SoDaCam: Software-defined Cameras via Single-Photon Imaging
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Abstract

Reinterpretable cameras are defined by their post-
processing capabilities that exceed traditional imaging. We
present “SoDaCam” that provides reinterpretable cam-
eras at the granularity of photons, from photon-cubes ac-
quired by single-photon devices. Photon-cubes represent
the spatio-temporal detections of photons as a sequence
of binary frames, at frame-rates as high as 100 kHz. We
show that simple transformations of the photon-cube, or
photon-cube projections, provide the functionality of nu-
merous imaging systems including: exposure bracketing,
flutter shutter cameras, video compressive systems, event
cameras, and even cameras that move during exposure.
Our photon-cube projections offer the flexibility of being
software-defined constructs that are only limited by what
is computable, and shot-noise. We exploit this flexibility to
provide new capabilities for the emulated cameras. As an
added benefit, our projections provide camera-dependent
compression of photon-cubes, which we demonstrate using
an implementation of our projections on a novel compute
architecture that is designed for single-photon imaging.

1. Introduction

Throughout the history of imaging, sensing technologies
and the corresponding processing have developed hand-in-
hand. In fact, sensing technologies have, to some extent, de-
fined the scope of processing captured data. In the film era,
instances of such processing included dodging and burning.
The advent of digital cameras provided processing at the
granularity of pixels and paved the way for modern com-
puter vision. Light field cameras [34, 78], by sampling the
plenoptic function [2], allowed post-capture processing at
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the granularity of light rays, enabling novel functionalities
such as refocusing photos after-capture. The logical limit
of post-capture processing, given the fundamental quanti-
zation of light, would be at the level of individual photons.
What would imaging look like if we could perform compu-
tational processing on individual photons?

In this work, we show that photon data captured by a
new class of single-photon detectors, called single-photon
avalanche diodes (SPADs), makes it possible to emulate a
wide range of imaging modalities such as exposure brack-
eting [12], video compressive systems [38, 55] and event
cameras [52, 60]. A user then has the flexibility to choose
one (or even multiple) of these functionalities post-capture
(Fig. 1 (top)). SPAD arrays can operate as extremely high
frame-rate photon detectors (~100 kHz), producing a tem-
poral sequence of binary frames called a photon-cube [16].
We show that computing photon-cube projections, which
are simple linear and shift operations, can reinterpret the
photon-cube to achieve novel post-capture imaging func-
tionalities in a software-defined manner (Fig. 1 (middle)).

As case studies, we emulate three distinct imagers: high-
speed video compressive imaging; event cameras which re-
spond to dynamic scene content; and motion projections
which emulate sensor motion, without any real camera
movement. Fig. 1 (bottom) shows the outputs of these cam-
eras that are derived from the same photon-cube.

Computing photon-cube projections. One way to ob-
tain photon-cube projections is to read the entire photon-
cube off the SPAD array and then perform relevant compu-
tations off-chip; we adopt this strategy for our experiments
in Secs. 6.1 and 6.2. While reasonable for certain applica-
tions, reading out photon-cubes requires an exorbitant data-
bandwidth, which can be up to 100 Gbps for a 1 MPixel
array—well beyond the capacity of existing data peripher-
als. Such readout considerations will become center stage
as large-format SPAD arrays are fabricated [48, 49].

An alternative is to avoid transferring the entire photon-
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Figure 1: (top) SoDaCam can emulate a variety of cameras from the photon-cubes acquired by single-photon devices.
(middle) Photon-cubes represent the spatio-temporal detection of photons as a sequence of binary frames. Projections of the
photon-cube, when computed either on or off-chip, result in reinterpretable and software-defined cameras. We demonstrate
the versatility of photon-cube projections on a real dynamic scene: a die falls on a table, bounces, spins in the air and
later ricochets off a nearby toy top. (bottom) The cameras emulated by our photon-cube projections can produce: a 12x
high-speed video from a single compressive snapshot, event-stream representations of two time intervals (blue and red depict
positive and negative spikes respectively), an image where the die appears stationary, as well as a motion-deblurred image.

cube by computing projections near sensor. As a proof-of- Implications: Toward a photon-level software-defined
concept, we implement photon-cube projections on Ultra- camera. The photon-cube projections introduced in this
Phase [5], a recently-developed programmable SPAD im- paper are computational constructs that provide a real-
ager with independent processing cores that have dedicated ization of software-defined cameras or SoDaCam. Be-
RAM and instruction memory. We show, in Sec. 6.3, that ing software-defined, SoDaCam can emulate multiple cam-
computing projections on-chip greatly reduces sensor read- eras simultaneously without additional hardware complex-

out and, as a consequence, power consumption. ity. SoDaCam, by going beyond baked in hardware choices,



unlocks hitherto unseen capabilities—such as 2000 FPS
video from 25 Hz readout (Fig. 7); event imaging in very
low-light conditions (Fig. 9); and motion stacks, which are
a stack of images where in each image, objects only in cer-
tain velocity ranges appear sharp (Fig. 6).

Limitations. The SPAD array [67] used in this work has
a relatively low spatial resolution (512 x 256), and a low
fill-factor (~10%) owing to the lack of microlenses in the
prototype used. Similarly, the near-sensor processor that
we use has limited capabilities compared to off-chip pro-
cessors. However, with rapid progress in the development
of single-photon cameras [48, 49] and increasing interest
in near-sensor processors, we anticipate that many of these
shortcomings will be addressed in the upcoming years.

2. Related Work

Reinterpretable imaging has previously been explored
at the granularity of light rays [3], by modulating the
plenoptic function, and at the level of spatio-temporal vox-
els [20], by using fast per-pixel shutters. SoDaCam repre-
sents a logical culmination of reinterpretability at the level
of photon detections, that facilitates multiple post-capture
imaging functionalities.

Programmable imaging using a digital micromirror de-
vice was first introduced in Nayar et al. [51] to perform pre-
capture radiometric manipulations. Modern programmable
cameras are typically near-sensor processors [8, 69, 71]
that can perform limited operations in analog [40, 55, 69],
while more complex operations [9, 45] occur after analog-
to-digital conversion (ADC). In contrast, by performing
post-capture computations directly on photon detections,
we can perform complex operations without incurring the
read-noise penalty that is associated with ADC.

Passive single-photon imaging. Only recently have
SPADs been utilized as passive imaging devices, with ap-
plications in high-dynamic range imaging [29, 30, 37, 50],
motion-compensation [3 1, 58], burst photography [4 1, 42]
and object tracking [22]. Compared to compute-intensive
burst-photography methods [41], our proposed techniques
involve lightweight computations that can be performed
near sensor. These computations can also be performed us-
ing other single-photon imagers such as Jots [15, 17], which
feature higher sensor resolution and photon-efficiency [40],
albeit at lower frame-rates and higher read noise.

Reducing the readout of SPADs. Several data reduction
strategies have been proposed in the context of SPADs that
are used to timestamp incident photons, including: coarse
histograms [13, 23, 56], compressive histograms [21], and

measuring differential time-of-arrivals [70, 77]. When
SPADs are operated as photon-detectors, multi-bit count-
ing [48], or summing binary frames, can reduce readout.
While compression is not our main objective, we show that
photon-cube projections act as camera-specific compres-
sion schemes that dramatically reduce sensor readout.

3. Background: Single-Photon Imaging Model

A SPAD array captures incident light as a photon-cube:
a temporal sequence of binary frames that represents the
pixel-wise detection of photons across their respective ex-
posure windows. We can model the stochastic arrival of
photons as a Poisson process [72], allowing us to treat
spatio-temporal values of the photon-cube as independent
Bernoulli random variables with

Pr {Bt(X) = 1} =1 e_(nq>(xvt)+7’q)wexp7 (1)

where Bi(x) represents the value of the photon-cube at
pixel x and exposure index 1 < ¢t < T, which receives a
mean incident flux of intensity ®(x,¢) across its exposure
of duration weyp. Additionally, 7 is the photon detection ef-
ficiency of the SPAD, and -, denotes the sensor’s dark count
rate—which is the rate of spurious counts unrelated to inci-
dent photons. While individual binary frames are extremely
noisy, the temporal sum of the photon-cube

T
Tam(x) =) Bi(x), )
t=1

can produce an ‘image’ of the scene that is sharp in static
regions, but blurry in dynamic regions (Fig. 2 (top)). In-
deed, in static regions, the sum-image can be used to derive
a maximuAm likelihood estimator of the scene intensity [4],
given by ®(x) = — In(1 — T Zym (X)) /NWexp — Tq/ Wexp-

4. Projections of the Photon-Cube

The temporal sum described in Eq. (2) is a simple in-
stance of projections of a photon-cube. Our key observa-
tion is that it is possible to compute a wide range of photon-
cube projections, each of which emulates a unique sensing
modality post-capture—including modalities that are diffi-
cult to achieve with conventional cameras. For example,
varying the number of bit-planes that are summed over em-
ulates exposure bracketing [12, 43], which is typically used
for HDR imaging. Compared to conventional exposure
bracketing, the emulated exposure stack, being software-
defined, does not require spatial and temporal registration,
which can often be error-prone. Fig. 2 (top) shows an ex-
ample of an exposure stack computed from a photon-cube.

Going further, we can gradually increase the complexity
of the projections. For example, consider a coded exposure
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Figure 2: Coded exposures from photon-cubes. (fop) An
exposure stack with sum-images computed using 250, 500,
and 1000 bit-planes. Short exposures are noisy while long
exposures exhibit motion-blur. (bottom) Spatially-varying
exposure that uses a quad pattern [32] (see inset), and a
video compressive frame that uses 16 random binary masks
to modulate the photon-cube. Zoom-in to see details.

projection that multiplexes bit-planes with a temporal code

T
Thuer (%) 1= Y CiBi(x), 3)
t=1

where C, is the temporal code. An example of globally-
coded exposures is the flutter shutter camera [53], which
uses pseudo-random binary codes for motion-deblurring.
More general coded exposures can be obtained via
spatially-varying temporal coding patterns Cy(x):

T
Teoted (%) 1= ) Ci(%)By(x). 0))

Fig. 2 (bottom) shows spatially-varying exposures that use a
quad (Bayer-like) spatial pattern and random binary masks.
With photon-cubes, we can perform spatially-varying cod-
ing without bulky spatial light modulators, similar to focal-
plane sensor-processors [46, 69]. Moreover, we can capture
multiple coded exposures simultaneously, which is chal-
lenging to realize in existing sensors. In Sec. 5.1, we de-
scribe coding patterns for video compressive sensing.
Spatial and temporal gradients form the building blocks
of several computer vision algorithms [7, 11, 24, 26, 39].
Given this, another projection of interest is temporal con-
trast, i.e., a derivative filter preceded by a smoothing filter:

Icontrast(xy t) =D;oGx* By (X)7 &)

where D, is the difference operator, G could be exponen-
tial or Gaussian smoothing, o denotes function composition,

and * denotes convolution. Due to their sparse nature, gradi-
ents form the basis of bandwidth- and power-efficient event
cameras [10, 14, 36, 60], which we emulate in Sec. 5.2.

So far, we have considered projections taken only along
the time axis. Next, we consider a more general class of
spatio-temporal projections that lead to novel functional-
ities. For instance, computing a simple projection, such
as the temporal sum, along arbitrary spatio-temporal direc-
tions emulates sensor motion during exposure time [33], but
without moving the sensor. We achieve this by shifting bit-
planes and computing their sum:

Ishif[(x) = Z Bt (X + I'(t)) 5 (6)

where r is a discretized 2D trajectory that determines sensor
motion. Outside a software-defined framework, such pro-
jections are hard to realize without physical actuators. We
describe the capabilities of motion projections in Sec. 5.3.

In summary, the proposed photon-cube projections are
simple linear and shift operators that lead to a diverse set
of post-capture imaging functionalities. These projections
pave the way for future ‘swiss-army-knife’ imaging systems
that achieve multiple functionalities (e.g., event cameras,
high-speed cameras, conventional cameras, HDR cameras)
simultaneously with a single sensor. Finally, these pro-
jections can be computed efficiently in an online manner,
which makes on-chip implementation viable (Sec. 6.3).

At this point, we note that a key enabling factor of
photon-cube projections is the extremely high temporal-
sampling rate of SPADs. Indeed, the temporal sampling
rate determines key aspects of sensor emulation, such as the
discretization of temporal derivatives and motion trajecto-
ries. This raises a natural question: can we use conventional
high-speed cameras for computing projections?

Trade-off between frame-rate and SNR. In principle,
photon-cube projections can be computed using regular
(CMOS or CCD based) high-speed cameras. Unfortunately,
each frame captured by a high-speed camera incurs a read-
noise penalty, which increases with the camera’s frame-
rate [0]. In fact, the read noise levels of high-speed cam-
eras [ 1] can be 10-30x higher than consumer cameras [28].
Coupled with the low per-frame incident flux at high frame-
rates, high levels of read noise result in extremely low
SNRs. In contrast, SPADs do not incur a per-frame read
noise and are limited only by the fundamental photon noise.
Hence, for the post-capture software-defined functionalities
proposed here, it is imperative to use SPADs.

5. Emulating Cameras from Photon-Cubes

Sec. 4 presented the concept of photon-cube projections,
and its potential for achieving multiple post-capture imag-
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Figure 3: Modulating masks for video compressive sens-
ing. (left) A single VCS measurement temporally com-
presses a sequence of frames using binary random masks.
(center) Two-bucket cameras capture an additional mea-
surement by using the complementary mask sequence.
(right) We propose using multi-bucket captures by ran-
domly choosing an active bucket for each frame. Both
two-bucket and multi-bucket captures have 100% light effi-
ciency. All masks are visualized here for 16 x 16 pixels.

ing functionalities. As case studies, we now demonstrate
three imaging modalities: video compressive sensing, event
cameras, and motion-projection cameras. These modali-
ties have been well-studied over several years; in particular,
there exist active research communities around video com-
pressive sensing and event cameras today. We also show
new variants of these imaging systems that arise from the
software-defined nature of photon-cube projections.

5.1. Video Compressive Sensing

Video compressive systems optically multiplex light
with random binary masks, such as the patterns in Fig. 3
(left). As discussed in the previous section, such multiplex-
ing can be achieved computationally using photon-cubes.

Two-bucket cameras. One drawback of capturing coded
measurements is the light loss due to blocking of incident
light. To prevent loss of light, coded two-bucket cam-
eras [69] capture an additional measurement that is mod-
ulated by the complementary mask sequence (Fig. 3 (cen-
ter)). Such measurements recover higher quality frames,
even after accounting for the extra readout [35, 61]. Two-
bucket captures can be readily derived from photon-cubes,
by implementing Eq. (4) with the additional mask sequence.

Multi-bucket cameras. We can extend the idea of two-
bucket captures to multi-bucket captures by accumulating
bit-planes in one of k buckets that is randomly chosen at
each time instant and pixel location. Since multiplexing is
performed computationally, we do not face any loss in pho-
toreceptive area that [59, 68] hampers existing multi-bucket
sensors. Multi-bucket captures can reconstruct a large num-
ber of frames by better conditioning video recovery and

T =0.45,8 = 0.98
5 MEvent /s 25 MEvent /s 2.5 MEvent/s

Effect of contrast-threshold, exponential decay

Figure 4: Event stream from photon-cubes. (7op left) By
exploiting the non-linear response curve of SPADs to en-
code brightness, we can avoid the underflow issues of a log-
response. We visualize events generated from photon-cubes
using a 3D scatter plot of polarities (top right, 14000 bit-
planes), and frame accumulation of events (bottom, 1200
bit-planes). Blue and red denote positive and negative
spikes respectively. The event images also show the effect
of varying the contrast threshold 7 and exponential decay
[—Iarger values yield a less noisy but sparser event stream.

provide extreme high-speed video imaging. Fig. 3 (right)
shows the modulating masks for a four-bucket capture.

5.2. Event Cameras

Next, we describe emulation of event-cameras, which
capture changes in light intensity and are conceptually simi-
lar to the temporal contrast projection introduced in Eq. (5).
Physical implementations of event sensors [10, 14, 36, 60]
generate a photoreceptor voltage V (x,t) with a logarith-
mic response to incident flux ®(x,¢), and output an event
(x,t,p) when this voltage deviates sufficiently from a ref-
erence voltage Vier(x):

[V (x,t) — Viet(x)| > 7, @)

where 7 is called the contrast-threshold and p =
sign(V'(x,t) — Viet(x)) encodes the polarity of the event.
Once an event is generated, Vier(x) is updated to V' (x,t).
Eq. (7), for a smoothly-varying flux intensity, thresholds a
function of the temporal gradient, i.e., 0; log(®(x,t)).

From bit-planes to event streams. To produce events
from SPAD frames, we compute an exponential moving av-
erage (EMA) of the bit-planes, as u;(x) = (1 — 8)B(x) +
Bui—1(x)—where 1, (x) is the EMA, [ is the smoothing
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Figure 5: Motion projections. (fop) Integrating along a
linear trajectory in the photon-cube changes the apparent
image-space velocity of scene objects. Details are seen for
(top left) the case when static, and (top right) the metallic
tape when the sensor translates along the x-axis. (bottom) A
parabolic integration trajectory results in a motion-invariant
image, resulting in similar blur kernels for all objects. (bot-
tom right) Deblurring with the resultant shift-invariant point
spread function (shown in inser) produces a sharp image.

factor, and B; is a bit-plane. We generate an event when
1t (x) deviates from pu.r(x) by at least 7:

|h(ut(x)) - h(ﬂref(x))l > T, (®)

where h is a scalar function applied to the EMA. We can
see that Eq. (8) thresholds temporal contrast, by observing
the role played by the EMA and the difference operator.

Setting h to be the logarithm of the flux MLE mim-
ics Eq. (7). However, since the log-scale is used to pre-
vent sensor saturation, a simpler alternative is to use the
non-saturating response curve of SPAD pixels (h(z) = x).
The response curve takes the form of 1 — exp (—a®(x, 1)),
where « is a flux-independent constant. As a major advan-
tage, this response curve avoids the underflow issues of the
log function that can occur in low-light scenarios [62].

The SPAD’s frame-rate determines the time-stamp res-
olution of emulated events. In Fig. 4, we show the events
generated from a photon-cube acquired at a frame-rate of
96.8 kHz—resulting in a time-stamp resolution of ~10 us
that is comparable to those of existing event cameras.

How do SPAD-events differ from the output of a reg-
ular event camera? The main difference is the ex-
pression of temporal contrast, given by O h, is now
—0y exp(—ad(x,t)), instead of I log(P(x,t)). This dif-

100z + 282y pixels/sec

420% 4+ 1177y pixels/sec

Figure 6: Motion stack. Computing multiple linear projec-
tions with different trajectories can produce a stack of im-
ages where objects with matching velocity are sharp. Here,
we show a traffic scene involving four cars that have four
different velocities. By suitably altering the slope of the lin-
ear trajectory, we can produce images where only one of the
cars appear sharp at a time. We indicate the slope of the tra-
jectories chosen and the objects that are “in-focus”.

ference poses no compatibility issues for a large class of
event-vision algorithms that utilize a grid of events [54,
57, 66] or brightness changes [18]. We show examples
of downstream applications using SPAD-events in Sup-
plementary Note 2. Finally, SPAD-events can be easily
augmented with spatially- and temporally-aligned intensity
information—a synergistic combination that has been ex-
ploited by several recent event-vision works [18, 25, 74].

5.3. Motion Projections

Having described the emulation of cameras that capture
coded exposures and temporal contrasts, we now shift our
attention to cameras that emulate sensor motion during ex-
posure, viz. motion cameras. We describe two useful trajec-
tories when emulating motion cameras using Eq. (6).

Linear trajectory. The simplest sensor trajectory in-
volves linear motion, where r(t) = (bt + ¢)p for some
constants b,c¢ € R and unit vector p. As Fig. 5 (fop row)
shows, this can change the scene’s frame of reference: mak-
ing moving objects appear stationary and vice-versa.

Motion-invariant parabolic projection. If motion is
along P, parabolic integration produces a motion-invariant
image [33]—all objects, irrespective of their velocity, are
blurred by the same point spread function (PSF), up to a
linear shift. Thus, a deblurred parabolic capture produces
a sharp image of all velocity groups (Fig. 5 (bottom row)).
The parabolic trajectory is given by r(t) = (at? + bt +c) p.
We choose a based on the maximum object velocity and b, ¢
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Figure 7: High-speed videography at 2000 FPS of a tennis ball dropped into a bowl of water, from a 25 Hz readout. The
conventional capture provides a visualization of the scene dynamics. It is challenging to reconstruct a large number of frames
from a single compressive snapshot. Multi-bucket captures recover frames with significantly greater detail, such as the crown
of water surrounding the ball. We include more sequences (e.g., a bursting balloon) in the supplementary material.
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Figure 8: Deblurring of traffic scenes using motion projections. Linear projections can recover details of moving objects
if their velocity is known. When only the motion direction is known (e.g., road’s orientation), a sharp image can be obtained
by either deblurring a parabolic projection or by blending multiple randomly-sampled linear projections. We quantitatively
compare against the compute- and bandwidth-expensive Quanta Burst Photography [41], based on PSNR and LPIPS [76].

so the parabola’s vertex lies at T'/2. We readily obtain the
PSF by applying the parabolic integration to a delta input.
Upon deconvolution using the PSF, a parabolic projection
provides the optimal SNR for a blur-free image from single
capture when only the direction of velocity is known.

Ensembling linear projections. Finally, we leverage the
flexibility of photon-cubes to compute multiple linear pro-
jections, as seen in Fig. 6. This produces a stack of images
where one velocity group is motion-blur free at a time—or a
‘motion stack’, analogous to a focal stack. This novel con-
struct can be used to compensate motion by blending stack
images using cues such as blur orientation or optical flow.

6. Hardware and Experimental Results

We design a range of experiments to demonstrate the
versatility of photon-cube projections: both when computa-

tions occur after readout (Secs. 6.1 and 6.2), and when they
are performed near-sensor on-chip (Sec. 6.3). All photon-
cubes were acquired using the SwissSPAD2 array [67], op-
erated using one of two sub-arrays, each having 512 x 256
pixels, and at a frame-rate of 96.8 kHz. For the on-chip ex-
periments, we use the UltraPhase compute architecture to
interface with photon-cubes acquired by the SwissSPAD2.

6.1. SoDaCam Capabilities

High-speed compressive imaging. We reconstruct 80
frames from compressive snapshots that are emulated at 25
Hz, resulting in a 2000 FPS video. We decode compres-
sive snapshots using a plug-and-play (PnP) approach, PnP-
FastDVDNet [73]. As Fig. 7 shows, it is challenging to re-
cover a large number of frames from a single compressive
measurement. Using the proposed multi-bucket scheme
significantly improves the quality of video reconstruction.
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Figure 9: Comparison to a state-of-the-art event camera.
SPAD-events can capture temporal gradients even when the
light-level is reduced by 500X, by benefiting from their
single-photon sensitivity and bounded brightness response
curve. In contrast, low-light induces blur and deteriorates
the Prophesee’s event stream. As a measure of the light-
level, we report the PPP (photons per pixel) averaged across
bit-planes and a light meter’s reading at the sensor location.

While multi-bucket captures require more bandwidth, this
can be partially amortized by coding only dynamic regions,
which we show in Supplementary Note 1.

Motion projections on a traffic scene. Fig. 8 shows two
traffic scenes captured using a 50 mm focal length lens and
at 30 Hz emulation. When object velocity is known, a lin-
ear projection can make moving objects appear stationary.
If only the velocity direction is known (e.g., road’s orienta-
tion in Fig. 8), a parabolic projection provides a sharp re-
construction of all objects. We deblur parabolic captures
using PnP-DnCNN [75]. We offer an improvement by ran-
domly sampling 8 linear projections along the velocity di-
rection and blending them using the optical flow predicted
by RAFT [65] between two short-exposures.

Low-light event imaging. Fig. 9 compares event-image
visualizations of SPAD and that of a state-of-the-art com-
mercial event sensor (Prophesee EVK4), across various

Compressive frame  Recovered frame Event image

Infinicam projections (16X more light)

Figure 10: Comparison against conventional high-speed
acquisition at 4000 Hz. (frop) SPAD projections recover a
16x compressive video and an event image of a spinning
roulette wheel. (middle) Read-noise corrupts the incident
flux in the Infinicam high-speed camera, removing details in
frames which are compressed on-the-fly. (bottom) Although
using a larger aperture to admit more light recovers some
detail, noise and compression artifacts still persist.

light levels, with an accumulation period of 33 ms. For a fair
comparison, we bin the Prophesee’s events in blocks of 2 x 2
pixels and use a smaller aperture to account for the lower
fill-factor of the SPAD. We tuned event-generation parame-
ters (contrast threshold, integrator decay rate) of both cam-
eras at each light level. Low light induces blur and dete-
riorates the Prophesee’s event stream. In contrast, SPAD-
events continue to capture temporal gradients, due to the
SPAD’s low-light capabilities and its brightness-encoding
response curve. We include an ablative study of brightness-
encoding functions in Supplementary Note 2.

Our observations are in concurrence with recent works
that examine the low-light performance of event cam-
eras [19, 27], and show that SPAD-events can provide neu-
romorphic vision in these challenging-SNR scenarios.

6.2. Comparison to High-Speed Cameras

Recall, as previously discussed in Sec. 4, that read-
noise limits the per-frame SNR of high-speed cameras. To
demonstrate this limitation, we compute projections using
the 4 kHz acquisition of the Photron Infinicam, a conven-
tional high-speed camera, at a resolution of 1246 x 240
pixels. We operate the SwissSPAD2 and the Infinicam at
ambient light conditions using the same lens specifications.



Bl bandwidth
power

,_
L

L]

Power (uW)

Bandwidth (kbps)

N > <

. & S R o
A v N @O &

p NS & @é“

. : /\‘\@e Q\(\oxf;boox
UltraPhase board ~ Power and bandwidth measurement

Figure 11: Power and bandwidth requirements when
computing photon-cube projections on UltraPhase [5] (left),
a recent compute architecture designed for single-photon
imaging, at 40 Hz readout. (right) Our projections act as
a compression scheme for photon-cubes, resulting in dra-
matically reduced sensor-readout and power consumption.

As Fig. 10 shows, read noise corrupts the incident signal
in Infinicam and makes it impossible to derive any useful
projections. The read noise could be averaged out to some
extent if the Infinicam did not perform compression-on-the-
fly, but compression is central to the camera’s working and
enables readout over USB. Using a larger aperture to admit
more light improves the quality of computed projections,
but the video reconstruction and event image remain con-
siderably worse than corresponding outputs of the SPAD.

6.3. Bandwidth and Power Implications

While Sec. 6.1 has demonstrated the capabilities of
photon-cube projections, we now show that our projections
can also be obtained in a bandwidth-efficient manner via
near-sensor computations. We implement photon-cube pro-
jections on UltraPhase (Fig. 11 (left)), a novel compute ar-
chitecture designed for single-photon imaging. UltraPhase
consists of 3 x 6 processing cores, each of which interfaces
with 4 x 4 pixels, and can be 3D stacked beneath a SPAD
array. We include visualizations and programming details
of a few example projections in Supplementary Note 5.

We measure the readout and power consumption of Ul-
traPhase when computing projections on 2500 bit-planes of
the falling die sequence (Fig. 1). The projections include:
VCS with 16 random binary masks, an event camera, a lin-
ear projection and a combination of the three. We output
projections at 12-bit depth and calculate metrics based on
the clock cycles required for both compute and readout. As
seen in Fig. 11 (right), computing projections on-chip dra-
matically reduces sensor-readout and power consumption
as compared to reading out the photon-cube. Finally, simi-
lar to existing event cameras, SPAD-events have a resource
footprint that reflects the underlying scene dynamics.

In summary, our on-chip experiments show that perform-
ing computations near-sensor can increase the viability of
single-photon imaging in resource constrained settings.

7. Discussion and Future Outlook

SoDaCam provides a realization of reinterpretable
software-defined cameras [2, 3, 20, 34, 51] at the fine tem-
poral resolution of SPAD-acquired photon-cubes. The pro-
posed computations, or photon-cube projections, can match
and in some cases, surpass the capabilities of existing imag-
ing systems. The software-defined nature of photon-cube
projections provides functionalities that may be difficult to
achieve in conventional sensors. These projections can re-
duce the readout and power-consumption of SPAD arrays
and potentially spur widespread adoption of single-photon
imaging in the consumer domain. Finally, future chip-to-
chip communication standards may also make it feasible to
compute projections on a camera image signal processor.

Adding color to SoDaCam. One way to add color is by
overlaying color filter arrays (CFAs) and perform demosaic-
ing on the computed photon-cube projection: depending on
the projection, demosaicing could be relatively simple or
more complex. As a reference, Bayer CFAs have been con-
sidered in the context of both video compressive sensing
[73] and event cameras [64]. Incorporating CFAs with mo-
tion projections requires careful considerations, e.g., avoid-
ing integrating across pixel locations of differing color.

Future outlook on SPAD characteristics. A key SPAD
characteristic that determines several properties of emulated
cameras is the frame rate. While no fundamental limitations
prevent SPADs from being operated at the frame-rates uti-
lized in this work (~100 kHz), sensor readout and power
constraints can preclude high speeds, especially in high-
resolution SPAD arrays. Photon-cube projections can en-
able future large-format SPADs to preserve high-speed in-
formation with modest resource requirements.

A platform for comparing cameras. Comparing imag-
ing modalities can be quite challenging since hardware re-
alizations of sensors can differ in numerous aspects, such
as their quantum efficiency, fill factor, pixel pitch and array
resolution. By emulating their imaging models, SoDaCam
can serve as a platform for hardware-agnostic comparisons;
for instance, determining operating conditions where one
imaging modality is advantageous over another.

A Cambrian explosion of new cameras. Besides com-
paring cameras, by virtue of being software-defined, SoDa-
Cam can also make it significantly easier to prototype and
deploy new unconventional imaging models, and even fa-
cilitate sensor-in-the-loop optimization [44, 47, 63] by tai-
loring photon-cube projections for downstream computer-
vision tasks. This is an exciting future line of research.
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