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Improving models of species’ distributions is essential
for conservation, especially in light of global change.
Species distribution models (SDMs) often rely
on mean environmental conditions, yet species
distributions are also a function of environmental
heterogeneity and filtering acting at multiple spatial
scales. Geodiversity, which we define as the variation
of abiotic features and processes of Earth’s entire
geosphere (inclusive of climate), has potential to
improve SDMs and conservation assessments,
as they capture multiple abiotic dimensions of
species niches, however they have not been
sufficiently tested in SDMs. We tested a range of
geodiversity variables computed at varying scales
using climate and elevation data. We compared
predictive performance of MaxEnt SDMs generated
using CHELSA bioclimatic variables to those also
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including geodiversity variables for 31 mammalian species in Colombia. Results show the
spatial grain of geodiversity variables affects SDM performance. Some variables consistently
exhibited an increasing or decreasing trend in variable importance with spatial grain, showing
slight scale-dependence and indicating that some geodiversity variables are more relevant
at particular scales for some species. Incorporating geodiversity variables into SDMs, and
doing so at the appropriate spatial scales, enhances the ability to model species-environment
relationships, thereby contributing to the conservation and management of biodiversity.

This article is part of the Theo Murphy meeting issue ‘Geodiversity for science and society’.

1. Introduction

In light of the unprecedented global changes threatening biodiversity, there is an increasing need
for effective tools and strategies to aid in the spatial prioritization of conservation efforts. One
proposed strategy is to focus on ‘geodiversity’, which has a range of definitions [1,2] but for
which we will define here as the diversity of abiotic features and processes of Earth’s entire
geosphere (including the lithosphere, atmosphere, hydrosphere and cryosphere) and thereby is
inclusive of climate [1,3-5]. This broader interpretation of geodiversity encompasses the diverse
aspects of the Earth’s geosphere, which is closely tied to crucial factors influencing biodiversity,
such as energy, water and nutrients, and captures multiple abiotic dimensions of species niches
[5]. Geodiverse areas are expected to harbour higher levels of biodiversity because they provide
more niche opportunities than areas with lower geodiversity [2,6,7]. This relationship is thought
to influence patterns of biodiversity and species distributions due to the varied landscape and
associated abiotic and biotic conditions which can increase the size of available niche space
[8]. Geodiverse areas, which harbour a diversity of abiotic and biotic conditions, are likely to
serve as refugia for species, and conservationists have proposed focusing on them as a means
to protect biodiversity in a changing climate [9-12]. Existing research has primarily focused on
quantifying the relationship between geodiversity and biodiversity, particularly species richness
[3,6,13], yet the relationship between geodiversity—measured as abiotic spatial heterogeneity
within a site—and individual species distributions remains largely unexplored. Given that a
majority of conservation decisions still focus on individual species [14,15], and that species
distribution models (SDM) are widely regarded as a useful and often key approach for assessing
extinction risk and setting spatial conservation priorities [2,16], there is a need to understand how
geodiversity may influence species distributions and a need to assess their utility within SDMs.

Understanding the complex interplay between measures of geodiversity and biodiversity
as well as their spatial scaling relationships is essential to develop effective conservation
strategies, particularly in regions with high levels of topographic complexity [3]. Geodiversity
plays a crucial role in determining the physical boundaries of species’ ranges by influencing
the physiological constraints imposed by species’ tolerances towards environmental conditions.
Distributional limits can be further influenced by structural barriers to dispersal that might arise
from topographic complexity, and the arrangement of habitat patches which can either facilitate
or impede biotic interactions among species, as noted by Urban et al. [17]. Further, the effects of
environmental heterogeneity on species distributions will vary depending on the scale at which
a species responds to the environment [18]. Further, this scale often differs among species or
their associated functional groups (i.e. ecological groupings of species sharing traits and life
strategies; [19]).

The occurrence of a species is intricately linked to its realized niche, which emerges from
environmental filtering operating across multiple scales beyond the local occurrence point [20,21].
This filtering process, which broadly determines the occurrence of species, involves a range
of factors, including dispersal limitations, habitat configuration, climatic variations and biotic
interactions. For example, the presence of a river, a local dispersal barrier, might deter a small
primate population from crossing to suitable habitat on the other side less than 20 m away, while
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variation in climate might be more gradual and prevent the primate species as a whole from
having a range that extends across vastly different temperature or precipitation zones. These
combined biotic and abiotic processes play a fundamental role in shaping species distributions
and offer valuable insights into the intricate dynamics governing species occurrence [22,23].

The most common approach to understanding and predicting species-environment
relationships is SDM [22]. Yet typically, SDMs only incorporate environmental variables such
as bioclimatic variables (variables that summarize annual, seasonal and monthly trends in
temperature and precipitation), at the local pixel scale, meaning they reflect average values
only at the scale of the pixel. In a typical SDM, single pixel environmental values are
intersected with a species” occurrence point. Reliance on this local scale relationship discounts the
broader contextual environmental information of areas surrounding occurrence points. To better
incorporate environmental filtering and associated broader scales of environmental conditions
surrounding a species” occurrence point, SDMs could also include environmental heterogeneity
in areas surrounding the occurrence points, therefore assessing variability of the neighbourhood
around each focal pixel. Without including this broader environmental heterogeneity, SDMs
are limited to reflecting the local species-habitat relationships and are therefore less complete
explanations and predictions of species distributions.

Species-environment relationships can also be highly scale-dependent, with the strength and
direction of the interactions between biotic and abiotic factors varying across different spatial
scales [3,6,13,24]. There are numerous scale-dependent relationships between species and their
environmental drivers [25,26]. For example, the distribution of species is determined by a
combination of factors, including climate, which has likely influenced occurrence at broad spatial
scales, as noted by Blach-Overgaard et al. [27] and habitat factors, such as availability and
fragmentation, at more local spatial scales [28,29]. Therefore, it is essential to investigate scale-
dependency in species-geodiversity relationships. Incorporating geodiversity in terms of spatial
heterogeneity or variability into SDMs and assessing scale dependency has potential to improve
our understanding of the factors that govern species distributions and may help refine resulting
distribution maps. This has important implications for conservation as generating distribution
maps are often a first step for quantifying metrics used to assess extinction risk (e.g. area of
occupancy and extent of occurrence for the International Union of the Conservation of Nature;
[16]), and for determining potential areas for future sampling and priority areas for conservation.

We tested the utility of incorporating geodiversity variables computed at varying spatial
scales into SDMs. These geodiversity variables capture the spatial heterogeneity within a
defined neighbourhood around species occurrences and might offer insights into the underlying
processes that either facilitate or hinder species presence. Our approach addresses the need
to incorporate environmental filtering at broader scales surrounding species occurrence points,
and scale-dependency in species-environment relationships. As geodiversity variables reflect the
availability of microclimates or landscape variability, they hold promise for improving SDMs and
providing a more comprehensive understanding of species-environment relationships [3,13,30].

While it has been established that environmental heterogeneity can influence species
distributions and diversity patterns at multiple spatial scales, it is also possible that species
traits might be mediating these patterns. For instance, each species possesses unique functional
traits (any traits that allow species to survive and reproduce in a given environment; [31])
and evolutionary histories, resulting in different sensitivities to and preferences for specific
environmental conditions [32]. Most research aiming to understand the influence of functional
traits on species distributions, however, has focused on plants [32-35] or aquatic animals
[36,37], limiting our generalized understanding of these dynamics more broadly. Ultimately,
understanding the complex relationship between geodiversity and species functional traits, such
as body mass (e.g. relationship with trophic level, dispersal ability, and home range size) and diet
preference (e.g. relationship with trophic level and habitat use) [38], can offer valuable insights
into the underlying ecological processes that influence species distributions. While there is limited
consensus about appropriate scales and important predictors for species belonging to specific
functional groups (i.e. groups of species sharing similar ecological characteristics and roles in the
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environment), understanding the scaling relationships between geodiversity and species traits
can help to identify potential predictors and scales that are relevant for specific groups of species.
To address this need, we assessed how traits influence the species-environment relationships with
scale-dependent geodiversity variables.

Recent advances in satellite remote sensing and climate reanalysis products, like MERRAclim
[39] and CHELSA bioclimatic variables [40], as well as methods to measure spatial heterogeneity
offer opportunities to improve the performance of SDMs and the conservation assessments
derived from their outputs. For example, gradient surface metrics (e.g. average roughness,
root mean square height, surface ketosis etc.) can capture spatial heterogeneity at varying
spatial scales for any raster dataset (e.g. through the geodiv R package; [41]) and these rasters
can be incorporated into SDMs. These measures of geodiversity now enable us to capture
factors important for species distributions at finer resolutions, as demonstrated by some studies
[24,30]. Consequently, these metrics have important implications for understanding both species
distributions and the overall patterns of biodiversity [1,24]. Using climate reanalysis and remotely
sensed products in combination with gradient surface metrics may improve the performance of
SDMs.

Here, we examined the influence of scale-dependent geodiversity variables on the
performance of SDMs and evaluated the ability of these variables to explain species-environment
relationships for mammals in the Northern Andes—a region characterized by high topographic
and climatic heterogeneity—primarily in Colombia, one of the world’s most biodiverse countries.
We compared the performance of MaxEnt SDMs generated using CHELSA bioclimatic variables
only, to those additionally including geodiversity variables quantified at multiple scales. We
aimed to determine: (1) whether scale-dependent geodiversity improves understanding of
species-environment relationships and SDM performance, (2) if there are scales at which
geodiversity consistently improves model performance or species in different functional groups
(i.e. species exhibiting similar body mass and dietary preferences) and (3) whether the species-
geodiversity relationship differs by biogeographic region.

We expected that:

1. Incorporating geodiversity variables computed at varying spatial scales surrounding
species occurrence points in SDMs will improve model predictions as well as our
understanding of species-environment relationships, in line with the principles of
environmental filtering theory [20,21]. This theory suggests that species distributions
are shaped by a filtering process involving multiple abiotic and biotic factors (e.g.
dispersal barriers, habitat configuration, climatic variation, competitors etc.; [22,23]). By
including geodiversity variables in SDMs, we aim to capture the spatial heterogeneity
associated with many of these filtering processes and gain a deeper understanding of
the complex dynamics that govern species occurrence. Further, the relationship between
geodiversity and species-environment relationships is likely to exhibit scale-dependency
[3,6,13].

2. The scales at which geodiversity best explains species distributions will differ among
functional groups. Considering that functional traits are closely tied to how species
perceive and interact with their environment, we anticipate that the effects of geodiversity
will vary depending on species” specific functional characteristics, such as body mass
and feeding type [31]. Smaller mammals may show stronger associations with fine-
scale geodiversity, while larger mammals may respond more to geodiversity at coarser
scales, which is a reflection of their dispersal capabilities [42]. In terms of feeding habits,
fruit/nectar specialists and folivores may be more sensitive to fine scale geodiversity
variations as their home ranges are typically smaller, which for folivores is due to
the energetic costs of a leaf-based diet [43,44]. By contrast, omnivorous or frugivorous
mammals, which likely have to ‘hunt’ for food, may exhibit a more flexible response
to geodiversity at both fine and coarse scales, as they can adapt to a wider range of
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available resources and their home ranges are typically larger than those of folivores
[42,43].

3. The relationship between species and geodiversity will vary across different
biogeographic regions given the differing levels of heterogeneity across the Northern
Andes [45]. The unique environmental conditions, habitat types, and ecological dynamics
of each region are likely to shape the species-geodiversity relationship differently and we
expect geodiversity to be more important for species in ecoregions with high topographic
complexity.

2. Methods
(a) Study region

Colombia is in the northwest corner of South America. With only 0.77% of the planet’s land
cover and approximately 10% of the world’s biota, Colombia is recognized as one of the world’s
megadiverse countries. This diversity stems from its unique geographical location, providing it
with increased sunlight exposure year-round compared to the southern regions of South America
as well as its diverse geomorphology, which leads to multiple ecosystem types [45]. Additionally,
it serves as a crucial bridge between South and Central America, facilitating the exchange and
intermingling of diverse species [45]. Because of all these characteristics, Colombia offers a unique
opportunity to study the influence of geodiversity on the distribution of species.

Here, we focus on five primary biogeographic regions which represent distinct ecological
zones with varied topography and climatic conditions where most of the study species are
distributed (figure 1). The Andean region, located in the central and western part of the country,
features the Andes Mountain range with elevations 1000m above sea level ([46]; referred
to as Paramo). By contrast, the Chocé-Darién region encompasses the Pacific hyper-humid
coastal and alluvial plains, while the Sabana region in the east experiences seasonal flooding
and includes the vast Llanos Orientales plain extending into Venezuela [47]. The Amazonian
region covers the southeastern part of Colombia, mainly comprising the Amazon rainforest
([46]; referred to as Imeri), and the Magdalena region represents a transitional zone between
the central, eastern and western Pacific Andean regions [46]. These diverse habitats support a
high level of biodiversity and endemism [48,49], making Colombia a priority for biodiversity
conservation and an ideal study site for evaluating the role of geodiversity in shaping species
distributions.

(b) Study species and occurrence records

Our study includes a diverse set of mammal species (encompassing 17 genera) with distributional
patterns spanning most of the biogeographic regions mentioned above (table 1). We obtained
validated occurrence data for 29 Colombian species through BioModelos [52], an innovative
digital tool that facilitates communication and collaboration among biodiversity experts in
the development of SDMs. In addition, we also obtained expert maps from BioModelos that
were generated using the same set of occurrence records. These maps represent the most
up-to-date version of species distribution ranges in Colombia. These 29 species included all
primates with over 15 occurrence records (following post-spatial thinning, as described in the
Modelling section), as well as the Andean bear (Tremarctos ornatus) [53]. To complement our
dataset, we referenced recent publications [50,54-56] to obtain occurrence data for two additional
species, namely the olinguito (Bassaricyon neblina) and the western mountain coati (Nasuella
olivacea), as their expert maps from BioModelos were still awaiting validation. By using this
subset of mammal species, which encompasses a diverse range of environmental roles and
requirements, and by incorporating validated occurrence data and expert-made range maps,
our study offers a comprehensive assessment of the impact of our geodiversity modelling
approach.
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Figure 1. Major biogeographic regions within Colombia based on regions defined in [46]. Fine-scale details have been
simplified for clarity, while still depicting the main biogeographic regions. Region names denoted with (*) have been modified
from the original publication to ensure easier recognition and understanding.

(c) Environmental predictors
(i) Climate and topography data

Of the 19 bioclimatic variables from CHELSA [40], which summarize annual, seasonal and
monthly trends of temperature and precipitation data, we selected four: bio5 (maximum
temperature of the warmest month), bio6 (minimum temperature of the coldest month), biol3
(precipitation of the wettest month) and bio14 (precipitation of the driest month), which represent
temperature and precipitation extremes that may be limiting to tropical species, particularly those
in montane regions [57]. Additionally, we included the MODIS-derived mean annual cloud cover
product [58], which has been demonstrated to enhance SDMs for species in the Northern Andes
[58]. We also included the Shuttle Radar Topography Mission (SRTM; [59]) digital elevation model
(SRTM30) to capture fine-scale variations in terrain known to influence species distributions
[60-62]. All variables were used at a spatial resolution of 30 arcseconds (approx. 1 km?).

(ii) Geodiversity data

We used the ‘geodiv” package (v. 1.0.5; [41]) in R (v. 4.2.3; [63]) to calculate the root mean
square roughness (SQ) of the areas surrounding each pixel for the same variables defined above
(variables denoted with *_sq), and those neighbourhood calculations became the value of the
focal pixel. These neighbourhood calculations were conducted over varying distances, which we
will henceforth refer to as spatial grains, however, it is important to note that the resolution
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Table 1. Functional groups for study species organized by biogeographic region. Species were grouped by diet and quartiles
of body mass [50,51] as well as biogeographic region [46]. For diet, frugivores were defined as species consuming >60%
fruit, while fruitnect were species whose diet consisted of >60% fruit and nectar combined. Subgroups were created for
the Amazonian region due to its breadth and differences in species distributions in that area. Amazonian-1 are restricted
distributions near the foothills of the Cordillera Oriental. Amazonian-2 are large distributions with a significant portion of the
range at the foothills of the Cordillera Oriental. Amazonian-mix are large distributions combining Amazonian, Andean, Sabana
and Magdalena, and Amazonian are distributions primarily in the Amazon.

species diet group body mass (g) body mass quartile biogeographic group

Alouatta palliata folivore 7274.95 04 Choco-Darién
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of each geodiversity variable remained 30 arcseconds. Spatial grains of these neighbourhood
calculations ranged from 3 km, which characterizes the spatial scale at which most species in
this study experience their environment, to 33 km, which is large enough to likely encompass (at
least seasonally) the home range of the species with the largest dispersal capacity in this study,
the Andean bear (Tremarctos ornatus; [64]). By assessing these geodiversity variables related to
climate and topography within Colombia, an inherently geodiverse country, we gain insights
into the various components of the Earth’s geosphere that influence species distributions in this
region. Specifically, the spatial variation in topography and climate plays a pivotal role for many
species in the selection of suitable areas within their range [22,23].

(d) Analysis
(i) Modelling

All modelling steps were performed in R (v. 4.2.3; [63]). Specifically, we used MaxEnt, a machine
learning approach, to generate our SDMs, as it is a widely used and effective approach,
particularly with presence-only data [65]. Following a similar methodology from Bailey et al.
[24], we opted for a machine learning approach, given the intricate and relatively unknown
relationships between species distributions and geodiversity variables in our study. Compared
to other modelling methods, MaxEnt has numerous advantages, including its ability to handle
complex predictor-species relationships, and its insensitivity to collinearity among variables
[66-68] owing to a regularization parameter that minimizes the influence of correlated variables
by shrinking regression coefficients [66].

To set up and pre-process data before running SDMs, we used the R package wallace (v.
2022.09.09.1; [69]), which is a GUlI-based ecological modelling software that allows for the
building, evaluating and visualizing of SDMs in a guided and stepwise fashion. We used the
base code for Wallace and their stepwise workflow for much of the data pre-processing pipeline.
However, to increase computational efficiency and mitigate sampling bias, we spatially thinned
occurrence records prior to using Wallace (usually a step within Wallace). To remove potential
sampling biases and artefactual spatial autocorrelation, we used the spThin package [70] to thin
occurrence records at a 10km distance. This distance was deemed to be appropriate given the
steep elevational gradients and overall heterogeneity of the region [54,71,72]. Next, as part of the
Wallace pipeline, we created species-specific study regions for each species by generating 1° point
buffers around all occurrence records to create a single unified polygon. These species-specific
regions were used as the environmental background for randomly sampling 10000 background
points. Finally, we built and evaluated models using the R package ENMeval (v. 2.0.4; [73]).

To train and test our models, we used two distinct methods. For species with 25 or fewer
records, we implemented the ‘jackknife” approach, which involves leaving each occurrence record
out of the model once and using it for testing, as a special case of k-1 cross-validation [74]. Model
statistics were then averaged across all iterations. For species with more than 25 records, we used
standard k-1 cross-validation. To ensure consistency, we parameterized all models with the same
regularization multiplier and feature class of ‘LQ1’, which strikes a balance between capturing
the complexity of the response to environmental conditions and avoiding excessive complexity.
While we acknowledge the importance of species-specific tuning to obtain optimal SDMs [75],
tuning would render comparisons across model sets impractical since each set could potentially
be parameterized differently for the same species. If we had performed species-specific tuning,
differences between models would not be attributed to the inclusion of geodiversity variables,
but rather to differences in regularization and feature class selections.

(i) Model sets

Analyses were performed for two model sets:
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1. Local climate and topography predictors: this set included six variables (described in
the Climate and Topography data section) representing local climate and topographic
conditions across the study area.

2. Local climate and topography predictors (6)+ geodiversity (SQ of neighbourhood)
versions of the same predictors (set 1): In this set, geodiversity variables were
incorporated by calculating root mean square height (SQ) versions of the local climate
and topography predictors (same as set 1). The variability around each local pixel was
calculated at different spatial grains, specifically at 3km, 9 km, 15km, 21 km, 27 km and
33 km.

Each species had a total of seven model runs, one local level run, and six runs with geodiversity
predictors additionally incorporated at each spatial grain. Similar to Schnase et al. [76], we
performed three replicates of each run per species and averaged all modelling outputs to
minimize any random variation in performance statistics and permutation importance values.

(iii) Model evaluation

The continuous Boyce index (CBI; [77]) and area under the receiver operating characteristic
curve (AUC) are commonly used to evaluate the performance of SDMs. That being said, AUC
has been criticized for its insensitivity to rare species with low occurrence records, leading to
inflated scores in such cases [78,79]. CBI measures the agreement between model predictions
and a random distribution of observed presences across prediction gradients, ranging from
—1 (perfect disagreement) to 1 (perfect agreement), with values above 0 indicating better-than-
random performance [77]. It is designed specifically for presence-only data, is not influenced by
prevalence, and does not rely on a presence/absence threshold and therefore we chose to use it
for this study. To investigate the influence of different spatial grains on model performance, we
averaged the performance across all species for each spatial grain. We assessed the significance of
performance changes across spatial grains using the Mann-Whitney U test.

(iv) Grouping analyses

Additionally, we categorized species into groups (trait-based and biogeographic) to assess
whether the species-geodiversity relationships varied by traits and biogeographic region. For
traits, we used quantiles of mass and feeding type (assigned based on % prevalence in diet; [51]),
aiming to identify scales at which model performance was higher (table 1). For diet, frugivores
were defined as species consuming greater than or equal to 60% fruit, while the feeding group
‘fruitnect’” were species whose diet consisted of greater than or equal to 60% fruit and nectar
combined. Further, we grouped species by biogeographic region. Subgroups were created for
the Amazonian region due to its breadth and differences in species distributions in that area.
Amazonian-1 are restricted distributions near the foothills of the Cordillera Oriental. Amazonian-
2 are large distributions with a significant portion of the range at the foothills of the Cordillera
Oriental. Amazonian-mix are large distributions combining Amazonian, Andean, Sabana and
Magdalena, and Amazonian are distributions primarily in the Amazon.

(v) Post-processing of SDMs and model comparisons

To generate binary suitability maps for each species, we thresholded both the model without
geodiversity (henceforth termed ‘non-geodiversity models’) and the optimal geodiversity model
(i.e. the model at the spatial grain with the highest CBI for a species) based on either the minimum
training presence (MTP) or the 10% omission rate, depending on the number of occurrences
(MTP for less than or equal to 25 and 10% omission for greater than 25). Next, we used known
information about species ranges and structural barriers as provided by the International Union
for Conservation of Nature (IUCN; [16]) as well as obvious structural boundaries within the
expert maps, to create range boundary polygons and exclude areas where the species was unlikely

[S00E702 28 1 205 3 Supi] 14 ®1yeuinol/bio'Buysigndaposefor



Downloaded from https://royalsocietypublishing.org/ on 23 July 2024

average performance: CBI

1.0 1
*
® (o ®
< 0.8 -
3
g
8
ES
S
oa)
3 .
=
g
E .
© 0.6 & ™ .
.
. .
L ]
0.4 -

1 3 9 15 21 27 33
spatial grain

Figure 2. The average continuous Boyce index (CBI), represented by a diamond, reflects the mean value, while the upper
and lower whiskers depict the range of observations within 1.5 times the interquartile range (IQR) above the upper hinge or
below the lower hinge. This provides an overview of the variations in model performance across different spatial grains and
highlights the impact of incorporating geodiversity variables on the CBI. At every spatial grain greater than 1km, all models
with geodiversity variables increased in CBI when compared with the 1km non-geodiversity models (Mann—Whitney U tests,
p < 0.05).

to disperse. These post-processed models were then visually inspected, and comparisons were
made between expert maps (available in BioModelos and based on MaxEnt models and expert
opinion or land cover types), non-geodiversity models and optimal geodiversity models. We
evaluated gain and loss in predicted areas, omission rates and Schoener’s D, a measure of spatial
overlap, for each model set to understand differences in all predictions.

3. Results

In our study, the incorporation of geodiversity variables improved the average predictive
performance of the SDMs. On average, the CBI of the non-geodiversity models was 0.80
and the CBI of geodiversity models was 0.93. Specifically, we observed an average increase
of 17.2% in the CBI across the optimal models for all species when geodiversity variables
were included. When compared with non-geodiversity models at 1km (local), all other models
improved in performance across all evaluated spatial grains (figure 2; Mann-Whitney U tests,
p < 0.05). However, we identified an interesting exception for the western mountain coati (Nasuella
olivacea), where model performance was found to be higher in the model without geodiversity
variables compared to the ‘optimal’ geodiversity model (table 2). Additionally, when comparing
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Table 2. Percent increase in continuous Boyce index (CBI) model performance with inclusion of geodiversity variables. Percent
increase in model performance achieved by incorporating geodiversity variables compared to models without geodiversity
variables. The optimal geodiversity grain where model performance was highest for each species and whether this grain is
idiosyncratic when considering optimal grains for specific traits (figure 4) is also noted. Species denoted with (*) indicate those
for which geodiversity variables were ranked within the top three in terms of permutation importance.

optimal optimal grain

(BI: non- (BI: (BI: % geodiversity idiosyncratic?
species geodiversity geodiversity increase grain (km?) (yes/no)
Alouatta palliata* 0.786667 0.891333 13.30508 3 no
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Figure 3. Permutation importance values (i.e. impact or contribution of individual environmental variables in a MaxEnt) across
geodiversity variables calculated at different spatial grains. Blue bars (left) indicate non-geodiversity variables and red (right)
indicate geodiversity variables. The shape of each bar represents the density distribution of the permutation importance values
for each predictor across all species.

the average model performance across all spatial grains, we found marginal superiority for
finer grains, particularly 3km and 9km. However, there was no difference in average model
performance among these spatial grains.

When assessing the permutation importance of variables, clear differences were observed
between non-geodiversity and geodiversity variables. Non-geodiversity variables had higher
average permutation importance (11.57%) compared to geodiversity variables (5.57%) across
all SDMs (figure 3). Among the geodiversity variables, several variables stood out with higher
average permutation importance (greater than 5%), including srtm_sq (7.48%), bio6_sq (6.19%),
biol3sq (5.39%) and bio5_sq (5.15%) (electronic supplementary material, table S2). Notably, the
geodiversity variable srtm_sq exhibited consistently higher average permutation importance than
the non-geodiversity variable biol4, indicating that there may be instances where geodiversity
variables are more informative than non-geodiversity variables.

We found some evidence for scale-dependency in the importance of the explanatory variables.
Non-geodiversity variables generally showed a decreasing trend in importance as the spatial
grain increased, except for biol4 and srtm, indicating their diminishing influence as geodiversity
was incorporated at coarser scales (figure 3; electronic supplementary material, table S2). Further,
certain geodiversity variables had a modest yet noticeable increase in importance with increasing
spatial scale, such as bio5_sq (1.84%), bio6_sq (3.73%), bio13_sq (3.75%) and srtm_sq (1.55%),
whereas the importance of cloud_sq decreased (3.1%) as the spatial scale increased (figure 3;
electronic supplementary material, table S2). The frequency at which certain geodiversity
variables were incorporated into models also varied with spatial scale. Bio5_sq and biol3_sq
were more frequently included in models at coarser scales, while bio6_sq and cloud_sq were
more frequently incorporated at finer scales. In general, the variables srtm and srtm_sq were
frequently included in the top models across scales, indicating their robust influence in capturing
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species-environment relationships. Overall, geodiversity variables ranked within the top three
variables in terms of permutation importance for the optimal geodiversity models of 23 species
(figure 3 and table 2), with an average permutation importance of 19.7%.

The responses of individual species to geodiversity variables at different spatial scales were
highly variable, highlighting the complexity of species-environment relationships. Notably,
models of species such as the common woolly monkey (Lagothrix lagotricha), and the Andean bear
(Tremarctos ornatus) had substantial increases in the importance of geodiversity variables with
scale. For instance, in L. lagotricha models, the permutation importance of bio6_sq increased from
0% at 3km to 19.97% at 33 km—the spatial grain that resulted in the highest model performance
for this species. Similarly, as the spatial scale increased from 3 km to 33 km for T. ornatus models,
the permutation importance of srtm_sq increased from 3.49% to 8.4%, and for bio6_sq, it increased
from 4.5% to 21.35%. Interestingly, for T. ornatus, the model with the highest performance was at
3 km spatial grain. While scale dependence was evident for certain variables, the magnitude and
direction of the effects varied considerably by species.

We conducted additional analyses to evaluate the model performance of species belonging
to specific functional groups, providing valuable insights into their relationships with the
environment. These functional groups were defined based on quartiles of mass and diet
preference. Our results revealed that spatial grain had varying impacts on model performance
within these functional groups. Specifically, when grouping species by mass, we observed that
differences in model performance across spatial grains were relatively subtle. Quantile 1 and
4 species exhibited slight increases in average performance at both fine (3km) and coarse
(33 km) spatial grains, while Quantiles 2 and 3 showed higher performance at a finer scale of
9km (figure 4a). By contrast, when considering feeding types, we observed more pronounced
differences in model performance across spatial grains. Folivores demonstrated the highest
average performance at both fine (3km) and coarse (33 km) spatial grains, while frugivores had
highest average performance at low to intermediate scales (3—15km) with another increase at
33km, and fruit/nectar specialists displayed the highest performance at fine scales (3-9 km)
(figure 4b). Omnivores exhibited the highest average performance at low (9 km) to intermediate
(15 km) scales (figure 4b). However, similar to the analysis conducted on all species, it is important
to emphasize that the optimal models for individual species within these functional groups
sometimes exhibited idiosyncratic patterns (i.e. scale of optimal model performance for a species
not aligning with highest performing grain sizes for at least one of the species” associated traits;
22.6% of species; table 2), highlighting the species-specific responses to geodiversity variables and
the considerations of spatial scale.

During our evaluation of the SDMs, we conducted a spatial assessment and compared
them with expert-generated maps. Overall, the models incorporating geodiversity variables
performed well and predicted distributions that aligned with species ecology. To assess model
performance, we examined spatial gain and loss, Schoener’s D, and the omission rate for expert,
non-geodiversity and optimal geodiversity models (models with the highest CBI for each species)
(electronic supplementary material, table S1). On average, expert models exhibited a higher
omission rate (20%) compared to both the non-geodiversity models (14.1%) and geodiversity
models (13.84%). The geodiversity models, on average, had slightly fewer omissions compared to
the non-geodiversity models. Both the non-geodiversity and geodiversity models demonstrated
substantial gains and losses compared to the expert models. Specifically, the geodiversity models
showed slightly fewer gains (7.79%) but more losses (7.45%) than the non-geodiversity models
(gains: 8.35%, losses: 5.28%). This indicates that, in general, the geodiversity models predicted
less suitable area than the expert and non-geodiversity models.

Furthermore, the assessment of Schoener’s D values, representing the overlap between the
geodiversity models and the expert models, revealed that, on average, the geodiversity models
exhibited lower values (65.7%) compared to the non-geodiversity models (70.2%), indicating less
overlap with the expert models (electronic supplementary material, table S1). However, for 64%
of the species optimal models, overlap with expert maps was higher for geodiversity models or
comparable between geodiversity and non-geodiversity models (i.e. Schoener’s D values within
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Figure 4. Boxplots of model performance for functional groups based on mass and diet preference. The functional groups were
defined using quartiles of mass and diet information [50,51]. The analysis reveals varying impacts of spatial grain on model
performance within these groups. When considering mass, subtle differences in performance were observed across spatial
grains, with Quantile 1and 4 species showing slight average increases in performance at fine and coarse scales, while Quantile
2 exhibited higher performance at low and intermediate scales and Quantile 3 had higher performance at low scales. In terms
of feeding types, more pronounced differences in model performance were found. Folivores demonstrated the highest average
performance at both fine and coarse scales, and frugivores had highest average performance at fine to intermediate scales.
Fruit/nectar specialists had the highest average performance at fine scales. Omnivores exhibited the highest performance at
low to intermediate scales. This figure excludes one nectarivorous species.

0.01 of each other) (electronic supplementary material, table S1). We also evaluated variations
observed among species from different biogeographic regions. For instance, species in the Andean
region generally showed more gains in suitable habitat in the geodiversity models, resulting in
slightly higher Schoener’s D values and lower omission rates compared to the non-geodiversity
models (electronic supplementary material, table S1). Similarly, species in the Magdalena and
Amazonian-1 regions, also areas of high topographic heterogeneity, demonstrated a closer
alignment between the geodiversity models and expert models. By contrast, the non-geodiversity
models are better aligned with the expert models in the Amazonian-2 and Amazonian-mix
regions, and marginally better aligned in the Chocé-Darién region, regions of lower topographic
heterogeneity (electronic supplementary material, table S1).

It is worth noting that many of the geodiversity models in these regions still produced
ecologically reasonable predictions, despite the differences from the expert-generated map. For
example, even though the geodiversity model for Lagothrix lagotricha had a slightly higher
omission rate compared to the expert model, it predicted increased suitable area in the northern
part of the range when compared with both the non-geodiversity model and expert model
(figure 5a). Further, there was lower suitability in the Colombian Llanos (Sabana region; figure 1),
which are shown as not being suitable in the expert model. For the grey-handed night monkey,
Aotus griseimembra, both the non-geodiversity and geodiversity models better captured the
occurrence records than the expert model, however the non-geodiversity model predicted
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Figure 5. Comparisons of expert maps and thresholded models made without and with geodiversity variables for two species,
the Common woolly monkey (Lagothrix lagotricha) and Grey-handed night monkey (Aotus griseimembra). Lighter shades
indicate higher suitability and occurrence records for each species are denoted by red circles. Panel (a) represents the expert map
and thresholded models for species L. lagotricha, where there is less suitability in northeastern Colombia in the geodiversity
model than the model without geodiversity and aligns better with the expert map. Predictions in the northernmost part of
the species range in the geodiversity model (label 1) better capture the occurrence records than both the expert map and the
non-geodiversity model. Panel (b) represents the expert maps and models for A. griseimembra. Both the non-geodiversity and
geodiversity models capture the occurrence records better than the expert model; however, the non-geodiversity model predicts
suitability in high elevation areas whereas the geodiversity model does not (label 2), the latter being more closely aligned to
the species’ ecology as a lowland primate.

suitability in high elevation areas whereas the geodiversity model does not, which is more
closely aligned to the species’ ecology as a lowland primate (figure 5b). By contrast, there were
instances where the geodiversity models exhibited limitations in capturing the full distribution
range of certain species. For six species (Cheracebus lugens, Pithecia hirsuta, Plecturocebus caquetensis,
Saimiri cassiquiarensis, Cebus albifrons, Cebuella pygmae) in the Amazonian regions, the optimal
geodiversity models appeared to be constrained to the distribution of rivers in the Amazon.
This constraint was most evident from the average difference in Schoener’s D of 0.17, indicating
challenges in fully representing the complete distribution range of these species (electronic
supplementary material, table S1).

4. Discussion

Our study provides valuable insights into the influence of geodiversity on SDMs in the Northern
Andes, encompassing both general patterns and species-specific responses. By incorporating
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geodiversity variables, we observed a significant improvement in SDM performance, both
statistically and spatially, which aligned with our expectations. While non-geodiversity variables
predominantly shaped species distributions, certain geodiversity variables, such as topographic
roughness and temperature and precipitation variations, exhibited notable influences. The
response to geodiversity also exhibited species-specific variation, underscoring the individualistic
nature of species-environment interactions and the challenge of predicting optimal performance
grains based on shared traits. Furthermore, the influence of geodiversity varied across
biogeographic regions, with topographic heterogeneity playing a pivotal role, while the efficacy
of geodiversity predictors for enhancing model performance diminished in regions characterized
by low heterogeneity.

(a) Statistical model performance and scale-dependency (Expectation 1)

Consistent with our expectations, incorporating geodiversity variables yielded significant
improvements in the statistical performance of SDMs, as indicated by an average increase of
17.2% in the CBI, a measure of the predictive performance of the model, despite geodiversity
variables having on average lower permutation importance than local level variables. These
improvements were consistently observed across various spatial grains, which can be attributed
to the complementary information provided by geodiversity variables, which capture variability
of the physical environment. This suggests that geodiversity variables may capture crucial
ecological information that goes beyond traditional predictors, providing valuable insights into
species-environment relationships and improving the predictive power of the models. These
findings highlight the potential of geodiversity variables in refining SDMs and enhancing our
understanding of species distributions.

We observed clear differences between non-geodiversity and geodiversity variables in terms
of permutation importance of variables. Non-geodiversity variables generally had higher
average permutation importance (11.57%) compared to geodiversity variables (5.57%) across
all SDMs. This suggests that factors other than geodiversity, such as local level climate or
topography, play a more prominent role in shaping species distributions. Among the geodiversity
variables examined, topographic roughness (srtm_sq) exhibited the highest average permutation
importance (7.48%), indicating its stronger influence on species-environment relationships.
Additionally, geodiversity variables related to temperature and precipitation, namely minimum
temperature of coldest month (bio6_sq), precipitation of wettest month (bio13_sq) and maximum
temperature of warmest month (bio5_sq), had higher levels of permutation importance (greater
than 5%), suggesting that variation in topographic roughness and certain climate extremes
can also play a role in shaping these species’ distributions. Specifically, topographic roughness
may indicate important dispersal limitations for species, while temperature and precipitation
geodiversity variables reflect the spatial variation of important ecological drivers influencing
species’ physiological processes and resource availability.

Incorporating geodiversity variables in SDMs provides valuable complementary information
and captures broad scale variability of the physical environment. However, it is important to
recognize that the responses of individual species to geodiversity variables can be idiosyncratic.
One notable example is the western mountain coati (Nasuella olivacea), for which the model
without geodiversity variables statistically outperformed the ‘optimal’ geodiversity model
(table 2). This suggests that factors other than geodiversity variables may play a more influential
role in shaping the distribution patterns of this particular species. However, despite the lower
CBI in the geodiversity model for this species, the spatial performance of the model remained
ecologically reasonable and actually omitted fewer occurrence records than both the expert
and non-geodiversity models (electronic supplementary material, table S1). Therefore, although
geodiversity may not be the dominant driver for this species (only 8% permutation importance),
it still contributes valuable information that improves the model’s ability to predict suitability.

We found some evidence for scale dependence in the importance of the geodiversity variables.
Non-geodiversity variables generally decreased in importance as the spatial grain increased. At
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these coarser scales, some geodiversity variables become more influential in shaping species
distributions, possibly reflecting the importance of broader landscape patterns and environmental
gradients. The variables with the greatest increase in permutation importance with spatial grain
were climate variables minimum temperature of the coldest month (bio6_sq) and precipitation
of the wettest month (biol3_sq), which is in line with other research showing the role of
climate increases at broader scales [27,80]. However, despite the average increase in permutation
importance for some of these explanatory variables, the frequency at which geodiversity variables
were incorporated into models varied with spatial scale. Maximum temperature of the warmest
month (bio5_sq) and precipitation of the wettest month (bio13_sq) were more frequently included
in models at coarser scales, while minimum temperature of the coldest month (bio6_sq) and mean
annual cloud cover (cloud_sq) were more frequently incorporated at finer scales. These findings
suggest that some geodiversity variables may play more prominent roles in capturing species-
environment relationships at specific scales, reflecting the scale- and species-dependent nature of
geodiversity in shaping species distributions. However, similar to Bailey et al. [24], the elevation
variables (srtm and srtm_sq) consistently demonstrated high permutation importance and were
frequently incorporated into models across scales. These variables, representing elevation and
topographic roughness, respectively, likely play crucial roles in shaping species distributions
across scales.

(b) Functional groups and the influence of geodiversity (Expectation 2)

For certain species’ traits, the optimal spatial grains of geodiversity aligned with our expectations
whereas for others, they differed from expectation (figure 4 and table 2). Specifically, we
anticipated that larger-bodied species would have optimal models at larger spatial grains, and
folivores would exhibit higher model performance at finer spatial grains. However, the results
indicate that both fine and coarse spatial grains contribute to better model performance for
these groups (figure 4). Further, for omnivores we expected higher performance at fine and
coarse grains, but for most species, model performance was highest at low to intermediate
grains. Frugivores and fruit/nectar specialists did follow expected patterns, with frugivores
having optimal grains across fine and coarse scales and fruit/nectar specialists having higher
performance at fine grains.

In the case of the Andean bear (Tremarctos ornatus), characterized by its large body size
(figure 4a; Q4) and primarily frugivorous diet (figure 4b; Frugivore), the optimal geodiversity
model was at a spatial grain of 3km, corresponding to the spatial grains associated with
the highest average performance for these traits (figure 4), which aligned with our original
expectations for frugivorous species. Despite geodiversity variables contributing only 12.8% to
the optimal model, this model exhibited closer alignment with the expert model than the non-
geodiversity model. The importance of fine-scale variation may be particularly relevant for the
Andean bear due to its specific habitat requirements and ecological adaptations. Being a large-
bodied mammal, the Andean bear relies on extensive home ranges to meet its resource needs.
Despite being a large bodied mammal, fine-scale variations in habitat conditions, including
terrain roughness and microclimate gradients, play a crucial role in providing suitable foraging
opportunities, shelter, and access to resources such as food and water (figure 4b; Frugivore) [81].
The species is known to inhabit diverse montane ecosystems with rugged mountainous terrain,
where fine-scale variations in terrain roughness and microclimate conditions may influence the
availability of suitable den sites, access to preferred food sources, and the bear’s ability to navigate
through challenging landscapes [81], likely leading to an optimal model with geodiversity
variables reflecting the spatial grain of this variability.

Our results suggest that even if species are closely related in terms of their traits, they respond
differently to geodiversity and their response also varies by spatial scale. This finding highlights
the unique nature of species’ interactions with their environment and suggests that shared traits
do not necessarily determine species’ responses to geodiversity variables and their scales of
influence. For instance, based on the results in figure 4, we expected the common woolly monkey
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(Lagothrix lagotricha), an omnivorous species in the Q2 mass quartile, to have an optimal grain
at low to intermediate scales. However, we found that the optimal spatial grain was 33 km,
suggesting that omnivores like this species have a variable response to geodiversity across both
fine and coarse scales, which supports our original expectation for this trait group. Geodiversity
played a significant role for this species, with a notable permutation importance of 57.87%. The
common woolly monkey is primarily found in lowland primary terra firma forests, occasionally
utilizing secondary and disturbed habitats, and they seasonally enter flooded forests to feed on
fruits [82]. Woolly monkeys have a diverse diet consisting of fruits, arthropods, leaves, seeds in
unripe fruits, flowers and other minor items. The composition of their diet varies throughout
the year, depending on fruit abundance, which tends to be higher in the rainy season when
precipitation is higher. During periods of fruit scarcity, they rely more on leaves, unripe fruits
and flowers [82]. These dietary preferences and seasonal movements may influence the optimal
spatial grain of the geodiversity model, where the permutation importance of spatial variation
in biol3 (precipitation of the wettest month; bio13_sq) was actually higher (6.75%) than the non-
geodiversity version of that variable (5.49%). The broader-scale patterns of fruit availability and
distribution within the lowland forest landscape might be better captured at a spatial grain of
33 km, allowing for more robust predictions of suitable habitats for the species (figure 5a).

(c) Biogeographicregions and influence of geodiversity in SDMs (Expectation 3)

We found support for our expectation that species-geodiversity relationships differed by
biogeographic region, likely due to biogeographic differences in habitat heterogeneity. Diverse
and varied landscapes provide more opportunities for geodiversity variables to capture
important ecological patterns [2]. Regions with high topographic geodiversity, such as the
Andean, Magdalena and Amazonian-1 regions, likely exhibit greater heterogeneity in terms of
topography and climate. This heterogeneity provides a range of microhabitats and ecological
niches, allowing species to occupy diverse habitats within these regions. Conversely, regions in
the Amazonian and Chocé-Darién may have different characteristics, such as less pronounced
heterogeneity or a higher proportion of homogeneous habitats. Specifically for the Amazonian,
Amazonian-2 and Amazonian-mix habitats certain species had distributions constrained to
rivers. It is possible that this issue stems from overfitting to noise in areas with generally low
habitat heterogeneity [83]. Rivers, being prominent features in the landscape, may introduce a
significant amount of variability that is unrelated to the ecological requirements of these species
(excluding Cebuella pygmaea). This can lead to models that overly associate species presence
with riverine habitats, incorrectly constraining their distributions along waterways and omitting
many occurrence records (species: Cheracebus lugens, Pithecia hirsuta, Plecturocebus caquetensis,
Saimiri cassiquiarensis, Cebus albifrons, Cebuella pygmae; electronic supplementary material, table
S1). This may have led to discrepancies between the geodiversity models for these species
and the expert models, which consider a broader range of ecological factors and account
for species’ ecological requirements beyond just the presence of rivers. Due to this, caution
should be exercised to avoid overfitting to noise or artefacts in the data, especially in areas
with low habitat heterogeneity where there is less benefit to using these kinds of explanatory
variables.

5. Conclusion

The inclusion of geodiversity variables in SDMs in this study offers valuable insights into the role
of spatially varying environmental heterogeneity on species distributions. Model performance
improved when incorporating scale-dependent geodiversity, where two thirds of all species had
optimal geodiversity models at spatial grains of 3-15km, with only one third of species having
optimal spatial grains of 27 km and above (table 2). Incorporating geodiversity variables at fine to
intermediate scales may be sufficient to increase model performance for many species and may
better represent species-environment relationships and environmental filtering at these scales. To
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effectively implement this approach, careful selection of geodiversity variables is crucial, and it
may be prudent to test geodiversity variables at multiple scales given that a ‘one size fits all’
approach does not work for all species. Our study highlights the importance of incorporating
topographic roughness (srtm_sq) and climate-related variables, such as bio6_sq and biol3_sq,
which consistently demonstrated high importance in improving model performance (electronic
supplementary material, table S2). These variables capture key topographic and climatic factors
that shape species distributions in this region. However, other variables may also be promising
and perhaps more appropriate for certain species (e.g. species found in the Amazon basin) in
future studies including annual averages of climate and precipitation, and variables related to
vegetation including vertical canopy structure (i.e. from global ecosystem dynamics investigation;
GEDI) and soil dynamics [84].

Overall, the geodiversity models predicted less suitable areas on average compared to the
expert models and the non-geodiversity models (except for montane species). This pattern can
be attributed to the focus of geodiversity models on capturing broader scale heterogeneity,
incorporating variables such as terrain roughness, climate-related factors and geophysical
features that can also influence species distributions, resulting in more precise delineation of
suitable areas. However, it is important to acknowledge that expert models often incorporate
broader ecological knowledge beyond the specific variables considered in the geodiversity
models. Expert models may encompass historical or anecdotal evidence, species-specific nuances,
and additional ecological factors like known species interactions that are not routinely captured in
SDMs [52,85,86] and not explicitly represented in geodiversity variables. This broader ecological
context in expert models can lead to different extents of suitable area compared to the geodiversity
models.

To ensure a comprehensive understanding of species-environment relationships and
effectively refine SDMs for conservation purposes, geodiversity variables and the relevant scales
for their application in SDMs should be tested in other regions and for different taxa, as
these relationships may be context- or region-dependent. Further, it is essential to embrace
an integrated approach that incorporates geodiversity alongside expert knowledge and field
observations [65,87]. By combining these complementary methods, we can harness the strengths
of both approaches, leading to more robust and reliable predictions [52,87] which are essential
given the utility of SDMs for conservation such as target species prioritization, guiding future
sampling efforts, and as inputs into biodiversity assessments [88]. Hence, a collaborative and
comprehensive strategy that integrates geodiversity with expert insights presents a promising
avenue for advancing conservation strategies and safeguarding biodiversity for generations to
come.
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