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Abstract

Single-photon sensors measure light signals at the finest
possible resolution — individual photons. These sensors in-
troduce two major challenges in the form of strong Poisson
noise and extremely large data acquisition rates, which are
also inherited by downstream computer vision tasks. Pre-
vious work has largely focused on solving the image recon-
struction problem first and then using off-the-shelf methods
for downstream tasks, but the most general solutions that
account for motion are costly and not scalable to large data
volumes produced by single-photon sensors.

This work forgoes the image reconstruction problem. In-
stead, we demonstrate computationally light-weight phase-
based algorithms for the tasks of edge detection and motion
estimation. These methods directly process the raw single-
photon data as a 3D volume with a bank of velocity-tuned
filters, achieving speed-ups of more than two orders of mag-
nitude compared to explicit reconstruction-based methods.

Project webpage:  https://wisionlab.com/
project/eulerian-single—-photon-vision/

1. Introduction

The spatio-temporal resolution of digital image sens-
ing has continually increased, culminating in single-photon
or quanta sensors such as single-photon avalanche diodes
(SPADs) and jots which can resolve individual photon ar-
rivals [53, 71, 50, 46, 34]. These sensors enable an excit-
ing array of applications, including photography in chal-
lenging conditions like low-light, fast-motion, and high dy-
namic range [24, 47, 18, 9], high-speed tracking [27], and
3D imaging [68]. While quanta sensors open up new op-
portunities by providing access to individual photons, the
raw data from these sensors is heavily quantized (down to
a single bit per pixel), and noisy from Poisson statistics.
Cost is another problem — treating individual photons sepa-
rately instead of aggregating them like conventional sensors
means we fundamentally need more storage, computation,
and communication (and ultimately power). These chal-

lenges are precluding large-scale adoption of this otherwise
exciting technology.

SPAD arrays in particular capture binary frames (Fig.
1a) at high speeds of up to 97 kHz [71]. In this context, the
most widely studied problem so far has been image recon-
struction, with the idea being that recovering high-quality
images is critical for any vision task. Reconstructing images
from single binary frames is difficult, needing strong priors
and computationally intensive algorithms [4, 63, 8]. A nat-
ural idea is to aggregate information over many frames [77],
but this approach is prone to potentially severe motion blur
— in Fig. la, the falling ball gets completely blurred when
binary frames are naively averaged. Therefore, we need
more sophisticated methods to handle motion [27, 9, 12]
such as “explicit burst vision” [48], where the visual signal
is reconstructed by aligning and robustly merging frames
over time [47]. Motivated by the success of burst photogra-
phy on smartphones [28], explicit burst vision yields high-
quality results, but at heavy computational cost (Fig. 1b).

We propose a class of light-weight computer vision al-
gorithms for SPAD arrays (or very high-speed video in gen-
eral). They are motivated by the idea that many vision tasks
ultimately do not need the full image [10], and are therefore
not necessarily tied to the same cost-versus-quality trade-
off as image reconstruction. We propose signal phase re-
covery as a proxy problem (Sec. 3), which can be addressed
without reconstructing the entire signal (image). Phase is
an important feature both in visual perception [59] and in
computer vision tasks [38, 51, 74, 20, 60]. Treating single-
photon sensor data (video) as a 3D volume, the response
of oriented and complex 3D filters applied to it encodes
scene information such as motion and edge locations. Sec.
4 describes a method to accurately estimate the reliability
of these filter responses, and Sec. 5 shows how we adapt
classical phase-based low-level vision algorithms to extract
the scene information. These methods can be run extremely
fast due to involving only linear filtering and pixel-wise op-
erations. We obtain speed-ups of more than two orders of
magnitude compared to explicit burst vision, with compara-
ble quality (Fig. 1c & Sec. 6).

The large difference in speed between explicit burst vi-
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Figure 1: Single-photon computer vision. (a) A SPAD array captures a high-speed sequence of binary frames. A single
frame is extremely noisy and quantized. Naively averaging frames over time increases the signal, but loses motion informa-
tion. (b) A Lagrangian vision method based on frame-by-frame reconstruction with robust motion compensation [48, 47].
For each patch, similar patches are searched for over the rest of the sequence and noise is reduced by averaging. (c) Proposed
Eulerian single-photon vision method. Single-photon data is processed in a single pass with velocity-tuned complex 3D
filters (Sec. 4), and the phase of the responses is used to extract scene information such as edges and motion vectors (Secs.
5, 6), in a completely localized manner. The computation and data movement costs are both significantly lower.

sion and our approach follows from their different perspec-
tives. Burst reconstruction invokes search: given a patch,
the core task is to find similar patches across the other video
frames. Searching over long sequences incurs a high cost,
exacerbated when repeating the search for every patch. The
general idea of tracking the trajectory of a patch through the
exposure volume is similar to a Lagrangian specification in
fluid mechanics, that describes the motion of individual par-
ticles in a flow field. In contrast, our approach is Eulerian
in nature, where properties of the flow (such as rate) are de-
scribed at each point in space and time, without the notion
of a particle. This categorization was previously made for
motion magnification [44, 76], where large speed-ups were
also seen with Eulerian methods.

Implications and limitations As single-photon sensors
are used more widely and specialized processor architec-
tures are developed [3], the Eulerian approach’s simplicity
makes it a candidate for on-chip implementation, an impor-
tant practical goal due to the cost of data movement. The
proposed method provides a general strategy for designing
lightweight algorithms for extremely fast vision tasks, di-

rectly from raw single-photon data. However, this paper
should be seen just as a first step towards this stated goal:
significant improvements are needed in both algorithm and
implementation to be feasible on real hardware.

2. Related work

Single-photon sensors and imaging models The abil-
ity to resolve individual photons is the result of CMOS
image sensors continually increasing in spatial resolution
and quantum efficiency, culminating in “jot”-type sensors
[70, 21, 46]. Their imaging model consists of 2D arrays of
pixels independently detecting/counting photons.

SPAD arrays, on the other hand, provide the same abil-
ity through fine temporal resolution. In large pixel arrays,
they can realize high-frame-rate videography with similar
imaging model as jots [17, 71, 53]. SPADs have been used
to realize alternate imaging models with different statisti-
cal properties, such as time-correlated single photon count-
ing (TCSPC [26, 61]), inter-photon timing [31], and free-
running SPADs [32]. We consider a passive imaging model
(no controlled light source), where the SPAD captures a



high-speed sequence of binary single-photon frames with-
out needing potentially expensive timing information.

Computer vision on single-photon sensors Image re-
construction [77, 8, 24, 63] and inference [11, 25] on single-
photon sensor data has been extensively studied over the
past few years, but largely for static scenes and cameras.
Many of these works borrow from the image denoising lit-
erature on exploiting non-local correlations or similarities
[6, 14]. More recently, dynamic scenes have been addressed
by motion compensation [47, 27] and convolutional net-
works [12, 9]. These methods reconstruct high-quality im-
ages from raw photon data as an intermediate representation
and achieve high-accuracy on downstream tasks [48], albeit
at extremely high computational and bandwidth costs. A
few recent approaches have started incorporating and esti-
mating motion from the temporal statistics of binary im-
ages [27, 65, 35], but for relatively simple global motion
models restricted to scenes consisting of rigid objects. In
contrast, our goal is to develop computationally lightweight
and bandwidth-efficient vision algorithms that directly op-
erate on single-photon data, for general motion models, in-
cluding pixel-wise non-rigid motion.

Low-level vision under noise For edge detection, it has
been shown that otherwise high-performing detectors have
a steep drop-off when noisy images are presented as input
[58, 57, 73]. Using video sequences to detect moving edges
under noise has been considered for improving robustness
[55, 64]. These works generally assume Gaussian noise in
conventional cameras. In contrast, we consider quanta im-
ages captured by single-photon sensors, which suffer from
strong Poisson noise and quantization.

3. Imaging model & a frequency-domain view

Consider a SPAD array observing a scene, capturing a
sequence of frames over time. Suppose the average inci-
dent flux at a pixel is denoted by f[p] (in photons/second),
where p := (4, j, n) represents the spatial location (4, j) and
temporal frame index n of the pixel. The number of inci-
dent photons is modeled as a Poisson random variable, with
mean f[p]. During each frame exposure, a pixel detects at
most one photon. Hence, the pixel measurements B[p] are
binary-valued and follow a Bernoulli distribution [22]:

Pr(B[p] = 0) = e~ (/PI+d)7

Pr(B[p] =1) =1 — e~/ PI+d7 1
where the exposure time of each frame is 7 seconds, 1 €
(0, 1] is the quantum efficiency, and d is the dark count rate
(DCR) representing spurious detections unrelated to inci-
dent photons. We assume that distinct quanta samples B|p]
and B[p/] are statistically independent of each other. Under
low flux (<< 1 photon/pixel), Eq. 1 can be linearized ef-
fectively [77], but in general the response is non-linear, and
can be described as a soft saturation [32, 21].
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Figure 2: Direct phase recovery from Fourier coeffi-
cients. Simulated single-photon samples (# = 200) of a
sinusoid, and a direct reconstruction from the Fourier coef-
ficient (offset adjusted manually).
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We now view the imaging model in frequency-domain.
An example with simulated data is shown in Fig. 2, where
the original single-tone sinusoidal intensity signal of known
frequency (in red) is compared with a reconstruction from
the corresponding Fourier coefficient of the sampled binary
data (dotted, light blue). We observe that the amplitude of
the reconstructed wave is smaller, and that this deviation
is largely due to bias from the soft saturation in the sensor
and not the variance of photon noise. It is possible to cor-
rect for this bias using maximum-likelihood estimation [63]
but the optimization algorithms (or related models learned
from data) are typically expensive. In contrast to the am-
plitude, the phase of the reconstructed wave in Fig. 2 is
quite close to the true value. It can be shown that for the
single-tone case in particular, the Fourier coefficient phase
is unbiased in most cases (see Appendix A), making it a
simple closed-form estimator. Further, simulations suggest
that the variance of the coefficient phase is also close to the
Cramér-Rao lower bound. Please see the supplementary re-
port for the details of this analysis. More work is needed
to rigorously extend these observations from pure tones to
general signals and localized band-pass filtering as done in
practice.

Bias from soft saturation does not preclude the use of
amplitude (also an Eulerian approach in terms of data-flow),
as it is not always central to the task. For many problems,
amplitude-based methods can be employed even with bi-
ased (but inexpensive) estimates, and we present their re-
sults for the case of edge detection in Sec. 6. But the reasons
outlined above motivate us to focus our scope on designing
phase-based approaches.

4. Encoding motion with velocity-tuned filters

How do we extract information from the photon cube
captured by a SPAD array? To overcome the extreme noise
and quantization of individual frames, it is necessary to
aggregate information over the temporal dimension of the
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Figure 3: Velocity-tuning principle. A 1D box-shaped sig-
nal imaged over time (vertical) at two speeds: (a) v = 0, and
(b) v = 1 pixel/frame. In both cases, the 2D (z-t) spectrum
lies along a line given by k; = —wv - k.. This principle ex-
tends to moving 2D signals or video: the line in this case is
givenby ky = —v - /k2 + k2, with &, and k, representing
spatial frequencies along the x— and y—axes.

cube. Image reconstruction can aid this goal but has a cost-
vs-quality trade-off (Sec. 1), where inexpensive methods
such as summing frames over time can result in severe mo-
tion blur but burst reconstruction with motion compensation
[47, 48] becomes infeasible for real-time processing.

Our approach extracts scene information directly from
the photon cube, relying on classical analyses of motion
as the spatio-temporal orientation of intensity or phase iso-
surfaces when viewing videos as 3D volumes [1, 20]. Mo-
tion information is extracted by 3D oriented band-pass fil-
ters, also termed velocity-tuned [20, 29] since they respond
only to motion at a specific range of velocities (Fig. 3).
With an appropriate design and analysis of their reliability
under noise (Secs. 4.1 & 4.2), the responses from these fil-
ters can be readily used in classical phase-based low-level
vision algorithms, discussed further in Sec. 5.

4.1. Filter-bank design & implementation

We use space-time separable log-Gabor filters [19, 37]
and apply them in frequency-domain. The spatial filters are
polar-separable and similar to complex steerable pyramids
[23, 62, 75, 72] — we construct the filters over three scales at
six orientations each. The temporal filters are designed sep-
arately for each scale, with the center frequencies obtained
through the velocity-tuning relation (Fig. 3) for a fixed set
of velocities — we use three speeds {0, v1, v}, with v and
vg set depending on the scene. The supplementary material
provides more specific details on the design.

We extract all filter responses at the original video reso-
lution. With this choice we use a large amount of memory:
the filter-bank is over-complete by a factor of 2 x #scales x
F#orientations X #speeds = 2 x 3 x 6 x 3 = 108. If
memory is limited (e.g. on GPU), savings can be made by
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Figure 4: Weight function for filter z-scores (Sec. 4.2).

sub-sampling the responses of filters at coarse scales (both
spatially and temporally). Sparse array representations may
also be useful: since real video signals are highly structured,
every filter responds strongly at only relatively few pixels,
especially for the non-zero velocity tunings.

4.2. Reliability analysis of filter responses

It is critical for the filter-bank to extract relevant details
from the binary and noisy SPAD samples while rejecting
spurious responses which dominate the data. Therefore, it
is crucial to robustly estimate uncertainty in filter responses.

Consider a filter hy tuned around the 3D frequency k :=
(kg, ky, k). Its response to the input video stream B(p] is
denoted by R [P] := > g ecsupport(n) Mx[a]B[P—a]. From
the central limit theorem, we expect Ry [p] to be approxi-
mately (complex) normally-distributed, with a variance

Var [Ri[p]] = >g|hk[d]]® - Var(Blp —q]).  (2)

Assuming an ideal sensor with quantum efficiency n = 1
and dark counts d = 0 (from Eq. 1), we can approximate
this variance as Var(B[p]) = V (f[p]) [21], where

V(z)=e *(1—e"").
From a rough estimate ¢[p] of the local flux (e.g. through a
blur kernel on B[p]), we can approximate Eq. 2 further:

Vi[p] == V(e[p]) gl hxlall* = Var(Rx[p]) . (3)

The sum ), |hi[q] | is known. At run-time, Ry[p] is nor-
malized to a standard- or z-score [39]:

2k [p] := |Bx[Pll/\/Vilp] “
For later algorithms, we further map the z-score to a weight
w € [0,1] as w(z) := 1 — exp (— max(0, z — 2g)), plotted
in Fig. 4. The parameter z is set between 2 and 6, to ensure
weak responses do not contribute.

Implications for filter design From the Gabor uncer-
tainty relation, smaller band-width corresponds to larger
spatio-temporal support (e.g. for coarse scales, or for elon-
gated filters with small angular sensitivity). Typically such
filters have lower variance in Eq. 2, but also poor localiza-
tion, resulting in a well-studied trade-off [7, 15]. Sec. 6
discusses some related examples from real videos captured
with a SPAD sensor.

Since the noise level changes with light levels, a reliable
filter in strong light can become unreliable in low light. The
filter design and downstream algorithms need to adapt to
this variation, motivating our use of multi-scale filter-banks.
z-scores further enable a principled approach.



5. Low-level vision algorithms

We adapt classical phase-based algorithms from the im-
age and video processing literature to the single-photon set-
ting, for the tasks of edge detection and motion estima-
tion. These methods can be parallelized easily due to having
largely pixel-wise computations.

5.1. Edge detection: temporal phase congruency

Phase congruency [54, 37] is the observation that fea-
tures like edges are discontinuities where the phase of all
frequency components aligns. It also applies to video, as a
moving edge traces a plane in 3D. In this case a multi-scale
bank of velocity-tuned filters plays the role of the frequency
and temporal phase congruency (TPC [55]) is detected.

For a filter tuned to frequency k := sk, where s denotes
the scale and k the unit vector along its spatio-temporal ori-
entation, the phase congruency PC along k is given as

> |Rilpl]
which is 1 if the responses at all scales have the same phase.
! This definition yields a normalized quantity invariant to
light level or signal contrast, and avoids the phase wrapping
problem. Once PCy, is computed for all orientations, edge
strength and orientation are estimated using principal com-
ponent analysis [66, 36]. The second eigenvalue here (when
significant) yields space-time “corners” [40, 43, 38], but its
use is outside this paper’s scope.
In our implementation, the right-hand side of Eq. 5 is
multiplied by the weight term of Fig. 4, to exclude orienta-
tions with weak responses (we set zg to 2).

Normal velocities from 3D edge orientation The edge
direction represents the normal to the spatio-temporal plane
traced out by a moving edge over time, and therefore di-
rectly yields normal velocity estimates at edge locations.
Some related results are presented in Sec. 6.2.

The basic principle also underlies equivalent techniques
in event vision [2, 5] — due to their fundamental similarity
we may expect similar-quality results from them in regions
with motion, after accounting for differences from quantum
efficiency and the sensing threshold of the event camera.
Directly sensing intensity with SPAD has the advantage that
we automatically recover static edges at the same time.

5.2. 2D motion estimation: local frequency method

A frequency-domain approach to motion estimation is
formulated through the phase constancy constraint [20],
which is structurally similar to the brightness constancy re-
lation behind intensity-based optical flow. In this case, the

In practice, the right-hand side of Eq. 5 is weighted separately to
exclude blurred features. Further, to better localize features we ultimately
compute 1 — cos ™! (PC) as the edge strength measure — please see [37]
for a more detailed discussion.

constraint is applied separately for each filter, yielding a
component velocity estimate. For the filter tuned to fre-
quency k, the phase constancy relation is given by

¢k (z,y,t) = (constant), (6)

where ¢y = arg(Ry) represents the local phase of the re-
sponse Ry. Differentiating with respect to ¢, we get

V¢k : (vxvvya 1) =0 (7)

where V¢y represents the (3D) local frequency or phase
gradient. Fleet and Jepson [20] provide a method to extract
local frequency directly from the responses without phase
unwrapping. With component velocity equations formed
as above from all reliable responses, we solve a weighted
least-squares problem to obtain the full 2D velocity or opti-
cal flow (v, vy). The weights for each equation are taken
from Sec. 4.2, with the threshold z; set to 6. Please see the
supplementary material for more implementation details.

Scale The method is applied independently at each scale;
some related results are discussed in Sec. 6.2.

6. Results

We demonstrate the proposed techniques on real binary
frame sequences captured with the SwissSPAD2 sensor
[71], which has a 256 x 512 resolution and frame rate up to
97,700 FPS. Flux levels are reported as photons-per-pixel,
abbreviated as ppp.

Pre-processing Sequences with gradual motion (where
the flow << 1 pixel per frame, common with high frame
rates) are temporally low-passed and sub-sampled, approx-
imately equivalent to sampling with a multi-bit sensor [21].
The set of tuned velocities is adapted accordingly.

The SPAD prototype is a research-grade device with sev-
eral “hot pixels” with high dark count rate. These pixels are
detected offline with a dark frame, and interpolated.

Implementation Filtering is done in frequency-domain
due to the large support of the filters. For fair comparisons,
all our algorithms and the methods compared to (BM3D
[56] & burst reconstruction [47]) are implemented in MAT-
LAB [49] and run on a single CPU core.

Video clips The  results are  best  visual-
ized as videos, available at the project URL:
https://wisionlab.com/project/
eulerian-single-photon-vision/.

6.1. Edge detection

We compare the TPC detector applied directly to
the video sequence (after temporal low-pass filtering) to
reconstruction-based approaches, comprising of taking the
sum of all frames, single-image denoising with BM3D
[4, 56], and the Lagrangian approach of Fig. 1b [47, 48].
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Figure 5: Edge detection on real SPAD video (Sec. 6.1).
From top: single frames (after temporal low-pass filter-
ing) with approximate flux levels indicated. The orig-
inal binary frames from SwissSPAD2 are shown inset.
Next: results of the Richer Convolutional Features detector
(RCEF [45]) applied directly, followed by those after various
reconstruction-based approaches: directly summing frames,
BM3D [4, 56], and burst photography [47]. Bottom row
shows edges from the Eulerian approach with the TPC al-
gorithm (Sec. 5.1). Run-times are reported for the origi-
nal 256 x 512-sized frames from which these images are
cropped, and the time taken by RCF is not included.

We use the Richer Convolutional Features network (RCF
[45]) as the reference detector for all reconstructed images.

Fig. 5 shows results on videos captured with the Swiss-
SPAD?2 sensor, lowpass-filtered to sequences of 120 frames.
Non-maximal suppression is not performed, to enable di-
rect comparison of the localization of the underlying de-
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Figure 6: Comparing phase-based detection with
amplitude-based methods. From left: first two columns
show edges extracted with temporal phase congruency
(same as in Fig. 5) and the magnitude of the responses, re-
spectively, from the same log-Gabor filter-bank. Right col-
umn shows edges extracted by a 3D version of the Canny
detector [64, 52]. While 3D Canny performs significantly
better than the magnitude of the log-Gabor responses (and
much faster), TPC yields better-localized (sharper) edges.

tector. The proposed Eulerian approach (especially TPC)
achieves similar-quality results as the Lagrangian method,
but more than two orders of magnitude faster. It is also
faster than the tested BM3D implementation [56] by an or-
der of magnitude, with the same hardware and software en-
vironment. Further, we note here that the single-image de-
noising approach is prone to artifacts from over-smoothing
in extremely low-flux conditions (e.g. in the right column of
Fig. 5, the straight edge in the background gets bent).

Comparing phase-based and magnitude-based detectors
We implement a simple magnitude-based detector run sepa-
rately at each scale of the log-Gabor filter-bank, where prin-
cipal components analysis is performed similarly to TPC to
obtain edge strengths and orientations. Feature information
is aggregated across scales by averaging edge strengths, fol-
lowing previous works [16, 45]. We also consider a 3D ver-
sion of the classic Canny edge detector [7, 52, 64], making
it multi-scale by setting different values for the o parameter
of its underlying Gaussian kernel, and averaging as above.

Fig. 6 shows the results of magnitude-based detectors
on the same scenes as Fig. 5. We find that the edges from
the raw log-Gabor magnitude have much poorer localiza-
tion than TPC, although resistance to noise or SNR is sim-
ilar as they are based on the same filter responses. The 3D
Canny detector performs much better than the log-Gabor
magnitude, and is much faster as it uses fewer filters (only
three smoothed gradients). While its performance may be
adequate in many settings, the edges are typically not as
sharp as TPC, suggesting inferior localization.
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Figure 7: Influence of flux on edge detection (simula-
tions). A SPAD video with 51 frames of size 128 x 128,
simulated with a fixed observed motion of 1 pixel per frame
and at varying flux levels (measured here in photons per
pixel, ppp) and precision. Edges are detected by temporal
phase congruency. Dotted lines represent approximate con-
tour lines of effective per-frame flux or SNR, which corre-
spond closely to edge map quality. For sufficiently well-lit
scenes (flux around 1 ppp), edges can be detected even from
very fast binary video. See Sec. 6.1 for more discussion.

Impact of light level The performance of the edge detec-
tor depends on the light level in the scene as well as the
amount of motion. We can standardize the motion between
frames by appropriate low-pass filtering: for slow-moving
scenes, this effectively yields higher-precision data. Fig.
7 shows this variation for the TPC detector with a fixed
filter-bank, with a simulated synthetic scene. We assume
an ideal sensor with no dark counts and full quantum effi-
ciency. Even under extremely challenging conditions (1-bit
samples and motion), TPC can successfully recover edges.
The recovery ultimately depends on the total number of in-
cident photons, with flux levels as low as ~ 1 photon-per-
pixel being sufficient for reasonable quality.

Role of filter-bank design A similar example as Fig. 7,
but with real data, is presented in Fig. 8. In this case, the
same scene (a person juggling two footballs) is captured
twice under moderate and low light, respectively. TPC is
run with filters of two different scale ranges: one spanning
spatial wavelengths from 3 to 13 pixels (“fine scales™), and
another spanning 6 to 28 pixels (“coarse scales”). The fine-
scales filter-bank yields sharp edges under more light, but
suffers in low light. In contrast, the coarse-scale filters give
thicker (less resolved) edges, but are more reliable under
low light. The SNR can be improved further by reducing
the angular bandwidth, which helps with long edges but is
prone to over-shooting around curved edges — this is an-
other form of de-localization or loss of resolution, and the
trade-off has been studied in previous works [7, 15, 33].

coarse scales
6 orientations 12 orientations

o ix

edges at fine scales

6 orientations
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(moderate light) ¥
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i
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Figure 8: Edge detection under varying filter configura-
tions. Scene with non-rigid motion (person juggling two
footballs). Top row: input frame after temporal LPF (a
tone-mapped burst reconstruction [47] is inset, only for ref-
erence), and edges detected by temporal phase congruency
(see Sec. 6.1 for details). Bottom row: same scene recorded
again under less light. The fine-scale edges worsen signif-
icantly, but the corresponding coarse-scale result (middle
column) retains quality. For the last column the angular
bandwidth of the filters is reduced. Long edges are now re-
covered more reliably, but the detector overshoots around
curved edges such as the football, the head, and the elbows.

Quantitative evaluation Unlike the Lagrangian approach
with burst reconstruction, single-image denoising methods
are localized (in time) by design, and may be comparable in
cost depending on implementation and the hardware plat-
form. Therefore, we compare its result quality with our ap-
proach in more detail. Detailed results from a numerical
evaluation on simulated data are presented in the supple-
mentary report. In summary, we find that TPC is relatively
resilient down to flux levels of 1 ppp (as seen in Fig. 7).
The tested BM3D algorithm [4] was found to yield reason-
able results if the flux level was above 3 ppp, but lower-flux
settings result in a severe break-down in performance.

6.2. Motion estimation

We demonstrate estimates of the normal velocity at
edges and the 2D velocity in general, as described in Sec. 5.
Only TPC edges are considered for normal velocity estima-
tion as the amplitude-based edges were of inferior quality.
The scale for 2D velocity estimation is chosen manually.
For comparison we reconstruct pairs of images using the
same methods as the edge detection experiments, and use
RAFT-it [69, 67] to estimate optical flow.

Results on SwissSPAD?2 video sequences ~ are shown in
Fig. 9. The proposed method is significantly better than
directly applying RAFT-it on noisy frames, in that it can

2

2While the scenes shown here are captured with a static camera, the
algorithm of Sec. 5.2 can also be used with camera motion.
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Figure 9: Motion estimation from SPAD video. Top row: input frames after temporally low-pass filtering the binary
SwissSPAD2 sequence, and optical flow estimated with RAFT-it [69, 67]. Inset shows the average of the entire sequence
to help visualize the true motion. Second row: frame-by-frame denoising with BM3D [4]. Third: Lagrangian/explicit burst
vision [47, 48]. Bottom row: normal velocities from edges extracted by Temporal Phase Congruency (Sec. 5.1), and 2D
velocities from the method of Sec. 5.2. TPC edges are thickened for visualization. The phase-based methods reliably
isolate object motion, unlike two-frame estimation directly or after BM3D. The Lagrangian method provides good quality
and reliability, but at much higher cost. Similar to Fig. 5, reported run-times do not include the time taken by RAFT-it.

reliably separate the moving object from the static back-
ground. It also achieves considerably better performance
than single-image denoising, due to the temporal incoher-
ence of denoising artifacts. The Lagrangian method yields
high-quality results, but also at significantly higher cost.

Multiple cues The edge normal velocity maps and the 2D
maps of Fig. 9, have distinct characteristics. The former is
well-localized, but only available sparsely (at edges). In
contrast, the 2D estimates (obtained at a very coarse scale),
cover more area but the estimates often over-shoot the sub-
ject’s boundaries. Choosing to estimate 2D velocity at finer
scales doesn’t always fix the problem, as seen in Fig. 10
— the filter-bank responses may not be reliable enough at
most pixels to obtain any estimates, leading again to very
sparse flow maps. Fine-scale estimates are also more likely
to suffer from the aperture problem. Integrating these dif-
ferent flow cues (edge normal velocities and 2D estimates

at each scale) could yield more informative results, and has
been considered in the event vision literature [2].

7. Discussion & future outlook

While single-photon sensors provide the prospect of
recording visual details at the resolution of individual pho-
tons, they also introduce challenges: a very noisy and quan-
tized imaging model, and extremely large volumes of data
generated, resulting in prohibitive compute and bandwidth
requirements. In this work, we demonstrated light-weight
vision algorithms based on linear filtering and local phase-
based processing of raw single-photon data, bypassing the
expensive intermediate step of image reconstruction.

On-chip implementation As hardware architectures are
developed for single-photon sensors that can perform com-
plex calculations at the photon-level [3], the proposed ap-
proach may enable completely on-chip real-time photon-
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Figure 10: Motion estimates at two scales. For the middle
two scenes in Fig. 9, 2D velocity estimates are extracted
from two distinct scales of the filter-bank using the algo-
rithm of Sec. 5.2. Coarse-scale estimates are reliably ob-
tained at more pixels, but can over-shoot object boundaries.
Fine-scale estimates are better-localized, but suffer from the
aperture problem and are not reliably obtained at as many
pixels, due to more noise in filter responses.

processing. However, our methods, as implemented cur-
rently, have large memory requirements due to frequency-
domain filtering. An important next step is to filter in the
primal (“spatial”’) domain, and recursively in time, such that
memory of past frames is not required [42, 13]. Such on-
chip vision systems could spur wider deployment of single-
photon imaging in real-world computer vision applications
including SLAM, scientific fields like bio-mechanics, and
in consumer domains like sports videography.

Sensor parameters Our techniques can be applied with
other frame-based image sensors including jots, after adapt-
ing the filter design and analysis of Sec. 4 to the frame
rate (e.g. the velocity tunings of the filter-bank), and af-
ter including read noise, fixed-pattern noise, etc. A pos-
sible source of error is motion aliasing at lower frame rates
[41]. We may need to restrict the filters to only low spatial
frequencies in such cases since the aliasing is stronger for
higher-frequency textures.

Optimal filter design Better filter-banks may be obtained
through learning-based or even classical methods [15]. In
addition to target metrics such as SNR, we may have other
relevant constraints such as causality and resource cost.
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A. Single-tone DFT phase is nearly unbiased

Consider a non-negative 1D signal f[n] imaged by an
ideal sensor (quantum efficiency 77 = 1 and dark counts d =
0) as B[n|, with a unit exposure time. From the imaging
model of Sec. 3, we have

E[Bln]] =1~ ¢ /1", @®)
and from the power series representation of the exponential
function, we can represent E [B[n]] as

B{BI]) = fln] — oo S0 + S ff o ©)

Assume that a total of N samples are acquired, and that f[n]
is a single-tone sinusoid:

fIn] = ¢+ acos (?;Tkon—i—(b) (10)

where k( denotes the signal frequency (assumed integer), ¢
the constant offset, a the amplitude, and ¢ the initial phase.
We use the discrete Fourier transform, denoted by F,, for
the p-th power of f[n] and by B for B[n]:

Folk] = 300 fln]P e %k (11)

Blk] := Y, Bln]e ¥, (12)

Then from Eq. 9 and the linearity of the Fourier transform:
BB = Filk] — 5 Polk + S Bl — .. (3)

We further take the expectation of the phase to be ap-
proximately equal to the phase of the expectation, i.e.
E [arg (B[k])] = arg (E [B[k]]), which is justified when its
SNR is high, or equivalently, the bulk of the distribution of
B[k] is far from the origin of the complex plane. Now, to
obtain F5, we use Eq. 10 as follows:

f[n]* = ¢* + 2ca cos (%kon + qﬁ)

2
+ % <1—|—cos (2 (%kon—i-(/)))) ,

from which the Fourier coefficient is readily extracted. A
similar process is repeated for higher powers F3, Fy, and so
on. The key is that the term corresponding to the frequency
ko always has phase ¢ for all powers, and the phase of the
expected Fourier coefficient arg (E [B[ko]]) should there-
fore be ¢ as well. The only case where this does not happen
is when any of the higher harmonic components from the
higher-power terms alias onto k( after sampling. A pos-
sible case is when ky = N/3, where the second harmonic
aliases onto the component at —kg: higher-order harmon-
ics can alias in a similar way (though the impact reduces
sharply with order). Similar findings have been reported
previously in the communications theory literature [30].

The above expressions also illustrate the difficulty of di-
rectly estimating the amplitude a from the single-photon
samples, as the magnitude of E[B[ko]] is related non-
linearly to a.

(14)
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