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Zero—one laws for eventually always

hitting points in rapidly mixing systems

DMITRY KLEINBOCK, IOANNIS KONSTANTOULAS,
AND FLORIAN K. RICHTER

In this work we study the set of eventually always hitting points
in shrinking target systems. These are points whose long orbit seg-
ments eventually hit the corresponding shrinking targets for all fu-
ture times. We focus our attention on systems where translates of
targets exhibit near perfect mutual independence, such as Bernoulli
schemes and the Gaufl map. For such systems, we present tight
conditions on the shrinking rate of the targets so that the set of
eventually always hitting points is a null set (or co-null set respec-
tively).
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1. Introduction

Let (X, u,T) be a measure preserving system, and let B = {B,, : n € N} be
a sequence of measurable subsets of X. The hitting set H; o (B) is defined as
the set of z € X such that

(1.1) T"x € B, for infinitely many n € N.

If >, u(By) is finite, it follows from the Borel-Cantelli Lemma that ;o (B)
has measure zero. Conversely, if > n(B,) is infinite then in certain set-
tings the hitting set H;o (B) has full measure. Results pertaining to this
dichotomy, where

zero

(1.2) ZM(Bn) {i o Hi.o.(B) has { measure,

00 full

are referred to as dynamical Borel-Cantelli lemmas.

The earliest result of this type is due to Kurzweil [Ku]. He proved that
for X =[0,1] and T a rotation by «, (1.2) holds for any sequence of nested
intervals (By D By D ...) if and only if « is badly approximable. Later, there
was an important paper of Philipp [P] in which it is shown that (1.2) holds
in the cases where X = [0, 1], B consists of (not necessarily nested) intervals,
and T is either the map x — Bz mod 1 or the Gaul map = — 1/ mod 1. See
e.g. [S, KM, CK, HNPV, Ke, KY] for further results, and [A] for a survey.

Let us say that (X, u, T, B) is a shrinking target system if the sets B,
are nested! and

(1.3) lim p(By) =0.

n—o0

For m € N, write O,,(z) = {T'z, T?x,...,T™x} for the m-th orbit segment
of a point x € X under the transformation 7. Certainly, if x belongs to
Hio. (B) then Oy, (z) N B, # @ for infinitely many m. On the other hand, if
Om(x) N By, # @ for infinitely many m then either x € H;, (B) or Tz €
nen Bn for some m. Thus, under the additional assumption (1.3), Hi...(B)

'We remark that shrinking target systems with a nested sequence of targets are
sometimes also referred to as monotone shrinking target systems in the literature.
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coincides almost everywhere with the set
(1.4) {z € X : Op(2) N By, # @ infinitely often}.

In this paper, we study a natural variation of the set defined in (1.4).
Following the terminology introduced by Kelmer [Ke|, we define the even-
tually always hitting set Hea (B) to be the set of x € X such that for all
but finitely many m € N there exists n € {1,...,m} such that T"x € B,,.
Equivalently,

(1.5) Hea (B) := {:1: € X : Op(x) N B, # @ eventually always}.

By comparing (1.4) and (1.5), we see that up to a set of measure zero
the eventually always hitting property is a strengthening of (1.1). It is also
not hard to show that in any ergodic shrinking target system, the set of
eventually always hitting points obeys a zero—one law (see Proposition 2.1
and Corollary 2.2 below). It is therefore natural to ask:

Under what conditions on the shirking rate of the size of the
targets in B can one expect He.a.(B) to have zero or full measure
respectively?

This question has already been addressed for certain special classes
of shrinking target systems. Bugeaud and Liao [BL| looked at maps z —
Bxmod1 on X =10,1] and computed the Hausdorff dimension of sets
He.o.(B) for families of rapidly shrinking targets B. In the set-up of [Ke],
X is the unit tangent bundle of a finite volume hyperbolic manifold of con-
stant negative curvature, T' is the time-one map of the geodesic flow on X,
and B consists of rotation-invariant subsets of X. Under these conditions, it
was shown that He ., (B) has full measure whenever the series Z;; WIBQ,)
diverges. This was later generalized by Kelmer and Yu [KY] to higher rank
homogeneous spaces, and by Kelmer and Oh [KO] to the set-up of actions on
geometrically finite hyperbolic manifolds of infinite volume. More recently,
several results in this direction were obtained by Kirsebom, Kunde and Pers-
son [KKP] for some classes of interval maps, including the doubling map,
some quadratic maps, the Gaufl map, and the Manneville-Pomeau map.
See comments after Corollaries 1.5 and 1.7 below for a comparison of some
results from [KKP] with our results.
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1.1. The main technical result

Our main technical result concerns systems whose targets satisfy a long-term
independence property that arises in connection with rapid mixing. In such
cases, we give sufficient conditions for the set of eventually always hitting
points to either have zero or full measure. The class of systems to which
this applies contains several relevant examples, such as product systems,
Bernoulli schemes and the Gaufl map.

The long-term independence property that we impose in our theo-
rem asserts, roughly speaking, that any target B,, € B becomes “evenly
spread out” under the transformation T in the sense that u(B, NT*B,,) ~
w(Bp)(Bp,) for all k > k(n,m), where k(n,m) depends on n and m. The
precise formulation is more technical and involves

En,m := the algebra of subsets of X

1.6 .
(16) generated by {T77/B; : 1 <i<m, 1 <j<n}

It states the following:

For all m,n € Nwithn <m,all A€ 5, ,,, and all B € 5,,, ,

BT e has (A N T~ B — (4)u(B)] < nlm)u( AYu(B),

where 7: N — [0,1] is some function satisfying lim,, .., n(m) =0, and
F: N — N is another function satisfying
(1.8)

F(m) < 1

(log m) !9 1u(Br)

for some § > 0 and all large enough m € N.

We also define the set
(1.9) E, ={re€X:0p(x)N B, =0},

which describes the collection of all points in X for which none of the first
m iterates under the transformation T visits the target B,,. Note that

(1.10) X N\ Hea (B) =limsup By = ,en Upsn B

Theorem 1.1. Let (X,u,T,B) be a shrinking target system satisfying
(1.7). If

oo En 1—e
ZM«)O
n

n=1
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for some € > 0, then Hea (B) has full measure. On the other hand, if

i 1(Ey) — 50,

n

n=1

then He.o.(B) has zero measure.

1.2. Product systems

For our first application of Theorem 1.1, fix an arbitrary probability space
(Y,v), and let A} D A2 D ... be a sequence of measurable subsets of Y with
v(A,) — 0 as n — oco. Consider the shrinking target system (X, u,T,B),
where X = YN0} = p@NU{0} 7. X —» X denotes the left shift, and the
shrinking targets B := {B; D By D ...} are defined as B,, := {z € X : z[0] €
Ay }. The elements in B have the convenient property that

(1.11) w(B, NT*B,,) = n(By)(Bp), Yk,n,meN,

which immediately implies that the shrinking target system (X, u, T, B) sat-
isfies condition (1.7) with n(m) =0 and F(m) = 0 for all m € N.

Theorem 1.2. Let (X,u,T,B) be the shrinking target system described
above. If

00 n(l—e)
1— u(B,
Z ( N( )) < 00
n=1 n
for some € > 0, then Hea (B) has full measure. On the other hand, if

= o0,

> (1 - M(Bn))n
2,

then He.o.(B) has zero measure.
From Theorem 1.2 one can derive the following corollary.

Corollary 1.3. Let (X, u,T,B) be as in Theorem 1.2. Suppose that there
exists C' > 1 such that for all but finitely many m one has

> C'loglogm

)

1(Bm) m
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then Hea (B) has full measure. If, on the other hand,

< loglogm

#(Bm) m

for all but finitely many m, then Hea (B) has zero measure.

1.3. Bernoulli schemes

Another class of systems that satisfy (1.7) for a natural choice of shrink-
ing targets are Bernoulli schemes. Let (X, T) denote the full symbolic shift
in 2 letters?, that is, X = {0, 1}NU{O}. Let T: X — X be the left shift on
X, and denote by u the (1/2,1/2)-Bernoulli measure on X. Given a non-
decreasing unbounded sequence of indices (7, )men, consider the correspond-
ing sequence of shrinking targets B = {B; D By D - -} defined as

(1.12) Bp={zeX:z[0]=z[1] =-- = z[r,, — 1] =0}, Vm e N.

Note that w(B,,) =27". It is then straightforward to verify that the re-
sulting shrinking target system (X, u,T,B) satisfies condition (1.7) with
n(m) =0 and F(m) = rp, for all m € N.

Theorem 1.4. Let (X, u,T,B) be as above, and assume that either one of
the following two conditions is satisfied:

(1.13) AD > 2 such that u(By,) = W
for all but finitely many m € N;
(1.14) 37 > 1 such that pu(By,) < W

for all but finitely many m € N.
If

n(l—c)

(1.15) i C _”(i”)) L e

n=1

for some € > 0, then Hea (B) has full measure. On the other hand, if

n

n=1

2The same results hold for shifts on {0,...,b — 1} for any integer b > 2; we
chose to restrict ourselves to the case b = 2 to simplify the presentation.
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then He.a.(B) has zero measure.

n(l—e)
Note that (1.13) implies > 00, (1 — u(B,)) ? < oo, which means
that if we are in case (1.13), then automatically H, ., (B) has full measure.
This observation is part of a dichotomy that is described by the following

analogue of Corollary 1.3.

Corollary 1.5. Let (X, u,T,B) be as in Theorem 1.4. If (1.13) holds, then
He.a.(B) has full measure. If, on the other hand,

< 2loglogm

(1.17) w(Bm) for all but finitely many m € N,

then He.o (B) has zero measure.

We remark that it is proved in [KKP, Theorem 1] that if (X, u, T) is as
in Theorem 1.4 and B = {B,,} is a family of nested intervals, then

1 if u(Bm) > w for some ¢ > 0 and large enough m;

11(Hea(B)) = {

0 if u(By) < ¢/m  for some ¢ > 0 and large enough m.
Note that the above inequalities are significantly stronger than (1.13) and

(1.17) respectively; on the other hand, our method is applicable only to
specific families of targets given by (1.12).

1.4. The Gaufl map

The Gaufl map is the map T on the interval X := [0, 1] defined as

T()'— %_L%J ifl’;ﬁo,
o if 2 = 0.

There is an explicit T-invariant Borel probability measure on [0, 1] called
the Gaufl measure (cf. [EW, Lemma 3.5]):

1
wu(B) = Tog 2 /B . j_x:E, for all measurable B C [0, 1].

The Gaufl map and the Gaufl measure are tightly connected to the theory
of continued fractions. Any irrational number z € [0, 1] has a unique simple
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continued fraction expansion

1
xr = 1 , ai,as,... €N,
a; +
1 . 1
a
2 ag+
which we write as [a1,a2,...]. Note that if x = [a1,a9,...], then T(x) =

[ag,a3,...]. Thus T acts as the left shift on the continued fraction rep-
resentation of a number. This identification leads us to a natural shrink-
ing target problem where the targets are determined by digit restrictions
in the continued fraction expansion. Let (k,)men be a non-decreasing se-
quence of natural numbers, and consider the sequence of shrinking targets
B={B; DBy D...} given by

(1.18) B, ={[a1,a2,...] a1 = kp} =[0,1/kp]
for all m € N;? note that

log(1 + 1/l<:m).

(1.19) p(B) = E

We show in Section 6 that the shrinking target system (X,u,T,B)
satisfies condition (1.7) for any F(m) that satisfies (1.8) and n(m) =

ijp ( C\F )) for some universal constant C' > 0. Combining this
with Theorem 1.1 allows us to derive the following result.

Theorem 1.6. Let (X,u,T,B) be as descm’bed above, and assume that
either there exists o <1 such that ky, < [ Jesr, for all but finitely many
m € N, or there exists 7 >0 such that k,, = (logm)™ for all but finitely

3Technically speaking, the equality in (1.18) is incorrect as written and should
instead be {[a1,as2,...]: a1 = kn} =[0,1/kmn] \ Q, because the set in the left-hand
side consists of infinite continued fraction expansions which only yield irrational
numbers. However, since all shrinking target problems that we consider are insen-
sitive to adding or removing a zero-measure set from the targets or the underlying
space, we brush aside this issue for the sake of cleaner notation and simpler expres-
sions.
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many m € N. If
log2)(1—¢e)n

< 00

i": (1= p(Bn))"

n
n=1

for some € > 0, then Hea (B) has full measure. On the other hand, if

) . 2(log 2)(1+e)n
Z (1 N(Bn)zl = o0,

n=1

for some € > 0, then Hea (B) has zero measure.

Corollary 1.7. Let (X, u, T, B) be as described above. If there exists C; > 1
such that for all but finitely many m one has
log 1
log(1 4 1/ky,) > 21108108™
m
then He.o.(B) has full measure. On the other hand, if there exists Cy < 1/2

such that
log1
log(1+1/km) < C‘zog%

for all but finitely many m, then He.o. (B) has zero measure.
We remark that [KKP, Theorem 3|, which asserts that

1 ifk,= ﬁ where ¢ > 0 is sufficiently small,

(1(He.a(B)) = {

0 ifky=cm for any ¢ > 0,
is a consequence of the above corollary.

Remark 1.8. During the period of revision for this paper, Theorems 1.4
and 1.6 have already been improved upon by other authors. In the recent
preprint [HKKP] it is shown that if (X, u,T') is as in Theorem 1.4 and the
targets B = {B,, :n € N} are as in (1.12) with the additional assumption
that n +— nu(B,) is eventually non-decreasing, then

(1.20)
n full
ZM(Bn)e_S“(B") {< > <=  Hea (B) has { " measure.

=X Zero

The comparison between the convergence conditions in (1.20) and Theo-
rem 1.4 provides an interesting insight. To see that the conditions given in
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(1.20) conform to and, in fact, improve upon the conditions in Theorem 1.4,
we must show that

n

(1.21) Z w — 00 = ZM(Bn)f%“(B") ~ 0,

n
n n

as well as

n(l—e)
2

(1.22) Z (1- M(in)) <o = Z,u(Bn)e_g"(B") < 0.

We will do so under the simplifying assumption that & < u(B,) for some
c € (0,1) and all large enough n. This assumption is not overly restrictive,
because if, on the contrary, u(B,) < £ for some c € (0,1) and infinitely
many n, then it is well known that we are in the p(He.a.(B)) = 0 case (see
[Ke, Proposition 12]).

To prove (1.21), note that from the basic inequality (1 — ) < e™*, which
holds for all z € R, we immediately get (1 — u(By))? < e~ 2B In view of
< < pu(By), this implies %(1 — ,u(Bn))g < ¢ u(By)e 2B and the claim
follows.

For the proof of (1.22), we utilize the comparison test to show that
convergence of the left series implies convergence of the right series. It suffices
to show

. p(Bp)e” 3+
lim sup T S

oo %(1_,“(311)) 2

Since n?/™ — 1 and u(B,) < 1, the above is implied by

eflu'(B")
lim sup — < 1
nreo (1 - M(Bn))

This follows from the inequality e=* < (1 — 2)'~¢, which holds for all suffi-
ciently small positive z.

Results similar to (1.20) are also established in [HKKP] for more general
interval maps T of X = [0, 1] with a Gibbs measure p on X and some addi-
tional regularity conditions (see [HKKP, Theorems 3.2 and 4.1]). In parallel,
results about the Gaufl map were also obtained (see [HKKP, paragraph af-
ter Corollary 2.5]): If X = [0, 1], T is the Gaul map, p the Gaul measure,
the targets B are as in (1.18), and n — nu(B,,) is eventually non-decreasing,



Zero—one laws for He., sets 775

then

full
Zu(Bn)e’”“(B") {< = He.a.(B) has { b measure.

= XX Z€ero

It seems plausible that the methods of [HKKP] are applicable to the set-
up of §1.2, and thus Theorem 1.2 can also be upgraded to a necessary and
sufficient condition.

2. General properties of H, .. sets

Before embarking on the proofs of Theorems 1.1, 1.2, 1.4, and 1.6, we gather
in this section some general results regarding H.. sets that apply to all
ergodic shrinking target systems. In Subsection 2.1 below, we show that all
He.o. sets obey a zero—one law. Thereafter, in Subsections 2.2 and 2.3 we
present general necessary and sufficient conditions for He 5. sets to have full
measure.

2.1. The zero—one law for eventually always hitting points

We begin with showing that H, . sets are essentially invariant, a result that
was obtained independently in [KKP].

Proposition 2.1. Let (X,u, T, B) be a (not necessarily ergodic) shrinking
target system. Then Heo. (B) is essentially invariant under T, that is,

(t(Hea. (B)AT " He o (B)) = 0.

Proof. Let Y :={z € X : Tx € B, for infinitely many n}. Since B, are
nested, we have that Y = .y T~'B, and, using u(B,) — 0 as n — oo,
it follows from the monotone convergence theorem that Y has zero measure.

We now claim that if 2 € Heo (B) \Y, then Tax € He o (B). To verify
this claim recall that

T € Hea(B) <=  Op(x)N B, # & for all but finitely many n.

Note also that O, (x) = {Tx} U O,—1(Tz). Therefore, if z ¢ Y, then O,,(z) N
B, is non-empty for cofinitely many n if and only if O,,—1(T'z) N B,, # & for
cofinitely many n. Hence

T € Hea(B)NY = Oy(x)N B, # @ for all but finitely many n
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= Op_1(Tx) N B, # @ for all but finitely many n
= Op-1(Tx) N B,—1 # @ for all but finitely many n
= O,(Tx)N B, # @ for all but finitely many n,

where in the second to last implication we have used that B,, C B,,_1. This
proves that if x € Hea (B) \NY then Tx € Heo (B). Therefore He o (B)
Y C T Hc.a (B). Since u(Y) = 0 and T is measure preserving, we conclude
that

p(Hea (BYAT Hea(B)) = 0.

This finishes the proof. O

In the presence of ergodicity, all essentially invariant sets are trivial.
Therefore Proposition 2.1 implies the following corollary.

Corollary 2.2. If (X,u,T,B) is an ergodic shrinking target system, then
He.o.(B) is either a null set or a co-null set.

2.2. General sufficient condition for [,L(He_a_(B)) =1

For m,n € N define
(2.1) Enm ={z:0n(z)N B, =},
which can also be written as
n .
(2.2) Enm =17 B,
i=1

Note that E, ,, € E,, for all m,n € N, and the sets E,, defined in (1.9)
coincide with E,, ,. The following result is taken from [Ke] and plays an
important role in our proof of Theorem 1.1:

Lemma 2.3 ([Ke, Lemma 13]). Suppose there exists a non-decreasing
sequence m; such that 322 u(Em; , m;) < co. Then 1(He.a (B)) = 1.

2.3. General necessary condition for u(’He,a,(B)) =1
The next result establishes a necessary condition for He. .. sets to have full

measure, conditional under the assumption that the sets E,, are asymptot-
ically independent.



Zero—one laws for He., sets 7T

Theorem 2.4. Let (m;)jen be a non-decreasing sequence and (X, p, T, B)
a shrinking target system with the property that

_25—t+2

(2.3) W(Em, N En,) < (1 + Ot%w(l))ﬂ(Ems)N(Emt)l
+ O(/J(Ems)vt)

where (vt)ien s a sequence of non-negative numbers satisfying Y, o ve < 00.
If 1(Hea.(B)) =1, then necessarily > o1 M(Em,) < oco.

For the proof of Theorem 2.4 we need the following lemma.

Lemma 2.5. Let0< ¢ <1 fori=1,...,N. Then

N N
_9on—m+42
> (wtk ™™ i) =0 (L)
m>n n=1

Proof. Recall Bernoulli’s inequality, which asserts that (1 + y)" — 1 < ry for
all € (0,1) and y > —1. If we apply this inequality with y = qu —1 and
r = 2"""*2 we obtain

gn-m+2 ) 1
e €
qm qm 2m—n—2q
This gives
N 1—9n—m+2 N 1 Qn_m+2
Z (Qan - Qan> = Z dndm (;ﬂ) -1
m>n m>n
N ¢ N
n
<Y it -o(Tu).
m>n n=1
O
Proof of Theorem 2.4. By  way  of contradiction, assume  that

> H(Em,) =00, Let 1;=1 E,, denote the indicator function of
E,,,, and define ¢; := pu(E,,,). Consider the normalized deviation

3

N
Zj:l 1 1

Dy = N
Zj:l 4q;
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Its L2-norm is
221{\;3 <1s —(qs, 14 — Qt> i Zj:l <1j — 45, 1j - Qj>
2 2
N N
(Zj:l & ) (ijl 4 )
o 221{,\;5 <18 — (s, ]-t - qt>
= . .
(Zhia)
_ 2 Zi\;s (,U/(Emb N Emt) - Qth)
= . .
(20)

Fix € > 0. As guaranteed by (2.3), there exists M € N such that for all
s,t € N with ¢ > M one has

IDN 13 =

+ 0N—>oo(1)

+ 0N—>oo(1)-

(B, O Ep) < (1+)gsq) 2 4 O(gswy).
Hence
23 Mcsctan qS‘Itlizsin(1+5)7qsqi+o(qsvt)
Iy < Besaled ot Hovatn
. 2(1+¢) ZM<s<t<N<q5qf17257t+27q5qt)
(Zj'\r=1 qj)2
+ S o (Mg romtt
20146) Sprcvcran (2002 —guae L
< M< <(2<:Z_( q]_)2 ) +e+0 <%) + 0N—>oo(1).

N
Since by assumption » 22, ¢; = 0o and Y2, vy < 00, the term O (%51 v,,)

AR
goes to 0 as N — oo. Also, using Lemma 2.5, we can control the term

_o5—t+2
2(1""5) ZM<5<t<N(qsqg 2 _QSQt)

(Zra)
Indeed,
2(14€) X prcscian (qsqi’zs_wr2 —qsqt> o 2(14€) X cacran (qsqig"s_wr2 —qsqt>
(Za) h (S a)”

= 2049 (S ai) | _ 1)
=0 < (Z;-vzl Qj)2 ) =0 ( é\’:l q;) = 0N—>oo(].)
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This proves that |Dyl|3 < € + on—00(1). Since € was chosen arbitrarily, we
obtain |Dyl|3 = oN—c(1). The decay of the L?>norm of Dy implies that
limsup Ey,, has full measure. Therefore p(limsup E,) = 1, which, in view
of (1.10), contradicts p(He.a.(B)) = 1. O

3. Proof of the main technical result

This section is dedicated to the proof of Theorem 1.1 and is divided into
three subsections. In Subsection 3.1 we study the asymptotic behavior of
p(Em,_, m,) for certain lacunary sequences (m;), which is needed for the
proof of Theorem 1.1 in combination with Lemma 2.3. In Subsection 3.2
we proceed to study the asymptotic independence of Ey,; along dyadic se-
quences (m;), which we need for the application of Theorem 2.4. Finally,
in Subsection 3.3, we combine all these results to finish the proof of Theo-
rem 1.1.

3.1. Estimates for the measure of Ey,;, | m;

Proposition 3.1. Let (X, u,T,B) be a shrinking target system satisfy-
ing (1.7). Let m,n,k € N with kn < m. Then

(3.1) 1(Ekn,m) = (1 + 0m—>00(1)) N(En,m)k + O(kF(m)N(Bm))'

For the proof of Proposition 3.1 it will be convenient to write £y, ,, for
the set

(3.2) o T E pnyms 0> F(m),
' o X, otherwise.

Note that Ej, ,, always contains E, ;, as a subset. This inclusion follows

quickly from the definition of E,, ,,, (see (2.1) and (2.2)), because

n n
Epm = (1T77B;, ¢ () T7Bf = T""™E,_riym = Ejm-
j=1 j=F(m)+1

In general, this inclusion is proper, and the sets E, ; and Ej ,, are not
identical. However they are approximately the same. Indeed, since we are
only interested in the case where the quantity F'(m) is much smaller than
m, the difference in measure between E, ,, and Ej; . becomes negligible (as
we will see in the proofs of Proposition 3.1 and Lemma 3.4 below). For that

reason, we suggest to think of E}  as an approximation of Ej, .
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The advantage of using Ey, ,,, over Ej ;, is that for any £ € N with £ >
n — F(m) and any set C' € =, one has

(3-3) \W(CNTE; ) — OBy < nlm)u(C)u(E; ),

which follows directly from (1.7) by choosing A = C' and B = E,,_p(m) m-

Proof of Proposition 3.1. Recall that E,, ,, = (i, T~B¢,. We can split off
the first F'(m) terms in this intersection and thus write £, ,, as the inter-
section of two sets,

min{n,F(m)}
(3.4) Ewm= (] T7'B; NE;,,
=1 J
R

where £ . is as defined in (3.2). We can think of £}, as the “main part”
of By, and of R as the “remainder”. Since

kn ' k—1 ' n ‘ k—1 '
Bpnn = (T77Bg, = (1 T7" (ﬂ TZBfn) = (T Enm,
j=1 =0 i=1 j=0
we can now write
k—1 ‘ k—1 '
W Eknm) = p ﬂ T 7" Enm | =p RN ﬂ T_JnE;,m )
j=0 Jj=0

where R’ := ﬂ;:é T~/"R. From this it follows that

k—1
(35) H(Ekn,m) S ﬂ Tﬁan;kL,m ’
=0

which provides us with a suitable upper bound on p(Eky, ). We also want
to find a good lower bound for j(Ejy, ). Observe that the measure of R
can trivially be bounded from below by 1 — F(m)u(By,). Therefore, we can
bound the measure of R’ from below by 1 — ku(R) > 1 — kF(m)u(Bp).
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This gives the estimate

k—1
W EBnm) =p | RO\ TE;
j=0

k—1
> | T7"E; | - kEm)u(Bu).
§=0

To finish the proof, we only have to apply (3.3) (k — 1) times to find that

k—1
—Jn x k—1 *
j=0
and
k—1 ‘ o1
(3.8) p | (T 7"E; | < (L4n0(m)" w(B; )"
7=0

Finally, since (B}, ,,) = pt(Epm) + O(F(m)u(By)), we obtain

(3.9) W(E; ) = () + O (RF(m)u(B)).

Putting together (3.5), (3.6), (3.7), (3.8), and (3.9) proves (3.1). O

From Proposition 3.1 we can now derive the following corollary.

Corollary 3.2. For any shrinking target system (X,u,T,B) that satis-
fies (1.7) and any m,n,k € N with kn < m,

1 (Einm) = (1 + 0m—>oo(1))ﬂ(E(k+1)n7m)’“L“ +0 <(kF(m)u(Bm))k%l> :

Proof. From Proposition 3.1,

#(Epnm) = (14 0(1) u(Epm)* + O(kF(m)u(Bm))
= (14 0(1) i(Enm) 1) + O(RF (m)u( B))

= (1 + o) i E g 1ynm) + O(KF (m)u(B)) ) 7

V(B 1) 21+ O (P (m)a(Bn)) 757 ).
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This finishes the proof. O

Proposition 3.3. Let (X, pu,T,B) be a shrinking target system satisfying
(1.7). Let k > 2, and define

k1)
m; =k {(HJ .
k2
Then

B,y m;) = (1 + Ojﬁoo(l))”(Emﬁhmj)k%l +0 ((kF(mJ)M(Bm,))%“) .

Proof. Set n; = {(kZ})QJ Then mj;_1 = knj_1. Observe that

and therefore knji1 — (k+ 1)nj—1 = O(k).

Observe also that (k+ 2)nj_1 = Z—ﬁ B+l m;_1, and hence [m;q — (k +

2)nj_1| is bounded from above by 2k. It follows that [mj;1 — (K + 1)nj_1| =
O(k), and hence

(B m;) = 1 Ekt1yn,_ym,) + O(kp(Bm,))-
In view of Corollary 3.2 we obtain
(B 1 my) = 1(Egn;_ym,)
= (1+ o) By tyn, )77 + O ((RF (my)u(Bn,))) T)
= (14 0(1)) (1B, m,) + O(kp(Bp,))) 7
+0 ((kE(m)u(B,,) )
= (14 0(1)) (B, )77 + O (K (my)u(Bon,)) T) ‘

This completes the proof. [l
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3.2. Independence of dyadic samples

Lemma 3.4. Let (X, pu,T,B) be a shrinking target system satisfying (1.7).
For every s € N let ms be a number in [25,25F1). Then, for all t > s,

(3.10) ((Em, N Ep,) < (1 + Ot%m(l))N(Ems)N(Emt)lizzﬁ

2s+2

+ O (1B ) (Flmo)n(Bu)' ).

Proof. It follows from the definition of E,,, and E,,, (see (2.1) and (2.2))
and the fact that B,,,, C B,,, that

En. NEy, =En NT "™ Ep,_m.m,-
Since Eyy,—m,m, is a subset of £, _ . . we trivially have

(3.11) p(Em, N Epy,) = p(Ep, NT™™ Emﬁms,mt)
< w(Ep, NT ™ E"

t_ms7mt)'

It follows from (1.7) that

(3.12)  w(Em, NT ™ E%, ) < (L4 00m0)) (B (B, . m,)-

Putting together (3.11) and (3.12) we obtain

(3.13) (B, N Em,) < (1 + 0(me)) (B )i Epy, . m,)-

Let k := |my/ms]| — 1. Since (3.10) trivially holds for t = s + 1, we can
assume that ¢ > s+ 1 and hence k # 0. In light of (3.13) we see that for the
proof of Lemma 3.4 it is beneficial to find a good upper bound on the measure
of the set £y, _,, ., , preferably in terms of the measure of E,,. In order to
find such an upper bound, we will first prove the following inequality:

n(Ey

1
)
My —Ms, My

1+ n(me)

(3.14) < By, m,)-

Since kmyj; < my —myg, the set B, ., is a subset of Ef .~ and

hence pu(E} ) < (B}, m,)- Therefore, (3.14) is implied by

My —M g, My

IU’(EZmS,mt)E < *

(3.15) Tt n(m) < (B, m,)-
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Note that
kmg
E;ms,mt = m T_ZBmt
i=F(m:)+1
m 2mg km
= (1 T7Bmn () T7Bmn--n () T7'Bp,
i=F(m;)+1 i=ms+1 t=(k—1)ms+1

(t+1)m ms
N T‘ZBmt c 7tms (1l T7'Bw | =T""E} ..
i=fms+1 i=F(m:)+1
This proves that
k—1
E;ms,mt C ﬂ T_gmsE:n Myt
(=0
If we now apply property (1.7) to u (ﬂ?;& T-mEr, mf) (k — 1) times, then
we see that
k—1 N
-1
=0

This completes the proof of (3.15), and hence also of (3.14).
Next, consider the trivial identity

w(Ez, o (T By,

(3.16) (B —mm,) = w(E m,)

Using (3.14) we get

w(Ep, o )T Er )
#(Eeimy)
1

< (L+n(ma)) u(Ery (T By )
< 1

1-+
Lt n(me) (1B T By )

(3.17)

Using property (1.7) once more, we conclude

(3.18) (B (T By 1))

Mg, My
1

< (1 + n(mt))/‘ (E:@S,mt N T_mSE:m—ms,mf,)l_k
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As in the proof of Proposition 3.1 (cf. equation (3.4)), we can use the relation

min{m:—ms,F(m:)}
B = () T B
i=1

t— M s, My

to obtain the estimate

min{m;—m,F(m.)}

U(E;u—ms,mt) — U T_iBmt < M(Emf,—ms,mt)'
i=1

Since M(Umm{m* maF(mo} - ‘B, ) F(my)p(Bm,) and  Epm,—m,m, C
E*

T —mmme s WE have

N(E:nt—ms,mtAEmz—mmmt) = O(F<mt)M(Bmt))'
In a similar fashion, one can derive

(E* AEms,mz) = O(F(mt)N(Bmt))

Ms,My
This gives

(E:n My nr=me E;vkztfms,mt)

= N(Ems,mt N T_msEmrms,mt) + O(F(mt),u(Bmt))
= ,UJ(Emt) + O(F(mt)U(Bmt))'

It follows that

B

(3.19) (g e VT ™ B )
= (B, ) 7% + O((F mt)u(Bmt))l_%)-
18) a

(
Combining (3.13), (3.16), (3.17), (3. nd (3.19) yields

W(Em, N Eny,) < (1+0tﬂw(1))ﬂ( ) ( mt)l
+ O ( (1B, ) F(m)pu(Bn,) ).

Finally, since k = |m;/ms| — 1 > 21/2571 — 1 > 2/25%2 one has

1 2s+2
1—-= > 1-—

This finishes the proof. O



786 D. Kleinbock, I. Konstantoulas, and F. K. Richter

3.3. Proof of Theorem 1.1

We need one more lemma before proving Theorem 1.1.

Lemma 3.5. Suppose that (1.8) holds for some 6 > 0 and all but finitely
many m € N. Let 0 > 1 and let (mj)jen be a sequence of natural numbers
such that

(3.20) mjq1/mj = o for all large enough j € N.
Define w; = F(m;)pu(Bm,). Then

Zw}‘? < 0

JEN
for all k > 26"

Proof. In view of (3.20), there exists some ¢ > 0 such that m; > co? for all
large enough j € N. Hence from (1.8) we can conclude that

1 1
J < (logmj)1+5 < j1+6

for all but finitely many j.

_k

Since ZJEN < 1+a> "< oo for all k with k > 2671, the claim follows. O
Proof of Theorem 1.1. First assume there exists € > 0 such that

l—e

Z N(E;;) < 00
n=1

By assumption, there exists 6 > 0 such that F(m) < (log1+5(m)M(Bm))
for all but finitely many m € N. Fix such a 6. Pick now k£ € N with 1/k <
min{e, 6/2}.
Next let (mj)jen be defined as in Proposition 3.3, that is, m; =
i (k+})%
Kkt
tion 3.3 with Lemma 3.5 we see that the series 3,y ft(Em,; ,,m,) converges

-1

. It is easy to check that (3.20) holds, and, by combining Proposi-

if and only if so does the series .y (1(Em, H,mj)k%l. We now have

oo

[e'e) 1—e
SMENT gy BT L s

n=1 J=1 n€lm;,m;i1) J=1
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For any n with m; <n < mj; 1 we have u(Ey,) > p(En,,, m,). Therefore

oo o)
E 1—e 1 B

SIS LS B

— n — i1

n=1 J=1 n€m;,m;i1)
S M s LSS e e
>3 T B ) 2 g 3 B

Jj=1 J j=1

where the last inequality follows because 1 — e < kiﬂ and % > ﬁ

Since > >7 % < 00, we conclude that » 22, M(Emjﬂ,mj)ﬁ < 00, and
therefore also > oy (t(Em, ;,m,) < 0o. In view of Lemma 2.3, this implies
that He.. (B) has full measure, which completes the proof of the first part

of Theorem 1.1.

For the second part, assume ) 7
be a number in [27,2/71) that satlsﬁes

o0 u(E)

= oo. For every j € N let m;

,U/(Emj) = max_u(Ep).

ne(29,29+1)
Then
00 00 o]
p(E 1(En) 1
5o S M) S LS ) <3 u(E)
n=1 7=0 ne 27 27+1 7=0 n€[2.772.7+1) 7=0

It follows that Y72, u(Ep,) = oc.
According to Lemma 3.4, for all pairs s,t € N with ¢t > s we have

(3.21) B, 0 Bin) < (1% 000 (1) 1 Br, Yt B )~
O (B ) (Fm)p(Bn)' ™).
Define v; := (F(my)u(Bm, )27, and set
wo,j = F(ma;)p(Bm,,) and wy ;= F(maj—1)p(Bm,,_,)-

Then we have

1_25+2—2j 1_25+3—2j
Dove = vy Y w1 = Y wg; + Y wi; :

teN JEN JEN JeN JEN
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Since wo; = F(ma;)iu(Bm,;) and mo(j11)/ma; = 2 for all j € N, it follows
from Lemma 3.5 that
1725#»2—2]‘
> W < 00

JjEN
In an analogous way, one can show that
1_25+3—2j
> wy; < o0.
JEN

Therefore, we have ), v¢ < 0o, which, in combination with (3.21), proves
that

(Em, N Eny,) < (1 + Otﬁm(l))ﬂ(Ems)N(Emt)1_2S_t+2 + O(N(Ems)vt)

where (v)ien satisfies ),y vr < 0o. Thus, by Theorem 2.4, we conclude
that ,u(?-[e,a, (B)) is not equal to 1. Since M(He.a. (B)) is essentially invari-
ant (see Proposition 2.1), we must have yi(He.o.(8)) = 0, which finishes the
proof. O

4. Shrinking target systems with independent targets
Let us now show how Theorem 1.2 and the corresponding Corollary 1.3

follow from the results we have obtained so far.

Proof of Theorem 1.2. If follows immediately from property (1.11) and the
definition of E,, (see (1.9)) that

m

N(Em) = (1 - //’(Bm))
Hence Theorem 1.2 follows from Theorem 1.1. O

Proof of Corollary 1.3. First assume for all but finitely many m € N that

> Cloglogm.

p(Bim) —

Choose any b € (1,C). Using the inequality (1 + x) < e*, which holds
for all real numbers x, we obtain (with = —(C'log(klogb/2))/|b*]) that
for all sufficiently large k,

| Cloglog|V*] L") _(,_ Cloglog(t"/?) L")
0% | b 0% |
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[6*]
oy Ces(t¥)
a [0%]

e_ClOg(%)

_ klogb
Se CIOg( zg ): kc

Then

m

(1 o Cloglogm)m(l_e)

m

L C'loglog|b* | L)1)
[b*]

Sete)

k=1

N

3
ﬂ‘
[ 1 [

i
I

o

Since Y7, ﬁ < oo for sufficiently small ¢, it follows from Theorem 1.2
that He .o (B) has full measure.

The second part follows from an analogous calculation where instead of
the inequality (1 + x) < e® one uses the inequality (14 z) > e*~*", which
holds for all z € (—1/2,0]. Indeed,

__ loglogm m
i W(Em) _ i (1= p(Bm)™ i (1 - ose)
m m m
m=1 m=1 m=1
(3] 2k 00 k
logk: 1 logk _ log2 k \ 2
>3 (15) ()
k=1 k=1
e
=3 1€ = 00
k=1
Therefore, by Theorem 1.2, He . (B) has zero measure. |

5. Bernoulli schemes and a proof of Theorem 1.4

In this section we give a proof of Theorem 1.4. Let (r,)nen and (X, p, T, B)
be as in Subsection 1.3. Given a point z € X = {0, 1}"{%} we denote by
z[l,...,n] the word z[1]z[2]...x[n].
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In order to derive Theorem 1.4 from Theorem 1.1 we first need to
understand the measure of the set L, = ﬂ?zl T—7B¢. Note that F, con-
sists exactly of all the points z € {0,1}N{%} with the property that
the word x[l,n +r,| does not contain r, consecutive zeros. To esti-
mate u(Ey), it will therefore be convenient to beforehand estimate the
average number of zeros in z[l,n+r,]. For each n>1 and z € X,
let V,,(x) := max{number of consecutive zeros in z[1,...,n|}. Let logyzx =

ﬁé 5. Our main tool is the following estimate from [FS].

Proposition 5.1 ([FS, Proposition V.1.]). Let a(n) = 218"} where
we use {.} to denote the fractional part of a real number. One has

(Vi < [loggn) 4+ h) =exp (— a(n)2_h_1) +0 <1(\)/gﬁn> .

Note that
(5.1) Enm={z € X : Voyr, () <rm}.
Using this, we can get the first order asymptotics for pu(E, m).

Theorem 5.2. One has

(o) = exp (= 2(Bun)) (1 + 0mosoo (1)) + O (ljﬁn) ,

Proof. We will write hy, p = rym — [logg(n + ry,)]. In view of (5.1),

log(n + rm)> ‘

H(En,m) = exp (*a(n + Tm)2_hn’m_1> +0 ( T

We can replace O (log(::%;)) with O (l(i}gf) Thus,

p(Enm) = exp ( —a(n + Tm)thn,mq) 10 <1c\);g;ﬁn>

= exp ( _ 2{10gz(n+7“m)}2*(7‘m*UOgQ(nJrrm)J)fl) L0 (lo\fglj)

=exp (- 210€2(n+rm)frmf1 (logn

1
= exp ( — (n A4 7py)2 < ogn
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|
:exp(_nszmfl) (1+0m_>oo(1)) +O < (i/g?zl>
n logn
— exp (—Eu(Bm)) (1+ 0moseo(1)) + O <n>
From this the claim follows. O

Choosing n = m in Theorem 5.2 yields the following corollary.

Corollary 5.3. One has

N

Remark 5.4. Theorem 5.2 can also be useful to estimate the measure of
sets of the from F, | n,, which are of interest because of Lemma 2.3. For
the proof of Theorem 1.4, which we will present at the end of this section,
we are particularly interested in the case where

() = 0xp (= Fi(B) (14 0o (1)) 4O (2521,

mj = [V

for some b > 1. In this case, it follows from Theorem 5.2 that

mj—1 ]
(5.2)  wW(Em,_,m,) = exp ( — JTM(BWJ)) (1 + 0m—>oo(1)) +0 <bJ) .
Since m;_1 > % for all but finitely many j as long as ¢ > b, we deduce from
(5.2) that

(53) 1By ) <50 (= ™ u(Bun)) (1 + 0mosoc(1)) + O <]>

2

for all ¢ > b.

Theorem 5.5. Let (X, pu, T, B) be a shrinking target system. If there exists
€ > 0 such that

S~ (L plB) "

m

< 00,
m=1

then there exists € > 0 such that

i exp (= 2u(Bm))'

m

< Q.

m=1
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Also, if
> (1_N(Bm))% _
= w
then
§ o0 (BB _

Proof. Using the basic inequality (1 4+ )" < exp(rx) (which holds for all x >
—1 and r > 0 and follows readily from In(1+ z) < z) it is straightforward
to show that

m

(1 - M(Bm)) 2 < exp ( - %,U/(Bm))

From this the implication

|3

(L p(Bw)* o~ P (= 5u(Bm)) _
2 =X

follows.
For the other implication, we can use the inequality

(5.4) (14 2)" > exp(rz),

which holds for every § < 1, all » > 0, and all non-positive = that are suffi-
ciently close to 0, where the closeness to 0 depends only on ¢ but not on r.
The validity of (5.4) follows from In(1 + z) > 6!z by exponentiating both
sides and then raising to the power of . Hence, for § = 11:55 we get that for
all but finitely many m

m(l—eg) ’

(1—u(Bn) 7 Zexp(—2uBw)

where ¢/ > 0 can be any number that is strictly smaller than . This implies

m(l—e)
2

1—¢’

< 0.

i (1- M(B;Ln)) e i exp (— 2pu(Bn))

m
m=1 m=1

O

Next, we will present a proof of Theorem 1.4. For the reader’s benefit,
let us briefly outline the main ideas behind the proof first. Recall that by as-
sumption either (1.13) or (1.14) are satisfied. We will show below that (1.14)
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forces conditions (1.7) and (1.8) to be satisfied for an appropriate choice of
F and 7, which will allow us to derive the conclusion of Theorem 1.4 from
Theorem 1.1. On the other hand, under the assumption (1.13) we cannot
guarantee that (1.8) is satisfied, because the measure of the targets B,
might not shrink sufficiently fast. In this case, instead of using Theorem 1.1,
our argument will build on Remark 5.4 together with Lemma 2.3.

Proof of Theorem 1.4. Let us first deal with (1.13). Let ¢ be such that
1 <c< D/2, and define n:= £ — £. Since u(B,,) > Mw for all
but finitely many m, it follows that Fu(Bn) = (c+ 2n)loglogm > (c +
n) log <logm2. Applying the map = — exp(—xz/c) to both sides of this in-

logc
equality yields

(5:5) exp (—gon(Bn)) < <1°gc >HZ

logm

for all but finitely many m. Let b € (1,¢) be arbitrary. After substituting

m; = |] for m in (5.5), we are left with

m; 1

2
Combining this with (5.3) shows that 3y u(Em, ,m,;) < oc. In light of
Lemma 2.3, this proves that He . (B) has full measure.

Next, we deal with (1.14). Pick F(m) = ry,, and n =0. Choose 6 > 0

sufficiently small such that 7 > %g. Since

1

p(Bm) logy (,U(Bm)

> < 1(Bm)'

for all but finitely many m € N (because lim;,_,o t(By,) = 0), we deduce
that

F(m)u(Bm) = p(Bm) logy (u(ém)>

1 \is 1
<uB) T —— ) <
#(Bm) <<logm>f) (logm) 1™

Hence F' satisfies (1.8). By construction, the shrinking target system also
satisfies (1.7). In light of Corollary 5.3 there exists a constant C' > 1 such
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that

logm
vm
m

< p(Em) < Cexp (= 5u(Bm)) +C

(5.6) Clexp (= 2uBy) —C

logm

NGD

holds for all but finitely many m. Since

Z logm <o
my/m ’

meN

we conclude that

(5.7) i pEm) _ i exp (— ;%H(Bm)) e

m

m=1 m=1
Then, using the inequalities 2'~¢ — y'=¢ < (z — y)'~¢ (which holds for all
x>y >0)and (z+y)' ¢ <2'7¢ 4+ y'~° (which holds for all z,y > 0), it
follows from (5.6) that

C e (= uBa)) - (

1—¢
m 1— logm
< Conp (- (b))~ + 0 (252)
Combining this with
1—¢
(logm>
sl

m

shows that we also have

0o e 00 ex m l1—e
(5.8) ZH(E;Z)l<oo = ) p (= 5n(Bn)) < 0.

m
m=1 m=1

Hence, in light of (5.7) and (5.8), Theorem 1.4 follows directly from Theo-
rem 1.1 together with Theorem 5.5. O

Corollary 1.5 can be derived from Theorem 1.4 the same way that Corol-
lary 1.3 was derived from Theorem 1.2. Therefore we omit its proof.
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6. The Gaufl map and the Gaufl measure

In this section let (X, u, T, B) denote the shrinking target system considered
in Subsection 1.4, where X is the interval [0,1], T": [0, 1] — [0, 1] is the Gauf}
map, p is the Gaul measure, and B = {B; D By D ...} is defined by (1.18).

We begin by showing that for this shrinking target system condition
(1.7) holds for any F'(m) that satisfies (1.8) and n(m) = O g( — Cy/F(m) ))
for some universal constant C' > 0. The following result of Phillipp will be
crucial for making this deduction.

Lemma 6.1 ([P]). There exists a constant X € (0, 1) such that for all k,n €
N, all sets of the form

A:{[CLl,(IQ,...] L al :Tl,...,an:rn}7

(6.1) .
where r1,...,r, € N are arbitrary,

and all measurable sets B C [0, 1] one has
W(ANT " B) = pu(A)u(B) (1 + O(AW)) .
From Lemma 6.1 we can derive the following corollary.

Corollary 6.2. Let O, be the o-algebra on [0,1] generated by all sets of
the form (6.1). There exists a constant X € (0,1) such that for all k,n € N,
all A € ©,,, and all measurable sets B C [0,1] one has

WANTFB) = pu(A)u(B) (1 + O(AW)) .
Proof. Fix k,n € N. Any set A € ©,, can be written (up to null sets) as a

disjoint union
A= 4
Jj€J
where J is either finite or countably infinite, and for each j € J the set A;
is of the form

Aj = {[al,ag,...} Lap = r§j),...,an = T%j)}
for some r&j), e ,r,(Lj) € N. In light of Lemma 6.1 we have

p(A;NT"*B) = u(Aj)u(B) (1 + O(/\\/E))
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for every j € J. Moreover, seeing that (A;);cs are pairwise disjoint and J
is countable, we have

w(A) =3 p(4)) and wANT*B) = u(4; N T B).
jeJ jeJ

The claim now follows. |

Recall that given n < m and a shrinking target B we have defined
the algebra =, ,, by (1.6). Since the o-algebra ©,, appearing in Corol-
lary 6.2 contains Z,,, as a sub-algebra, it follows from the conclusion
of Corollary 6.2 that (1.7) holds for any F'(m) that satisfies (1.8) and

n(m) =0 (( — Cy/F(m) )) for some universal constant C' > 0.

Proposition 6.3. For alln < m € N we have

(6.2) (1 - /;)n < 1(Bpm) < (1 _ km1+ 1>n.

In what follows, for any ¢ € [0,1] let M, : [0,1] — [0, 1] denote the map
M, (z) = tz. For the proof of Proposition 6.3 we will need the following
lemma.

Lemma 6.4. For all k € N and all measurable A C [0, 1] we have
(6.3) M([(), B0 TﬁlA) = (M, A).

Proof. Note that both A +— ([0, 2] NT"1A) and A — p(My,,A) are Borel
measures on [0,1]. To show that two Borel measures coincide it suffices
to verify equality for a family of sets that generate the Borel o-algebra.
In particular, instead of proving (6.3) for all measurable sets A C [0, 1], it
suffices to show

(6.4) p([0.4] N7 0.8]) = ([0, 7))

forall 0 <s< 1.
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Note that T710,s] = U,ey [725,2] and hence [0,+] NT70,s] =

n+s’n

Un>k [ L 1]. We conclude that

n+s’n

u([0.4]07710.5)) = 3 ([, ).

n=~k

Therefore we have

T de 1+4
11 1 1 n
il d) = [ 155 =tom () —tog (14 ) =g (11 ).
e n«lksl—i_x " e 1+n+8
An analogous calculation yields
w73 SD:/Z de =10g< L )
1 :
n+1’n ﬁ 14+ 2z 1+nj—1
Since
14) _mB w14
1 +s+1 Fs+1 s
1+ n+s nn—s‘rs nnj—l L+ n+1
it follows that
117y
wlmsal) = w72
Summing over n > k finishes the proof of (6.4). O

Proof of Proposition 6.3. Consider the set En,m = ﬂ?;ol T—'B¢,. Since
Eym=T _1E’n7m, and since the Gaufl measure p is invariant under T, it
follows that p(Ey.m) = p(Enm). Thus it suffices to prove (6.2) with B,
replaced by En,m- We will also make use of the fact that for any a € [0, 1]

and any measurable A C [0, a] one has

MA) gy A

(65) (1+a)(log2) log2”

Let us prove (6.2) (with E,,, replaced by E,,,) by induction on n. If
n =1 then (6.2) says

9 1
1- 2 <1-—uB,)<1- .
. p(Bim) p—

The validity of this statement for all m € N is straightforward to check using
A(Bm) = 1/kp, and (6.5).
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Next, let n > 1 and assume (6.2) has already been proven for n. Our
goal is to show that it also holds for n + 1. Using En+1 m =B NT~ lEn ma
we get

where the last equality follows from Lemma 6.4. Using (6.5), we can derive
an upper bound on the last term of the above displayed equation as follows:

3 . A(My 1., Epm)

M(En,m) - (Ml/km ) < M(En’m) - W
- MEnm) T + )(log 2)
B - 1 )\(En,m)
_M( nm)_km_‘_l. (10g2)
< u(Bnm) — ! (B m)

‘We conclude that

(6.6) M(En—f—l,m) < /‘(En,m) <1 - km1+ 1> :

In a similar fashion, we can also obtain a lower bound:

~ i . A(M 1., Enm)
WEnm) = (Mg, Enm) 2 p(Epm) — (I/OT
_ )
_ _ E M\ Enm)
= 1(En.m) (log 2)
B - 2 )\(En,m)
) S S 0n2)

> (Enm) — ]jn ’ N(En,m) = ﬂ(En,m) (1 - ;) .
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It follows that

(6.7) WBniam) > iBnn) (1= 2 ).

Combining (6.6) and (6.7) with the induction hypothesis finishes the proof.
O

Corollary 6.5. For every € > 0 the inequalities
(1- M(Bm))2(log2)(1+a)m < 1(Em) < (1- M(Bm))(logQ)(l—a)m
hold for all but finitely many m € N.
Proof. 1t follows from (1.19) that
1 _ (og2u(Bn) _
B e 1.
Since e — 1 = z + O(z?), we obtain

lin = (log 2)11(Brm) + O(1(Bm)?)-

This also gives

i1~ (08 2)u(Bu) + O(u(Bu)’).

Consequently, there exists a positive constant C' such that

2
1= 2(log2)p(Bm) = Cpi(Bm)* < 1= =
and
1
- <1 - (log 2)u(By, B,,)?
— (log 2)p(Bym) + Cp(Bm)

From (6.2) we then obtain

(6.8) (1 - 2(10g 2)(Bm) — Cp(Bm)?)" < p(Epm)
< (1 - (log2)p(Bm) + Cpu(Bm)?)".
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The claim now follows by taking m = n in (6.8) and applying the inequalities
(1—2)"049) <1 —rg — Cz? and (1 — 2)""9) > 1 — ra + Ca?,
which hold for all » > 0 and all sufficiently small positive x. O

Remark 6.6. We are also interested in estimating the measure of sets of
the form E,, | m,. In particular, if

mj = |V/]
for some b > 1, then the right-hand inequality in (6.8) yields

(1 o (log Q)M(Bm]) + O('L,L(ij)Q))mj—l
(1 (B ) 05

as long as ¢ > b.

Proof of Theorem 1.6. We begin with the case where there exists o < 1 such
that k,, < W for all but finitely many m € N. Let ¢/ be any number
satisfying o < 0/ < 1, and define C := Since p(Bp,) =
but finitely many m, it follows that

for all

a./
o log 2° k., log 2

o'loglogm  Cloglogm

B 2 pu—
#(Brm) omlog?2 m

Then, repeating an analogous argument to the one used in the proof of
Corollary 1.3, we can show that

Z (1 _M(ij))mj(log%/c < o0

JEN

for any b, ¢ € [1,C) with b < ¢, where m; = [b’]. In view of (6.9), this means
that > ey (Em, ,m,) < o0o. Using Lemma 2.3, we conclude that He.a (B)
has full measure.

Next, we deal with the case when there exists 7 > 0 such that k,, >
(logm)™ for all but finitely many m € N. Set F(m) := m,
and note that F'(m) converges to oo as m — oo, because of the assump-
tion that k,, > (logm)”. Moreover, F' satisfies (1.8) by construction and,
as explained at the beginning of this section, (1.7) is satisfied for n(m) =
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0) (exp (- CV/F(m) )) Here it is important that limy, o F'(m) = oo, since
this implies lim,,—,o 7(m) = 0. In light of Corollary 6.5 we have

< 00
m=1 m=1 m
as well as
~ (1 _ (B 2(log 2)(1+e)m 00 E
Z( 1{(Bm)) :wﬁzﬂ(m):w
m m
m=1 m=1
Hence Theorem 1.6 follows directly from Theorem 1.1. g

We omit the proof of Corollary 1.7, since, with the help of (1.19), it can
be derived from Theorem 1.6 in the same way that Corollary 1.3 was derived
from Theorem 1.2.

7. Further explorations and open questions

There are still a multitude of intriguing questions surrounding the behavior
of eventually always hitting sets. We begin with the following.

Question 7.1. Is it possible to upgrade Theorem 1.1 to include necessary
and sufficient conditions for Hea (B) to be a null/co-null set, perhaps with
some mizing condition different from (1.7)—(1.8)%

Another intriguing question concerns rotations on the torus. Fix « €
[0,1) and consider the shrinking target system where X equals the torus T,
the transformation is given by T'(z) =  + a mod 1, u is Lebesgue measure,
and

(7.1) B = (By) with B,, :={x € T: ||z|[r <¢(n)},

where ¥: N — [0, 1] is some non-increasing function. In this case, the set of
eventually always hitting points can be written as

(7.2)  Hea(B)={yeT: 1r<nkl£n |ka — y|lr < ¥(n) eventually always}.

In [KL] the Hausdorff dimension of He.a.(B) was computed for the cases
where ¥(n) =n~" for some 7 > 0. Closely related to the study of (7.2)
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are also questions regarding inhomogeneous versions of Dirichlet’s classical
approximation theorem addressed in [KW, KK].

As was mentioned in Section 1, Kurzweil [Ku] proved that when « is
badly approximable the hitting set H; o (B) for B as in (7.1) obeys the zero—
one law

Zd}(n) S0 Hi o (B) has O measure.
- =00 full

More recently, an extension of Kurzweil’s result to arbitrary o € [0,1) was
given by Fuchs and Kim [FK]:

> ('S mintvto ot ) { =

k=1 \ n=q -

< Hio.(B) has zero measure,
full

where py/qr denote the principal convergents of a.
By Corollary 2.2, we know that He . (B) also obeys a zero—one law. This
leads to the following question.

Question 7.2. For a fized o (at least in the case when « is badly approz-
imable) what are necessary and sufficient conditions on b so that the set
He.a (B) as in (7.2) is a null set (or co-null set respectively)?

Another classical type of shrinking target systems are S-transformations.
Let X = T and, for 8 > 1, consider the map T3(x) = Sx mod 1 alongside the
shrinking targets on the torus T given by (7.1). In this set-up,

(7.3)  Hea(B)={yeT: Hklil HTg(y)HT < 9(n) eventually always}.

1<

The Hausdorff dimension of the set Hc, (B) in (7.3) was studied in
[BL]. Unlike rotation by «, the map T} is highly mixing, which suggests the
following question.

Question 7.3. Does Tz and B as above satisfy condition (1.7), perhaps
with some additional assumptions on ¢

An affirmative answer to Question 7.3 could lead to a better understand-
ing of necessary and sufficient conditions for He 5 (B) in (7.3) to have full or
zero measure respectively, similar in spirit to Theorems 1.4 and 1.6.
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