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a b s t r a c t

Sound source localization (SSL) is the ability to successfully estimate the bearing and distance of a sound
in space relative to the sensing position and pose. SSL as a topic of interest for engineers often revolves
around the ability of robots to track other robots, human voices, or other acoustic objects. Common
approaches to this goal frequently use large arrays, computationally intensive and complex machine
learning methods, or require known dynamic models of a system which may not always be available.
In this work we seek to experimentally verify a solution to SSL using a minimal amount of inexpensive
equipment on a two microphone, or stereo, sensing platform. A previously developed Bayesian estimator
allows for localization of an emitter using easily available a priori information and timing data received
from the sensor platform. Our results show that our approach is accurate for the tested paths and that the
estimator can correct itself when dynamic assumptions are broken for short times due to hardware and
software limitations.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The ability to know where a sound originates in space, known
as sound source localization (SSL), has interested biologists for cen-
turies and roboticists for decades [27,34,22,15,26]. A large contem-
porary portion of this research in both biological and robotic
sensing revolves around the phenomenon of ultrasonic echoloca-
tion in bats [38,16,31], which is characterized not just by their high
frequency sensing but by their abilities of Doppler shift compensa-
tion [28], multiple target acquisition and tracking [12], and the use
of passive sensing to avoid jamming [6]. The feats of these small
mammals make them a unique source of inspiration, as we con-
tinue to push the boundaries of compact sonar and ultrasonic sens-
ing strategies for robotic systems.

Sonar or ultrasonic sensing systems are categorized as active or
passive, distinguished by the ultrasonic source they use to obtain
information from their environment [32,33]. Active systems use
projectors to transmit acoustic or ultrasonic pulses that reflect
off surrounding objects to transducers, which translate the data
to be used to localize the source of the reflections. The main advan-
tages of active systems are that the shape and transmission time of
the acoustic pulse are known to the sender, allowing for ranging
and echo classification to be more easily accomplished. Passive
systems rely on discriminating the transmissions or radiated noise
of a target of interest from background and self noise, losing the
advantages of prior knowledge of the signal. Passive systems do
have advantages in that they sense their surroundings without
revealing their position and they tend to be less directional than
active systems. While there has been more research into stereo
passive SSL in recent years, [4,39,14], there are still many interest-
ing questions left to answer. The system used in this paper is a
stereo, passive, ultrasonic sensor, enabling us to explore a chal-
lenge not previously investigated, by removing the ability to use
triangulation for SSL from multiple sensors.

For SSL to be successful, two main questions must be answered:

1.What is the bearing of the source with respect to the sensor?
2.What distance is the source from the sensor?

The bearing of ultrasonic sources, or direction of arrival (DOA),
estimation is the easier of the questions to answer via interaural
time difference (ITD) [19,4,13], or complex interaural level differ-
ence (ILD) [24,25]. For single ultrasonic sources, a reliable and rel-
atively simple method of DOA estimation is the use of generalized
cross correlation with phase transform weighting prefilters (GCC-
PHAT) where the time of maximum correlation is the delay
between the sensors [18]. This process can be used in a stereo
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setup but does not solve the confounding factor of the so-called
‘cone of confusion’ [34], which arises due to the geometry of the
stereo array creating identical time delays between the semicircles
separated by the array plane. This can be solved by breaking the
symmetry of the array through rotation or using an artificial head
in conjunction with a head related transfer function (HRTF)
[8,23,4,39,35,14].

Distance estimation has been solved with a number of solutions
including: triangulation using time difference of arrival (TDOA)
measurements from three or more microphones, direct-to- rever-
berant ratio estimation techniques, and learning based approaches
[26]. These techniques work successfully but can have limits
dependent on the size of the equipment, a priori information about
the operating environment and dynamics of emitter if motion is
involved, or available computing power.

By repeatedly performing SSL, its functionality as a way to track
a dynamic emitter becomes apparent. One of the most popular
estimation techniques used for localization and tracking is Kalman
filtering (or its nonlinear counterpart extended Kalman filtering,
EKF). In [36], a three-dimensional human tracking system is cre-
ated using fused data from a monocular camera and ultrasonic sen-
sor in an EKF. Recent work in [9] uses an EKF with time delay of
arrival estimation to show a minimum of 4 distributed agents, con-
nected via a communication network, are needed create a generi-
cally observable localization process where each agent can
accurately track the target. An EKF is also employed in [39] to track
multiple sources using ITD and head rotation data. Many other
tracking methods and analyses can be found in the review papers
[2,10]. We fill a gap in the research by showing that it is possible to
localize an ultrasonic source with an EKF-style algorithm, using a
static stereo sensor, and without the need for the previously dis-
cussed HRTFs or machine learning algorithms.

The work presented in this paper is a proof-of-concept experi-
mental investigation into performing SSL with minimal a priori
information and an inexpensive stereo sensor. Here, we use a cus-
tom sensor to generate data used by an EKF-style estimation algo-
rithm presented in [30]. This paper builds upon our previous work
in [5] in three main ways:

� We introduce an improved sensor platform which contains a
hardware filter and noise-protected design.

� The ability to measure the time between received pulses has
been added to the sensor, allowing us to use the full algorithm
developed in [30], which was lacking in [5].

� A new circular experiment platform allows us to hold to the
necessary assumption of constant sound source speed for longer
periods of time compared to [5] and observe how the sensor
and algorithm perform.

To enable the estimation of range we assume that the source
has known constant speed v and emission interval D (here after
referred to as inter-pulse time (IPT)). These conditions may be
achievable in a situation where multiple, cooperating, echolocating
robots are implemented. Given the assumptions above, we show
that it is possible to localize a source in the horizontal plane with
unknown dynamics using our stereo sensing system.
Fig. 1. A schematic of the noncentral experiment setup with a radius 0.668 m. The
current position of the emitter is represented as point A at time step k with B and C
being potential positions for the emitter at time step kþ 1. Position O is the origin of
the array with the left and right microphones being respectively represented by L
and R. The 0.1692 radian areas where the sensor is blind are shown by the striped
area.
2. Dynamic model

Toward performing this estimation, we note that the travel time
of signals reaching the sensor is related to the velocity of the
source relative to the sensor due to the Doppler effect. When the
emitter is moving at a fixed distance from the sensor, the measured
inter-pulse time (IPTz) is the same as the true IPT; if it is moving
towards or away from the sensor, IPTz decreases or increases
2

respectively. By assuming the IPT, D, is constant and known, it is
possible calculate distance information from the source. By record-
ing the time between two sensed pulses Dk and having a current
estimate of the source distance xk, at time step k, we can use the
following relation to estimate the distance at the next time step:

xkþ1 ¼ xk þ c Dk � Dð Þ þ mk; ð1Þ
where c is the speed of sound in air (taken as 343 m/s) and mk is the
process noise, assumed to be a zero mean random variable that is
independent from the states of the system with realizations gener-
ated independently at each time step.

A schematic of the experimental setup with source motion is
shown in Fig. 1. The source is moving around the sensor at speed
v. At time step k, the source is located at A and emits a pulse; it con-
tinues to travel along the path for time D to location B where emits
a second pulse. Using the triangle OAB formed by the two emission
locations and sensor position, the rule of cosines can be used to
find:

vDð Þ2 ¼ x2kþ1 þ x2k � 2xkþ1xk cos hkþ1 � hkð Þ: ð2Þ
where hk is the bearing of the source with respect to the direction of
the sensor at time step k. Manipulating this equation allows us to
solve explicitly for hkþ1 and define a measurement model as:

hkþ1 ¼ hk � cos�1 x2kþ1 þ x2k � v2D2

2xkþ1xk

 !
þxk; ð3Þ

where xk is the measurement noise, assumed to be a zero mean
random variable that is independent from the system states and
generated independently at each time step. It should be noted there
is a sign uncertainty present in (3) which can be resolved by choos-
ing whichever sign minimizes the error between the outcome of the
measurement model (3) and the measured bearing angle at kþ 1
[30].

As the sensor only measures ITD, we convert to a bearing angle
measurement by:
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hk ¼ cos�1 cs0
f sd

� �
: ð4Þ

where s0 is the ITD of the source in samples, f s is sampling fre-
quency, and d is the inter-microphone distance [13]. This is devel-
oped from the assumption that the incoming signal is a plane
wave, allowing for the use of the geometry between the micro-
phones and the wave to calculated the bearing of the signal.

The above calculations are built on the assumption that the sen-
sor in operating in the far field of the emitter, meaning the signal
can be assumed to be traveling as a plane wave. As discussed in
[26] the assumption of far-field operation ‘‘greatly simplifies the
mapping procedure between feature and location”, though one
must take care to not enter the near field while using a strictly
far-field model due to the change from planar to circular sound
waves decreasing SSL performance [1]. According to [17], for plane
piston transducers, the far field region can be approximated by
r � a2=k, where r is the distance between the source and the sen-
sor, a is the radius of the source’s transducer, and k is the wave-
length of the signal. For our experiments,
a2=k ¼ 0:0192=0:007 ¼ 0:0516 m and the minimum distance
between the source and sensor happens when the sensor is non-
central with the emitter directly behind the sensor, where
r � 0:25 m. At just under five times greater than the requirement,
the sensor should always operate under the far field assumption.
3. Methods

3.1. Stereo microphone array

The sensor used for these experiments is an updated version of
the sensor found in [5]. Data collection is done with a Teensy
microcontroller (Teesny 4.0, PJRC, USA) in conjunction with two
Dodotronic Momimic analog ultrasonic microphones (Momimic
Analog Microphone, Dodotronic, Italy), see Fig. 2. To help decrease
noise and unwanted signals, both microphone outputs are con-
nected to a 4th order low-pass Chebyshev filter with cutoff fre-
quencies above our Nyquist frequency of 100 kHz and an RC high
pass filter to reduce effects of noise below ultrasonic frequencies.
Fig. 2. The sensor, with microphones connected to stalks at bottom of photo, and
emitter, in the blue and red box in upper right, used during testing.

3

The inspiration for this sensor comes from the frequency ranges
and shapes of the calls of echolocating bats [28]. The Teensy’s
ARM Cortex M7 CPU can operate both of its analog-to-digital con-
verters at sub 2 ls speeds while also measuring time between
pulses down to 0.0001 s, a feat the sensor had not yet been pro-
grammed to do in [5]. This allows measurements of signals with
frequencies beyond 20–60 kHz (most commonly used by insectiv-
orous bats that hunt in mid air [11]) and detection of distance
changes at reasonably low speeds. It further enables us to remove
the assumption of a quasi-static sensor as done in [5].

As the sensor is stereo, all measurements will suffer from front-
back ambiguity (i.e. cone of confusion [34]), but it is well docu-
mented that this ambiguity can be resolved by rotating the array
and accounting for this rotation in the dynamic model of the sys-
tem, see for example [14,39,23]. As this sensor will eventually be
mounted on a robotic platform with all the associated complexity,
we chose to keep the sensor static and post process the data
accordingly.

3.2. Linear MMSE estimation algorithm

A full derivation of the algorithm can be found in [30]; here we
will briefly discuss the main ideas about how we can linearize the
problem to make use of a linear minimum mean square error
(MMSE) estimator. To initialize the algorithm at time step k ¼ 0,
we define a rough initial estimate of the range (state) using:

x0 ¼ vD
jdhj ð5Þ

and the initial state error covariance as P0 ¼ vD, as done in [30]. To
simplify notation we will express the dynamic model (1) as:

xkþ1 ¼ f xk; mk; zpkþ1

� �
; ð6Þ

where xk is the stochastic state vector, mk is the process noise vector,
and zpkþ1 is IPTz, a deterministic value. The measurement model (4)
will be expressed as:

zckþ1 ¼ h xkþ1; xk; zck
� �þxk; ð7Þ

where zck is the measured bearing used for the correction of the pre-
dicted state, and xk is the zero mean, independent measurement
noise at time step k.

The linear MMSE algorithm estimates the state at the next time
step as in [3]:

x̂kþ1 ¼ �xkþ1 þ PxzP�1
zz zckþ1 � �zckþ1

� �
; ð8Þ

Pxx ¼ Pxx � PxzP�1
zz P

T
xz; ð9Þ

where x̂kþ1 denotes the estimated state and is equal to the expected
value of the posterior distribution of x; �xkþ1 denotes the predicted
state and is equal to the expected value of the prior distribution
of x; zckþ1 is the measured bearing angle, and �zckþ1 is the predicted
measurement. The covariance of the predicted state, predicted mea-
surement, and between the predicted state and measurement are
represented as Pxx; Pzz, and Pxz, respectively. Finally, Pxx shows the
covariance of the estimated state.

To calculate all the unknown terms of Eqs. (8) and (9), one can
perform a Taylor expansion of Eqs. (6) at the point x̂k;0ð Þ:
xkþ1 ¼ f x̂k;0; z

p
kþ1

� �þ Fk xk � x̂kð Þ þ Ckmk: ð10Þ
where Fk and Ck are the partial derivatives of f with respect to xk
and mk, respectively, evaluated at the point x̂k;0ð Þ. Then, assuming
independent zero-mean process and measurement noises, the pre-
dicted state and its covariance can be calculated using this lin-
earized model prior to measurement zckþ1 as:
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�xkþ1 ¼ E �xkþ1jZk; zpkþ1

h i
¼ f x̂k;0; z

p
kþ1

� �
; ð11Þ

Pxx ¼ E xkþ1 � �xkþ1ð Þ xkþ1 � �xkþ1ð ÞT jZk; zpkþ1

h i
¼ FkPxxF

T
k þ CkQkC

T
k ;

ð12Þ

where Zk denotes all the measurements received before time step
kþ 1 and Qk is the process noise covariance. Similarly, linearizing
Eq. (7) about point �xkþ1; x̂kð Þ yields:
zckþ1 ¼h �xkþ1; x̂k; zck

� �þ Hk xkþ1 � �xkþ1ð Þ þ Hk xk � x̂kð Þ þxk ð13Þ

where Hk and Hk are respectively the partial derivatives of h about
hkþ1; x̂kð Þ with respect to xkþ1 and xk. Finally, taking the expected
value of Eq. (13) and using the definition of the covariance, we
can find the following expressions:

�zckþ1 ¼ h �xkþ1; x̂k; zck
� �

; ð14Þ
Pxz ¼ PxxHT

k þ FkPxxH
T
k ; ð15Þ

Pzz ¼ HkPxxHT
k þ HkFkPxxH

T
k þ HkPxxHT

kF
T
k þ HkPxxH

T
k þ Rk; ð16Þ

where Rk denotes the covariance of the measurement noisexk. One
iteration step is summarized in Algorithm1.

An interesting confounding factor, caused by the physical rela-
tionship between the distance between the microphones and the
maximum ITD measurable, created sections of space where the
assumptions of the algorithm appear to not be followed in the col-
lected data, see the red striped areas in Fig. 1. These blind spots
force data that should be closer to 0 or p radians to appear at the
Fig. 4. Raw measured bearing angle (yellow starred line ranging from [0.0846, 3.057
�3.057 rad). Blind spots are illustrated by the shaded areas covering [�p;�3.057] rad an
position update of the algorithm that the raw angles are compared against. Increasing /
points outside of range is ignored.

Fig. 3. Experimental setup in anechoic chamber. The emitter on the rotary base is
circled in solid red, the hanging sensor is indicated by a dotted blue circle, and the
Arduino controlling the motor is indicated by a dashed yellow circle.
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maximum or minimum values the sensor can represent, in turn
causing the algorithm to believe the source is at a different bearing
than it really is. The result of these artifacts is errors in distance
estimation at these extremes. With a maximum measurable of
ITD of �104 samples, a sampling frequency of 200 kHz, and a
microphone separation of 0.179 m, the sensing gap on each side
of the sensor can be found by doubling the value of (4), producing
a blind spot of 0.1692 radians (or 9.6931�). To combat incurred
blind spot errors, we implemented a solution that ignores the cor-
rection step of the algorithmwhen the sensor measures data inside
blind spots referred to as threshold /. As seen in Fig. 4, a larger /
lessens the amount of data points that are considered to be useful
information. This decrease in effective data is offset by the ability
to avoid larger tracking errors introduced by said data. It is impor-
tant to note that these data points are not removed from the data
pool, instead their corresponding range update is based solely on
(1); we refer to these data points as rejected.
] r
d [
br
Algorithm1 Linear MMSE Iteration
ad) compared to adjusted bearing angle (purple squared line
�0.0846, 0.0846] rad. The dashed lines represent the cutoff of /
ings these lines closer together, meaning the distance correctio
ranging betw
for accepting
n of any raw
INPUT:

x̂k; Pxx; zk; zkþ1ð , /Þ
PREDICT: � �

�xkþ1 ¼ f x̂k;0; z

p
kþ1
Fk ¼ @f
@xk

j x̂k ;0ð Þ,Ck ¼ @f
@mk

j x̂k ;0ð Þ

Pxx ¼ FkPxxF

T
k þ CkQkC

T
k

CORRECT:� �

�zckþ1 ¼ h �xkþ1; x̂k; zck

Hk ¼ @h

@xkþ1
j �xkþ1;x̂kð Þ, Hk ¼ @h

@xk
j �xkþ1 ;x̂kð Þ
Pxz ¼ PxxHT
k þ FkPxxH

T
k

Pzz ¼ HkPxxHT
k þ HkFkPxxH

T
k þ HkPxxHT

kF
T
k

þHkPxxH
T
k þ Rk � �
x̂kþ1 ¼ �xkþ1 þ PxzP�1
zz zckþ1 � �zckþ1
Pxx ¼ Pxx � PxzP�1
zz P

T
xz
CHECK:�

if zckþ1 < /Þj x̂kþ1 < 0ð Þ

x̂kþ1 ¼ �xkþ1
Pxx ¼ Pxx
else � �

x̂kþ1 ¼ �xkþ1 þ PxzP�1

zz zckþ1 � �zckþ1
Pxx ¼ Pxx � PxzP�1
zz P

T
xz
een
the

data
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3.3. Experimental setup

To properly test the performance of the sensor with minimal
interference, data was gathered in a full anechoic chamber, see
Fig. 3. The emitter built for the experiments used a SensComp
SMT 6500 Ranging Module to produce a 50 kHz signal output to
a SensComp Series 600 Instrument Grade Ultrasonic Transducer.
This emitter has a minimum transmission sensitivity of 110 dB at
its operating frequency and a maximum operating range of
10.7 m [29] meaning the signal received by the sensor at any point
of the emitter’s path, which ranges between 0.25 m - 1.25 m, will
be well above any noise present in the anechoic chamber ensuring
accurate measurements. Emission timing was controlled by an
Arduino Micro, allowing for easy changes to IPT between experi-
mental trials. The emitter was attached to a 0.668 m rotating
arm, with constant angular speed set via an Arduino Uno running
a PI controller. A circular path was chosen as it provided numerous
benefits:

� It allowed for the speed assumption to be met within a compact
space.

� It provided a known trajectory to discern from tracking results.
� We were able to observe the behavior of the sensor and algo-
rithm for longer periods of time without breaking assumptions
as was done on the linear track in [5].

The sensor was hung over this setup, ensuring that the incom-
ing signal was not interrupted by the base of the rotating arm.

Three parameters – IPT, speed, and sensor location – were var-
ied across nine runs of the experiment. IPT was varied between
0.15 and 0.2 s, providing a way to investigate tracking performance
at different measurement update periods. The speed of emitter
rotation was varied between 12, 15, and 18 rotations per minute
as the increased speed of the source means IPTz can reach a greater
range of values (e.g. pure linear motion towards the center will
result in a smaller IPTz the faster the emitter is moving). This
greater range of values may make it easier to estimate changes
in distance, using (1), when the motion of a source is close to radial
about the sensor due to the smaller difference between IPTz and
IPT. Multiple combinations of both parameters were tested with
the sensor at a central and noncentral location, allowing for the
investigation of two movement patterns. A centralized sensor posi-
tion produces the simplest trajectory for tracking as both change in
bearing angle and IPTz should stay constant, other than the effects
of noise and imperfect centering between each sample. Noncentral
positioning causes these measurements to vary, creating a model
closer to arbitrary movement that upholds the assumptions of
the algorithm. See Table 1 for the tested parameter combinations.

To initialize the tracking algorithm, statistics for the measure-
ment and process noises must be calculated and tuned. Measure-
ment noise was calculated by averaging standard deviations for
both bearing angle and IPTz for twenty repetitions of measure-
ments at six positions around the sensor. Regarding process noise,
an important difference between [5] and this work is that the dis-
tance model (6) does not assume a pseudo-stationary source,
which implies zero-mean uncorrelated Gaussian process noise
would no longer have an effect on the filter performance. To choose
Table 1
Experiment Parameters.

Sensor location Central Noncentral

Interpulse time [s] 0.15, 0.2 0.15
Speed [rpm] 12, 15, 18 12, 15, 18

5

the process noise covariance, we used the knowledge of the speed
of the source v and IPT D to estimate the change in distance of the
source as dr ¼ vD cos að Þ. Here, a is the angle between the path of
the source and the line segment from source to sensor at time step
k, see Fig. 1. If we have no knowledge of the next position of the
source and assume it is performing a random walk then a becomes
a random variable sampled from a uniform distribution with zero
mean and standard deviation vD=

ffiffiffi
2

p
. As this is a practical imple-

mentation of the system, it can be assumed a smooth path is fol-
lowed compared to a true random walk. Therefore, we choose to
tune the standard deviation further to be vD=3

ffiffiffi
2

p
, making the pro-

cess noise covariance:

Q ¼ vD
3
ffiffiffi
2

p
� �2

ð17Þ
3.4. Data processing

When a signal of interest is detected by the Teensy, it sends the
IPTz along with 20 ms of data from both microphones, starting at
the time the signal was first detected, over serial USB to a laptop
running a script to adjust and analyze the signals. The data is split
into left and right channels, normalized, then an absolute voltage
level is used to determine the start point of the signal in each
microphone from which the ITD is calculated. While it would be
more rigorous to use a form of weighted cross correlation such
as the generalized cross-correlation phase transform algorithm
found in [18] to determine ITD, a minimum voltage level and sam-
ple time difference proved to be accurate enough for our needs, as
we are in an anechoic chamber with the emitter pointed generally
towards the sensor at all times. The bearing estimate is calculated
using (4) which produces an angle estimate that is bounded
between [0, p]. Due to our sensor position being fixed and the algo-
rithm expecting bearing data to correspond to a full circle, the
slope of the data is used to adjust the bearing range to [�p;p]
where decreasing bearing data is made negative, allowing us to
simulate what the data would look like if the sensor did rotate.
An example of this adjustment is shown in Fig. 4. This data was
combined with the IPTz as the measurement matrix used for track-
ing at each time step. While data collection and processing was
performed online, tracking at each time step was performed offline
to simplify analysis. Timing measurements were performed for
both data adjustment and algorithm calculations and it was found
that the scripts are fast enough to be implemented online in future
versions of the sensor.

To evaluate performance of the sensor and algorithm in localiz-
ing the source, we use the measured true path to calculate the root
mean square error in the estimated range over the length of each
trial. We define the metric as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

x̂k � xkð Þ2
vuut ð18Þ
Table 2
Process Noise Covariance (Q).

Speed [rpm] IPT [s] Q

12 0.2 1.6	10�3
15 0.2 2.4	10�3
18 0.2 3.5	10�3
12 0.15 8.81	10�4
15 0.15 1.4	10�3
18 0.15 2.0	10�3



Table 3
Experimental Results: Position of sensor is either central (C) or noncentral (NC) in the first column with speed and inter-pulse time of the emitter shown in the next two columns
respectively. In the following columns the root mean square error (RMSE) of the predicted distance to the true distance is show next to the percentage of updates rejected for each
run. The degree values represent the threshold /, centered around 90� and 270� from the front of the sensor, where the distance update was rejected.

Position Speed [rpm] IPT [s] RMSE(0�) Reject%(0�) RMSE(30�) Reject%(30�) RMSE(50�) Reject%(50�)

C 12 0.20 0.14 0 0.14 12.93 0.09 27.21
C 15 0.20 0.33 1.78 0.31 9.47 0.08 26.63
C 18 0.20 0.19 1.02 0.17 9.18 0.11 26.53
C 12 0.15 0.78 1.00 2.82 10.0 1.01 26.00
C 15 0.15 0.14 0 0.12 12.27 0.08 26.38
C 18 0.15 0.2 0 0.17 8.96 0.11 26.87
NC 12 0.15 0.17 1.00 0.16 9.50 0.15 24.5
NC 15 0.15 0.17 0.61 0.15 10.91 0.14 24.85
NC 18 0.15 0.18 0.61 0.18 12.27 0.17 25.15

Fig. 5. Tracked paths of the emitter rotating at 15 rpm for central tracking at IPT = 0.2 s (A,D,G) and IPT = 0.15 s (B, E, H) and noncentral tracking at IPT = 0.15 s (C,F,I). The
sensor’s position and direction are represented by the triangle, blue squares are the estimated positions, and the light blue dashed line represents the true path of the emitter.
The yellow shaded region is used to illustrate the 
10� blind spots of the sensor while the green shaded region represents the extended area of / which increases along each
column [0� , 30� , 50�].
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Fig. 6. Unwrapped state error covariance for trials at 12, 15, 18 rpm with IPT = 0.2 s for two rotations. (A) shows raw covariance for each iteration and (B) shows the
associated covariance when the extended blind spots are introduced, at each measured angle.
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where x̂k is the estimated range, xk is the true range and N is the
total number of samples.

4. Results

The motion of the emitter is illustrated in Fig. 4. Starting just
behind the left microphone of the sensor, the slope of the data
increases as the emitter moves around the backside of the sensor
to the right microphone; likewise as the slope decreases the emit-
ter is moving in front from right to left. The emitter moves on the
track with constant speed and emits a 50 kHz tone with a pulse
interval of either 0.2 s or 0.15 s, see Table 1. The inter-
microphone distance of the sensor is 0.179 m and it is facing down-
ward and orthogonal to the emitter’s plane of motion. The process
noise covariance calculated from (17) depends on speed and IPT
and can be found in Table 2 while measurement noise covariance
was estimated to be 1:21	 10�4 rad2 for bearing measurements
and 1:163	 10�7 s2 for the IPT. For this section, we will graphically
follow runs of the experiment when the emitter was traveling at
15 rpm. Relevant information for all runs is found in Table 3.

Two features are common between all runs of the experiment.
The first, seen across the first row of Fig. 5, is that the jumps in dis-
tance estimation away from the true path occur near the blind
spots of the sensor. These errors are lessened and shifted by the
introduction of /, a phenomenon most easily visible down the first
column of Fig. 5. The second is the cyclical nature of the covariance
which can be seen in Fig. 6. The covariance begins to settle and hits
a low point a sample before the emitter enters the sensor’s blind
spot and then jumps up just after the blind spot as the algorithm
works to correct itself.

Corresponding covariance time series for all runs shown in
Fig. 5 can be found in the appendix.

4.1. Central sensor

The central sensor configuration consists of six of the nine runs
conducted, see Table 3. Fig. 5(A) shows the tracked path of the
emitter with an IPT = 0.2 s and (B) shows the path of the emitter
with IPT = 0.15 s. For all but one of the tested cases, setting / ¼ 30�

on each side produces little quantitative change in RMSE but does
create a visible qualitative change in the tracked path, pushing
7

errors closer to the true path of the emitter. The introduction of
/ ¼ 50� produces a greater reduction in RMSE while also leading
to a range update rejection for just over 25% of the points for each
trial.

The experimental trial, with a speed of 12 rpm and IPT of 0.15 s,
stands out as an anomaly with a raw RMSE of 0.78 m. The RMSE
also increases significantly at / ¼ 30� to 2.82 m and doesn’t drop
below its 0� value at the greater / ¼ 50�. It was found that this
error was introduced by a incorrectly estimated bearing measure-
ment soon after the blind spot, see Fig. A.8 in the Appendix.

4.2. Noncentral sensor

The noncentral sensor trials did not experience the drop in
RMSE from varying / at the level the centered trials did. Data in
the last three rows of Table 3 shows / having only a slight effect
on decreasing the RMSE value by at least 0.02 m. These results
can be seen qualitatively in the last column of Fig. 5 where even
the raw tracking of (C) does not have the large errors of (A) and
(B) due to the blind spots.
5. Discussion

From these results, we find that the stereo sensor measures
bearing and ITPz accurately enough to track the source and correct
error, even with blind spots that disrupt the assumptions of the
algorithm. It is known that the performance of linear MMSE filters
depends on the accuracy and confidence of the initial guess [3]. If
the initial guess is highly inaccurate, the algorithm may never con-
verge or at best converge to an incorrect value. For all above trials,
we set the initial estimated range to be 1 m for clarity of plotting,
though tests showed that the algorithm can still converge with a
initial range ten times the actual value, see Fig. A.9 in the Appen-
dix. In the noncentral case, introduced errors such as those
described above seem to have less of an effect on the accuracy of
the algorithm. We interpret that this is due to the area of the blind
spots being related to an angle instead of a length of area that can-
not be observed, see Fig. 1. Due to this, the closer the source is to
the sensor the less time it spends operating in the blind spot areas,
thus reducing the amount of time we are operating outside of our
assumptions.
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The estimation covariance never fully settles as the algorithm
converges and its confidence seems to be tied to behavior around
blind spots, see Fig. 6. As the EKF is known to have problems show-
ing overconfidence in estimations [3], the low covariance after the
blind spot in Fig. 6(A) could be due to the interruption of our
assumptions, causing the algorithm to believe it is more accurate
than really is and have to compensate when the sensor is once
again following the assumptions. Looking at Fig. 6(B), we see the
effects of / on the state error covariance. As we are only using
the prediction of our next covariance in this area, the covariance
continues to rise as long as the data received is within the bounds
of /. Once the sensor is outside / the covariance corrects back to
expected levels.

An interesting question arises when comparing tracking perfor-
mance to the speed and IPT relationship. When the source is on a
rotating path and the sensor is placed in the center, it becomes
possible to calculate a ratio of emissions per rotation (or per some
unit length). While the majority of results follow the same trends,
it may be possible that there exists a ratio that produces optimal
algorithm performance that could translate to arbitrary path
tracking.

The cause of the bearing estimation error of trial 4 in Table 3 is
not immediately clear. Some possible sources of the error include
an undefined echo from the equipment setup or simply an error
in our time delay estimation calculation. This error does introduce
a need for a more robust time delay estimation calculation for later
experiments such as the GCC-PHAT technique described in the
introduction [18].

Comparing this work to other stereo sensors doing SSL in the lit-
erature, wee see that our sensor shows a decrease in accuracy due
to its static nature. In [13], the stereo array is able to both rotate
360 degrees and translate slightly, from which distance for static
sound sources can be estimated exploiting the dynamics of the
sensor motion. This results in errors on the order of one centime-
ter. In [21], a stereo sensor equipped on a mobile robot platform
was able to accurately track a mobile sound source with estimation
errors on the order of one centimeter as well. It is important to
note that, due to the lateral blind spots of the array, the RMSE is
inflated more than it would be if this was accounted for by a rede-
sign in the hardware or by allowing the array to rotate. This can be
seen in the average decrease of the RMSE in Table 3 by the intro-
duction of the update rejection step, bringing our results closer
to those observed in [13,21].
6. Conclusion

In this work, we performed an improved and more accurate
investigation of passive stereo SSL of a source with unknown
dynamics presented in [5], including a demonstrative experiment
with novel hardware. We made use of minimal inexpensive hard-
ware and computer power while still maintaining accuracy in mea-
surements and estimation. Our presented results show that SSL of
this form is possible and that there are a number of important
hardware characteristics to be aware of. By changing the spacing
8

of our microphones, it should be possible to effectively negate
the sensor’s lateral blind spots and mounting it on a mobile plat-
form will remove the need for post processing of bearing data.

In the future, to allow for a relaxation of the assumptions nec-
essary for the current tracking problem we plan to update the sen-
sor to a phased array design similar to what is described in [20],
though in a uniform line array format. By equipping mobile robotic
platforms with these sensor arrays and an ultrasonic emitter, we
plan to investigate the feasibility of combining typical active sens-
ing and localization with passive tracking capabilities similar to
what is described in this paper. We expect that these instrumented
robots will allow investigation into more applicable challenges
such as simultaneous localization and mapping and other multia-
gent robotic tasks [7,37].
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Appendix A. Appendix

Fig. A.7 shows the state error covariance values which corre-
spond to the tracked paths shown in Fig. 5. Fig. A.8 shows the large
error introduced by the incorrect bearing measurement in trial four
of the experiments, with data shown in row four of Table 3. Fig. A.9
is included to show that with a very large error in the estimated
initial range the algorithm can still converge to track the true path
of the emitter.



Fig. A.7. State error covariance values corresponding to the tracked paths shown in Fig. 5. For the shown trials the emitter is rotating at 15 rpm with an IPT = 0.2 s (A,D,G) and
IPT = 0.15 s (B, E, H) for central tracking and an IPT = 0.15 s (C,F,I) for noncentral tracking.

Fig. A.8. The anomaly from the centered experiment trial at 15 rpm with an IPT
= 0.15. The zoomed graph insert shows that a tracking point soon after the blind
spot of the sensor is what introduced the large error.

Fig. A.9. An example of the algorithm being able to still converge to the true path
from a starting point of 6.68 m (10 times the true radius of rotation).
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