamic
range of conventional burst photography with Bayer RGB based
on the parameters in Tab. 1, which is independent of w. When the
transmission decreases, the gap between RGB pixels and W pixels
is widened, which means lower best-performance DR but higher
extended DR. In practice, the transmission of the filters should be de-
termined by considering whether best-performance DR or extended
DR is preferred for a given end application.

8 LIMITATIONS AND FUTURE OUTLOOK

Computational complexity. Our unoptimized MATLAB implemen-
tation takes approximately 30 minutes to process 10,000 binary
frames. The biggest bottleneck comes from the joint demosaic-merge
step, which is not vectorized efficiently. From our experience with
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similar methods, it has been possible to achieve a speedup of 3-4 or-
ders of magnitude by C++ implementation and optimization, which
is an important next step towards a practical system.

Static scenes. The proposed method removes most of the color
aliasing artifacts when there is at least a 1-pixel motion. Neverthe-
less, better demosaicking for completely static scenes can achieved
by utilizing image priors learned by neural networks [Chakrabarti
2016; Sharif and Jung 2019]. Furthermore, the optimal RGBW CFA
may also be learned as part of an end-to-end filter and network
design for best image reconstruction quality [Chakrabarti 2016].

Optimal color filter design and implementation. Previous work has
explored optimization of the spectral response of color filters for
best color discrimination while reducing noise amplification [Ku-
niba and Berns 2009; Parmar and Reeves 2006]. Such optimization is
an interesting future research direction. Specifically, an important
future research question is: Should the color filters maximize trans-
mission (for more light throughput) or maximize color saturation
(better band selectivity)? This can be determined from the dynamic
range analysis discussed in Sec. 7.

Learning-based burst photography. Learning-based burst photog-
raphy algorithms for conventional CMOS cameras have achieved
significant progress. However, learning-based methods are sensitive
to out-of-distribution data and cannot be applied to single-photon
images directly. A promising future direction is to develop neural
networks-based methods for quanta burst photography by synthesiz-
ing quanta images from existing high-speed CMOS image datasets
as well as capturing real datasets with SPAD cameras.

Comparison with commercial single-photon cameras. It is also
worth mentioning that, compared to commercialized single-photon
cameras®, the proposed hardware is merely a research prototype
that cannot compare directly in terms of quantum efficiency, resolu-
tion, color reproduction, etc. Nevertheless, the proposed techniques
can be combined with the mature fabrication technologies that en-
able the commercial single-photon cameras, which can hopefully
lead to high-performance color imaging systems that create quality
images even for dynamic scenes with challenging dynamic ranges.
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1 ALGORITHM DETAILS

In this section, we discuss the algorithm details that we exclude
from the main paper to avoid distraction.

1.1 Estimating Motion for General CFAs

In the main paper, we discuss the need to convert mosaicked block-
sum images into grayscale images before alignment. This approach
can be applied to a general class of CFAs that only contain R, G, B
and possibly W pixels. Specifically, we consider the following three
cases, which are summarized in Fig. 1,

(1) For periodic CFA patterns with small periods (e.g., 2 x 2 tiles,
Fig. 1(a,b)), we downsample the mosaicked block-sum image
by averaging each tile of filters [Hasinoff et al. 2016].

(2) For periodic patterns with large periods (Fig. 1(c)), the down-
sampling approach results in very low resolution which
reduces alignment precision. In the extreme case, a pseudo-
random pattern can be viewed as a pattern whose period is
the size of the entire image. For such patterns, we choose
our conversion strategy based on the fraction of W pixels

(a) If the pattern contains a small fraction of W pixels
(Fig. 1(c)), we notice it is possible to apply existing
universal demosaicking algorithms [Condat 2009] and
then convert the resulting RGB image into a grayscale
image.
If the pattern contains a large fraction of W pixels
(=75%, Fig. 1(d,e,f)), the densely sampled W channel
carries sufficient information for alignment. Therefore,
we directly interpolate the W pixels [Bornemann and
Marz 2007] to get a full-resolution grayscale image.

(b

~=

1.2 Reference Image for Merging

We first warp the grayscale block-sum images generated in the
alignment step using the estimated block-level motion. The im-
ages are warped patch-wise using linear interpolation. Then these
motion-compensated block-sum images are merged together using
the Wiener-filter based approach proposed in [Hasinoff et al. 2016]
to generate a grayscale reference image that is robust to alignment
errors. Notice that the warping is applied on the block level as full-
resolution grayscale images are not available at frame-level, which
means the generated reference image may still contain blur due
to intra-block motion. Nevertheless this reference image provides
sufficient structure for guiding the merging of color samples in an
edge-preserving, misalignment-resilient way.
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Fig. 1. Estimating motion for general CFAs We propose three different
strategies for converting mosaicked block-sum images into grayscale images.

1.3 Robust Merging of Color Samples

As mentioned in the main paper, a joint demosaic-merge algorithm
has to be used to combine the mosaicked quanta images to get
an RGB image. This is done by treating each pixel in a mosaicked
quanta image as a color sample, which belongs to one of the R, G, B
or W channel. Color samples from different frames are warped to
a common pixel grid (corresponding to the reference frame) using
the estimated sub-pixel frame-level motion. The intensity value at
each pixel is then reconstructed by taking a weighted sum of color
samples within a neighborhood:

, _=R G BorW, (1)
Ziew Wi

S (xy) =

where ./ is the set of all sample points in the neighborhood around
pixel (x,y). S; is the value of the i-th sample point (0 or 1). w; is the
weight of the color sample which consists of two parts:

Wi = WGj * WRi, (2
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where wg; is given by anisotropic Gaussian kernel and wg; is given
by a sample-wise robustness term to penalize misaligned patches.

Anisotropic Gaussian kernel. The anisotropic Gaussian kernel is
given by the following equation,

1 -
wei =exp | —2 (i -0 Q7 (xi - %) |, 3)

where x = (x,y) is the pixel location of interest, x; = (x;, y;) is the
location of the sample point after warping. The main purpose of
using an anisotropic Gaussian kernel is to adaptively combine the
color samples based on the local structure tensor of the reference
image, which is encoded in the covariance matrix Q. A larger kernel
is used for denoising a flat region. A smaller kernel is used to pre-
serve the high-frequency details of a textured region. An elongated
kernel is used along edges to preserve the edge structure. We adopt
the same kernel design as in [Ma et al. 2020].

Sample-wise robustness term. Each color sample is weighted by a
robustness function so that color samples that are misaligned are
assigned a lower weight to avoid artifacts. However, it is difficult
to determine if a binary sample is misaligned or not. Therefore, we
take an approach that is similar to the block-wise alignment step:
We compute a weight function from the intensities of block-sum
images, which is then broadcast to all the frames that constitute
the block. Specifically, the weight is computed by comparing the
grayscale block-sum images and the reference image,

PRY)

R = clamp(s - exp % ,0,1), 4
se(05 +0y)

where x is the pixel value in the block-sum image. s is a scale

factor that depends on local motion variation M (highest magnitude

difference of motion within a 3 X 3 neighborhood):

2 ifM>10
= {12 otherwise ©)
If a pixel is at the discontinuity of the estimated motion field, it is
more likely to be misaligned and large difference between block-sum
images and the reference image is less permissible.

Us and o are the mean and standard deviation of the intensities
in a local 3 X 3 neighborhood in the reference image. If a pixel value
is too different from this local intensity distribution in the reference
frame, it is probably misaligned and will be assigned a lower weight
during merging. Notice that since the block-sum image is the sum of
a small number of binary images (typically 100), it suffers from the
random noise of photon arrivals, which can be characterised by the
binomial imaging model of single-photon cameras. Therefore, the
weight function is corrected by another term oy, which is an estimate
of standard deviation of the underlying binomial distribution:

1 S S
—?-?-(l—f), (6)
where T is the number of frames in the block, and S is the pixel value
(photon counts) in the reference frame. s = 2 is another scale factor
that can be tuned to control the level of robustness. This weight
function is computed from the W channel only and shared with the
R, G and B channels because the W channel has a higher SNR.

b

(a) Calibrated Hot
Pixel Map

(b) Indexing of Nearest
Non-Hot Pixel

e
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Fig. 2. Correcting hot pixels. (a) 3% of total pixels are classified as hot
pixels in our hardware prototype (DCR threshold=30cps). (b) We propose a
method for correcting hot pixels by replacing hot pixels in the mosaicked
quanta images with the a random pixel in its k-nearest non-hot pixel neigh-
bors. This list of k-nearest neighbors can be pre-computed for every hot
pixel in the manufactured color SPAD array.

1.4  Correction of DCR Non-Uniformity

As mentioned in the main paper, correction of hot pixels must be
performed on the raw mosaicked binary images themselves. Con-
ventional image filters such as median filters cannot be applied to
mosaicked binary images directly. We propose a random replacement
approach: For each binary frame, we replace the binary value at the
hot pixels by a random pixel in the neighborhood that has the same
color filter. This effectively replaces the estimated intensity at the
pixel by a spatial-temporal average of its neighbors. For efficiency,
we pre-compute and store a list of nearby pixels with the same color
for each hot pixel such that we only need to randomly pick a pixel
from that list. This is illustrated in Fig. 2.

Previous image reconstruction methods for SPADs also discuss
about how to correct the spatially non-uniform DCR. [Antolovic
et al. 2016] calibrates and subtracts the DCR from each pixel in
the estimated photon flux. In quanta burst photography, the non-
uniformity of DCR is further complicated by motion: The spatial
statistics of DCR are not preserved in the final image due to the mo-
tion compensation. In practice, we notice that the proposed robust
merging algorithm is able to handle small variations of DCR and
generate visually pleasing images. Therefore we do not explicitly
correct for small variations of DCR but only remove hot pixels as a
pre-processing step.

1.5 Chrominance-Focused Denoising
To leverage the benefit that W channels have higher SNR than RGB
channels, we propose a chrominance-focused denoising approach:
We first convert the image into a modified YCbCr space [ITU-R
2011] which is defined as:
Y= kRR+k(;G+kBB,
1

Cb:m(B—Y),

1
= k)

™)
(R-Y),
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Fig. 3. Simulated results for CFAs with different fractions of W pixels.
As the fraction of W pixels increases, the proposed method can reconstruct
more spatial details in the image (clearer text in the red window), but
also generate more color noise and artifacts. We find that 75% of W pixels
achieves a good balance between light sensitivity and color sampling.

by choosing (kg, kG, kB) as a normalized version of (wg, wg, wp):

1

(kr, kg, kB) = (WRr, WG, wp) . (®)
w2 + w(z} + w2

R B

Through this construction of YCbCr color space, Y channel is a
scaled version of the reconstructed W channel such that the noise
in the W pixels and RGB pixels are now separated in the luminance
channel (Y) and the chrominance channels (Cb, Cr). In the grouping
step of BM3D, patches are matched by their Y channel, and then the
same grouping is applied to Cb and Cr channels. In the filtering step,
the parameter o (assumed noise standard deviation) is empirically
chosen for the three channels. Since the luminance channel comes
from W pixels and has a higher SNR than the chrominance channels,
we choose a smaller ¢ for the luminance channel and apply more
aggressive denoising to the chrominance channels.

We follow previous denoising practices for single-photon cam-
eras [Chan et al. 2016; Gnanasambandam et al. 2019]: We first ap-
ply an Anscombe transform to convert the binomial-distributed
multi-bit image into a Gaussian-distributed image with fixed vari-
ance [Anscombe 1948], and then apply chrominance-focused BM3D
for denoising. After denoising, the inverse Anscombe transform is
applied and Eq. 6 in the main paper is used to convert the photon
counts to linear intensities.
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2 CFA DESIGN DETAILS
2.1 What Is the Right Fraction of W Pixels?

RGBW CFAs with different proportions of W pixels have been pro-
posed, from 25% [Gindele and Gallagher 2002] to over 90% [Sharif
and Jung 2019]. Increasing the proportion of W pixels further im-
proves the light sensitivity in the dark, but makes it harder to ac-
curately recover the colors. Fig. 3 shows simulated result of the
proposed pipeline in a low-light environment with different fraction
of W pixels. As the fraction of W pixels increases, more spatial
details in the image can be recovered (clearer text), but color noise
and artifacts also increase. The optimal fraction of W pixels also
depends on the exact algorithm being utilized. In practice, we find
that, using our burst photography pipeline, 75% of W pixels achieve
a good balance between light sensitivity and color sampling.

2.2 Could Spectral Multiplexing Help with SPAD Imaging?

Another thread of work has been focused on designing CFAs that
multiplexes the three color channels in the frequency domain to
achieve a balance between the light sensitivity, color aliasing and
other factors [Bai et al. 2016; Elgendy and Chan 2020; Henz et al.
2018; Hirakawa and Wolfe 2008]. Each individual pixel is not limited
toR, G, B or W but any convex combination of RGB. Optimal design
can then be determined by solving an optimization problem. Since
SPADs generate virtually no read noise, previous computational
imaging theory has shown that multiplexing does not improve the
SNR of RGB color estimates [Cossairt et al. 2013]. Nevertheless,
increased light sensitivity can help alignment in the dark (in the
same way as W pixels do), which we leave for future work.

3 ADDITIONAL EXPERIMENTAL RESULTS

Details on the quantitative evaluation on interpolated video data.
We take the test set of X4K1000FPS [Sim et al. 2021], which contains
fifteen 4K videos at 1000 FPS. Each video contains 32 frames, which
we temporally interpolate by a factor of 16x using RIFE [Huang
et al. 2022]. We spatially downsample the frames to 512x256 due to
the memory constraints of BIPNet. We then a sample binary image
from each intensity frame, which gives us fifteen 512-frame binary
sequences.

We run the official v1.0 implementation of VBM4D!. We set
sigma=-1, which lets the algorithm automatically picks the right
sigma for denoising. We run the official implementation of MFIR?
and BIPNet3. For the input noise variance map required by the net-
works, we estimate the variance of the linear flux estimator [Ma
et al. 2020] which is then multiplied by a global scale factor. The
global scale factor is chosen to be the largest value that does not
oversmooth images or create artifacts.

Conventional vs. SPAD color imaging for an HDR scene. Fig. 4 gives
another example of an HDR scene. A single exposure with a conven-
tional sensor results in an underexposed image (1x exposure) or a
blurred image with no details in the bright regions (500x exposure).
By taking a sequence of 20 images, conventional burst photography

http://www.cs.tut.fi/ foi/ GCF-BM3D
Zhttps://github.com/goutamgmb/deep-rep
Shttps://github.com/akshaydudhane16/BIPNet
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Conventional Single
Short Exposure (1x)

Conventional Single
Long Exposure (500x)

Conventional Burst
(Tone Mapped)

Quanta Burst
(Tone Mapped)

Fig. 4. Performance for a simulated indoor HDR scene. Conventional single-shot imaging results in either an underexposed image (1x exposure) or a
blurred image with no details in the bright regions (500x exposure). Conventional burst photography extends the dynamic range, while the proposed method
captures a even higher dynamic range and reconstructs both the texture on the floor and the patterns on the stained glass.

Fig. 5. 3D models used in the simulation.

extends the dynamic range of the output. The proposed method,
with the same total capture time, recovers a considerably higher
dynamic range and reconstructs both the texture and the color gra-
dients on the highlight on the floor, as well as the patterns on the
stained glass.

Super-resolution. The proposed method is capable of super-resolution

by choosing a pixel grid that has a higher resolution than the in-
put image during the merge stage, which takes advantage of the
sub-pixel motion between binary images. Fig. 6 shows an example.
By reconstructing the image at 2X resolution, the image clearly
reconstructs the digits on the dart board, which is illegible in naive
average images and 1X reconstruction.

Nonrigid scene motion. Fig. 7 shows the reconstruction results of
a person waving a cloth. Notice this motion is highly nonrigid, with
complex wrinkle patterns on the cloth. Nevertheless, the proposed
method is able to reconstruct a clean image of the cloth with mini-
mal blur, as compared to the noisy results of the baseline methods.
Please see the supplementary video for a video reconstruc-
tion.

Natural-looking scenes with HDR.. In addition to lab environments,
Fig. 8 shows three natural-looking scenes with high dynamic range.
By applying existing tone-mapping operators [Mantiuk et al. 2006],
the proposed method can capture and reconstruct details in both

bright regions and dark regions that are not direct illuminated, even
if the camera is shaking.

4  VISUALIZING LOW-LIGHT COLOR IMAGES

So far we have discussed how to recover a linear measurement of
irradiance on the single-photon image sensor. Like conventional
digital photography with CMOS sensors, such linear images are not
directly used for display but passed through a series of nonlinear
process first such as tone mapping and gamma correction.

One especially challenging scenario for visualizing the captured
color images is that, when the images are captured in extremely
low light, they often contain severe, unpleasant looking noise that
cannot be completely removed by denoising algorithms. Our key
observation is that fortunately, with RGBW color filters, the amount
of noise in the luminance channel is considerably lower than in the
chrominance channel since W pixels have a higher light sensitiv-
ity. Based on this observation, we propose a visualization / display
scheme tailored for color images captured in low-light using RGBW
CFAs. The goal of the proposed method is to improve the visual
quality of such low-light images by increasing the contribution of
the luminance channel relative to the chrominance channel. For-
mally, we replace the color ratio of the R, G and B channels (dividing
R, G and B by measured W channel) by a linear interpolation of the
input image and a neutral gray color p:

Ryis Gyis Byis 5 G E

(e, ke, M8 = p (o m i) + (L=p)p )

w'w’'w
p controls the interpolation weight: When p = 1, the output is
the original image. When p = 0, no chrominance information is
retained and a completely gray image is generated. p can be set to
(1/3,1/3,1/3). To simulate human vision, it is also possible to choose
p by measuring how a gray patch on a color checker looks in low
light, which shifts to a dull purple color [Jacobs et al. 2015]. Similarly
inspired by previous work on simulating human vision [Jacobs et al.
2015], the weight p depends linearly on the log-luminance log W:

ogWi(x,y)+L, —Cy
C1 -Gy ’

p(x.y) = clamp( 0. (10)
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Naive Average (Long) Naive Average (Short)

Proposed (1x)

Proposed (2x)

Fig. 6. Super-resolution. By reconstructing the image at 2X resolution, more image details are revealed and the digits on the dart board become readable.

(Captured at 10kfps. 100 binary images per block, 20 blocks.)

Naive Average (Long) Naive Average (Short)

Baseline (VBMA4D) Proposed

Fig. 7. Nonrigid scene motion. The proposed method works even when the highly nonrigid motion of the cloth is present, and reconstructs sharper and

cleaner images than the baselines.

Naive Average (Long) Proposed

Fig. 8. Natural-looking scenes with HDR. The proposed method can
capture and reconstruct image details in both bright regions and dark
regions that are not directly under the lights, even with a moving camera.

where C; = 0, Cy = —2 specifies the log-luminance range where
this blending of color is in effect. p(x, y) is computed at each pixel,
which means the weight of chrominance varies across the image
and is higher at brighter regions. We also provide the user with an
option to add a global offset L, which controls the trade-off between
more saturated colors or less noise.

The proposed visualization scheme can be used alone, or in con-
junction with existing tone mapping operators for HDR scenes. In
this paper, we use the tone mapping operator proposed in [Mantiuk

et al. 2006], but any existing operator can be applied. Fig. 9 shows
the visualization result for different scene brightness. The default
recommended parameter (L, = 0) is highlighted in red, but users
can make their own artistic choice by adjusting L, as they like.

Relation to mesopic vision. The proposed visualization approach
has parallels to the functioning of the human eye. Human vision
covers a wide dynamic range. At high illuminance levels, cones
(RGB sensors) are active and contribute to color vision, which is
called photopic vision. At low illuminance levels, rods (W sensors)
are active and only monochrome vision is achieved, which is called
scotopic vision. For illuminance levels between these two extremes,
both cones and rods are active, which is called mesopic vision [Kirk
and O’Brien 2011]. Interestingly, mesopic vision marks a smooth
transition between color vision and monochrome vision: Our vi-
sion system blends the signals from cones and rods to create an
image [Shin et al. 2004]. The darker the scene, the more contribution
is given to the rods, and the less the color we see.

Simulation of mesopic vision has been studied in the graphics
community, which focuses on recreate various visual effects during
mesopic vision such as desaturation and hue shift (Purkinje shift) on
a bright monitor [Jacobs et al. 2015]. Besides colors, effects such as
loss of acuity [Jacobs et al. 2015] and lowered resolution of perceived
disparity [Kellnhofer et al. 2014] have also been recreated. However,
these works assume that a clean, noise-free input image is available
as input, which is not always the case when taking photos in dark
environments. Although taking inspiration from these works, our
main goal is to make the image appears less noisy. This is the reason
why we only manipulate the color ratios to decouple measured
high-SNR luminance channels and low-SNR chrominance channels,
and we avoid complicated nonlinear operations that better model
human vision but amplify noise.
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Fig. 9. Noise-aware low-light visualization. We show the visualization result for three different light levels on a simulated scene. The default visualization
result is highlighted in red. In addition, we also provided users with an optional paramter L, to control the trade-off between more saturated colors and less

color noise, according to their aesthetic taste.

Can the proposed visualization help with RGB patterns? Recall
that proposed method helps reduce noise because when an RGBW
pattern is used, the luminance channel has a much higher SNR than
the chrominance channels. An important ablation study question
is: Will it help with images captured by an RGB pattern? Fig. 10
compares the visualization results of the same scene captured by
RGBW (75% W) and RGB patterns. When we use a lower L, (less
noisy), the color noise in the RGBW result is suppressed, while the
luminance noise in the RGB result remains, resulting in worse visual
quality. Therefore, the proposed method is only helpful when an
RGBW pattern is used.

User study. We conduct a user study to evaluate the efficacy of the
proposed noise-aware visualization. We choose 30 photos taken in
indoor or nighttime environments from the HDR+ dataset [Hasinoff
et al. 2016] and synthesize a 2000-frame sequence of mosaicked
binary images by linearly translating each image and then sampling
from the Bernoulli distribution. Each pixel receives 0.002 photons
per frame on average, and therefore the proposed align and merge
algorithm generates a highly noisy image. The study consists of

two rounds. During each round, the reconstructed noisy image,
together with three mesopic mapped images with different global
offset L, = —1,-0.5, 0, are displayed simultaneously on a webpage.
Both rounds consist of the same set of 30 photos, but the order of
the photos and the order of the choices are randomized to avoid
bias.

Fig. 11 shows the webpage shown to the participants in the study.
A question is displayed at the top: Which image looks cleanest?
(Round 1) / Which image do you like best? (Round 2). The four im-
ages are displayed at the same time so the participants can compare
them side-by-side. The study is anonymous: Each participant visits
the webpage from their own web browser, and we do not collect
identity information such as name or IP address.

Fig 12 shows the result based on 900 votes from 15 participants.
Q1 shows that the number of votes increases as more aggressive
mapping is applied (less color), which validates our assumption that
decreasing the weight of chrominance channels reduces chromi-
nance noise and makes images perceptually cleaner. Q2 shows that
the cleanest image is not always the one people prefer, due to the



More Colors

Less Noisy

RGBW

RGB

Fig. 10. Noise-aware visualization for RGB filter array. (Left) When
more colors is preferred in the visualization, the RGBW pattern creates an
image with more color noise, while the RGBW pattern creates an image with
more luminance noise. (Right) When less noisy is preferred in the visual-
ization, color noise in the RGBW image is suppressed, while the luminance
noise in the RGB image remains, resulting in an image with lower visual
quality (blurrier text while having significantly more noise). This shows that
the proposed visualization scheme only helps with RGBW patterns.

color-noise trade-off. Most people prefer the default recommenda-
tion by the algorithm (L, = 0).
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Imagine you take a photo and the camera app gives you the following images as options, which one
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Fig. 11. Screenshot of the user study webpage.
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