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Emerging Zoned Namespace (ZNS) SSDs, providing the coarse-grained zone abstraction, hold the potential 

to significantly enhance the cost efficiency of future storage infrastructure and mitigate performance unpre- 

dictability. However, existing ZNS SSDs have a static zoned interface, making them in-adaptable to workload 

runtime behavior, unscalable to underlying hardware capabilities, and interfering with co-located zones. Ap- 

plications either under-provision the zone resources yielding unsatisfied throughput, create over-provisioned 

zones and incur costs, or experience unexpected I/O latencies. 

We propose eZNS, an elastic-ZNS interface that exposes an adaptive zone with predictable characteristics. 

eZNS comprises two major components: a zone arbiter that manages zone allocation and active resources on 

the control plane, and a hierarchical I/O scheduler with read congestion control and write admission control 

on the data plane. Together, eZNS enables the transparent use of a ZNS SSD and closes the gap between ap- 

plication requirements and zone interface properties. Our evaluations over RocksDB demonstrate that eZNS 

outperforms a static zoned interface by 17.7% and 80.3% in throughput and tail latency, respectively, at most. 
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 INTRODUCTION 

n modern data centers, performance isolation for storage systems has become a critical consid-

ration, particularly to prevent long-tail latencies and ensure service-level agreements with users.

ome storage systems address this by physically segregating tenants onto different SSD devices,
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 strategy favored by latency-sensitive applications. However, this approach can lead to ineffi-

iencies, as SSD performance typically scales with NAND capacity, resulting in wasted storage

pace. Instead, in shared storage systems, researchers have explored various solutions [ 31 , 32 , 58 ],

everaging features such as I/O Determinism [ 16 ] and Open-Channel (OC) SSD [ 9 ], previously

roposed for device management. 

The NVMe Zoned Namespace (ZNS) is a newly introduced storage interface and has received

ignificant attention from data center and enterprise storage vendors. By dividing the SSD physical

ddress space into logical zones, migrating from device-side implicit garbage collection (GC) to

ost-side explicit reclaim, and eradicating random write accesses, a ZNS SSD significantly reduces

evice DRAM needs, resolves the write amplification factor (WAF) issue, minimizes costly over-

rovisioning, and mitigates I/O interference. However, the performance characteristics of the ZNS

nterface are not well understood. In particular, to build efficient I/O stacks over it, we should be

ognizant of (1) how the underlying SSD exposes the zone interface and enforces its execution re-

trictions, and (2) what tradeoffs the device’s internal mechanisms make to balance between cost

nd performance. For example, the device-enforced zone placement makes the actual I/O band-

idth capacity of a zone contingent on how a ZNS SSD allocates zone blocks across channels/dies.

urther, a zone is not a performance-isolated domain, and one could observe considerable I/O in-

erference for inter-zone read and write requests. Therefore, there is a strong need to understand

ts idiosyncratic features and bring enough clarity to storage applications. 

We perform a detailed performance characterization of a commodity ZNS SSD, investigate its

evice-internal mechanisms, and analyze the benefits and pitfalls under different I/O profiles in

oth cases: application running on the exclusive device (stand-alone), and applications sharing a

evice with other tenants (co-located). Using carefully calibrated micro-benchmarks, we examine

he interaction between zones and the underlying SSD from three perspectives: zone striping,

one allocation, and zone interference. We also compare with conventional SSDs when necessary

o investigate the peculiarity of a ZNS SSD. Our experiments highlight the interface’s capabilities

o mitigate the burden on I/O spatial and temporal management, identify constraints that would

ause sub-optimal performance, and provide guidance on overcoming the limitations. 

We propose eZNS, a new interface layer that provides a device-agnostic ZNS to the host system.

t mitigates inter-/intra-zone interference and improves device bandwidth by allocating active re-

ources based on the application workload profile. eZNS remains transparent to upper-layer appli-

ations and storage stacks. Specifically, eZNS comprises two components: the zone arbiter on the

ontrol plane and a tenant-cognizant I/O scheduler on the data plane. The zone arbiter maintains

he device shadow view, which manages zone allocations and realizes dynamic resource allocation

hrough a zone ballooning mechanism. It manages available active resources in two groups: essen-

ials and spares. Essentials provide a minimum guarantee to applications, determining the number

f logical active zones, whereas spares boost the bandwidth of zones adaptively, based on the

one utilization of applications, using the zone overdrive technique. By doing so, the zone arbiter

llows serving applications to maximize the device capability by enabling the maximum device

arallelism given the workload profile and rebalancing inactive bandwidth across namespaces. It

lso employs a zone reclaiming mechanism to prevent one from holding spares, thus avoiding

rapping bandwidth in idle zones. The I/O scheduler of eZNS leverages the intrinsic characteris-

ics of ZNS, where there are no hardware-hidden internal bookkeeping operations. eZNS applies

 local congestion control for reads and a global admission control for writes. Read I/Os become

ore predictable in the ZNS interface, and one can directly harness this property to examine inter-

one interference. Thus, the read congestion control applies to each logical zone independently,

onitoring read latency and maintaining the congestion window per zone. However, write I/Os

hare a performance domain due to the write cache architecture of the SSD, which causes global
CM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 1. The architecture of a conventional and ZNS SSD. 
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ongestion across all active zones. To address this, eZNS applies the same I/O admission rate to

ctive logical zones, thereby preventing excessively busy writing zones from monopolizing the

rite cache. It determines the admission rate based on the average write latency of the device,

llowing write I/Os from small writers to bypass the admission control while throttling those

rom busy writers. Our I/O schedulers mitigate the interference independently but improve over-

ll system performance cooperatively. We demonstrate benefits in the evaluation (Section 5 ) over

icro-benchmarks and RocksDB. 

In summary, our study not only empirically demonstrates the benefits of using a coarse-grained

NS interface but also reveals the inadequacies of underlying device mechanisms causing perfor-

ance non-determinism. Essentially, a ZNS SSD is a semi-transparent storage device to the host

nd should be viewed as a gray box . Our insights emphasize the importance of imbuing data lo-

ality into storage allocation for high utilization, the necessity of employing a global centralized

ontrol for fairness guarantees, and the importance of coordinating co-located zone execution for

erformance predictability. Meanwhile, eZNS keeps the promises of the original ZNS interface. For

xample, eZNS does not overly utilize the write bandwidth, as there are no housekeeping writes

except the zone reclaiming, which is very rare). In other words, it does not generate write I/Os in

ddition to what the application requested. As long as the I/O demand of applications is consistent,

ZNS will only improve the quality of service without sacrificing the lifetime of devices. 

 BACKGROUND AND MOTIVATION 

his section reviews the basics of NAND-based SSDs, introduces the ZNS SSD and its features,

nd discusses problems with the existing zoned interface. 

.1 NAND-Based SSDs 

 NAND-based SSD combines an array of flash memory dies and is able to deliver a bandwidth of

everal gigabytes per second. It comprises four main architectural components (Figure 1 ): (1) a host

nterface logic that implements the protocol used to communicate with the host, such as SCSI [ 46 ]

nd recent NVMe [ 34 ]; (2) an SSD controller, enclosing an embedded processor and a flash channel

ontroller, which is responsible for the address translation and scheduling, as well as flash memory

anagement; (3) onboard DRAM, buffering transmitted I/O data and metadata, storing the address

ranslation table, and providing a write cache; and (4) a multi-channel subsystem that connects

AND dies via a high-bandwidth interconnect. As shown in Figure 1 , a NAND die consists of

undreds of erase blocks , where each block contains hundreds to thousands of pages . Each channel

olds multiple dies to increase I/O parallelism and bandwidth. Each page encloses a fixed-sized

ata region and a metadata area that stores ECC and other information. Flash memory supports

hree major operations: read , program , and erase . The access granularity of a read/program is a

age, whereas the erase command is performed in units of blocks. NAND flash memory has three
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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nique characteristics [ 1 , 11 , 13 , 21 , 31 ]: (1) no in-place update, where the whole block must be

rased before updating any page in that block; (2) asymmetric performance between reads and

rograms; and (3) limited lifetime (endurance)—each cell has a finite number of program/erase

ycles [ 25 ]. 

To effectively use the NAND flash and address its limitations, SSDs employ a special mapping

ayer called the flash translation layer (FTL) . It provides three major functionalities [ 14 , 23 ,

9 , 60 ]: (1) dynamically mapping LBA (logical block addresses) to PPA (physical NAND pages

ddresses), (2) implementing a GC mechanism to handle the no in-place update issue and asyn-

hronously reclaim invalid pages, and (3) applying a wear-leveling technique to evenly balance

he usage (or aging property) of all blocks and prolong the SSD lifespan. However, the FTL brings

n considerable overheads. First, the translation table requires a large amount of DRAM to store

he mapping entries (e.g., 1 GB for 1TB NAND capacity for 4 KB data unit size). Second, when

erving a user I/O, the compounding effect of GC and wear leveling would trigger additional SSD

nternal writes (i.e., copying valid pages to erase the block) and lead to the WAF problem. Third,

he FTL does not employ performance isolation mechanisms and incurs significant interference

ssues under mixed I/O profiles [ 33 , 37 ]. 

.2 ZNS SSDs 

NS SSDs, a successor to OC SSDs [ 6 , 9 ], have recently been developed to overcome the aforemen-

ioned limitations of conventional SSDs. There are several commodity ZNS SSDs from various ven-

ors [ 40 , 43 , 44 , 57 ]. A ZNS SSD applies the same architecture as a conventional one (see Figure 1 )

ut exposes the ZNS interface. A namespace is a separate logical block address space, like a tradi-

ional disk partition, but managed by the NVMe device controller rather than the host software.

he device may control the internal block allocation of namespaces to optimize the performance

ased on the device-specific architecture. In ZNS SSD, the namespace comprises multiple zones

nstead of blocks in the conventional one, and each namespace owns dedicated active resources

hat are used to open and write a zone. 

A ZNS SSD divides the logical address space of namespaces into fixed-sized zones, where each

ne is a collection of erase blocks and must be written sequentially and reset explicitly. ZNS SSDs

resent three benefits. First, they maintain coarse-grained mappings between zones and flash

locks and apply wear leveling at the zone granularity, requiring much smaller internal DRAM.

or example, a ZNS SSD with a 24 MB block size has at least 6,144 × smaller table size compared

o the traditional 4 KB page mapping [ 49 ]. Second, they eliminate the device-side GC and reclaim

AND blocks via explicit zone resets by host applications, which mitigates the WAF and log-on-

og [ 59 ] issues and minimizes the over-provisioning overhead. Third, they enable the placement

f opened zones across different device channels and dies, providing isolated I/O bandwidth and

liminating inter-zone write interference. 

A zone has six states (i.e., empty , implicitly open , explicitly open , closed , full , read only , and offline ).

tate transitions are triggered by either write I/Os or zone management commands (i.e., RESET,

PEN, CLOSE, and FINISH), as shown in Figure 2 . A zone must be opened before issuing writes,

ut it is capable of serving reads in any state except the offline state. A device internal error will

ause the zone to enter either a read only or an offline state, where it cannot transit to states

ther than offline . Zones in empty or closed state transition to the open state in a way that is

ither explicit (by OPEN management command) or implicit (by write I/O). An opened zone can

ransition to the closed state (by CLOSE management command) or the full state (by FINISH or

rite I/O reaching the end of the zone). Note that closed and open (both implicit and explicit) are

ctive states that require the device to maintain NAND metadata for incoming user write I/Os,

imiting the maximum number of active zones. SSDs employ the write cache in DRAM to align
CM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 2. The zone state diagram of ZNS SSD. 
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he wide range of user I/O sizes to the NAND program unit and comply with the NAND-specific

equirements (timings and program order). In case of a sudden power-off failure, the device flushes

ncommitted data in the cache using batteries or capacitors as an emergency power source [ 53 ,

2 ]. Since active zones must have a buffer backed by energy devices for at least one NAND program

nit in the cache, the maximum number of active zones is also constrained by the size of the write

ache. 

A zone provides three I/O commands: read , write , and append . The append works similarly to

he nameless write [ 61 ] but improves the host I/O efficiency rather than the internal NAND page

llocation. Compared with the normal write, a zone append command does not specify the LBA

n the I/O submission request, whereas the SSD will determine it at processing time and return

he address in the response. Thus, user applications can submit multiple outstanding operations

imultaneously in contrast with the normal writes that submit only one I/O at a time to avoid out-

f-order execution violating the sequential constraint of the zone interface in the storage stack

r device queues. Random writes are disallowed on ZNS SSDs, and the zone is erased as a whole

via the RESET). A ZNS SSD delegates the FTL and GC responsibilities to user applications, where

hey are performed at the zone granularity, thus eliminating traditional SSD overheads. While

he user software consumes more host memory (as it is now responsible for the performing the

apping), it can be minimized by integrating the zone management into the application logic [ 7 ]

r file system [ 29 , 30 ]. 

.3 Small-Zone and Large-Zone ZNS SSDs 

ones can be classified into two types: physical zone and logical zone . Physical zones are the small-

st unit of zone allocation and consist of one or more erasure blocks on a single die. They are

evice backed and offer fine-grained control over storage resources. In contrast, logical zones re-

er to a striped zone region consisting of multiple physical zones. They can be implemented by

ither the device firmware or application and provide higher bandwidth through striping. Figure 3

resents the physical zone placement in different types of ZNS SSDs. Large-zone ZNS SSDs pro-

ide coarse-grained large logical zones with a fixed striping configuration that spans multiple dies

cross all internal channels but offers limited flexibility for controlling device behavior from the

ost software. This simplifies zone allocation but exposes a small number of active zones available
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 3. The examples of physical zone placement in small (blue) and large (green) zone SSDs. 
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or application allocation (e.g., 14 zones [ 57 ]). As a result, large-zone SSDs are more suitable for

cenarios with small numbers of tenants, where the number of active zones required is not high.

dditionally, the application-agnostic fixed striping configuration does not adapt to workload pro-

les, resulting in low bandwidth utilization. Small-zone ZNS SSDs operate under similar hardware

onstraints but expose finer-grained physical zones. Each zone is contained within a single die but

ufficiently large to encompass at least one erasure block. Small-zone SSDs provide greater flex-

bility and more active resources (e.g., 256 zones in our testbed ZNS SSD) to support more I/O

treams. In addition to increased flexibility, small-zone SSDs reduce the need for application-level

C, especially while managing large numbers of small objects. Recent studies also corroborate

ome of these points. Specifically, Bae et al. [ 3 ] advocate a zone to be as small as possible to reduce

he interference caused by high zone reclaiming latencies. ZNS+ [ 18 ] also prefers small zones, as

t minimizes the latency of COPY operations performed frequently in its F2FS implementation. 

.4 Need for an Elastic Interface 

he ZNS SSD brings in two key benefits. First, it exposes controllable GC to host applications,

liminating obtrusive I/O behaviors precipitated by device internal bookkeeping I/Os. This also

lleviates write amplification and reduces flash over-provisioning. Second, it only allows sequen-

ial writes within a zone and thereby mitigates certain I/O interference observed in a conventional

SD. Both prior studies [ 3 , 8 , 18 , 52 ] and our characterizations (Section 3 ) that follow demonstrate

hese points. However, existing ZNS SSDs have one significant drawback: the zoned interface is

tatic and inflexible . After a zone is allocated and initialized, its maximum performance is fixed

egardless of the underlying device capability, its I/O configurations cannot adapt to runtime

orkload characteristics, and cross-zone I/O interference yields unpredictable I/O executions. 

First, the performance profile of a zone-sized storage partition hinges on physical zone place-

ent and stripe configuration, which should align with application requirements. Despite sig-

ificant benefits from the flexibility of the user-defined logical zone, application-managed zone

onfiguration would sustain sub-optimal performance due to the lack of knowledge of other ten-

nts sharing the device. In addition, it imposes another burden on application developers, as with

C SSDs. 

Figure 4 depicts an illustrative scenario involving three applications that employ different op-

imization strategies. In this scenario, the computing device comprises 24 physical zones, with

ach application having access to a maximum of four logical zones for application-specific zone
CM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 4. An example of the static striping configuration and the optimizations. 
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anagement. The static striping configuration, typically managed by the device, allocates physical

ones evenly, provisioning two physical zones for each logical zone. However, this static alloca-

ion may lead to sub-optimal device utilization, particularly when applications only actively use

 subset of available zones, resulting in a utilization rate as low as 25%, as shown in Figure 4 . To

ddress this issue, one may introduce an application-managed zone configuration. With this ap-

roach, each application can concentrate its available physical zones on actively writing zones, as

llustrated in the second column of Figure 4 . This dynamic allocation significantly improves uti-

ization, raising it to 46%. However, it is important to note that this application-local optimization

ay face challenges in efficiently allocating resources, particularly when there is an idle applica-

ion that holds valuable zones. One alternative is implementing a centralized resource manager

esponsible for redistributing physical zones from idle applications to active tenants. This cen-

ralized approach has the potential to further enhance utilization, achieving a utilization rate of

3%. However, it necessitates a carefully designed mechanism to prevent resource starvation when

reviously idle applications become active, ensuring a balanced allocation of resources. 

It is non-trivial to develop a complete application profile that captures every aspect of I/O execu-

ion characteristics, such as read/write block size and distribution, I/O concurrency, and command

nterleaving degree. The existing zoned interface fails to adapt to the changing workload behavior.

sers have to over-provision the zone resources when configuring a zone based on the worst-case

stimation. In Figure 5 , it is shown that the RocksDB over ZenFS [ 7 ] actively writes to only a frac-

ion of the zones it maintains in the active state. This leads to inefficient utilization of valuable

ctive resources in the ZNS SSD. Similarly, file systems like BtrFS [ 42 ] and F2FS [ 30 ] support ZNS

SDs but write user data to only one zone at a time, resulting in sub-optimal utilization of the

vailable active resources. This issue is further exacerbated when the device has multiple names-

aces serving different applications. In such cases, each application only utilizes a fraction of the

vailable bandwidth, wasting valuable active resources in the ZNS SSD. 

.5 Lack of Performance Isolation in a Zone 

xisting SSD interfaces and a ZNS SSD have difference models for the host responsibility and the

/O processing. A conventional SSD is a black-box entity whose device-internal condition depends

n the past I/O execution history and hidden firmware logic. It is the storage system’s responsi-

ility to estimate its current I/O bandwidth capacity and schedule requests accordingly. A OC SSD
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 5. The number of zone with actual write activity when running the fill-random workload over the 

RocksDB. The storage backend is ZenFS. The maximum number of active zones is 16 (red line). 
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s a white-box system. It exposes the underlying NAND flash memory and storage management

unctions directly to the host system, giving the host system full control over executing user I/O.

his results in deterministic performance and the ability to adapt to specific workloads. 

However, the ZNS SSD is a semi-transparent storage device to the host and should be viewed

s a gray box . The interface holds much potential for reducing cost, improving performance, and

eveloping device-independent systems. It handles wear leveling, LBA-to-PPA mapping, and any

AND device constraints with the zone view hiding the device’s geometry. However, a zone is

ot a completely performance-isolated domain, and co-located zones interact with each other in a

on-deterministic fashion. As a consequence, performance unpredictability still rises, and ineffi-

ient use will cause sub-optimal performance. Ideally, each tenant should receive a weighted share

ased on the consolidation degree. Specifically, its housing application should achieve its targeted

erformance when the SSD is under-utilized but receive a proportional degradation when the SSD

s over-subscribed. But, unlike its predecessor OC SSD, ZNS SSDs manage zone allocation and

ear leveling internally with no strong isolation support and expose an opaque view to applica-

ions, yielding unpredictable performance interference and I/O execution unfairness. Such an issue

ould be mitigated in a conventional SSD where FTL and GC blend and distribute blocks across

hannels and dies uniformly regardless of the original command flow, ensuring the attainment of

he maximum bandwidth and equal utilization of channel and die. 

In summary, a ZNS SSD requires a systematic understanding of its capabilities and limitations

o that one can efficiently integrate it into the storage application stack. One cannot directly carry

ver the observations and practices of using the conventional or OC SSD. The goal of this work is

o develop a systematic understanding about these issues and propose potential solutions. 

 PERFORMANCE CHARACTERIZATION OF A ZNS SSD 

his section characterizes a ZNS SSD with a focus on understanding why existing ZNS interfaces

re static and inflexible. We then discuss the possibilities of addressing the problem. 

.1 Experimental Setup 

NS SSD and Testbed. We use a commodity ZNS SSD for characterization. Table 1 presents its

ardware details. It has 40,704 physical zones, where each 96 MB-size zone consists of NAND erase

locks solely on a single die, and supports a maximum of 256 open zones simultaneously. We then

onfigure various logical zones using such fine-granular units. We also prepare a conventional SSD
CM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Table 1. Commodity ZNS SSD Specification 

Device HW Parameter Specification 

Capacity 3,816 GB 

Channels # 16 channels

NAND dies # 128 dies 

NAND page size 16 KB 

NAND channel B/W ∼600 MB/s 

Physical zone size 96 MB 

Read B/W per physical zone ∼200 MB/s 

Write B/W per physical zone ∼ 40 MB/s 

Maximum active zones # 256 

Fig. 6. System model, SW stack, and I/O path of a multi-tenant ZNS SSD deployment. The write cache 

flushes data to the NAND flash asynchronously. Zone resets are completed after invalidating the mapping 

layer, where NAND blocks are erased lazily. rd, read; wr, write. 
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ith an equivalent architecture for a fair comparison. Our server has two 2.50 GHz E5-2680v3 Xeon

rocessors with 256 GB DDR4 DRAM, and both SSDs are connected to ×4 PCIe Gen3 slots directly.

Workloads and Performance Metrics. We use the Fio benchmark tool [ 17 ] running on the

PDK framework [ 50 ] to generate synthetic workloads. We report both per-I/O average/tail latency

s well as achieved bandwidth. We add a thin layer to the SPDK to implement the logical zone

oncept and realize different zone configurations. Given the ZNS protocol, we regulate the write

orkloads to sequential accesses on a single logical zone in the following experiments, where read

orkloads issue random I/Os unless specified. 

.2 System Model 

e consider a typical system setup with a five-layered view to facilitate the understanding of a

ulti-tenant ZNS SSD deployment and dissect the I/O behavior (Figure 6 (a)). From the top-down

erspective, the first layer contains a few co-located tenants, each running a storage application

e.g., blob store, F2FS, and RocksDB). Next, a tenant exclusively owns one or several namespaces

ased on the required capacity. A namespace provides independently configurable logical zones

layer 3), exposing a private logical block address space. By manipulating the logical zone setup,

 namespace can be configured differently to meet the capacity and parallelism requirements.

ithin a logical zone, reads happen ever y where, whereas writes are only issued in an append-

nly manner. This is unique to a ZNS SSD and in significant contrast to a conventional SSD, which

an be viewed as a fixed or statically configured SSD. 
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Table 2. Read I/O Average/P99.9 Latency and Bandwidth Varying 

the Stripe Size on a Physical Zone 

Stripe Size Avg. Lat (us) P99.9 Lat. (us) B/W (MB/s) 

4 KB 64 76 59 

8 KB 71 84 108 

16 KB 88 103 175 

32 KB 163 269 190 

64 KB 314 619 198 
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A logical zone comprises several physical zones (fourth layer). The number of physical zones

er logical zone is typically fixed within a namespace. The logical-to-physical zone mapping can

e arbitrary regardless of the request serving order and device occupancy. However, the logical

ones must not share their physical zones to conform with the ZNS protocol. At the bottom layer,

 physical zone is placed on one channel/die following the device specification. The zoned block

evice layer (see Figure 6 (b)) is the central component across the storage stack that abstracts away

rchitectural details of a ZNS SSD. It provides three functionalities: (1) interacting with the ap-

lication on namespace/logical zone management, (2) orchestrating the logical-to-physical zone

apping in consideration of the application requirement, and (3) scheduling a sequence of I/O

ommands to maximize device utilization and avoid head-of-line blocking. Figure 6 (c) shows the

/O path of read/write/reset requests. We carefully configure each layer when designing charac-

erization experiments. 

.3 Zone Striping 

ince a logical zone is usually configured as an array of physical zones spatially, similar to RAID 0,

ne could apply the striping technique to achieve higher throughput, especially for large-sized I/Os.

one striping segments data blocks across multiple physical zones and accesses them concurrently.

here are two configuration parameters: (1) stripe size is the smallest data placement unit in a

tripe, and (2) stripe width defines the number of physical zones in an active state and controls the

rite bandwidth. 

3.3.1 Basic Performance. When there are enough outstanding I/Os submitted to an SSD, unsur-

risingly, the optimal striping efficiency is achieved when the stripe size matches the NAND op-

ration unit (i.e., NAND page size). As shown in Table 2 , the achieved per-die bandwidth increases

lowly after the 16 KB stripe size. In terms of latency, the access time reduction is non-linear for

izes smaller than a NAND page (16 KB). When the I/O size is larger than 16 KB, the average

atency rises proportionally to the I/O unit because each request has to access the die multiple

imes sequentially. Next, we change the logical zone setup and see the efficiency of different stripe

izes. We use N-zones to refer to a logical zone configuration, where N is the number of physical

ones in a striping. As shown in Figure 7 , when issuing 2 MB reads (which generates enough I/O

o construct a full stripe I/O on each physical zone), for different zone configurations, the band-

idth over various stripe sizes shows a similar result with the single-die performance. However, a

ider width that fully uses the stripe size ( s tripe _ s ize × s tripe _ w idth ) achieves higher bandwidth.

or example, the 4 KB stripe size in 8-zones achieves 37.3% higher read bandwidth than the 8 KB

tripe size in 4-zones. Note that the stripe size does not significantly affect the write performance,

s one can coalesce stripes on the same physical zone into a single device I/O and submit it at once.

nstead, the stripe width determines the maximum write bandwidth. 
CM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 7. Read bandwidth varying the stripe size for different types of zones. 

Fig. 8. Read bandwidth varying the stripe size under the stripe width of 16. 
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3.3.2 Challenge #1: Application-Agnostic Striping. When deciding the optimal stripe size and

idth, one should consider the application I/O profile dynamically, including request type, size

istribution, I/O size efficiency, and concurrency. However, the existing zoned interface lacks such

upport and hinges on users’ domain knowledge during configuration. A large stripe may hurt

erformance if the size of user I/O is smaller than that of a full stripe. However, too small a stripe

lso hurts the I/O efficiency of the device; a 4 KB stripe with an 8-zone or wider width significantly

ags behind 8 KB or larger stripes in Figure 7 . A wide stripe width sustains high performance per

ogical zone. However, since the device has a limited amount of active resources, it will instead

imit the maximum number of active logical zones and jeopardize application concurrency. 

Figure 8 presents the sustained read bandwidth varying the stripe size from 4 KB to 64 KB for

our I/O profiles under the 16-zone configuration. For the 32 KB I/O with a queue depth of 16

32 KB-QD16) and the 128 KB synchronous I/O (128 KB-QD1), the 16 KB stripe performs the best

ecause NAND operates most efficiently when the stripe size aligns with the NAND page size.

owever, for the 32 KB with 1 and 4 queue depth cases (32 KB-QD1, 32 KB-QD4), 4 KB/8 KB

tripes outperform the 16 KB one by 15.1%/13.6% and 5.8%/12.2%, respectively, because they acti-

ate significantly more channels and dies for a single-user I/O. The larger stripe sizes, 32 KB and

4 KB, fail to explore any parallelism, resulting in poor performance due to narrower user I/Os.

verall, the results demonstrate the importance of leveraging more parallelism, particularly for

mall I/O sizes. While a large I/O may encounter inefficiencies in NAND operations due to a small

tripe size, it can be optimized through simple techniques such as merging adjacent I/Os within

he same physical zone. 
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 9. Read/write bandwidth varying the number of physical zones. 
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Observation. The use of logical zones with striping is beneficial for the application, but the

one stripe width and size should be considered in combination with each other. However, it is

ssential to carefully consider both the zone stripe width and size in tandem. It is not desirable to

ave a stripe size larger than the NAND page size, and adjustments should be made to the stripe

ize when widening the stripe width to provide the most parallelism for user I/O of a specific size.

.4 Zone Allocation and Placement 

 ZNS SSD allocates physical zones across dies/channels, mainly taking access parallelism and

ear leveling into consideration. Upon an allocation request, the ZNS SSD traverses the die array

ollowing a certain order and then selects the next available die to place each physical zone. Within

 determined die, it chooses blocks with the least program/erase cycles based on opaque wear-

eveling policies. 

3.4.1 Basic Performance. Zone allocation should be locality aware and parallelism aware. A

arger-sized logical zone is expected to observe higher read/write bandwidth because it spreads

hysical zones across different channels and dies in a deterministic sequence and achieves more

/O parallelism. The maximum performance is obtained when I/Os access all channels and dies

ithout blocking. We configure the stripe size to 16 KB and increase the number of physical zones

n a logical zone ( N ), then measure the I/O bandwidth of a single logical zone under four I/O profiles

Figure 9 ). The performance of 2 MB reads with queue depths 1 and 2 (i.e., 2 MB-RD-QD1/2 MB-

D-QD2) keeps increasing until the number of physical zones approaches 20. But they max out

or different reasons. The QD2 case is bounded by the PCIe bandwidth (i.e., four Gen3 lanes or

.2 GB/s), whereas the QD1 scenario is simply limited by the application as it cannot issue enough

utstanding I/Os at that queue depth. In terms of 4 KB random read with 32 queue depth and

 MB sequential write, they sustain 80 MB/s read and 40 MB/s program bandwidth per physical

ie, respectively, requiring much more physical zones ( ∼ 40 and 80) to utilize the channel or PCIe

andwidth fully. 

3.4.2 Challenge #2: Device-Agnostic Placement. An ideal allocation process should expose all

f the internal I/O parallelism of a ZNS SSD to a tenant. However, the existing mechanism is

paque to housed tenants, where the global allocation pointer picks the next available die without

onsidering the application’s prior allocation history or how it interacts with other tenants. This

auses unbalanced zone placement, hurts I/O parallelism, and jeopardizes performance. We find

wo types of inefficient placements: 
CM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 10. Channel/die-overlapped zone placement. Assume that the ZNS SSD has 16 dies across four channels 

and each tenant has its own namespace. In case (1), the SSD serves two allocations from tenants A and B 

simultaneously (both asking for four physical zones). Due to the overlapped placement, both A and B benefit 

from two channels. Similarly, in case (2), the SSD serves four requests (which allocate three zones, one zone, 

one zone, and one zone) from tenants C and D asynchronously. Because of the overlapped placement, tenants 

C and D obtain three and two channels, respectively. In case (3), tenant E allocates four zones spanning across 

2 dies, limited by the die bandwidth. 

Fig. 11. Read bandwidth under three channel overlapping (OL) allocations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

—Channel-overlapped placement: As shown in cases (1) and (2) of Figure 10 , concurrent zone

allocations might cause overlapped zone placements across channels, limiting the maxi-

mum channel parallelism. Similarly, synchronized allocation requests might prevent place-

ment alignment, again limiting the aggregated bandwidth. Figure 11 presents 4 KB and

128 KB random read bandwidth when increasing the QD for three inferior placements,

where 2/4/8 physical zones contend for the same channel in a 16-zone configuration. Phys-

ical zones stay across 16 different dies that limit the maximum bandwidth. The 2-overlapped

allocation outperforms the other two (i.e., 4-overlapped/8-overlapped) by 1.7 ×/2.9 × and

1.7 ×/2.5 × for 4 KB and 128 KB cases, respectively. 

—Die-overlapped placement: Case (3) of Figure 10 describes this issue. An intra-namespace die

overlapped placement limits the bandwidth and can be even more detrimental because a die

can only process one operation at a time. We configure such an experiment by placing phys-

ical zones in the same die and gradually increasing the overlapping ratio. Figure 12 reports

the logical zone’s sustained bandwidth and tail latency under two I/O profiles. When no

physical zones share the same die, it achieves 1,128 MB/s and 2,051 MB/s along with 317us

and 284us p99.9 tail latency for the 4 KB random read and 128 KB sequential read cases,

respectively. With full overlap, we observe 47.2%/23.8% bandwidth drop and 87.1%/28.0%
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 12. Bandwidth and tail latency varying with the die overlapping ratio. 
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tail latency increase. Such performance degradation happens even when the overlapping

ratio is lower than 25%, because both types of I/Os suffer from the head-of-line blocking

issue at the overlapped dies. 

Observation. It is challenging to infer the zone’s physical location without knowing the device’s

nternal specification. One may run a profiling tool in the runtime to extract the relation among

ifferent zones [ 3 ]. However, it does not eliminate the imprinted overlap at the allocation time. To

aximize the I/O parallelism, one could build a device abstraction layer that (1) relies on a general

llocation model of the device, (2) maintains a shadow view of the underlying physical device, and

3) profiles its placement balanced level across different physical channels and dies. 

.5 I/O Execution under ZNS SSDs 

 ZNS SSD eradicates background GC I/Os, thereby removing one form of performance non-

eterminism. Within a logical zone, writes happen sequentially, but reads are issued arbitrarily.

hen reads are congested, one would observe latency spikes under die/channel contention. If

onsidering cross-zone cases, either intra or inter namespace, interference would be more severe

han with a conventional SSD because ZNS SSDs impose no physical resource partitions, and per

ie/channel bandwidth is narrow. 

3.5.1 Basic Performance. Irrespective of the NAND block layout of a logical zone, its I/O access

atency highly correlates with achieved bandwidth because there are no device internal I/Os that

onsume bandwidth and are hidden from user applications. To demonstrate this, we prepare a

onventional SSD having the same hardware as the ZNS SSD and compare two SSDs under the

ixed read-write scenario. We configure a logical zone for the ZNS SSD that spreads across all

hannels and dies (i.e., 128-zone configuration with 16 KB stripe size) to match the conventional

ne. The fragmented conventional SSD is 70% filled and pre-conditioned with 128 KB random

rites. Then we run eight read threads—where each issues one 128 KB read I/O to all dies uniformly

andom—and one write thread that performs sequential write at a fixed rate. Figure 13 reports the

ead/write tail latency as we increase the write bandwidth. More writes on a ZNS SSD leave less

andwidth headroom for reads and cause the latency to increase. However, for the fragmented

onventional SSD, the internal GC activities make even less bandwidth available to serve reads

ue to write amplification. For example, when the write bandwidth is 1,000 MB/s, the p99.9 read

nd write latency of the conventional SSD is 4.3 × and 2.8 × worse than the ZNS one. In terms of

he read throughput, the conventional SSD shows 1.1 × and 1.6 × lower throughput than the ZNS

SD at the 200 MB/s and 1,000 MB/s write bandwidth, respectively. 
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Fig. 13. Read tail latency varying the write bandwidth (ZNS vs. conventional SSD). 

Fig. 14. Bandwidth under RD-RD and WR-WR congestion due to the die collision. 
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3.5.2 Challenge #3: Tenant-Agnostic Scheduling. Existing zoned interfaces of ZNS SSDs provide

ittle performance isolation and fairness guarantees for the inter-zone case, regardless of deployed

orkloads. One cannot overlook the read interference on a die because (1) an arbitrary number

f zones can collide on a die; (2) the bandwidth of a single die is poor, and hence, the interference

ecomes severe even under a very low load on the device; and (3) it causes a severe head-of-line

locking problem and degrades the performance of the logical zone. Since there is no internal GC

n the ZNS SSD, the I/O determinism [ 31 ] proposed for the conventional SSD does not apply as

ell. Similar to conventional SSDs, the write cache, shared among all NAND dies, is an indispens-

ble component of the ZNS SSD, buffering incoming writes and flushing to the NAND dies in a

atch. Host applications will observe prompt write I/O completions when they are absorbed by the

ache but experience considerable latency spikes when the cache overflows. This has not been an

ntractable issue in conventional SSDs because the device firmware blends all incoming write I/Os

nd constructs a single large flow spanning entire NAND dies, maintaining the cache eviction rate

o the maximum device bandwidth. However, in the ZNS SSD, a write I/O must be flushed out to the

esignated NAND die with an inadequate program bandwidth, even with zone striping. In this situ-

tion, a heavy writer exhausts the available cache capacity and severely disturbs other short flows.

We set up two readers performing 128 KB read I/O in different profiles: (1) queue depth 8 with a

wo-zone configuration and (2) queue depth 2 with an eight-zone configuration. Figure 14 shows

he interference between two readers in a die collision. The QD-8 reader easily obtains 97.2% of

he total bandwidth of collision dies. Note that the interference and unfair bandwidth share also

ccurs in the conventional one, but only when the device bandwidth is fully saturated [ 26 , 47 ]. We
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 15. Performance comparison of three namespaces (with different logical zones) running the same work- 

load. 
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lso demonstrate the write cache congestion in Figure 14 . We first populate 15 logical zones with

 stripe width of 8, and each physical zone is allocated to a dedicated die. The cumulative write

andwidth of 15 zones maxes out the PCIe bandwidth (3.2 GB/s), and a single zone performs at

213.3 MB/s. In this case, a physical zone in the logical zone receives write at a lower rate than

he maximum bandwidth ( ∼26.7 MB/s), and the write cache does not overflow. Then, we add one

ore writer with a narrow width of 2, which also runs on dedicated dies. Write I/Os toward the

arrow zone are equally fetched by the device, but it soon consumes all available cache because

f the scarce bandwidth ( ∼85 MB/s) of underlying physical zones. It degrades others’ bandwidth

y 27.3% or 155 MB/s, and the device even fails to max out the PCIe bandwidth ( ∼2.4 GB/s). 

We set up three namespaces with different zone configurations (i.e., 4-zones, 8-zones, and 16-

ones) and ensured they have the same capacity using all channels and dies. Figure 15 shows the

chieved bandwidth when these three namespaces run the same type of workload. In terms of the

28 KB write (QD = 1), namespaces 2 and 3 achieve twice the bandwidth as namespace 1 because

he maximum sequential write I/O is bounded to four channels in the 4-zone case. Since the stripe

ize is 16 KB, a 128 KB write generates eight outstanding I/Os that can harness eight dies at best,

eading to the same performance of namespace 2 and 3. Considering the other two read scenarios,

ven though three namespaces submit the same amount of I/Os, we observe different bandwidth

hares proportional to their underlying parallelism in the logical zone for large 128 KB sequen-

ial reads. However, the three namespaces show the same bandwidth for a small 4 KB I/O with

2 queue depth because each random I/O could fall into any of the channels and dies regardless

f the zone configuration. Next, we consolidate two namespaces and issue different types of I/Os.

igure 16 reports the results, where the number in parentheses indicates the queue depth. When

wo tenants compete for the read bandwidth, irrespective of the logical zone configuration, the

unning workload that can utilize more dies achieves higher bandwidth, as the 4 KB (QD = 32) in

he first two scenarios and 128 KB (QD = 32) in the third case. 

3.5.3 ZNS vs. Conventional SSDs. There is no performance isolation support on a conventional

SD. Some recent proposals employ I/O determinism and NVM Sets [ 28 , 31 , 38 ] to minimize the

nterference. Although they mitigate the interference in a given environment, such mechanisms

ave a restriction due to static partitioning (NVM Sets) or limited predictable time window (I/O

eterminism). Instead, OC SSDs grant full access to the device geometry to applications, and thus

ne can predict possible interference using a complete view of physical allocation. However, one

annot prevent interference even with this knowledge because read I/Os may target any of the

ies associated with a zone unpredictably. Some researchers propose a read reconstruction using
CM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 16. Performance comparison of two tenants (with different logical zones) running different workloads. 
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edundant arrays [ 32 , 58 ], but such mechanisms sacrifice both capacity and bandwidth for reads

nd fail to address a multi-tenant setup in a modern data center. 

Observation. When using ZNS SSDs in a multi-tenant scenario, one should first understand

ow different namespaces and logical zones share the channels and NAND dies of the underlying

evice, classify their relationships into competing and cooperative types, and employ a conges-

ion avoidance scheme for the inter-zone scenario to achieve fairness. Since there are no device

ookkeeping operations, I/O latencies represent the congestion level on colliding dies. In addition,

rite cache congestion needs to be addressed globally. Thus, a possible solution is to design (1) a

lobal central arbiter that decides the bandwidth share among all active zones and (2) a per-zone

/O scheduler that orchestrates the read I/O submission based on the congestion level. 

.6 Zone Reset 

NS SSDs delegate NAND block lifespan management responsibility to host applications via the

ESET command. It is a unique command in ZNS and OC SSDs, which a conventional one lacks.

he conventional SSD provides a DEALLOCATE command instead, but it only invalidates logical

ages without triggering the block erase activity explicitly. ZNS SSDs further optimize a reset

atency using the zone mapping layer while providing the same execution logic on block erase as

C SSDs. When processing this request, a zone will transition to the EMPTY state, where its write

ointer is redirected to the start LBA. All associated NAND blocks are erased, and previously

ritten data becomes inaccessible. This allows applications to develop application-specific GC

echanisms, whose goals should be minimizing the impact on concurrent read/write traffic as

ell as reclaiming stale data timely. 

We find that the zone reset is essentially a lightweight command whose execution latency is

uch lower than the block erase operation. This is mainly because the firmware sends back the

eset completion acknowledgement as soon as the zone mapping is cleared and performs the actual

rasure operation lazily. We gradually increase the number of concurrent reset operations and

easure the latency and bandwidth of resetting a physical zone. As shown in Table 3 , its unloaded

atency is around 204 us, whereas erasing a block takes around 3.5 ms [ 22 ]. Additionally, reset is

 high-bandwidth operation, achieving 1,478 GB/s at max. This is reasonable as the per-die erase

andwidth of modern high-density NAND devices is higher than 10 GB/s. 

Unsurprisingly, read and write I/Os interfere with resets severely. Although the reset bandwidth

s extremely high, each operation takes significantly longer than blocking read and write. We use

he experiment setup as described earlier and co-locate it with a 4 KB random read (QD = 32) or a

28 KB write (QD = 1), respectively. In terms of the read vs. reset interference scenario (Figure 17 ),
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Table 3. Reset Average/P99.9 Latency and Bandwidth Varying 

the Number of Concurrent Reset Operations 

Reset # 

Avg. 

Lat (us) 

P99.9 Lat. 

(us) 
B/W (GB/s) 

1 204 233 455 

2 220 338 841 

3 239 449 1,158 

4 275 445 1,342 

5 313 889 1,478 

6 381 2,343 1,456 

Fig. 17. Read vs. reset latency varying the number of reset operations. 

Fig. 18. Write vs. reset latency varying the number of reset operations. 
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he read average and p99.9 latencies rise by 5.0 × and 9.4 ×when there are seven concurrent resets.

his also causes a significant bandwidth degradation (from 1,492 MB/s to 202 MB/s). Regarding the

rite vs. reset (Figure 18 ), under the most interfering case, we observe that the write average/p99.9

atencies increase by 2.9 ×/15.8 ×, along with a 2.8 × bandwidth drop. Thus, zone reset is another

nterference factor that jeopardizes the I/O predictability. For example, an irresponsible tenant

ould continuously submit reset operations and break the GC-free illusion of other victim users

hen they share the same NAND die. Therefore, zone reset should be coordinated globally across
o-located tenants. 
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Fig. 19. CDF of write I/O latency for different traffic loads. The x -axis is log scale. 
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Observations. The zone reset should be viewed as another type of user I/O command (in addi-

ion to read/write) for scheduling with sufficient bandwidth. It is not necessary to process a reset

mmediately, as the bandwidth is hundreds of times higher than write. Instead, one can invali-

ate a zone immediately and complete the user request, then coordinate zone reset in a global

nd batched fashion across co-located tenants to minimize the chance of collision with read and

rite. 

.7 Write Cache 

rite cache is an indispensable component of NAND-based SSDs for two reasons: (1) there is a

ismatch between the LBA size and NAND page size, and the programming is not an atomic opera-

ion, and (2) SSDs should follow strict timing rules [ 10 ] (e.g., the timing among upper/middle/lower

ages) to ensure data integrity. Consequently, writes are buffered temporarily in the write cache

ntil the accumulated buffer size is sufficient to complete a programming sequence. Hence, host

pplications will observe prompt write I/O completions when they are hitting in the cache until

ver-committing write I/Os. 

ZNS SSDs also benefit from the write cache under the modest write I/O traffic. We set up an

xperiment that writes to a single physical die at different rates. We configure four cases where

he first three issue 16 KB write I/Os at a rate lower than the maximum die serving bandwidth

see Table 1 ) and the last one maxes out. Figure 19 reports the CDF of the I/O latency. When the

rite traffic is less than the maximum, the write cache can absorb the majority of the I/Os and

rovide fast write completion (i.e., p50 is 93 us). However, when the write runs at the maximum,

e observe a significant latency increase because it has to wait until the SSD flushes data and

eclaims cache space. The p50 latency rises to 2,278 us, which is even worse than the p99.9 latency

f the first three scenarios (i.e., 562 us, 742 us, 1,434 us). 

A busy writer can adversely impact all concurrent writer flows, leading to elevated tail latency.

his issue primarily arises from the head-of-line blocking effect induced within the SSD controller.

nlike conventional SSDs, which mitigate this issue by employing striping that spans all dies,

NS SSDs face unique challenges. In this context, conventional SSDs reclaim cache space at the

aximum write bandwidth, and write latency remains stable unless the overall write demand

urpasses the device’s capability. However, ZNS SSDs exhibit a narrower write bandwidth per

one and can experience significant delays in the cache when an excessive number of write I/Os

re overcommitted to a single zone. 

To demonstrate this, we set up 32 writers issuing 16 KB (QD = 1) write I/O with different man-

ers: (1) an unloaded writer that submits at a fixed rate lower than the maximum die bandwidth
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 20. Latency varying with the number of busy writers on a conventional SSD. 

Fig. 21. Latency varying with the number of busy writers on a ZNS SSD. 
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20 MB/s), and (2) a busy writer that runs without capping bandwidth. Then, we measure the

6 KB write I/O latency of an unloaded tenant as increasing the number of co-located busy writ-

rs. Figure 21 demonstrates the high tail latency in the ZNS SSD. Adding a single busy writer will

ause the p50/p95/p99/p99.9 latency to increase by 5.6 ×/13.7 ×/8.7 ×/7.6 ×, respectively. More writ-

rs will not further jeopardize the case. Instead, we find that the tail latency will reduce slightly

s the write cache is flushed in higher bandwidth as more dies are busy (e.g., 18.4% drop of p99.9

nder 16 writers). We conduct the same experiment on a conventional SSD in Figure 20 . Since

he cache is shared among all writes and reclaimed at the maximum bandwidth, we observe that

50/p95/p99 latencies stay quite stable, whereas the p99.9 latency only increases by 50.5%. 

Observations. Write cache is a hidden performance domain in ZNS SSDs. Unlike the conven-

ional SSD, where the write bandwidth is shared among every write, the ZNS SSD shares the cache

mong all zones. By carefully pacing the I/O rate from each one, one can mitigate the tail latency

nd achieve a fair write cache share. This could be realized via a software-managed I/O scheduler

sing a monitoring mechanism for cache occupancy. 

 EZNS: ENABLING AN ADAPTIVE ZNS 

his section describes the design and implementation of eZNS that realizes a new and elastic

oned interface. We use the gathered insights from our characterization experiments and address

he aforementioned issues. 
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Fig. 22. eZNS system architecture. 
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.1 eZNS Overview 

ZNS stays atop the NVMe driver and provides raw block accesses. eZNS exposes the v-zone in-

erface that offers runtime hardware adaptiveness, application elasticity, and tenant awareness.

e carefully design eZNS and spread its functionalities across the control plane and data plane.

s shown in Figure 22 , it mainly consists of two components. The first is the zone arbiter that (1)

aintains the device shadow view in a hardware abstraction layer (HAL) and provides the ba-

is for other components, (2) performs serialized zone allocation avoiding overlapped placement,

nd (3) dynamically scales the zone hardware resources and I/O configurations via a harvesting

echanism. The second is a tenant-cognizant I/O scheduler, orchestrating read requests using a

elay-based congestion control mechanism and regulating writes through a token-based admis-

ion control. In sum, eZNS addresses the three issues discussed in Section 3 . 

.2 Hardware Contract and HAL 

e develop eZNS based on the following hardware contract, which is met by recent ZNS SSDs

ith small zones: (1) a physical zone consists of one or more erasure blocks on a single die; (2)

he maximum number of active physical zones is a multiple of the number of dies, and all dies

old the same number of active zones when they are fully populated (i.e., the ZNS SSD evenly

istributes physical zones over dies); and (3) the zone allocation mechanism follows the wear-

eveling requirements, indicating that consecutive allocated zones will not overlap on a physical

ie until all dies have been traversed. We need to caveat that the last contract may not always

e followed in allocations if the device firmware enforces a specific policy other than round-robin

cross dies. However, considering the large number of chips and the wear-leveling constraint, such

ases are rare. Our mechanism does not require being cognizant of the two-dimensional geometric

hysical view of SSD NAND dies and channels or maintaining an exact zone-die mapping. 

eZNS maintains a shadow device view, exposing the approximate data locality for zone alloca-

ion and I/O scheduling. Our mechanism (or HAL layer) only hinges on three hardware parameters

rom device specifications. The first one is the maximum number of active zones (or MAR, maximum
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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ctive resources). This is based on an observation that the MAR is generally in proportion to or a

ultiple of the number of physical dies on the SSD. One could estimate the number of active zones

hat a die could hold by deliberately controlling the zone allocation order in an offline calibration

xperiment (Section 3.4 ). The second parameter required is the NAND page size used for striping

onfiguration. For example, 16 KB is a de facto standard for most TLC NVMe drives and is well

nown for system developers. The SSD shows the best efficiency when the stripe size is aligned

ith it (Section 3.3 ), and thereby we choose the stripe size as a multiple or factor of the NAND page

ize that is closest to avoid inefficient stripe reads for sequential workloads. These two parameters

eflect the device’s capabilities. The third one is the physical zone size , deciding how a logical zone

nd strip groups are constructed. With such information, HAL provides a shadow view having a

onsistent MAR (e.g., 16) and the size of a zone (e.g., 2 GB) regardless of the underlying device. 

.3 Serial Zone Allocator 

ZNS develops a simple zone allocator that provides three guarantees: (1) it ensures that each stripe

roup comprises a list of consecutive and serial opened physical zones, following the firmware-

nforced internal order; (2) there is no die collision within a stripe group; and (3) across stripe

roups, die collision could happen for writes only if available active physical zones are fully pop-

lated across all dies. Given the preceding device model, the number of stripe groups colliding

n a die is 
M ax imu m # of ac t ive zones 

Die # at most. Channel collision would not be an issue because its

andwidth is usually higher than the aggregated program bandwidth across dies. 

Our allocator works as follows. It has a per-device request queue, buffering OPEN commands

including implicit ones followed by writes) from all logical zones. Our allocator serves each logical

one request atomically. Since the completion of a zone OPEN command does not guarantee that

he zone is actually allocated on a physical die, we implement a zone reservation mechanism dur-

ng zone opens—flushing one data block that enforces binding a die to the zone. Writes complete

mmediately as the write cache of the device absorbs a single block even in high load. To expe-

ite this process, we proactively maintain a certain amount of reserved zones in serial order and

rovision them to an upcoming stripe group. Upon completion of the allocation, we then update

he allocation history and write it into a reserved persistent region (metadata block) following the

lock for reservation. Hence, we preclude interleaved allocations from concurrently opened logi-

al zones to prevent channel-overlapped placement and facilitate allocation reordering to mitigate

ie overlaps (Section 3.4.2 ). 

.4 Zone Ballooning 

he v-zone , a specialized logical zone, can automatically scale its I/O striping configuration and

ardware resources to match changing application requirements in a lightweight fashion. Figure 23

llustrates an example of a v-zone structure. Similar to a static logical zone, a v-zone contains a fixed

umber of physical zones. However, unlike a static logical zone, it divides physical zones into one

r more stripe groups. When v-zone is first opened or reaches the end of a previous stripe group,

t allocates a new stripe group. All physical zones in the previous stripe group must be finished

hen the write pointer reaches the end of the stripe group, allowing an active v-zone to take active

esources for only one stripe group. The number of physical zones in a stripe group is determined

t the time of allocation according to the local overdrive mechanism, which enables flexible zone

triping. To comply with the standard zone interface, v-zone has a size that is a power of 2, and its

apacity is the sum of user-available bytes in physical zones. 

Similar to the virtualization memory ballooning technique [ 5 , 45 , 54 ], zone ballooning allows

 v-zone to (1) expand its stripe width by leasing spares from others when other namespaces are

nder low active resource usage, and (2) return them when it finishes the stripe group either by
CM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 23. Example of eZNS v-zone structure. 
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riting to the end of the stripe group or explicitly issuing FINISH/RESET commands from the

pplication. 

4.4.1 Initial Resource Provisioning. eZNS divides all available and opened physical zones on

he ZNS SSD into two groups: essential and spare . The essential group contains a minimal number

f active physical zones that can max out the SSD write bandwidth ( N e s s e ntial ), whereas the rest

elong to the spare group ( N spar e ). Our initial resource allocation follows the equal bandwidth par-

ition principle. We choose the write I/O bandwidth as the minimum guarantee because writing

esources (or active physical zones) of a ZNS SSD are scarce. Assuming the number of names-

aces that a ZNS SSD holds is N ns and the maximum number of active v-zone s per namespace

s MAR lo дica l . A namespace takes 
N e s s e ntial 

N ns 
exclusive active physical zones; when a v-zone in the

amespace opens a new stripe group, it receives 
N e s s e ntial 

N ns ×MAR lo дica l 
assured essential ones, which is

lso the minimum stripe width. In terms of spare zones, similarly, eZNS equally distributes them

o a namespace ( 
N spar e 

N ns 
) during initialization. Both a v-zone and a namespace will expand/shrink

heir capacity to adapt to workload demands. 

4.4.2 Local Overdrive: Zone Expanding. eZNS provisions available spares from the spare group

f its namespace to boost its write I/O capability. We realize this via an internal local overdrive

peration while opening a new stripe group. The mechanism works as follows. First, it estimates

he resource usage of the namespace by analyzing its previously opened v-zone s, quantified as the

xponentially weighted moving average over the number of active v-zone s ( N Active Zone His tory ).

econd, it checks the remaining spares from the spare group ( N Rem ain in дSpar e ) and r eaps addi-

ional spares based on 

N T o t a l Spa r e 

N Active Z one H is tory 
. Essentially, a v-zone will receive more (fewer) spares if it

mbodies writing activities but the namespace only opens fewer (more) v-zone s. Third, the v-zone

onflates the harvested spares with assured essential ones for it to open the new stripe group, and

he stripe width is rounded down to the nearest power of 2 for efficient resource management.

ote that the local overdrive operates in a serial and best-effort fashion. Last, eZNS sets the base-

ine stripe size to 32 KB at the minimum width for the optimal I/O efficiency of the device. It then

educes the stripe size for an overdriven zone according to the stripe width, down to the mini-

um block size of the device. For example, if the width gets 2 × wider, the stripe size is reduced

y half. We determine the range of stripe sizes to optimize the performance as aforementioned

n Section 3.3 . The reduced stripe size further contributes to the I/O scheduler ensuring fairness

Section 4.5 ). 

4.4.3 Global Overdrive: Namespace Expanding. Across the whole device, our zone ballooning

echanism further reallocates spares across namespaces based on their latest write activity. We
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 24. Three simple examples of the global overdrive mechanism. 
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ealize this via another internal global overdrive operation—lend spares from the spare group to

ach other. Unlike local overdrive , global overdrive is triggered based on the write intensity across

he entire drive. Specifically, our arbiter monitors the past N e s s e ntial opened physical zones across

ll active namespaces, computes their zone utilization, and redistributes the remaining spares from

nactive namespaces to active ones. Figure 24 illustrates an example case of global overdrive . Ini-

ially, in Figure 24 (a), we evenly distribute essentials and spares across three namespaces. Subse-

uently, NS1 and NS3 open two v-zone s each. While NS1 continues to actively write data, NS3

ecomes inactive after opening its allocated v-zone s. Simultaneously, NS2 remains devoid of write

ctivity. Once the arbiter identifies NS2 as an inactive namespace, it triggers the redistribution of

nused spare zones from NS2 to the active namespace, NS1, with a focus on boosting the perfor-

ance of NS1 as depicted in Figure 24 (b). In the event that NS2 starts writing data, we ensure the

inimum number of active zones and adequate bandwidth using essentials. 

In the current design, we determine an inactive namespace as a namespace that has no allocation

istory in the last N e s s e ntial physical zone allocations of the device, and lent spares are equally

istributed across active namespaces. When an inactive namespace becomes active again, eZNS

arks the leased spares as recall spares, and namespaces release them to the global pool as soon as

hey FINISH/RESET the stripe group in v-zone s. eZNS then returns them to the original namespace

t the next global overdrive operation. 
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Fig. 25. Example of the zone reclaim operation. The original stripe group has width of 6 with four spares. 

The reclaim operation shrinks it to the minimum width of 2 using only essentials. When the amount of valid 

data exceeds the size of a minimum width stripe group, it finishes the stripe group and creates another one 

until it copies all valid data. Then it returns spares in the original stripe group to the pool. 
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4.4.4 Reclaim: Zone/Namespace Compaction. Generally, an overdriven v-zone after entering the

INISH state will return spare zones. Therefore, spare zones circulate as long as namespaces con-

inue to write to v-zone s. However, when a namespace overdrives v-zone s, which becomes inactive

ithout releasing them, the arbiter has to use a reclaim operation to take back the spares to prevent

esource leakage. To ensure no slowdown on the performance path, we employ an asynchronous

indow-based monitoring scheme, where the arbiter bookkeeps the status of each inactive names-

ace and continuously counts how long its status is in the read-only state. If a namespace presents

o write I/Os for a certain amount of time, T Re adO nly , the arbiter determines the namespace as

rozen and triggers the reclaim procedure to proactively collect the spare zones. The execution

ost of reclaim depends on the configuration within the opened stripe group. If there are com-

itted writes on the zone, reclaim will trigger a zone compaction and perform a sequence of I/O

eads/writes—that is, finishing existing zones, opening a new stripe group with shrunk width, and

opying data to the new one. Once the migration is done, the spare zones can be returned to the

lobal spare pool. Figure 25 presents an example of the zone reclaim process. When the arbiter

dentifies NS3 as frozen , it initiates the reclamation process (i.e., zone compaction) within the cur-

ent stripe groups. These reclaimed spares are subsequently transferred to NS1. 

The zone reclaiming indeed brings GC-like overheads back to the system. Thus, it is crucial

hat the system does not trigger the operation in normal conditions. In eZNS, zone reclaiming is

nly performed when namespaces have no write activity for two cycles of global overdrive. This

s likely to happen infrequently, such as when an application undergoes a significant change in its

unning state. Moreover, reclaiming is triggered in a lazy fashion, executed in the background, and

egulated by the scheduler to limit its performance impact. As a result, eZNS can avoid triggering

one reclaiming in normal conditions, maintaining high performance and efficiency. 

.5 Zone I/O Scheduler 

ZNS mindfully orchestrates I/O reads/writes with the goal of providing equal read/write band-

idth shares among contending v-zone s, maximizing the overall device utilization, and mitigat-

ng superfluous head-of-line blocking when different types of requests interleave. Our zone I/O

cheduler comprises two components: congestion-avoiding read scheduler and cache-aware write

dmission control. 

4.5.1 Congestion-Avoid Read Scheduler. Our design is based on the observations that (1) ZNS

SDs have no internal housekeeping operations and (2) write I/Os are sequential and synchronous.
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ence, the read latency is stable and low until the die becomes congested, and it is thus possible

o detect congestion directly via latency measurements. 

eZNS introduces a hierarchical design that performs weighted round-robin scheduling first

cross active namespaces and then delay-based congestion control across each intra-namespace

-zone s. By conforming to the NVMe architecture, we create per-namespace NVMe queue pairs

nd offload the round-robin scheduling to the device. Then, we employ a Swift-like [ 27 ] conges-

ion control mechanism to decide the bandwidth allocation for each stripe group in the v-zone ,

here the delay is the device I/O command execution latency. As shown in Algorithm 1 , during

he congestion-free phase, upon a read I/O completion, we additively increase (AI) the congestion

indow until it approaches the maximum size (line 6). Since the congestion window ( cwnd ) is

hared in the stripe group, when set to the stripe width, it indicates that there is one outstanding

/O per die in the sequential case. The SSD can max out its per-die bandwidth with a few out-

tanding I/Os. Thus, when the cwnd starts with the stripe width, it quickly ramps up to the device

andwidth capacity. Further, we limit the maximum congestion window ( cwnd ) to 4 × s trip _ w idth
o minimize the software overheads when handling excess concurrent I/Os and avoid a meaning-

ess rapid growth of cwnd that would imperil the efficiency of the MD phase. When congestion

appens, we reduce the congestion window multiplicatively (line 4), whose ratio depends on the

atency degradation degree. All physical zones within a stripe group share the same congestion

tatus. This is reasonable because sequential read bandwidth will be capped by the most congested

hysical zone. Random reads usually will not trigger frequent cwnd decrements because the min-

mum window size is large enough to absorb them. Our congestion control works cooperatively

ith the reduced stripe size of the overdrive and ensures a fair share of bandwidth regardless of

he width of the stripe group. 

4.5.2 Cache-Aware Write Admission Control. Due to the non-linear write latency and the shared

rchitecture, it is inappropriate to implement a local mechanism to mitigate the problem. Unlike

he read congestion case, write congestion happens globally across all zones from all namespaces

Section 3.5 ). Therefore, eZNS monitors the global write latency and regulates writes using a token-

ased admission control scheme. We generate tokens periodically (Algorithm 1 lines 14–16) and

dmit write I/Os in a batch for each active v-zone to ensure overflow rarely happens. This requires

 latency monitor to analyze the write cache eviction activity (Algorithm 1 lines 8–12). Here, we

rofile the block admission rate (defined as the minimum delay between two consecutive write

locks) and adjust the token generation rate based on its normalized average latency. This is based

n an empirical observation that the latency of the write projects its capacity share in the write

ache. Hence, we equalize the latency for all write zones and calculate available tokens using the

verage value. Additionally, we update the available tokens based on the elapsed time from the

ast token refill upon a write submission. By doing so, we expect that writes are self-clocked in the

ongestion-less condition. 

First, when read and write I/Os mix on a physical die, the total aggregate bandwidth will drop

ue to the NAND interference effect. However, our read scheduler and write admission control

equire little coordination because both modules only use the latency (gradient) as a signal to infer

he current bandwidth capacity. Second, we coalesce stripes for the same physical zone within a

ser I/O and submit one write I/O to the device in a batch, and thus a small stripe size does not

egrade the write bandwidth. 

 EVALUATION 

e add a thin layer in the SPDK framework [ 50 ] to implement eZNS and realize the v-zone

oncept. The primary reason for choosing the SPDK approach was its ease of implementation
CM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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ALGORITHM 1 : Zone I/O Scheduler 

1: procedure Read Submission() 

2: read _ io ← head (pend inд _ qu eu e)
3: if c wnd ≥ io _ c ou nt + s ize (re ad _ io ) then 

4: submit( read _ io ) 

5: procedure Read Completion() 

6: lat _ thre s h ← 500 us 
7: if io _ l at > l at _ thre s h then 

8: c wnd = max (1 , c wnd × la t _ th r ea sh 
2 ×io _ lat 

)

9: else � α = additive factor 

10: cw nd = min (s tripe _ w idth × 4 , cwnd + α × io _ c ou nt 
cwnd 

)

11: procedure Write Submission() 

12: w rite _ io ← he ad(pe ndinд _ qu eu e)
13: if toke ns ≥ b atch _ s ize (w rite _ io ) then 

14: submit( w rite _ io ) 

15: procedure Write Completion() 

16: pe r _ b l ock _ l at = pe r _ b l ock _ l at + io _ lat 
n um _ blocks 

17: num _ ios += 1 

18: procedure Write Latency Monitor() 

19: On t every 10 ms 

20: t ot al _ lat = 
∑

a ct ive _ zo ne pe r _ b lock _ lat 
21: t ot al _ ios = 

∑
a ct ive _ zo ne num _ ios 

22: avд _ lat (t ) = t ot al _ lat 
t ot al _ ios 

23: b lock _ admis s ion _ rate = 
a vд _ la t (t −1 )+a vд _ la t (t )

2 

24: procedure Write Token Generator() 

25: On every 1 ms 

26: for pending write zones do 

27: toke n += 
no w−la st _ r ef il l 

blo ck _ a dmi ssi o n _ r a te 
× s tripe _ w idth 
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nd integration into the software stack of a storage server accessible by remote clients. Moreover,

he SPDK-based design can also be used in a local system to serve virtual machines through

he SPDK vhost extension. This approach allows the storage server to provide efficient and

igh-performance I/O operations while remaining compatible with existing software stacks. We

se the same test environment as in Section 3.1 . Non-SPDK applications require a standard ZNS

lock device exposed via the kernel NVMe driver; thus, we set up eZNS as a disaggregated storage

evice over RDMA (NVMe-over-RDMA) and connect to it using the kernel NVMe driver. 

Micro-Benchmarks. We use FIO [ 17 ] to generate synthetic workloads and allocate a separate

hread for each worker when the workload writes to multiple namespaces or zones. For read work-

oads, we first pre-condition the namespace by performing sequential writes for the entire range

f read I/O. Additionally, we perform a pre-calibration step to determine the die allocations in case

he evaluation requires a die-level collision. 

Ported Applications. We use RocksDB as a real-world ZNS application to evaluate the perfor-

ance of eZNS. We run RocksDB over ZenFS [ 7 ] to enable the ZNS support. As eZNS complies

ith the standard NVMe ZNS specification, no modification is required for the application and

enFS. We initialize the DB instance with 500M entities of 20-byte keys and 1,000-byte values. 
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Fig. 26. B/W comparison between an overdrived and three statically configured zones. 
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Default v-zone Configuration. By default, eZNS creates four namespaces (NS1–4), each of

hich is allocated 32 essential and 32 spare resources. Since each namespace provides a maximum

f 16 active zones, the minimum stripe width for v-zone is 2 with a stripe size of 32 KB. However,

ZNS can overdrive the width up to 16 with a stripe size of 4 KB. For a fair comparison, we prepare

 static logical zone configured with stripe width and size of 4 KB and 16 KB, respectively; hence,

t also accesses full device capability when the application populates enough active logical zones.

oth a v-zone and a static logical zone comprise 16 physical zones. Different configurations are

sed for single-tenant evaluation (single namespace) and the YCSB benchmark (six namespaces),

s specified in Section 5.3 . 

.1 Zone Ballooning 

e demonstrate the efficiency of zone ballooning when handling large writes (i.e., 512 KB I/O with

 queue depth of 1). First, within a namespace, we compare the performance between a v-zone and

 static logical zone, where the number of writers is configured to 4, 8, and 16, respectively. Each

riter submits a write I/O to different zones. Our local overdrive operation can reap more spare

ones and lead to better throughput. As shown in Figure 26 , the v-zone outperforms the static one

y 2.0 × under the 4-writer case as 4 static logical zones enable only 16 physical zones while 4 v-

one overdrive the width to 8 and expand to 32 physical zones. In the 8-writer and 16-writer cases,

-zone reduces the overdrive width accordingly and utilizes the same number of physical zones

32 and 64, respectively) with the static logical zone. 

To evaluate eZNS’s adaptiveness under dynamic workloads, we set up overdriven zones from

ifferent namespaces. The first three namespaces (NS1, NS2, and NS3) run two writers, whereas

he fourth namespace (NS4) runs eight. NS1, NS2, and NS3 stop issuing writes at t = 30 seconds and

esume the writing activity at t = 80 seconds. We measure the throughput and spare zone usage

f four zones for a 100-second profiling window (Figures 27 and 28 ). When the other three zones

ecome idle, the v-zone from NS4 takes up to 3 × more spare zones from other namespaces using

he global overdrive primitive and maxes out its write bandwidth ( ∼2.3 GB/s). It can then quickly

elease the harvest zones when other zones start issuing writes again. 

.2 Zone I/O Fairness 

e evaluate our I/O scheduler in various synthetic congestion scenarios by placing competing

ones in the same physical die group. We compare the performance of all co-located zones when

nabling and disabling our mechanism. The zone ballooning mechanism is turned off for all cases.

e report per-thread bandwidth in Figure 29 . 
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Fig. 27. Performance variation of four namespaces with global overdrive under 100 seconds. 

Fig. 28. The number of used spare zones of four namespaces under 100 seconds. 
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Read-Read Fairness. We run a sequential read of 128 KB I/O size at two types of zones on co-

ocated dies. To equally load the physical dies, we populate more threads for lower-width zones.

or example, a zone with a width of 2 runs four threads on each stripe group, whereas a zone

ith a width 8 has only one thread. As shown in Figure 29 (a), in scenario 1, when disabling our

ongestion control mechanism, Zone A (configured with stripe width 2 and stripe size 32 KB, QD-

) and Zone B (configured with stripe width 8 and stripe size 8 KB, QD-32), even holding the same

ized full stripe, achieve 76 MB/s and 1,287 MB/s, respectively. This is because the zone with the

igher QD dominates on the competing die. Our scheme effectively controls the per-zone window

ize and ensures that each zone submits the same amount of outstanding bytes. Hence, both Zone

 and Zone B sustain 290 MB/s. In scenarios 2 and 3, we change the Zone A stripe configuration to

< stripe width 4, stripe size 16 KB, QD-1 > and < stripe width 8, stripe size 8 KB, QD-1), and observe

imilar behavior when turning off the read congestion logic. In scenario 3, the congestion level on

he die gets lowered as Zone A only submits one 128 KB I/O (which was 4 and 2 in scenarios 1 and

, respectively). Hence, the read latency also becomes below the threshold, and the I/O scheduler

hooses to max out the bandwidth. 

Write-Write Fairness. We carefully create different write congestion scenarios and see how

ur admission control operates. The workload used is a sequential write of 512 KB size. In the first

cenario, we co-locate 16 regular write zones (Zone A, where each has a striping width of 8 with

 KB stripe size and submits write I/Os at 5 ms intervals, sustaining 95 MB/s maximum throughput)

ith a busy writer (Zone B, which has width 2 and 32 KB stripe size, submits I/O without interval
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 29. Efficiency of eZNS on handling read-read, write-write, and read-write congestion. CC, congestion 

control; AC, admission control. 
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elays, achieving 85 MB/s at most). Figure 29 (b) reports the bandwidth utilization of 1 regular zone

Zone A) and the busy writer (Zone B). Our admission control mechanism limits the write issuing

ate of Zone B and gives more room at the write cache to the regular zone (Zone A), leading to

5.7% bandwidth improvement per thread. Next, we set up a highly congested case by changing 16

egular zones to busy writers (scenario 2). Without the admission control, Zone B runs at 64.9 MB/s,

hich is 32.5 MB/s per physical zone or 76.3% of the physical zone bandwidth, whereas Zone A

eceives only 16.4 MB/s per physical zone or 38.4% of the physical zone bandwidth. As described

n Section 4.5.2 , our scheme equally distributes the write bandwidth share across competing zones,

nd Zone B receives 56.8% of the total bandwidth of 2 physical zones, increasing the bandwidth

f Zone A by 7.6%. As a result, it improves the overall bandwidth of the device from 2,160.9 MB/s

o 2,304.3 MB/s, or by 6.6%. The last scenario is a collision-less one at the die level where we

liminate the overlapping region among all write zones by populating active physical zones lesser

han the number of dies (i.e., reducing the number of regular zones to 15). Similarly, when enabling

he admission control, the bandwidth allocated for Zone B slightly decreases ( ∼7.2%) to avoid

ache congestion, and the overall device bandwidth is increased by 24.7% (from 2,403.3 MB/s to

,997.7 MB/s). 

Read-Write Fairness. We examine how our congestion control mechanism coordinates with

he admission control when handling read/write mixed workloads. In this experiment, we set up

hree types of zones: (1) ×16 regular readers (Zone A), where each has a striping width of 2 and

2 KB stripe size, performing 128 KB random read at queue depth 32, across all physical dies; (2) 1

usy writer (Zone B), whose striping width is 2 with 32 KB stripe size; and (3) ×16 regular writers

Zone C), which has a striping width of 8 and 32 KB stripe size each, submitting I/Os under a 5 ms

nterval. Both B and C issue 512 KB large writes. Figure 29 (c) reports their per-thread bandwidth.

hen disabling our scheduler, each reader achieves 199.6 MB/s but writes are jeopardized signifi-

antly, as Zone B and Zone C can only achieve 19.3% and 27.3% of their maximum bandwidth. As

e gradually turn on our mechanisms, the congestion control shrinks the window size such that

ore bandwidth is allocated to the writes. Further, the admission control then equally partitions

andwidth among competing writing zones. As shown in the CC+AC case, zones A, B, and C can

ustain 71.6%, 57.5%, and 70.1% of their maximum bandwidth capacity, respectively. 

.3 Application: RocksDB 

o evaluate eZNS in a real-world scenario, we use RocksDB [ 41 ] over the ZenFS storage backend.

n addition to the built-in utility in the RocksDB db_bench tool, we port YCSB workload generators

 4 ] for the mixed workload evaluation. 

Single-Tenant Performance. First, we run the overwrite profile of the db_bench to evaluate

he write performance of eZNS. Figure 30 demonstrates that eZNS improves the throughput by

6.1% and 84.5% with local and global overdrive, respectively. The ZenFS opens all available zones

egardless of actual usage; hence, our local overdrive has minimal impact, and the stripe width,

, becomes the same as with static zones. However, our I/O scheduler mitigates intra-namespace

nterference, and each zone receives a fair share of the bandwidth, eliminating unnecessary ap-

lication delays due to zone interference. When global overdrive comes in, zones further harness

ore active resources and attain higher bandwidth. 

Next, we evaluate the performance of a single tenant using the readwhilewriting profile of

he db_bench , which runs one writer and multiple readers. This workload profile demonstrates

 read/write mixed scenario. In the case of a single-tenant configuration, eZNS creates a single

amespace on the device and allocates 128 essential and 128 spare resources to it. Since only

wo stripe widths, 8 and 16, are possible in this configuration, eZNS sets the stripe size to 16 KB

or the width of 8 to avoid the namespace running only on large stripe sizes. We compare the
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 



16:32 J. Min et al. 

Fig. 30. Throughput of overwrite workload on a single namespace without other tenants. Ove, overdrive. 

Fig. 31. The readwhilewriting workload on single-tenant configurations. Static has stripe width of 16. S, 4 KB 

stripe; L, 16 KB stripe. 
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erformance of eZNS over two static configurations, both with a stripe width of 16 but with dif-

erent stripe sizes of 4 KB and 16 KB. Since there is only one namespace on the device, eZNS always

verdrives v-zone s to the width of 16, which is identical to the static configurations. Therefore, both

he static namespace and eZNS can exploit all available bandwidth on the device. However, the I/O

cheduler of eZNS helps mitigate interferences between zones and improves overall application

erformance. Figure 31 shows that eZNS improves the p99.9 and p99.99 read latency by 28.7% and

1.3% over the static configurations with a stripe size of 16 KB and 4 KB, respectively. Additionally,

ZNS also improves the throughput by 11.5% and 2.5% with a stripe size of 4 KB and 16 KB. 

Multi-Tenant Performance. Next, we set up instances of db_bench on four namespaces (A, B,

, and D), each with a different workload profile. A and B perform the overwrite profile, whereas C

nd D execute randomread concurrently. We run the benchmark for 1,800 seconds and report the

atency and the throughput. Figure 32 shows that our I/O scheduler significantly reduces p99.9 and

99.99 read (C/D) latency by 71.1% and 20.5%, respectively. In terms of throughput, eZNS improves

rite (A/B) and read (C/D) throughput by 7.5% and 17.7%, respectively. Furthermore, while the read

atency and throughput are improved, the write latency is either maintained at the same level or

ecreased compared to the static configuration because eZNS moves the spare bandwidth from

ead-only namespaces (C/D) to write-heavy ones (A/B) (Figure 33 ). 

Mixed YCSB Workloads with Four Namespaces. YCSB [ 15 ] is widely used to benchmark re-

listic workloads. In our experiments, we run YCSB workload profiles A, B, C, and F on each of the

ix namespaces. We exclude YCSB workload profiles D and E because they increase the number
CM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 32. Latency of db_bench workloads (two overwrite, two randomread) on different namespaces over 

eZNS and static zone. 

Fig. 33. Throughput of db_bench workloads (two overwrite, two randomread) on different namespaces over 

eZNS and static zone. 
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f entities in the DB instance during the benchmark. As YCSB-C (read-only) does not submit any

rite I/Os during the benchmark, eZNS triggers global overdrive and rebalances the bandwidth

o the write-most namespaces (A and F). Figure 34 shows that the I/O scheduler improves the

99.9 read latency of read-intensive workloads (YCSB B and C) and also the read-modify-write

ne (YCSB F) by 79.1%, 80.3%, and 76.8%, respectively. The throughput improvement from global

verdrive is up to 10.9% for the write-most workload A in Figure 35 . 

Mixed YCSB Workloads with Six Namespaces. We also conducted evaluations using all six

orkload profiles of YCSB (A–F) with a configuration involving six namespaces. To support six

amespaces, we reduced the maximum active zones to 11, allocating 22 essentials and 20 spares

or each namespace during the initialization process. The remaining four physical zones are des-

gnated as part of the global spare pool. 

Figures 36 and 37 present the tail latencies and throughput comparisons between eZNS and the

tatic zone configuration. For YCSB A through C and F, our results closely resemble those observed

n the four-namespace scenario. Notably, YCSB A demonstrates the most significant improvement

n throughput, with an increase of 8.6%, whereas the read-heavy workloads (YCSB B, C, and F)

xhibit remarkable reductions in p99.9 read latency, with improvements of up to 77.6%. YCSB D,

 read-intensive profile focusing on the latest data, also showcases notable improvements, with

99.9 latency reduced by 76.9% and a throughput increase of 4.8%. In contrast, YCSB E, which
ACM Trans. Storage, Vol. 20, No. 3, Article 16. Publication date: June 2024. 
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Fig. 34. Read latency of YCSB workloads (A/B/C/F) on different namespaces over eZNS and static zone. 

Fig. 35. Throughput of YCSB workloads (A/B/C/F) on different namespaces over eZNS and static zone. 

Fig. 36. Read latency of YCSB workloads (A/B/C/D/E/F) on different namespaces over eZNS and static zone. 
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epresents a range-scan workload, demonstrates the least improvement among the six workload

rofiles. Although the p99.9 read latency for YCSB E is reduced by 44.3%, its throughput remains

lightly below that of the static zone at 99.0%. In addition, the p99.99 read latency is worse than the

tatic zone configuration. This is primarily due to YCSB E’s higher per-operation cost and increased

andwidth of other tenants. The scan operation of YCSB E generates a large number of read I/Os
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Fig. 37. Throughput of YCSB workloads (A/B/C/D/E/F) on different namespaces over eZNS and static zone. 

Fig. 38. Read latency of YCSB workloads (A/B/C/F) on different namespaces over eZNS and static zone 

running on F2FS. 
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er operation, having more congested I/Os per operation than other workload profiles. At the

ame time, the increased device bandwidth further raises the chance of congestion on accessing

ies. As a result, the worst-case latency could be higher than the static configuration. If we keep

he throughput of tenants same as the static configuration, p99.99 will be dramatically decreased

s well. 

eZNS on a File System (F2FS). To evaluate the performance of eZNS on a general file system,

e replicated the scenario with four namespaces using RocksDB over F2FS [ 30 ] instead of ZenFS,

hile maintaining an identical zone configuration to that of ZenFS. The read-intensive workloads

YCSB B, C, and F) demonstrate improvements in both p99.9 read latencies and throughput, as

llustrated in Figures 38 and 39 . 

However, YCSB A does not benefit from eZNS and even performs worse than the static zone

onfiguration, achieving a throughput of only 95.3%. This can be attributed to the lower zone

tilization of F2FS. We observed that F2FS opens up to three zones but allocates only one zone

or writing user data, resulting in the lower write bandwidth for both eZNS and the static zone.

dditionally, since we have tuned the maximum active zones to 16 and the striping size cannot

e sized smaller than 4 KB, eZNS cannot increase the striping width beyond 8. Consequently, the

lobal overdrive mechanism does not operate effectively in this scenario, forcing eZNS to make
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Fig. 39. Throughput of YCSB workloads (A/B/C/F) on different namespaces over eZNS and static zone run- 

ning on F2FS. 

Fig. 40. Comparison of average read latency for 4 KB I/Os at various depths between the host-managed 

zone access and eZNS. 
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 tradeoff, sacrificing a small amount of throughput from YCSB A to ensure a fair distribution of

ead bandwidth across all namespaces. 

.4 Overhead Analysis 

nd-to-End Read Latency Overhead. Since eZNS serves as an orchestration layer between the

hysical ZNS device and the NVMe-over-Fabrics target, there may be some overhead when the

/O load is very low. To measure this overhead, we conducted a quantitative analysis using 4 KB

andom read I/Os and compared it with host-managed zone access, where the host directly accesses

he physical device without eZNS. Figure 40 demonstrates that eZNS does not add a noticeable

atency overhead for I/O depths up to 8. As the I/O depth goes over 16, up to 14.0% overhead is

bserved due to the I/O scheduler delaying the I/O submission. However, the scheduler provides

ignificant advantages in real-world scenarios, as shown in previous experiments. 

Memory Footprint. eZNS relies on in-memory data structures for managing v-zone metadata,

ncluding the logical-to-physical mapping and scheduling statistics. Additionally, it maintains a

opy of the physical zone information to reduce unnecessary queries to the device, enabling faster

one allocation and deallocation. In our current implementation, the size of v-zone metadata is less

han 1 KB, and the size of physical zone information is smaller than 64 bytes. For our testbed SSD
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ith four namespaces, each with 1TB of capacity, v-zone metadata and physical zone information

equire 2 MB and 2.5 MB of memory, respectively. Compared to the memory requirements of the

age mapping in conventional SSDs, the memory usage of eZNS is negligible. 

 RELATED WORK 

arly ZNS Exploration. Researchers have made initial efforts to understand the ZNS interface

nd integrate it into the host storage stack. Stavrinos et al. [ 51 ] argue for a shift in research to

he zone interface and discuss future directions (e.g., applying application-level information for

one management and I/O scheduling). Shin et al. [ 48 ] develop a performance analysis tool for a

NS SSD and profile its parallelism, isolation, and predictability properties. Compared with our

tudy, they did not investigate the underlying device’s internal mechanisms when realizing the

NS interface and thereby are unable to correlate the observed performance with the ZNS SSD

haracteristics. ZNS+ [ 18 ] enhances the existing interface with two new architectural primitives

o optimize LFS file systems. With such support, the authors then propose copy-back-aware

lock allocation and hybrid segment recycling techniques. Bae et al. [ 3 ] prioritize I/O requests for

ess-congested zones using an interference map, whereas updates incur significant overheads. Al-

hough revising the ZNS interface and exposing the physical allocation of zones could potentially

liminate this overhead, it may not be feasible for existing devices due to vendors’ resistance

o disclosing internal architecture and policies. eZNS uses a delay to determine congestion

nd does not require an allocation map. Furthermore, eZNS addresses such as read and write

ifferences, zone striping, and bandwidth provisioning issues that were not discussed in their

ork. Im et al. [ 20 ] improved ZenFS on small-zone SSDs by introducing read/write parallelism

ith a multi-threaded I/O engine and lifetime-based zone management at the application level.

owever, it requires adjusting the RocksDB parameters to match the device capability instead of

he workload-optimized parameters. This can increase the complexity of parameter configuration,

esulting in sub-optimal settings for the workload. eZNS maximizes parallelism within the thin

ayer, regardless of the underlying device and the application profile. It exploits the device’s

arallel I/O processing capability that can be executed on a single thread. 

Addressing Inefficiencies of Conventional SSDs. Early SSD research [ 2 , 12 , 19 , 36 ] focused

n internal parallelism and tradeoffs between concurrency, locality, bandwidth, capacity, perfor-

ance, and lifetime. Modern SSDs handle random write patterns with page mapping FTL, write-

ache, and superblock concepts [ 56 ] that group blocks together. It benefits from high parallelism

hat transforms writes into sequential NAND programming. However, multi-tenancy workloads

ause interference and a high WAF. ZNS SSDs eliminate GC and fix the WAF to 1 but require

areful parallelism management across zones to avoid degraded device utilization. In addition,

uture QLC-based ZNS SSDs may have fewer active zones due to a multi-pass programming algo-

ithm [ 24 ]. eZNS addresses these challenges by adjusting the parallelism of each logical zone based

n the number of namespace flows, providing fully dynamic parallelism and maximizing device

apability while presenting an identical logical view to applications. 

IODA [ 31 ] is an I/O deterministic flash array that uses the I/O determinism feature and exploits

ata redundancy for a strong latency predictability contract. SSDs can fail an I/O to allow pre-

ictable I/Os through proactive data reconstruction. We target the ZNS SSD, where there are no

andom I/Os, and GCs are user controlled. This opens up a different design space. Although tech-

iques addressing GC-related interference are not beneficial to GC-free ZNS SSDs, others such as

ndurance Group (EG) and NVM Set can be useful to ensure physically isolated zone alloca-

ion. eZNS can take advantage of the geometry hints via EG (or even finer-grained NVM Sets).

nfortunately, there is no currently available SSD that supports both ZNS and EG, but it will be

n interesting direction for future work. 
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OC SSDs. These drives have no mapping layer in the controller and directly expose a set of

hysically contiguous blocks to applications, and leave the data placement/wear-leveling respon-

ibilities to the host. Researchers have built several domain-specific solutions using them. For ex-

mple, SDF [ 35 ] employs a hardware-software co-designed approach that exposes flash channel

etails and delegates I/O control plane and data plane tasks to host applications. LOCS [ 55 ] fur-

her improves the throughput of an LSM-tree-based KV store by optimizing the scheduling and

ispatching policies, considering the characteristics of access patterns of the LevelDB. RAIL [ 32 ]

esigns a horizontal hot-cold separation mechanism and divides dies into two groups, where user

nd GC writes are scheduled to different dies, and the hot/cold ratio is dynamically adjusted based

n runtime monitoring. By having full control over the device, one can implement a determinis-

ic v-zone using eZNS. Despite the potential architecture, it imposes too many responsibilities on

he software handling tasks that are offloadable to the device with no cost, such as wear leveling

nd physical zone-to-die mapping. Another challenge arises when the system consists of hetero-

eneous devices resulting in the overhead of managing different hardware architectures (NAND

hip capacity, channel/die configuration, etc.). 

eZNS as a Firmware. One may implement eZNS solely in the SSD using the controller and

rmware. This approach can exploit internal knowledge such as NAND specification, channel/die

tructure, and queue length on a die. Thus, it may control the interference better and outperform

he software-based implementation. However, completing eZNS in one device is not future proof,

iven the disaggregated systems architecture in data centers. The software-based solution can

uild an eZNS-based system spanning multiple devices enabling elastic capacity scaling, load-

ware allocation, high availability, and more. At the opposite end is the OC SSD. 

ZNS SSD Architecture. We believe that the ZNS interface is an appropriate compromise be-

ween hardware and software ends. However, as one might expect, there certainly are hardware

etails and architectural assurances that improve system performance and predictability without

ndermining ZNS’s promising abstractions. For example, exposing channel/die structure as the

umber of parallel units further optimizes the active zone management, isolating per-die write

ache eliminates inter-zone write interference, and so on. These are the issues to be considered as

e evolve the ZNS interface. 

Filesystems: BtrFS and F2FS. BtrFS [ 42 ] and F2FS [ 30 ] are the filesystems that currently sup-

ort the ZNS SSD. However, they are still in a preliminary stage and lack the features that are

eeded to max out the ZNS SSD capability. For example, they write user data to only one zone at

 time, limiting the bandwidth to a single zone, leading to sub-optimal performance. 

 CONCLUSION 

his article presented an in-depth study on understanding the characteristics of a commodity ZNS

SD. Then, we proposed eZNS, realizing an elastic zoned view via v-zone , providing a flexible zone

caling interface transparent to the application that maxes out the device capability, and ensuring

 fair bandwidth share between zones. We demonstrated significant performance and fairness

mprovements using eZNS over various scenarios. 
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