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Abstract

The paper focuses on first-order invariant-domain preserving approximations of hyperbolic
systems. We propose a new way to estimate the artificial viscosity that has to be added
to make explicit, conservative, consistent numerical methods invariant-domain preserving
and entropy inequality compliant. Instead of computing an upper bound on the maximum
wave speed in Riemann problems, we estimate a minimum wave speed in the said Riemann
problems such that the approximation satisfies predefined invariant-domain properties and
predefined entropy inequalities. This technique eliminates non-essential fast waves from
the construction of the artificial viscosity, while preserving pre-assigned invariant-domain
properties and entropy inequalities.

Keywords Conservation equations - Hyperbolic systems - Invariant domains - Convex
limiting - Finite element method

Mathematics Subject Classification 35165 - 65M60 - 65M12 - 65N30

1 Introduction

Let us consider the hyperbolic system of conservation equations d;u + V-f(u) = 0, where
u denotes a conserved state taking values in R” and f(#) an associated flux taking values
in R”*4 where d is the space dimension. Most explicit approximation methods for solving

B Jean-Luc Guermond
guermond @tamu.edu

1 Department of Mathematics, Texas A&M University, 3368 TAMU, College Station, TX 77843,
USA

2 Departamento de Matematica Aplicada a la Ingenieria Aeroespacial, E.T.S.I. Aerondutica y del
Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain

3 Department of Mathematics and Statistics, Texas Tech University, 2500 Broadway, Lubbock, TX
79409, USA

4

Department of Mathematics and Informatics, University of Sofia, 5 James Boucher Blvd., 1164 Sofia,
Bulgaria

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02592-4&domain=pdf
http://orcid.org/0000-0002-6974-6818

46 Page2of26 Journal of Scientific Computing (2024) 100:46

this type of system are based on some notion of numerical flux and involve some numerical
dissipation. For instance, all the first-order methods based on Lax’s seminal paper [20, p. 163]
involve numerical fluxes between pairs of degrees of freedom, say i, j, that take the following
form %(E(Ui) +£U;)n;; +a;;j(U; —U;), where n;; is some unit vector associated with the
space discretization at hand and «;; is an upper bound on the maximum wave speed in the
Riemann problem using the flux £(U)n;; and the states U; and U; as left and right Riemann
data. Denoting by Amax (n;;, U;, U;) the maximum wave speed in the Riemann problem in
question, it is now well established that choosing «;; such that o;; > Amax(nij, Ui, Uj)
guarantees that some invariant-domain property can be extracted from the scheme; see e.g.,
Harten et al. [12], Tadmor [29, p. 375], Perthame and Shu [26, §5]. Using Amax (1;;, U;, U;)
to construct invariant-domain preserving schemes dates back to the origins of computational
fluid dynamics; we refer the reader for instance to [20, p. 163]. Recalling that the flux
a;j(U; —U;) is associated with numerical dissipation and therefore induces a loss of accuracy,
a natural question to ask is whether it is possible to estimate a greedy value for ¢;; in the open
interval (0, Amax(n;;, U;, U;)) guaranteeing that the scheme satisfies the desired invariant-
domain properties and relevant entropy inequalities. It is the purpose of the present paper to
give a positive answer to this question. The paper is the result of a research project that was
initiated at the 9th International Conference on Numerical Methods for Multi-Material Fluid
Flow, held in Trento, Italy, 9—13, September 2019. Some of the questions posed above and
some answers thereto were outlined in [9].

To convince the reader that the program described above is feasible, let us consider
the compressible Euler equations equipped with a y-law, and let us consider the Rie-
mann problem with the flux f(u)-n and some left and right data u;, ur. Then denoting
by A, AIL the two wave speeds enclosing the 1-wave, A, the speed of the 2-wave (i.e.,
the contact discontinuity), and A5, )L3+ the two wave speeds enclosing the 3-wave, we have
A < )Lf <A <Ay < )\;', and the maximum wave speed in the Riemann problem is
Amax(1, wp, wg) :=max(|A] [, |)»§r |) > |A2|. If the Riemann data yields a solution that con-
sists of just one contact discontinuity, one can establish that the amount of viscosity that is
sufficient to satisfy all the invariant domain properties (in addition to local entropy inequal-
ities) is just |X2| (because the velocity and the pressure are constant in this case). Hence
setting the graph viscosity wave speed « to be larger than or equal to Amax (12, Uy, uR) is
needlessly over-diffusive since taking @ = |A2] is sufficient in this case. Invoking the con-
tinuous dependence of the Riemann solution with respect to the data, one then realizes that a
similar conclusion holds if the Riemann data is a small perturbation of a data set producing
a contact discontinuity only. The situation described above is well illustrated by the multi-
material Euler equations in Lagrangian coordinates. In this case the interface between two
materials is a contact discontinuity that should keep its integrity over time. Let v := u-n
denote the component of the material velocity normal to the interface. The maximum wave
speed in the Riemann problem using the two states on either sides of the interface gives
Amax (R, wp, ug) = max(|A; —vl, |k;r —v|) in the Lagrangian reference frame, whereas the
wave speed of the 2-wave is Ay — v = 0. In this case the amount of viscosity that is sufficient
to satisfy all the invariant domain properties is « = Ay — v = 0. Hence, if one instead uses
& = Amax 1= max (A —vl, |k§r —v|) (as suggested e.g., in Guermond et al. [6] and most of
the literature on the topic) one needlessly diffuses the contact discontinuity. The purpose of
the present paper is to clarify the issues described above and derive a variation of the method
presented in [4, 6] that is invariant-domain preserving, satisfies discrete entropy inequalities,
and minimizes the amount of artificial viscosity used.

The first-order method presented in the paper can be made high-order and still be invariant-
domain preserving by using one of many techniques developed to this effect and available in
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the abundant literature dedicated to the topic. This can be done by adapting the flux transport
corrected methodology from Zalesak [34, §II]. For instance, one can use methods inspired
from [18, 19] when the functionals to limit are affine. When these functionals are nonlinear,
one can use methods from Kuzmin and Turek [35], Kuzmin et al. [36] (for discontinuous
finite elements) or from [7, 8] (for continuous finite elements). A complete list of all the
excellent methods capable of achieving this goal cannot be cited here.

The paper is organized as follows. We formulate the problem and recall important concepts
that are used in the paper in Sect. 2. We introduce in Sect. 3 the concept of greedy viscosity
for any hyperbolic system. The key results of this section are the Definitions (3.7) and (3.8)
and Theorem 3.6. The concept of greedy viscosity is then illustrated for scalar conservation
equations in Sect. 4. The main result summarizing the content of this section are the definitions
(4.2), (4.3) and Theorem 4.3. The concept is further illustrated for the p-system in Sect. 5.
The ideas introduced in the paper are numerically illustrated in Sect. 6 for scalar conservation
equations and for the p-system. Some of these tests are meant to illustrate that estimating a
greedy wave speed in order to preserve the invariant-domain is not sufficient to converge to
an entropy solution. Ensuring that entropy inequalities are satisfied is essential for this matter.
We also show that using just one entropy is not sufficient for scalar conservation equations
with a non-convex flux. Due to lack of space, the concept of greedy viscosity for systems
like the compressible Euler equations equipped with a tabulated equation of state will be
illustrated in a forthcoming second part of this work. A short outline of the performance of
the method is given in the conclusions section, see Sect. 8.

2 Formulation of the Problem

In this section we formulate the question that is addressed in the paper and put it in context.

2.1 The Hyperbolic System

Our objective is to develop elementary and robust numerical tools to approximate hyperbolic
systems in conservation form:

ou+ V-fm) =0, for(x,1) e DxRy,

u(x,0) = ug(x), forx e RY. @b

Here d is the space dimension, D is a compact, connected, polygonal subset of R?. To
avoid difficulties related to boundary conditions, we either solve the Cauchy problem or
assume that the boundary conditions are periodic. The dependent variable (or state variable)
u takes values in R™. The function f : A — (R’”)d is called flux. The domain of f,
ie., A C R™, is called admissible set. The state variable u is viewed as a column vector
u=(uy,...,un)". The flux is a m xd matrix with entries f;; (u(x)), i € {1:m}, k € {1:d}
and V-f(u(x)) is a column vector with entries (V-f(u)); = Zke[l:d} Oy, fik (u(x)). For any
n=m..., ng)' € R4, we denote f'(u)n the column vector with entries Zle{l:d} i1 (u)ny,
where i € {1:m}.

We assume in the entire paper that the admissible set A C R™ is constructed such that
for every pair of states (ur,ur) € Ax.A and every unit vector n in R4, the following
one-dimensional Riemann problem
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Fig. 1 Riemann problem and Riemann fan

up, ifx <0

ow + 9y (f(w)n) =0, (x,7) € RxRy, w(x,0) = { (2.2)

ug, ifx >0,
has a unique solution satisfying adequate entropy inequalities. We assume that this solution
is self-similar with self-similarity parameter £:=7%, and we set

v(n,uL,uR, %) —w(x, 1); 2.3)

see for instance Lax [21], Toro [31]. Using Lax’s notation, we denote by A} < AT the two
wave speeds enclosing the 1-wave (i.e., the leftmost wave) and A, < A} the two wave speeds
enclosing the m-wave (i.e., the rightmost wave). The key result that we are going to use in
the paperis that v(n, up, ug, &) =uy if§ <Ay andv(n,up,ug, &) =ugifé > A;. We
define a left wave speed Ap(n,ur, ug):=A| and a right wave speed Lr(n,ur, ug):=
We also define the maximum wave speed of the Riemann problem to be

Amax(, up, ug):=max(|Ap(n,up, ug)|, |Ag(m, up, ug)|). 2.4

We will replace the notation Amax (2, u 1, u g) by Amax When the context is unambiguous. For
further reference, for every ¢ > 0 we define

v(t,n,up, ug) :=/I v(n,uL,uR,)ti) dx. (2.5)
-2

Notice that if tApmax(n, up, ug) < % then v(t,n,uy,ug) is the average of the entropy

solution of the Riemann problem (2.2) over the Riemann fan. This property is illustrated in

Fig. 1.

Definition 2.1 (Invariant domain) We say that B C A C R™ is invariant domain for (2.1) if
the following holds true: (i) B is convex; (ii) for any pair (ur, ug) € Bx B, any unit vector
nelR andallt e (0 we have v(¢,n,ur, ug) € B, where v is given by
(2.5).

T
> 2hmax(n,up,ug) /)’
Lemma 2.2 (Invariance of the auxiliary states) Let B C A be any invariant domain for (2.1).

Let (n, q) be an entropy pair for (2.1). Let A > 0, letn € R? be a unit vector. Forall uy, ug
in A, consider the following auxiliary state:

1 1
urr() =S +ug) = 5 (Fug) —f@p))n. (2.6)
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Assume thatuy,ug € B, and & > hmax(n, uy, ug). Then

UL r(h) = (5, n UL, ug), (2.7)
urr(d) € B, (2.8)
n@LrR(W) < Y(@up) +n(ug) — 3 (qug) — quy)) n (2.9)
Proof See e.g., Lemma 2.1 and Lemma 2.2 in [4]. O

2.2 Agnostic Space Approximation

Without going into details, we now assume that we have at hand a fully discrete scheme where
time is approximated by using the forward Euler time stepping and space is approximated
by using some “centered” approximation of (2.1), i.e., without any artificial viscosity to
stabilize the approximation. We denote by ¢” the current time, n € N, and we denote by t the
current time step size; that is "1 := " + ¢ (we should write T" as the time step may vary
at each time step, but we omit the super-index ” to simplify the notation). Let us assume that
the current approximation is a collection of states {U};c, where the index set V is used to
enumerate all the de%rees of freedom of the approximation. We assume that the “centered”
update is given by U; 1 with

%(U?*”*1 —UH+ Y EWUei; = 0. (2.10)

JEL()

The quantity m; is called lumped mass and we assume that m; > Oforalli € V. The index
set Z(i) is called local stencil. This set collects only the degrees of freedom in V that interact
with i. We set Z(i)*:=Z(i)\{i}. The vector ¢;; € R? encodes the space discretization. We
view mi, > jeT) ig (U;f)ci ; as a Galerkin (or centered or inviscid) approximation of V-f(u)
at time ¢ at some grid point (or cell) i € V. The superscript @ is meant to remind us that
(2.10) is a Galerkin (or inviscid or centered) approximation of (2.1). That is, we assume that
the consistency error in space in (2.10) scales optimally with respect to the mesh size for the
considered approximation setting. We keep the discussion at this abstract level for the sake
of generality; see Remark 2.3. The only requirement that we make on the coefficients ¢;; is
that the method is conservative; that is to say, we assume that

Cij = —Cjj and Z Cij = 0. (2-11)
JEL()

An immediate consequence of this assumption is that the total mass is conserved:
Ziev miUiGJH—l =D iev m;U;.

Of course, Eq. (2.10) is in general not appropriate if the solution to (2.1) is not smooth.
To recover some sort of stability (the exact notion of stability we have in mind is defined in
Theorem 2.4) we modify the scheme by adding a graph viscosity based on the stencil Z(7);
that is, we compute the stabilized update U?H by setting:

e

= U+ > FUe - Y dlUt—Uh =0. (2.12)
JEL() JEL(@)*

Here d{’/. is the yet to be defined graph viscosity. We assume that

diy =d}; >0, if i#j. (2.13)
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The symmetry implies that the method remains conservative. The question addressed in the
paper is the following: how large has d!’. to be chosen so that (2.12) preserves invariant
domains and satisfies entropy inequalities (for some finite collection of entropies)?

Remark 2.3 (Literature) The algorithm (2.12) is a generalization of [20, p. 163]; see also
Harten et al. [12], Tadmor [29, p. 375], Perthame and Shu [26, §5] and the literature cited in
these references. The reader is referred to [4, 7] for realizations of the above algorithm with
continuous finite elements. Realizations of the scheme with finite volumes and discontinuous
elements are described in [8] and implemented in Kronbichler et al. [23], Maier et al. [16].

2.3 The Auxiliary Bar States

We now recall the main stability result established in [4]. The proof of this result is the source
of inspiration for the rest of the paper. For all i € V and all j € Z(i) we introduce the unit
vector r;j = ¢;j/|l¢;ij 2. Given two states U and U'} in A, we recall that Apax (n;7, U7, U;'-)
is the maximum wave speed in the Riemann problem defined in Sect. 2.1 with left state U7,
right state U’;, and unit vector n;;. The guaranteed maximum speed (GMS) graph viscosity

df’st’” is defined in [4] as follows:
de.MS’” := max (Amax (n;j, U7, UDllcijlle2s Amax (i, U, U lleji ll2). (2.14)

Theorem 2.4 (Local invariance) Let B C A be any invariant domain for (2.1). Let (n, q)
be any entropy pair for (2.1). Let n > 0 and i € V. Let dinj be any graph viscosity such
that d{’j > dijS’" and di"j > 0. Assume that 0 < t < mi/ZjeI(i)* Zd?j. Assume that

{U;f }jezy C B. Thenthe update {U;’+1 tiey given by (2.12) satisfies the following properties:
1
Uittt e B, (2.15)
m
—OWUH =W + Y eqW = D dinW) —nW) <0. (2.16)
JEL(@) JET()*

Proof We refer to Theorem 4.1 and Theorem 4.5 in [4] for detailed proofs. But since these
proofs contain ideas that are going to be used latter in the paper, we now reproduce the key
arguments. Using the conservation property (2.11), i.e., Z/eI(i) cij = 0, we rewrite (2.12)
as follows: ‘

m

—Ert -+ ) (2507 + EWY - £Ue; - df U+ UD) =0,

JETW)*

Then, recalling that d:; > 0 by assumption, we introduce the auxiliary states

llcijll 2

— 1
Ujj = (U] +U)) — (EU) — £U))mi;— 2 (2.17)
ij
This allows us to rewrite (2.12) as follows:
2td™ 2td™
n+1 __ ij ij 3
U _(1— > Tj)u;ur > Ui (2.18)

JET(@)* JET@)*

Since we assumed that 1 — 2%1_ 2 jeziy dj’; > 0, the right-hand side in the above identity

is a convex combination of the states {U?j} jez() with the convention U?i := U}, Setting
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d?l
Mj = el
abuse of notation, we write %;; ] (X) instead of wr(A)). Then the assumption di”j >
implies that X;; > Amax(n;;, U U;f), and the rest of the proof readily follows by invoking

and recalling definition (2.6), we observe that U = u;;(A;j) (here, with slight
A"

Lemma 2.2 (in particular Uij =u;j(Aj) = i(ﬁu, n;;, U7, U;?)). O

Remark 2.5 (\¢ and X max) The expression (2.17) (and thereby the identity (2.18) as well) is
ill-defined if Amax (nij, U?, U") = 0, (recall that Lemma 2.2 requires that one should take
A > Amax(mj, U U”)) To aV01d the division by zero issue, we introduce a small number
€ €(0,1) and we deﬁne

A e o a0 UL U, =AY (2.192)
35 = max (e, Amax (i, UY, UT)). (2.19b)

Henceforth we assume that A, > 0, which implies Ac > 0. Otherwise the wave speed
is zero everywhere, the solution is constant in time, and there is nothing to update. We are
now going to consider the auxiliary states #;; (1) and (2.17) for A € [A, A?j].

Remark 2.6 (Key observation)

The statements (2.15) and (2.16) in Theorem 2.4 are consequences of (2.8)—(2.9) in
Lemma 2.2. And the assertions (2.8)—(2.9) hold true because A > Anax(n, uy, ug) implies
the identity (2.7),1.e., g = i(ﬁ, n,ur,ug). We note, though, that A > Apax(n, up, ug)
(and thus identity (2.7)) is just a sufficient condition for (2.8)—(2.9) to hold true. The remain-
der of the paper is dedicated to estimating a greedy wave speed Airgy € [Xe, AﬁL ] (depending
on n, u;, and up) that is as small as possible so that (2.8)—(2.9) still holds, although (2.7)
may no longer hold. For this wave speed Algrdy all the assertions in Theorem 2.4 still hold

true after r.ec.leﬁ.ning the viscosit?/ dj; 1= max (Agr y||c,j lle2, k y||c,, ll¢2)- . .
This minimization program is reasonable since in the worst case scenario setting A =
)\ﬁL R = Amax(m, up, ug) is always admissible, i.e., the minimizing set for A is not empty.

Remark 2.7 (Literature) The importance of the auxiliary states u g (1), which are the back-
bone of Lax’s scheme, has been recognized in Nessyahu and Tadmor [24, Eq. (2.6)]. That
these states are averages of Riemann solutions provided A is larger than Apax is well docu-
mented in Harten et al. [12, §3.A] (see also the reference to a private communication with
Harten at p. 375, line 12 in Tadmor [29]). A variant of Lemma 2.2 is invoked to prove
Theorem 3.1 in [12]. This theorem is a somewhat simplified version of Theorem 2.4.

3 Greedy Wave Speed and Greedy Viscosity

The key idea of the paper is introduced in this section. Let 3 be a convex invariant domain for
(2.1). In this entire section z is a unit vector and uy,, ur are two states in 5. The important
results of this section are the definitions (3.7)—(3.8) and Theorem 3.6. Owing to Lemma 2.2,
we know that the invariant-domain property (2.8) and the entropy inequality (2.9) hold for
upr(\) if A > Amax(n, uyp, ug). Our objective in this paper is to find a value of X as small as
possible in the interval [\, kﬁL ] so that (2.8) and (2.9) still hold (we no longer require that
(2.7) be true). The actual estimation of this greedy wave speed in done Sect. 3.2.
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3.1 Invariant Domain and Entropy: Structural Assumptions

As the notion of an invariant domain of the PDE system (2.1) is too general, we list in this
section the properties that we want to preserve. We use the concept of quasiconcavity for his
purpose. (The reader who is not familiar with this notion can replace the word quasiconcavity
by concavity without losing the essence of what is said.)

Definition 3.1 (Quasiconcavity) Given a convex set C C R™, we say that a function W :
C — Ris quasiconcave if the set L, (W) := {# € C | W(u) > x} is convex for every x € R.
The sets {L, (V)} R are called upper level sets or upper contour sets.

We now list the properties we are interested in and that we want to preserve. Let L € N\{0}
and letus set £:={0: L}, £*:={1:L}. We assume that there exists a collection of L + 1 subsets
{Bi}ier in R™, and a collection of L continuous quasiconcave functionals {¥; : B;_; —
R}jec+ so that the following properties hold true:

B, CBr_1 C...C By:=R", (3.1a)
By ={ueB | V) >0} Vi € £, (3.1b)
By C B, (.1c)
up,ug € By, and wpr(A: ) € By, VleL. (3.1d)

Notice in passing that all the subsets {83;};c are convex since By = R™ and B; = Lo (W)
for all I € L£*. These sets are also closed as the functional {W¥;};c, are continuous. As
B is convex for all [ € L, the assumption (3.1d) then implies that #; r(A) € B for all
A E [Ai r»00) and all [ € L. (The assumption (3.1d) is reasonable as we already know that
@ r(A) € Bforall & € [A] 4, 00).)

As documented in Appendix A in Harten and Hyman [11] (and in Lemma 3.2 in [5]),
computing a wave speed that guarantees a method to be invariant-domain preserving is not
enough to ensure convergence to the entropy solution. Hence, in addition to invariant-domain
properties, we also want to satisfy entropy inequalities. In order to clarify this objective, we
assume to be given a finite set of entropy pairs for (2.1), say {(n¢, ,)}ece Withn, : B — R
andgq, : By — R4 foralle € S.LetkbLR be the infimum of the set {A € [A, knLR] |urr(}) €
By }; that is,

Ay gi=inf{h € [he, A5 o1 | THLR(L) € Br). (3.2)
Note that A; g is well defined because the minimizing set is not empty (it contains )\i R)-
This infimum is actually the minimum as [A, )\i g] 2 A = upg(}) is continuous and By, is

b

closed. For every e € £, we introduce the function & : [%, L] — R defined by
LR LR

D (t) =1 (HLr(D)) — %(ne(uL) + ne(uRr)) + %(qg(uR) —q.(up))n, Veet.
3.3)
We have established in Lemma 2.2 that
D (1/4% ) <0, Veek. (3.4)
Our goal is to find a greedy wave speed AZ'Y (n, uy , ug) as small as possible in [Ai R Ai &l

so that ; g (A2'%Y) € By and &, (1/A8Y) <0, forall e € £.
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Lemma 3.2 The function ®, : ( L %) — R is convex forall e € E.

i
)‘LR LR

LR

Proof Lett), 1) € ( L %) and 0 € [0, 1]. Then using that

)‘LR
u 1 ) 1-6 04 4 1-6
@ik (g ) = $@e +up)+ 5@+ ur) = G+ 150 Ewr) — F@p)n
= 0L (1) + (1 — O)aLr(),
the assertion follows from the convexity of 7. O

Remark 3.3 (Notation) To be precise the entropy functional defined in (3.3) should be denoted
by ®9 p instead &, as it depends on the pair u; , u g. Likewise, we should also use \I/i  instead
of ;. In what follows the index 1 g reminds us of the dependence with respect the pair u,,
u g and the unit vector n. We have chosen to use the symbols ®, and ; instead to simplify
the notation.

Remark 3.4 (Matryoshka doll structure) The Matryoshka doll structure introduced in (3.1) is
meant to reflect that the domain of definition of the functionals W; may become smaller and
smaller as the index / increases. We illustrate this point with the compressible Euler equations
with the equation of state p(u)::%p(e(u) —q) — YPoos Where b > 0,y > 1,q € R,
and py € R,and e(u):=E/p — % lm/p ||%. This equation of state is often called Nobel-Abel
stiffened gas equation of state in the literature; see Le Métayer and Saurel [22]. In this case
we have: W (u):=p, Bi:={u = (p,m, E)T € R™*2 | p > 0}; Wo(u):=1 — bp, Bo:={u €
Bi |1 —bp > O} W3(u):=p(e(u) — q) — poo(l — bp), B3:={u € By | ple(w) — q) —
Poo(1 —bp) > 0}. Notice that the constraint W3(u) > 0 implies that p(u) + poo > 0 which
is essential to be able to define the specific entropy n(u) = log((1/p — b)Y (p(®) + poo))-

In practice, we are going to enforce sharper bounds than those shown above by making
all the functionals {¥;};c, and all the sets {55;};c- depend on the states u; and up (see
Sects. 4, 5).

3.2 Algorithm for Estimating the Greedy Wave Speed

As mentioned above, the key idea of the paper is to define a greedy wave speed
AEY (n,up, ug) in [A) p, A5 o] so that T r(AEY) € By and d.(1/48%) < 0, for all
e € £. We now present an algorithm that carries out this program (see Algorithm 1).

One starts by setting Ao (n, u 1, ug):=A. Then one traverses the index set £* in increasing
order, and for each index [/ in £* one computes the wave speed A;(n, ur, ug) recursively
defined by

A =min{d € (1, A7 5] | W @LR () = 0). (3.5)

Next, one (indiscriminately) traverses the index set £ and computes the wave speed
Ae(n, ur, up) defined by

e ;= min{h € [hp, AL 1] D (7") <0} (3.6)
One finally defines the greedy wave speed AEY (n, u; ug) as follows:

ATY (n,up, ug) = max A,. (3.7)
ee€

@ Springer



46 Page100f26 Journal of Scientific Computing (2024) 100:46

Algorithm 1 Greedy wave speed

Input: n,u;,up
Output: 18 (n, uy, ug)

1: Compute Amax (n, uy,ug), ro(n,uy,ug) and )LQR

2: for [ = 1to L do

3. Define \IJILR and compute A;(r, uy, ug); see (3.5)

4: end for

5: fore € £ do

6:  Define (ng‘R, qu) and compute Ao (n, uy, ug); see (3.6)
7: end for

8

: Compute AZY (. uy ug); see (3.7)

Techniques to compute the wave speed defined in (3.5) and (3.6) are explained in Sects. 4.1
and 4.2 for nonlinear scalar equations and in Sects. 5.3 and 5.4 for the p-system.

Lemma 3.5 Assume that (3.1) hold true. Then,

(i) Ap is well defined and A < A < )‘ﬁLR foralll € L. We have upr()) € By for all
€[, s plandalll € L.
(ii) Xe is well defined. We have <I>e(%) <O0forall € [Ae, AiR)] andalle € .

Proof Recall that AjL ri=max(Ae, Amax)-

(i) We proceed by induction over / € L. The wave speed A, is well defined (see (2.19a)) and
re € [Ae, AnLR]. Moreover, uy g(A) € By:=R™ for all A € [\, AiR]. Hence, the induction
assumption (i) holds for/ = 0 since Ag:=A.. Now let/ € £* and letus prove that (i) holds. The
induction assumption implies that the set [A;_1, AnL z] is not empty (because A;—; < AﬁL R)>
and upgr(A) € By—y forall A € [A—1, )»ﬁLR]. This means in particular that W; (g (1)) is
well defined for all A € [Aj—q, AnL r]- Moreover, we have u, R()»tz r) € B; owing to the
assumption (3.1d). Hence the set {A € [A;_1, AiR] | Wi (mpr(X)) > 0} is not empty. This set
has a minimum since ¥; is continuous, the mapping [X;_1, A:LR] SAt>urr()) € Bj_1is
continuous, and [A;_1, AI:LR] is compact. Hence A; is well defined and A < A1 < A; <
AuLR (by definition). Let us now prove that upg(X) € B; for all A € [}, )\ﬁLR]. We first
w; hence, the set
(O =2 A

{urrV) | X € [\, AﬁLR]} is a line segment in R”. But both u;g(};) and ﬁLR()\ﬁLR) are
members of {u € B;— | ¥;(u) > 0} = B;. Since B; is convex, we conclude that the entire

line segment {#;r(A) | A € [A, )LI:II‘ g1} 1s in B;. This proves that the induction assumption
holds true for /.
(i1) The argument in (i) proves that uy g (1) € By forall A € [Af, Ai r]- As the domain of

observe that uy g (A) = Ourr(A;) + (1 — H)ELR(kﬁLR) with 0:=

ne and q,, is B, this argument proves that CI>2(%) is well defined forall A € [A, AnL rJandall
e € £. The continuity of ®, implies that A, is well defined as well. From the convexity of ®,
established in Lemma 3.2 it follows that @e(%) <Oforall A € [A,, XnLR] since dDe(i) <0

and ‘De(ﬁ) <0, see (3.4). O

LR
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3.3 Greedy Viscosity

We are now in a position to state the main results of Sect. 3. Using the same notation as in
Sect. 2.3, leti € V and j € Z(i). With the greedy wave speed Agrdy(n,-.,', v’ U;?) defined in
(3.7), we define the greedy viscosity for the pair (i, j) at the time ¢ as follows:

d

dF" = max(WEY (mij, UF, U)lleijll 2, 2 (i, U5, UD) il ). (3.8)

Note that if Apax (n;7, U7, U;?) > Le (which is almost always the case), then

d
™" = dg o 3.9)

The main result of the paper and the reason we have introduced the greedy wave speed is the
following.

Theorem 3.6 (IDP Greedy viscosity) Let B be an invariant domain for (2.1). Let n > 0,
i €V Forall j € ()", let {B;j}le/; be a finite collection of convex sets, and let {\I/l” :

B, — RYje+ be a collection of continuous quasiconcave functionals. Let (0L, q\)}csi be

a finite set of entropy pairs for (2.1). (We use a superscript i on the entropy pairs to allow for
the possibility to choose a different set of entropies for each indexi € V.) Let {dlgj-rdy’n }iezayr
be the greedy graph viscosity defined by (3.8) and let {U?H},-Ev be the update defined in

(2.12) with the choice dl.”j::digjrdy’n. Assume the following:

(i) {B;j e and {\I—'lij}[eg* satisfy the assumptions in (3.1) for all j € Z(i)*;
(ii) T is small enough so that 1 — 2le_ ZjeI(i)* dl.”j > 0.

Then the update {U:.”rl liey satisfies the following properties:

Ut e conv( U BZ), hence U e B, (3.10)
JET()*
ORI = UD) + Y €U =) di (U — g (U) < 0. (B1D)
JEZ() JET()*

Proof We first recall that (2.12) can be rewritten as follows:

Ut = (1— > mf ) + Z ’*,”J, (3.12)

JETl)* JETl)* i

n n

with the notation U('»':E,-j(W) Setting A;; := for all j € Z(i)*, we have U

Teijll2 H 2
u;j(A;j). As the assumptions in (3.1) hold and A8rdy (n;j,U U") is defined by (3.5)-(3. 6)—
(3.7) for all j € Z(i)*, we can apply Lemma 3.5. Then comblnmg (3.7) with the identity
rijlleijle = dff = dl.gjfdy’” implies A;; > A?}dy(ni,», U}, U’), and invoking Lemma 3.5(i),
(3.1a) and (3.1c¢), we infer that

— . .

U, e(B' =8/ cB

lel
Since we assumed that 1 — 2;%3 7 7). d" > 0, the right-hand side in (3.12) is

a convex combination of the states {U}} U { } jez()* which all lie in the convex hull
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conv(U jeTh)* B;j), and it follows that U;’H € B. Let us now establish the entropy
inequality (3.11). From the convexity of r;é and (3.12) we obtain

i n+1 i n 2td
(Uit < (1— > )ne(ui>+ > -

n
no
L, (U3;).
JET()* JET(@)*

n
21:dl.j
m;

Using Lemma 3.5(ii) and recalling that le_lj = u;;(A;j), we infer that dDe(%) <0,i.e.,
ij

2470, (U;) < df (nh(U7) + L (U7) — (g5 (U — gL (U)))-cij.
Inserting this inequality in the previous inequality and using (2.11) gives (3.11). O

Remark 3.7 More generally, Theorem 3.6 holds true for any choice {dl."j} jez(y+ of graph
viscosity provided that di"j > digjrdy’n forall j € Z(i)*,i € V.

The result stated in Theorem 3.6 can be slightly refined by assuming a little more structure
on the sets {B;’ }icz(i) forall [ € L.

Corollary 3.8 (Localization) Let the assumptions of Theorem 3.6 hold. Assume also that the
Sollowing holds true for all | € L*: There exists i(l) € Z(i)* so that B;J C B;l(l) for all
J € Z(i)*. Then the update given by (2.12) satisfies the following local properties:

wiOwrtly >0, viecr (3.13)

Proof The assumption together with with property (3.10) from Theorem 3.6 implies that

U;’+1 IS conv( U B’L]) C ( U ij) = Bfi(l).
jez(iy jeziiy

Hence, the statement is an immediate consequence of the definition of the set Bfi(l) given
in (3.1b). O

Remark 3.9 Computing the maximal wave speed Amax (1, ur, ug) for general hyperbolic
systems typically requires solving a nonlinear scalar fixed point problem. Computing an
upper bound on Anax (12, #1,, w ) is somewhat simpler as it requires to use iterative techniques
that converge from above. Very accurate upper bounds are usually obtained in two to three
iterations. The time spent to this task is in general negligible. For instance, the reader is
referred to [3] where guaranteed upper bounds on Apax(n, ur, ug) are given for the Euler
equations with the co-volume equation of state (the source code for this method is available
in the appendix of [3] and a source code computing Amax (12, ur, ur) for a general equation
of state is available at Clayton et al. [1]). Computing ASY(n up u R) or an upper bound
thereof is similar to estimating upper bounds for Apax(n, ur, ug). This can be easily done
by using iterative techniques converging from above.

4 Scalar Conservation Equations
In this section we specialize the proposed definitions (3.7)—(3.8) on scalar conservation

equations. Instead of using the notation f and u, we now denote the flux by f and the
dependent variable by u.
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4.1 Maximum Principle

In the scalar case, the only invariant-domain property there is reduces to enforcing the max-
imum principle. We start by estimating a wave speed that does exactly that by following
the algorithm (3.5) described in Sect. 3.2. We take care of the entropy inequalities (3.6) in
Sect. 4.2

Let uz,ugp € A and let n be a unit vector in R9. (Computing Amax(n, up, ug) is a
standard exercise; see e.g., Dafermos [2, Lem. 3.1], Holden and Risebro [15, §2.2], Osher
[25, Thm. 1].) We introduce two concave functionals to take care of the local minimum and
maximum principle:

min,

ul'R:=min(ur, ug), ulR =max(ur, ug), (4.1a)
Wy (u):=u — u' Wy (u):=u"™ — u. (4.1b)

Accordingly, we set By:=R, Bi:={u € By | V1(u) > 0}, Bo:={u € By | ¥2(u) > 0}.

Lemma4.1 Let

[(fur)=fur))n| :
ho(mup, ug) = el , Yur # L 4.2)
max(|f' (ug)-nl, | f(ur)nl) ifug =ur,

Then Vi@rr(A) = 0 and Vr(upr(A)) > 0 for all » > max(A12, Ae). (This also means
urr(A) € [uf'g, ufg] for all . > max(ii2, Ae).)

Proof Leta := %(ML 4+ur),b:= (f(ug)— f(uL))%. Note thata € [urL“}é“, u %] and recall
that ;g (A):=a — bA~!, forall A > A, > 0. We want to estimate the smallest value of A in
[Xe, )\ﬁLR] so that W (uzp(A)) = 0 and Wy (upg(X)) > 0. That is, we want X to be such that

1 . . 1 .
max miny __ max -1 min __ max min
_E(MLR —upgr) =a—upg <br <a-—up _E(MLR —ULR)-

This holds true if and only if [b[A ™! < 4 (&% — u™il) If & — Wi o2 0, the smallest
possible value of A making this inequality to holdis A = m';’*)_w IfupE min _ ()

max _,,min TULR =
every value of A is admissible, but the only value of A that is legableL Iilnder perturbation of the
two states is A = | f/(ug)-n| if f is of class C!, and max(| f'(ug)-n|, | f'(ur)-n|) otherwise.
[m]
We note that the wave speed identified in Lemma4.1, W ,isthe average speed,
sometimes called Roe’s average in the computational fluid dynamics literature. As the final
wave speed defining the artificial viscosity is eventually larger than or equal to this quantity,
Lemma 2 from Harten [10] implies that the scheme is total variation non increasing in one
space dimension on the three point stencil (the wave speed 11> also satisfies the necessary and
sufficient condition formulated in Tadmor [30, Cor. 2.3]). It is well known that in the presence
of sonic points this wave speed is not large enough to ensure that the approximation defined
in (2.12) converges to the entropy solution (see, e.g., Harten and Hyman [11, App. A] or [5,
Lem. 3.2] for a simple proof). This problem is addressed in the next section by augmenting
the wave speed so as to make sure that some entropy inequalities are locally satisfied, i.e.,
(3.6) is satisfied.
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4.2 Entropy Inequality
Now, following algorithm (3.6) described in Sect. 3.2, we further look for a wave speed,
possibly larger than A1,, so as to satisfy some entropy inequalities.

Lemma4.2 Letk € R. Let nx (1) := |u — k| be the Kriizkov entropy associated with k and
qi(u) == sign(u — k)(f (u) — f(k)) be the corresponding entropy flux. Let

ap :=ur +ur — 2k, b= (f(ug) — f(ur))n,
ck = ng(ur) + nk(uR), di == (qi(uRr) — q;(ur))n.

(Observe that |ay| = cy if and only if k ¢ (uan}?, uy'$).) Let Mo (n, ur, ur) be defined as
in Lemma 4.1, and let

|22 ur, ug) ifk ¢ (ufe, upas
Ak,n,up,ug):= dy+b  di—b 3 h . 4.3)
max ( = To- oi—a M2 up, ug) | otherwise.

Let @ (D)=ni(Lr(W) — Se(ur) + mi(r)) + 5 (g (ur) — gy (up))n. Then, for
every . > max(A(k,n,ur, ug), re) we have ‘Dk(%) <0.

Proof (1) Assume first that k ¢ (u?}?,u?}‘e"), i.e., ¢t = l|ax|. The assumption A >
max (A2, Ac) implies that ;g (1) € [u‘f},?, u7¥]. Hence, sign(uzr (L) — k) = sign(%(uR +
ur) — k). As aresult, we have

nk@rr(A)) = sign(upr(A) — k)(ULr(d) — k)
= sign (3(ug +ur) —k) (5 (g +ur) — 35 (fwr) = fur))n —k).
On the other hand, using that nx(ug) = sign (%(MR +up) — k) (ur — k), qi(ug) =

sign((ug + ur) — k)(f(ug) — f(k)), and the corresponding identities for 1 (u.) and
q:(ur), we deduce that

ImeCur) + Sneur) — 5 (g (ug) — qx(ur))n
=sign(3(ug +ur) —k) (3ur +up) — 5 (fug) — furp)n—k).

Hence, we conclude that ng (z g (M) = ni(ur) + ne(ug) —A~! (q(ur) —q;(ur))-n for
all k ¢ (ulin, uhax), .

(2) Let us now assume that k e (uf'g, u]'%). Then we have that ¢ — |ax| >
2min(ng(ur), nk(ur)) > 0. Hence definition (4.3) makes sense. Using the definitions for
ay, b, cx, and di, we have 2ni (upr (X)) = |ay — 2~1b|. Then we want to find the smallest
value of X that guarantees that

lax — A7 'b| < e — 27 Vd.
The above inequality is equivalent to
A Ndk —b) < ek —ar, and ATNb+dy) < e +ar.
Using that |ag| < ¢k, we infer that

>dk—b. )L>dk+b

A= ; > )
Ccx — ag Ck + ag

The assertion follows readily. O
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4.3 Summary

The following result summarizes what is proposed above. In particular, it shows how the
Kriizkov entropies should be chosen.

Theorem4.3 Letn > 0,i €V, Umin,n:: minjez(i) U?, U;rlax,n:: max ;ez(i) U?. Let k; be any
real number in the range (Umln g max’"). Let (nx;» qy,) be the associated Kriizkov entropy

pair. Forall j € Z(i)*, let kgrdy ":=max(Ae, A(k;, n;;, U, U';)) and
dy, d;
A5 = max 5N eyl 255 ejill ). 4.4)

Let U”Jrl be given by (2.12) with the viscosity dl”j = digjrdy,n defined above. Assume that
1 —2 Z]EI(I)*d > 0. Then

Ut g uminn yman (4.5)
m; 1
Tl(mq(U;’+ ) — i (UP)) + Z ¢ijqr, (U
JEL()
37 dl (i (U — g, (U) < 0. (4.6)
JEL(@)*
Proof This is just a reformulation of Theorem 3.6. O

min,n Umax ,n

Remark 4.4 (Entropy choice) It is essential that k; be chosen in (U, ); otherwise,
we have )\:?’;dy "= max (A, Az(n;j, U?, U") and inequality (4.6) is just a restatement of
the local maximum principle (i.e., U'.H'1 € [umin.n ymax.n)) -t ig also demonstrated in the

numerical section that the choice of k; in (U, ) should be random for the method
to be robust when the flux f is not strictly convex or concave.

min,n max n

5 The p-System
In this section we illustrate the greedy viscosity idea on the one-dimensional p-system. The

extension to the compressible Euler equations with arbitrary equation of state will be done
in the forthcoming second part of this work.

5.1 The Model Problem
The p-system is a model for isentropic gas dynamics written in Lagrangian coordinates. The

dependent variable has two components which are the specific volume, v, and the velocity,
u. The system is written as follows:

3 ( >+a ( (”)> =0, (x.1) € RxR,. .1)

The pressure v — p(v) is assumed to be of class Cc? (R4+; R) and be such that

p <0, 0<p. (5.2)
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As an illustration, we are going to restrict the discussion to the gamma-law, p(v) = rv=7,
where r > 0 and y > 1. We introduce the notation u:=(v, u)T and define the flux
£(u):=(—u, p(w))".

The admissible set for (5.1) is A:=(0, oo) xR. The p-system (y > 1) has two families of
global Riemann invariants:

wi(u) =u +/ v—p'(§)d§, and w_(u)=u —/ v —p'(§)d§, (5.3)
and it can be shown that
Bap :={u e Ala <w_(u), wy(u) <b} 549

is an invariant domain for the system (5.1) for all a < b € R; see Hoff [14, Exp. 3.5, p. 597]
for a proof in the context of parabolic regularization, or Young [33] for a direct proof. Note
in passing that it is established in Hoff [13, Thm. 2.1] and [14, Thm. 4.1] that the Lax scheme
is invariant-domain preserving for all B.

The p-system has many entropy pairs. We are going to use the following one:

l o0
n(u) = Euz +f p§)dg;  q) =up(v). (5.5)

We now follow the principles explained in Algorithm 1 to estimate a greedy viscosity.

5.2 Maximum Wave Speed

Let us consider a left state u; :=(v;, ui)T, aright state u j:=(v;, uj)T, and a one-dimensional
normal direction n;; € {—1, +1} wherei € V and j € Z(i). We now describe a procedure to
compute (an upper bound of) the maximal wave speed Amax (1;;, u;, u ;) that was introduced
in (2.4) in Sect. 2.1. One first realizes that the Riemann problem with the flux f(u)n;;, left
data data (v;, ;)" and right data (v, u j)T, is identical to the Riemann problem with the flux
f'(u) and data uy :=(v;, nijui)T, ug:=(vj, n,-juj)T. We now use the symbol 7 in lieu of n;;
and write Amax (n, up, ug) instead of Aymax (m;j, i, u ).
For the index Z € {L, R}, we introduce

—/(p) — p(vz)(vz —v), ifv=<vyz

Jz(v) = /” \/%dé&, ifv>vz. (5.6)

and define ¢ (v) := fr(v) + fr(v) +ur —ug. The function ¢ is increasing and concave with
limy— 4+ ¢ (v) = —o0; see Young [33] for details. Notice that limy_, ;o0 ¢ (v) = wi(ur) —
w_(ug). fwy(ur) —w_(ugr) <0, then we set v*:=+ 0o (vacuum appears in the Riemann
solution in this case). If wy(ur) — w_(ug) > 0, the equation ¢(v) = 0 has a unique
solution which we denote by v*. Setting vmjn:=min(vy, vg), we have ¢(vmin) = ur —
ur — +/(p(vg) — p(vy))(vy — vg), and the following result is standard (see e.g., [33], [4,

Lem.2.5]):
P (Umin) —p(v*) :
s 2 if @ (Vmin) > 0,
Amax (1, UL, UR)= \/T o( m.m) (5.7)
—p’(Umin),  otherwise,

Note that Amax (1, 1, # ) is a decreasing function of v*. The value of v* can be found using
Newton’s method starting with a guess v° smaller than v*. As ¢ is concave and increasing,
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starting the Newton iterations on the left of v* guarantees that at each step of Newton’s method
the new estimate is smaller than v*, which in turn implies that the estimated maximum speed
is an upper bound for the exact maximum speed. A starting guess v° with the above property
can be computed as follows:

W= max(wy(ur), weg)),  w™™=min(w_(ur), w_(ug)) (5.82)
0 1 4 %

=(yr) 7 : . 5.8b

v i=(yr) (7 — (i — g (5.8b)

Here, Eq. (5.8b) follows from finding the pair u%:=@0, T solving wi(u®) = w™ and
w_ (u®) = wMn This construction implies

=~ | P(Umin) — p(v9)
Amax (1, WL, UR) < Amax:= mom— 5.9
VY — Umin

5.3 Invariant-Domain Property

We first compute three wave speeds to guarantee a local invariant-domain property as in
(3.5). Then we compute a fourth wave speed in Sect. 5.4 so as to ensure that a local entropy
inequality holds for the above-defined entropy pair; see (3.6). Recall that

_ 1 VL + VR + § (g —ur) )
o] ! . 5.10
urr(A) ) <ML Lup — %(P(UR) — p(vr)) (5.10)
We introduce
i@)=v,  W@)=w—wi@), Wi@):=w_(u)—w™", .10

where w}®* and wM" are defined in (5.8a). Observe that Wy is concave and W, and W5 are
both strictly concave due to (5.2). We define Bo:=RZ?, Bi:={u € R? | ¥ (v) > 0} = A,
By:={u € By | Y2(u) > 0}, and B3:={u € B, | W3(u) > 0}. It is necessary to introduce ¥
and B; = A to make sure that the domain of definition of W, and W3 is A.

Ifu;, = ug, thenupp(A) = uy = ug for all A > 0. In this case, we take A; = Ap =
A3 = Xe. Let us now assume that u; # up. The smallest wave speed X1, greater than or
equal to A, that ensures Wi (wzg(1)) > O for all L > Aj is given by

A = max (M,xe>. (5.12)
vy + VR

Now we estimate Ar. If Wo(wr(A1)) = 0, then we set Ay = Ay. If W (up(A1)) < O
there are two cases. If ug — uy > 0 and —(p(vg) — p(vr)) < 0, we have Vo (upp(1)) >
\112(% (up +ug)) > 0forall A > 0 and we set Ao:=\|. Otherwise, we observe that the curve
w4 (u) = wi™ has a horizontal asymptote given by {u = w®*} and a vertical asymptote
given by {v = 0} and the condition (ug —u; < 0or —(p(vg) — p(vr)) > 0) implies that the
equation W (g (A)) = 0 has a unique positive solution, A3, which can be computed using
an iterative method, and we set A, = A;; we omit the details for brevity. The argument to
estimate A3 is analogous: If W3 (@ g(A2)) > 0, then we set A3 = A;. Otherwise, we observe
that the curve w_ (#) = w™™ has a horizontal asymptote given by {# = w™"} and a vertical
asymptote given by {v = 0}. Hence if ug — uy > 0 and —(p(vg) — p(vr)) > 0, we have
Wi(upr()) > \Pg(%(uL + ug)) > 0 for all A > 0 and we set A3:=XA;. Otherwise the
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equation W3 (w g (1)) = 0 has a unique positive solution, A%, which can be computed using
an iterative method, and we set A3 = A;. As asserted in Lemma 3.5, the process described
above guarantees that uy r(A) € B3:={u € A | V2(u) > 0, W3(u) > 0} forall A > A3.

5.4 Wave Speed Based on the Entropy Inequality

We now estimate a wave speed associated with one entropy inequality. The entropy functional
in this case is

1
D (1) == (wLr(}) — E(ﬂ(uL) +n(ugr)) + %(Q(uR) —q(uL)), (5.13)

where 1 and q are defined in (5.5). We have n(u) = %uz

gamma-law.

Ifu; = ug,thenuy r(\) = uy = ug forall A > 0 and ®.(t) = 0 forall ¢+ > 0. In
this case, we take A, = A3. If uy # ug, we compute X, as defined in (3.6). More precisely,
if <1>e(ﬁ) < 0, then we set A, = A3z. Otherwise, we observe that the equation qDe(%) =0

- ﬁvp(v) for the pressure

has a unique solution in [1/A] , 1/A3) because n defined in (5.5) is strictly convex and we
also have established in (3.4) that QDE(A%) < 0. Finally, we set A, = max(X., A3). The
LR

greedy wave speed is obtained by setting A%'%Y (n, uy, ug): =M. This algorithm is illustrated
numerically in Sect. 7.

6 Numerical lllustrations with Scalar Conservation Equations

We start by illustrating the method for scalar conservation equations. To test the robustness
of the method, we choose problems with fluxes that are not strictly convex and contain sonic
points. Methods that underestimate the maximum wave speed (or just enforce the maximum
principle) tend to fail when applied to this type of problems.

Here, we numerically show that computing the viscosity so as to enforce local entropy
inequalities is sufficient to select the entropy solution provided that the family of entropies
is rich enough. All the computations are done with continuous IP; finite elements and we
take € = 1078 in (2.19a). The time stepping is done with the three stages, third-order,

strong stability preserving Runge Kutta method [28]. The time step is computed by using the

. CFL grdy,n
expression 7, = =5~ max;ey m;/ ZjeI(i)* di]

6.1 Piecewise Linear Flux

We consider a Riemann problem in one space dimension for the scalar conservation equation
0ru 4 0y f (u) = 0 using the scalar flux f(v) =2 —vifv <2and f(v) = 2v — 4 otherwise.
The initial data is ug(x) = 1 if x < 0 and ug(x) = 3 otherwise. This flux is convex and
Lipschitz, but it is not strictly convex: the velocity is piecewise constant and discontinuous.
This class of problems is thoroughly investigated in Petrova and Popov [27]. The solution is

1 ifx <—t¢
ux,t) =492 if —t<x <2t (6.1)
3 if2r < x.
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(a) (b)

Fig. 2 Approximation of a scalar conservation equation with piecewise linear flux: a viscosity solely based
on Aqp given in (4.2); b viscosity based on an entropy inequality, Eq. (4.3) with the choice k; = %(U;m"’n +
Umax,n )

1

The solution is composed of two contact waves (i.e., the characteristics do not cross) separated
by an expansion wave. One contact wave moves to the left at speed —1, the other moves to
the right at speed 2.

This example is meant to demonstrate that only using the wave speed A defined in (4.2)
to construct the graph viscosity (i.e., only using the Roe average) is not robust even in a
case as simple as the one above. Using the wave speed A1> guarantees that the maximum
principle locally holds, but the approximation may converge to a nonentropic weak solution.
We illustrate this phenomenon by applying the algorithm described in the paper over the
domain D = (-2, 2) using uniform meshes. The solution is computed to a final time t = 0.5
using CFL=0.75. We show in the left panel of Fig. 2 the solution obtained with the viscosity
computed by using only X1>. The graph of the exact solution is shown with a dashed line. We
observe that the approximate solution does not converge to the exact solution. The leftmost
discontinuity in the approximate solution is stationary instead of moving to the left at speed
—1. The right panel shows the approximate solution using definition (4.3) for the wave speed
with k; = 2(U™™" 4 UM™") for every i € V. We have verified that the method using this
definition for the wave speed converges with the expected rate (tables not shown here for
brevity).

6.2 1D Non-convex Flux

We now consider a Riemann problem in one space dimension using the scalar flux f(v) =
sin(v). The initial data is ug(x) = (2 + @) if x < 0 and ug(x) = b otherwise. Here,
ae [%, 1]and b € [0, %] are two chosen parameters. Note that the flux is neither convex nor
concave over the interval [b, (2 4+ a)r]. Since (2 4+ a)m > b, the solution is obtained by
replacing the flux by its upper concave envelope which is f‘(v) = sin(v) for v € [b, %n],
Ffw) =1forve [%n, %n], and 7 (v) = sin(v) forv € [%n, (24 a)r] (see, e.g., Dafermos
[2, Lem.3.1] and Holden and Risebro [15, §2.2]). We note that the entire the interval v €

[%n, %n] is composed of sonic points. The exact solution is given by
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Q2+a)m if x <tcos(2+ a)m)

(e, 1) = 3w — arccos(|x/t]) ?ft cos(Q4+a)yr) <x <0 62)
arccos(x/t) if 0 < x <tcos(bm)
br if t cos(bmr) < x.

It is a composite wave composed of an expansion followed by a stationary shock followed
by a second expansion. The numerical tests reported below are done with b = 0 and a = 1
over the domain D = (—1, 1).

Here again, tests done with the graph viscosity solely based on the Roe average 11> yields
a method that is not robust (figures and tables are not reported for brevity). We observe that
the approximate solution is a stationary shock for every mesh refinement (i.e., the initial data
does not evolve), which is clearly not the entropy solution. One can artificially try to avoid
this problem by initializing the approximate solution at 7o > 0 using the exact solution (6.2).
If the mesh does not have a vertex located at {0}, then convergence starts only when the
mesh size is less that 75. On the other hand, we observe convergence with no pre-asymptotic
range for every positive value of 7y when the mesh has a vertex located at {0}. This behavior
illustrates well the lack of robustness of methods that are solely based on the wave speed A13.

We now test the method based on the wave speed computed by using (4.3). The tests are
done with CFL = 0.5. The relative errors in the L'-norm and L2-norm are computed at
t = 0.8. We test two strategies to select the Krilizkov entropy for each degree of freedom
i € V. The first strategy consists of setting k; = OU"™" + (1 — 0)U™" where § = . The
second strategy consists of setting k; = 6;U;""" + (1 — 6;)U;™™", where 6; € (0,1) is a
uniformly distributed random number changing at every grid point i € V.

When using the first strategy with fixed 6 = % we observe exactly the same problems
as reported above when only using A1y. Irrespective of the location of the grid points, the
approximate solution is a stationary shock when one initializes the approximate solution
with the exact solution at #p = 0. Initializing with the exact solution (6.2) at tp = 1078
still produces a stationary shock when the point {x = 0} is not a vertex of the mesh, but a
non trivial solution is obtained when the point {x = 0} is a vertex of the mesh. We show
in the right part of Table 1 convergence results using fo = 10~8 and uniform meshes with
odd numbers of grid points. We observe some kind of convergence on coarse meshes, but
eventually the error stalls and stagnates as the mesh is further refined. We have observed this
behavior for every constant value of 6. This is highly counter intuitive because the viscosity
based on (4.3) is strictly larger than A2, and we have observed in the above paragraph that
the approximate solution using A2 converges to the entropy solution when the point {x = 0}
is a mesh vertex. Here again, we observe a clear lack of robustness even when the wave speed
is augmented so as to guarantee one “entropy fix” per grid point.

We now discuss what happens when the Kriizkov entropy is randomly chosen. All the
problem mentioned above disappear when 6; € (0, 1) is randomly chosen at every grid point.
The method convergences whether there is a grid point at {0} or not and whatever the initial
time. In particular there is no problem setting 7o = 0. We show convergence tests in the left
panel of Table 1 with #p = 0. To be able to compare with the results displayed in the right
part of the table, we have use the same meshes. The method is now clearly convergent and
converges with the expected rates.

The conclusion of this section is that the method based on the greedy wave speed computed
by using (4.3) with random Kriizkov entropies is robust.

Remark 6.1 (Robustness and “entropy stability”) The numerical tests performed in this sec-
tion demonstrates that robustness comes from randomness of the Krtizkov entropy. Note in
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Table 1 1D two-sonic point problem

Random entropy Average entropy

#dofs 811 Rate  6%(1) Rate  81(r) Rate  8%(1) Rate
51 1.96E—02 - 2.21E-02 - 2.41E-02 - 2.30E—-02 -

101 1.39E—-02 0.49 1.65E—02 0.42 1.81E—02 0.41 1.77E—02 0.38
201 9.17E—03 0.60 1.13E—02 0.55 1.33E—02 0.45 1.38E—02 0.35
401 5.87E—03 0.64 8.25E—03 0.45 9.81E—03 0.43 1.14E—02 0.28
801 3.66E—03 0.68 5.76E—03 0.52 7.54E—03 0.38 9.89E—03 0.20
1601 2.24E-03 0.71 4.15E—-03 0.47 6.10E—03 0.31 9.06E—03 0.13
3201 1.38E—-03 0.70 2.89E—03 0.52 5.20E—-03 0.23 8.62E—03 0.07
6401 8.50E—04 0.70 2.06E—03 0.49 4.65E—03 0.16 8.39E-03 0.04

The second and fourth columns show relative errors in the L ! -norm and the L2-norms using arandom Kriizkov
entropy with k = 6uy + (1 — 0)up, where 6 € (0, 1) is a uniformly distributed random value. The sixth
and eight columns report relative errors in the L'-norm and the L2-norms obtained for the average Kruizkov
entropy with k = %(ML +ugR)

10

Approx. 6400 —— Square entropy n(v) = v*
Exact
8 # dofs 5L (t) rate 52(1) rate
50  2.22E-02 - 2.18E-02 -

100 1.63E-02 0.45 1.64E-02 0.41
200 1.15E-02 0.50 1.23E-02 0.42
400 8.08E-03 0.51 9.44E-03 0.38
| 800 5.82E-03 0.47 7.61E-03 0.31

1600 4.38E-03 0.41 6.50E-03 0.23
0 \ 3200 3.48E-03 0.33 5.87E-03 0.15
6400 2.92E-03 0.25 5.52E-03 0.09

-1 -0.75 -05 -0.25 0 025 05 075 1
(a) Solution at t = 0.8 (b) Convergence table

Fig. 3 1D two-sonic point problem computed with the square entropy n(v) = %vz. The “entropy stable”
method does not converge to the entropy solution

passing that this series of tests casts doubt on the robustness of methods that are called entropy
stable in the literature. Since these methods enforce only one fixed global entropy inequal-
ity (at the semi-discrete level), one may wonder whether they produce approximations that
converge to the right solution for the above one-dimensional problem. In order to provide
some numerical evidence in this matter, we adjust our method as introduced in Sect. 4.2
for the entropy n(v) = %vz which is usually invoked in the literature dedicated to entropy
stable methods. Redoing the computations in the proof of Lemma 4.2 with the square entropy
gives A = (2ab +d + V/A)/2(c — a%) with a:=3(uy +ug), b:=3(f(ur) — fug))n,
c:=n(up)+ng),d = (qur)—qup))-n, A:i=Qab+d)* —4b*(a* — ). The method thus
produced is locally and globally entropy stable with respect to n(v) = %vz, i.e., Eq. (3.11)
holds. Convergence tests with this method are reported in Fig. 3. These tests show that the
approximation does not converge to the entropy solution (6.2). The convergence behavior
is strange as the approximation seems to converge over a large pre-asymptotic range, but
eventually, when the mesh is very fine, the approximation converges to a weak solution that
is not the entropy solution. In conclusion, the method is definitely entropy stable for the
square entropy but it is not convergent for non-convex fluxes; hence, it is not robust.
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(a) A12 with (4.2) (b) A&V with (4.3), 0; = 2 (c) A" with (4.3), ; random

Fig. 4 2D KPP problem with P elements on nonuniform Delaunay mesh (118850 grid points) at t = 1,
CFL = 0.5, computed with three different strategies: a Amax = 412 using (4.2); b wave speed agrdy computed

with (4.3) using k; = QU;.nin’" + (1 — 9)U;mx’" with 6 = %; ¢ wave speed agrdy computed with (4.3) using

ki = eiu;’““'" + (- Gi)U?ax’" where 6; € (0, 1) is a uniformly random number changing for every i € V.
Only the solution in the right panel is the correct entropy solution

6.3 The 2D KPP Problem

We finish our numerical examples by solving a two-dimensional scalar conservation equation
with the non-convex flux f(u) := (sinu, cos u)’

147 . 2 2
== if/ 1
it + V- () = 0, u(x,0>=uo(x)={;‘ T

6.3
T otherwise, (6.3)

in the computational domain D = [—2, 2]x[—2.5, 1.5]. The problem was originally pro-
posed in Kurganov et al. [17]. The solution has a two-dimensional composite wave structure
which high-order numerical schemes have difficulties to capture correctly. We approximate
the solution with continuous P; finite elements on nonuniform Delaunay triangulations up to
a final time of t = 1. We show in Fig.4 three results computed on a mesh with 118850 grid
points with CFL = 0.5. The solution shown in the leftmost panel is obtained by only using the
wave speed A 2 for computing the greedy viscosity. The solution in the midle panel is obtained
with the the wave speed (4.3) and the Kriizkov entropy using k; = 6U™™" + (1 — 6)U™*"
with 0 = % The solution in the rightmost panel is obtained with the the wave speed (4.3)
and the Kriizkov entropy using k; = 6;U™™" + (1 — 6;)U"™**" where 6; is a random number
changing for every i € V. One may be mislead thinking that the solution in the middle panel
is correct, but the only approximation that converges correctly is the one using the random
entropy.

So, here again, our conclusion for scalar conservation equations is that robustness can be
achieved for methods based on the greedy wave speed (4.3) provided the Krlizkov entropies
are chosen randomly. Any other choice is not robust.

7 p-System

We test the method on the p-system using the equation of state p(v) = %v}’ with y = 3.

We consider a Riemann problem with left state u;, = (vg, /(1 —vp)(p(vy) — p(1))) and
right state ug = (vg, —+/(1 — vg)(p(vr) — p(1))). The solution is composed of two shock
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Table 2 Convergence tests for the p system for various choices of wave speed estimate

)):max )\max )\grdy
# dofs 0 Rate 0 Rate 0 Rate
51 3.33E—01 - 1.93E—01 - 1.31E—01 -
101 2.41E—01 0.47 1.57E—01 0.30 1.18E—01 0.15
201 1.41E—01 0.78 6.58E—02 1.25 4.93E—02 1.25
401 7.59E—02 0.89 442E—02 0.58 3.65E—02 0.43
801 3.64E—02 1.06 2.09E—02 1.08 1.77E—02 1.05
1601 1.70E—02 1.10 9.07E—03 1.20 7.76E—03 1.19
1.5
1 | _
0E 1 | 0.5 & —
O | |
0.5 | | | |
0 02 04 06 08 1
5k -
1.5
1 | _
10 0.5 —
)\max 0 B N
—0.5 ‘ ‘ ‘
Amax  ——— 0 02 04 06 08 1
15 P\ A—
Exact —— L5
1k .
0.5 —
—20 | | | | 0F —
0 0.2 0.4 0.6 0.8 1 —05 ‘ ‘ ‘ ‘

0 02 04 06 08 1

Fig.5 Approximation of the u component in the p system, # = 0.5. Left: comparisons between the methods
using Amax, Amax, and 289 with 101 grid points. Right: Three refinements: 101 grid points (top), 401 grid
points (middle), 1600 grid points (bottom)

waves when vy, vg > 1, and in this case v* = 1, u* = 0. For this test we set vy, = 1.5 and
vr = 1000. The left shock is weak and fast moving; the shock speed is close to —0.6849.
The right shock is strong and slow; the shock speed is close to 1.827x 1072,

The simulations are done in the computational domain D:=(0, 1). The initial data is
uo(x) = uy if x < 0.8 and ug(x) = upg otherwise. The relative error in the L'-norm is
computed at r = 0.7. The relative error is the sum of the relative error on v plus the relative
error on u. Convergences test are done on a sequence of uniform meshes starting from 51 grid
points to 1601 grid points. The results are shown in Table 2. The results in the first column
are obtained by using the upper wave speed estimate ’):max given in (5.9). Those shown in the
second column are obtained by using Amax as defined in (5.7) where v* is computed with a
Newton method with 107!0 tolerance. Those shown in the right column are obtain with the
greedy viscosity A" defined in Sects. 5.3-5.4.

We show in Fig. 5 the graph of the # component at the final time # = 0.7. In the left panel
the approximation is done with 101 uniform grid points. We show a closer view of the plateau
separating the two shocks in the right panel. The number of grid points used in each case is:
101 in the top right panel; 401 in middle right panel; and 1600 in the bottom right panel. This
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- GMs -~ GMs
\ + Greedy - Greedy
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Fig.6 Woodward—Colella blast wave. Density at t = 0.038. GMS versus Greedy viscosity, from left to right:
I =400, 800, 1600

series of simulations demonstrate well the gain in accuracy that can potentially be gained by
using the greedy viscosity technique described in this paper.

8 Conclusions

We have presented a general strategy to compute the artificial viscosity in first-order
approximation methods for hyperbolic systems. The technique is based on the estima-
tion of a minimum wave speed guaranteeing that the approximation satisfies predefined
invariant-domain properties and predefined entropy inequalities. This approach eliminates
non-essential fast waves from the construction of the artificial viscosity, while preserving pre-
assigned invariant-domain properties and entropy inequalities. One should however keep in
mind that being invariant-domain preserving is in general not enough to have a method that
is robust. Likewise ensuring only one entropy inequality is not a guarantee of robustness.

We finish by briefly demonstrating the performance of the proposed methodology when
applied to the compressible Euler equations. For each pair (i, j), i, € V, j € Z(i), the greedy
viscosity is computed by first computing a wave speed that guarantees that the density satisfies
local lower and upper bounds extracted from the local Riemann problem. This wave speed
is then augmented by making sure that the specific entropy satisfies a local bound. Finally,
the wave speed is possibly again augmented to guarantee a local entropy inequality. The
details are reported in a forthcoming second part of this work. As a preview, we consider
the Woodward—Colella blast wave problem [32]. We show in Fig.6 the density profile at
t = 0.038. We compare for three different mesh sizes the results obtained with the wave
speed A™3* (labelled with the acronym “GMS” for guaranteed maximum speed) with those
obtained with the greedy wave speed A9 (labelled with the acronym “Greedy”). The
superiority of the greedy viscosity over the low-order standard method is evident, particularly
in the region of the leftmost contact wave.
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