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We describe the generation of entangling gates on superconductor-sermniconductor hybrid qubits by ac
voltage modulation of the Josephson energy. Our numerical simulations demonstrate that the unitary error
can be below 1077 in a variety of 75-ns-long two-qubit gates (CZ, iSWAP, and «T5WAP) implemented
using parametric resonance. We analyze the conditional ZZ phase and demonstrate that the CZ gate needs
no further phase-comrection steps, while the ZZ phase error in SWaP-type gates can be compensated by
choosing pulse parameters. With decoherence considered, we estimate that qubit relaxation time needs to

exceed T0 s to achieve the 99.9% fidelity threshold.
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LINTRODUCTION

Two-qubit gates present a challenge in the development
of scalable superconducting quantumn processors. In the
simplest hardware architectures based on fixed-frequency
qubits and always-on couplings, two-qubit gates can be
realized by microwave control [1-4] via, for example,
the cross-resonance effect [5-7]. Mevertheless, gates with
fixed-frequency transmon qubits [8] and fixed couplings
lead to stringent frequency allocation conditions [9], which
complicate processor design and reduce the yield of mul-
tiqubit chips in microfabrication. An alternative way is to
make qubit frequencies tunable so that two-qubit states can
be moved into and out of resonance conditions to induce
transitions between qubit states or to enable conditional
phase accumulations [10—14].

While the tunability adds more freedom for gate and
processor design, it may reduce the processor’s perfor-
mance due to the crowded spectrum of multiqubit systems
[15] During the frequency-tuning process, one can cross
unintended resonances, making it hard to control specific
pairs of qubits without inducing spectator errors in other
qubits. One approach to avoid crossing undesirable reso-
nances is to induce a parametric resonance on a desired
pair of qubits. The latter can be achieved by modulating
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qubit frequencies [16-23] or coupling elements [24-30].
The parametric resonance response is determined by the
modulation amplitudes and frequencies, thus one can tar-
get a specific pair in an array of qubits with similar
frequencies. For flux-tunable transmon qubits, frequency
modulation has been realized by varying the external flux
bias through the superconducting quantum interference
device (SQUID) loop, which changes the effective Joseph-
son energy [19.20,30]. The SQUID loop makes qubits
susceptible to flux noise and limits their coherence time.
Maintaining long coherence of flux-tunable qubits remain
a challenging task [31].

Another way to control the qubit characteristics is to use
voltage-tunable qubits, so-called “gatemons,” where the
metallic gate voltage controls the charge-carrier density in
the Josephson junctions [32-35]. The gate voltage control
eliminates flux noise sensitivity [34] and suppresses charge
dispersion [36]. Furthermore, voltage control is a well-
developed technology for classical electronics and can be
readily applied to the gatemon qubits. Despite these advan-
tages, the voltage control method introduces charge noise
to the qubit. While the suppression of charge noise on
gatemon qubits has been improved in recent years, gate-
mons at current stage still have relatively low coherence
time. which limits the achievable fidelity of gate opera-
tions. For the successful realization of two-qubit gates, a
certain threshold on coherence has to be met.
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In this paper, we analyze the possibility of implementing
entangling gates on gatemon qubits by voltage modulation
of the Josephson energy and estimate the requirements for
gatemon coherence. We look at three types of entangling
gates that belong to different classes of local equivalence:
(i) the CZ gate, (ii) the i[SWAP gate, and (iii) the +/iSWAP
gate. We computationally show that all three gates can be
implemented with fidelity =99.99% for unitary evolution.
Once decoherence is taken into consideration, the fidelity
greater than 99.9% requires that the relaxation time T
exceeds 70 ps.

We analyze the error budget and identify several primary
coherent-error mechanisms for the two-qubit gates. In par-
ticular, we find that the unwanted conditional ZZ phase is
the most harmful error for SWaP-type gates and propose
mitigation of this error using qubit tunability. Because of
its simplicity, this mitigation approach is beneficial in com-
parison to resorting to advanced pulse-shape designs [37]
or to tunable couplers [38,39], which add complexity to
the control scheme. For the iSWAP gate, we demonstrate
that the accumulated ZZ phase can be reduced to zero by
tuning the static Josephson energy for an experimentally
accessible range of the coupling constant. For +/iswap, the
parameter range of suppressed phase error is wider and can
be further expanded by using a two-tone modulation pulse
with close frequencies.

The paper is organized as follows. In Sec. TI, we intro-
duce the Hamiltonian of interacting gatemon qubits that we
use to model entangling gates. ITn Sec. 1T we present the
simulation of the CZ gate, showing that the CZ gate can
be optimized to high fidelity =99.99% for a broad range
of coupling constant Ji. In Sec. IV, we present the simu-
lation of the iSWAP gate, analyze the detrimental effect of
ZZ phase on the gate fidelity, and discuss how this phase
can be compensated by choosing appropriate static Joseph-
son energy. In Sec. V, we present the simulation of the
+/ISWAP gate and similarly discuss how the ZZ phase can
be compensated. We do this for both one-tone and two-
tone pulse schemes. In Sec. VI, we evaluate the effect of
decoherence on gate fidelity and discuss requirements on
the relaxation time T of future-generation gatemon qubits
to enable high-fidelity gates.

I1. BASIC MODEL
A. Qubit Hamiltonian

The idea of implementing two-qubit gates by directly
modulating qubit spectra has been proposed and realized
on transmon qubits [ 19-23]. With the proper choice of fre-
quencies, modulation pulses can selectively induce Rabi
oscillations between desired states to generate gates. For
transmons, the qubit-frequency modulation is achieved by
tuning the external magnetic field. Here we apply the
idea of parametric control onto gatemon qubits using gate

voltage as the control instead of the external magnetic
field.

In a gatemon qubit, the Josephson junction (J1) is
implemented with a superconductor—normal-metal—super-
conductor (5-N-5) structure, where the normal section
is a semiconductor, The semiconductor allows Josephson
energy £y tobe tuned by the gate voltage V, [32,33,35,40].
The quantum system then consists of a fixed qubit (F) and
a gate-tunable qubit (T) with capacitive coupling, as shown
in Fig. 1. The Hamiltonian of this circuit is

A = A + By + Joighy, (1)

where H; (i = F, T) are single-qubit Hamiltonians
Hy = AEc i, — Ey;cos(d), (2)

and #y, ¢; are the charge and phase operators. The charge
coupling constant J¢ is determined by the capacitances of
circuit components [41]. The parameters Eq; and Ej; are,
respectively, the charging and Josephson energies, which
obey the standard transmon condition E; 3 FEo; [8]. For
the gatemon qubit considered here, £ v is not controlled
by flux bias, but instead by the gate voltage F:

E;r=Epr(Vy). (3)
For an actual device, the dependence of E; on ¥, does not

have a simple relation. However, we will assume a first-
order approximation in the current theoretical study:

EJJ{VD + 6Vg} = E:J',T{VI',I} +E:;~T{Vg}h’3=}"'"5yg' t4}

A sinusoidal pulse of voltage will induce sinusoidal oscil-
lation of E ¢

Ejr(f) = Ej g+ f (18Ey rcos(wyt), (5)

FIG. 1. Circuit diagram of two capacitively coupled gatermon
qubits. The Josephson junction of the tunable qubit (T) is gated
by a voltage V', which can be used to control the Josephson
energy £5 7 of the tunable qubit.
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where @, is the modulation frequency, 8Ey 1 is the ampli-
tude of the modulation, and Ej 7 is the static Joseph-
son energy. We use a Gaussian flat-top envelope f(f)

defined as
it — by )?
exp(—ﬂ)—t"z 0<t<ten

l’:'-!ise
fiy=41—e? lett < 1 < Iyighs
2(t — trigly)’ _2
exp —r,_— - Fright = § < fgate,
s
(6)

where fles = frises fright = fgate — frise. Here g is the ramp-
ing time for the pulse to ramp up and down, and f,,, is the
gate time.

We want to point out that for flux-tunable qubits it is
common to park at sweet spots [20], which are character-
ized by a second-ordered dependence of Er on the tuning
parameter. Here we differ by choosing a linear dependence
between £ and " since we do not specifically assume the
existence of a voltage sweet spot. If such a sweet spot
exists, driving at the sweet spot is also viable and is likely
beneficial. In comparison to the linear dependence on F,
when the first-harmonic term of @, yields a qubit drive,
the quadratic dependence on V results in the qubit drive
being produced by the second-harmonic term.

We denote the fixed-qubit frequency by wp, and write
the time-dependent tunable-qubit frequency wrin the pres-
ence of the voltage modulation, Eq. (5), as the Fourier
series:

oG

wyl(l) = iy + Z devy, cos(ma, 1) (7

wi=1

We also write ng = 0 for the absolute value of the fixed-
qubit anharmonicity and use 5jr = 0 for the time-averaged
anharmonicity of the tunable qubit.

In numerical simulations, we use the following qubit
parameters: Ecp/h =Ecr/h =02 GHz, E;jp/Ecp =
100, E; r/Er + = 78. We simulate all three types of entan-
gling gates for gate time fixed at 75 ns. The corresponding
qubit frequencies and anharmonicities without modula-
tion are wg/(27) = 5.449 GHz, np/(27x) = 0.219 GHz,
wrf(2m) = 4787 GHz, 5r/(27) = 0,222 GHz. For these
system parameters, the structure of the static single-qubit
spectra can be inferred from Table I. The coupling J-
ranges from 10 to 30 MHz.

As preparation for later discussion, we mention that the
coupling between two qubits will introduce £Z interaction
even without any driving. The static ZZ phase accumu-
lation rate due to this interaction is (Egy + E77 — Efr —
Exg)/h. where E are dressed eigenenergies. For exam-
ple, whenJr = 10 MHz and EJ}T;‘E{"T = T8, the ZZ phase
accumulation rate is 1.41 MHz,

TABLE 1. Static transition frequencies of single qubits. Units
are in GHz.

Transition process Fixed qubit Tunable qubit
0—1 5.449 4.787

1 =2 5.230 4.565
2—=3 4,993 4.323

B. Parametric-resonance conditions

While we use the full-circuit Hamiltonian (1) for simu-
lations, in this section, we identify relevant terms in the
inferaction-picture Hamiltonian, which dominate system
dynamics for specific gates [19.20]. The choice of ey,
determines the resonance condition. For iSWAP processes,
when w, = A, the relevant term is

Aiswap = glgme 2 110) (01 + he.  (8a)
For CZ processes, the relevant term is
AL =gt &2 20y (11 + he.  (8b)

when w, & A + g or
AE) = gl @ 21 1) (02] +he.  (S0)

whenw, &= A — 7. Here g!}'jh. is the renormalized interac-
tion matrix element, A = @y — wy 15 the detuning between
the time average of tunable and fixed-qubit frequencies,
and |if} = |{jF & |{ }¢ 18 the two-gubit product state corre-
sponding to qubit F being in state |{)p and T being in state
|/} A more detailed discussion of the Hamiltonian terms
in Egs. (8) can be found in Appendix A.

We point out here that for the experiment with transmon
qubit, parametric modulation is usuvally operated at the
sweet spot, therefore only even-m harmonics are present
in the corresponding analogue of the Fourier series (7)
[20,23]. For demonstration in this paper, on the other
hand, we choose to operate at a point where the frequency
linearly depends on voltage, and thus all harmonics are
present in Eq. (7).

C. Two-qubit gates

The two-qubit entangling gates can be classified by their
local equivalence, ie., whether they can be transformed
into each other solely using single-qubit operations. Such
classes of equivalence relations can be characterized by
two local invariants [42]. We analyze the two-qubit gates
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in the following form [43]:

e~/ 0 0 0
a .
. 0 cos—  —isin— 0
Uideat (0, 2) = 2 o
0 —isin—  cos 3 0
0 0 0 e 2
(9)
In particular, we look at the three cases when
f=m, 8=10, {(10a)
which is locally equivalent to the CZ gate,
(=0 f=m (10b)
which is the iswAP gate, and
=10, =2, {10c)

which is the /iSWaP gate. By Egs. (8). the resonance
condition for Egs. (10b) and (10c) is @, = A, while for
Eq. (10a). the condition is either @, = A — fj7 or wp =
A+ nF.

We assume that we can apply virtual single-qubit Z
rotations before and after the pulses so that the evolu-
tion operator in the computational subspace can be locally
transformed to the form given by Eq. (9) [44]. Therefore,
the evolution operator for gate-fidelity calculations has the
form:

U= Upn!t E'Fpulsei'rpres (1 1}

where [7, = exp(ﬁZ it exp(fizﬂmz} for a = pre, post are
the local £ rotations, and ffwm is the evolution induced by
the pulse Eq. (4) and projected into the computational sub-
space. The coherent gate fidelity is then calculated using
the final matrix {7 as [45]

_ T8 D) + [T Gigea (6, 8)' 01

F
20

(12)

l1l. THE CZ GATE

The CZ gate can be achieved by satisfying the resonance
condition wy, = A + gp of Af:”, see Eq. (Bb),orewy, = A —
nrof ﬁé?, see Eq. (8c). Here we choose the latter condition
for simulation. With this choice of w,, a 27 rotation in
the |11} — |02} subspace transforms state |11} into ™ |11},
thus inducing a CZ gate.

The evolution of the system is defined by additional
terms of the full Hamiltonian that are presented in
Appendix A. Although these terms result in small comrec-
tions, we take them into account in numerical simulations.

Here we briefly identify these terms. (i) There is small
off-resonant phase accumulation for states [00} ., 01}, |10}
due to ac Stark effect, see Appendix B. (ii) The transi-
tions |00} < |11}, |01} <= [12}, |10} < |21} are processes
that simultaneously absorb or emit two photons, thus, have
largely off-resonant transition frequencies providing small
corrections. (iii) The interaction between two computa-
tional states |01} and |10} shifts the state energies with
nearly equal magnitudes in opposite directions making
small contribution to the 22 conditional phase & = g +
@11 — o — gnpo. Therefore, the overall conditional phase £
is mainly determined by the phase accumulation for state
[L1}. This allows us to implement the CZ gate by a close-
to-resonance 2w rotation between the states |11) and one
of the states |02) or |20). We find consistently high-fidelity
CZ gate across different couplings J¢, as shown in Fig. 2
for 10 MHz < Jio/h < 15 MHz,

We also analyze the unitary error budget for the CZ gate.
The phase error is modeled as an extra phase d¢¢ on the
ZZ phase by [ = + d¢. When no leakage is present,
the phase error is approximately 3(8¢)*/20, according to
Eq. (12). The leakage emor is modeled as a leakage in
the |11} state En"|ll} = —cose |11) + isine |02}, which
gives an error to be approximately sin®(e)/4 by Eq. (12).
There could also be unwanted rotation between |01} and
[10} states, which we model as U|01) = cosy |01) +
isiny [10}, and similarly for |10} state. The rotation error
is approximately 2 s'mz{y /5

As Fig. 2 shows, the leakage error is the dominant con-
tribution to the total error. The rotation error is a few orders
of magnitude smaller than the leakage and total error but
then increases to around 3 x 10~ as Je increases. The

« total error
s leakage error
10t . rotation error
E r:§ ’_'..-l'!‘. vt "".._.{";;“-"
- () ]
1076} % Sm px" Ex x .
* *-;:* ..M.:i:
e
.IF
r
107L. 4 - -
10.0 12,5 15.0
Jefh (MHZ)

FIG. 2. The total coherent error of the CZ gate (blue dots),
together with estimates of the leakage error (green crosses) and
rotation error (red squares). The dashed lines comrespond to
smooth fits and are drawn for visual clarity. The gubit parame-
ters are chosen to be Eqp/h = Eqr/h = 0.2 GHz, E;p/Eq-F =
100, E; g/ Ecr = T8
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(a) (b)
10l total error 101l t{;..tal error
--— phase error ——— phase error
L1077 _ 10 —=—— leakage error
g10- — e I U
Wig— ,.-“/ [ S _ \
105 ./ 105t ", '..n'r )
1075+ 1075t v
5.25 5.30 535 12.0 12.5 13.0
EE.I', T_.'ri"l [GHZ} J["_‘_.'I h {MHZ]
FIG. 3. The coherent error of CZ gate (blue solid) under the

variation of (a) the drive amplitude 3£ 1 and (b) coupling con-
stant Jp, decomposed into the phase error (orange dashed) and
leakage error (green dashed). The pulse parameters are optimized
at Jofh = 12.6 MHez, as in Fig. 2.

phase error contributes the least, mostly around or below
107, and thus is not shown in the plot. This low phase
error has a simple interpretation. The CZ gate is based
on a geometric phase induced by the pulse and this geo-
metric phase could be easily tuned by choosing a slightly
different trajectory on the 11-02 Bloch sphere to account
for additional spurious contributions the conditional phase.
For example, the drive can be chosen slightly oft resonance
to account for extra phases accumulated by other states.

We note that the fluctuations of the leakage emor and
the phase error are mainly the results of how the numeri-
cal optimization algorithm finds the optimal fidelity rather
than some intrinsic mechanism of the gate. The total error
of the CZ gate overall is consistently less than 10—*, which
is below the threshold to perform error-correction codes
that use CZ gates to build stabilizer sequences, e.g., the
distance-three code [46].

In Fig. 3 we show the sensitivity of the CZ gate fidelity
to the variations of the drive amplitude £ and the cou-
pling constant Ji-. The pulse parameters used are optimized
at Jo/h = 12.6 MHz as in Fig. 2. Note that to keep error
below 1073, 8E;/h can be allowed to vary within an
approximately 60 MHz interval, while the variation of Jg
can be no more than approximately 0.5 MHz. The variation
of 8E; y mainly affects the phase error, while the leakage
error varies around or below 1077, thus is not shown in the
plot. For the variation of i, on the other hand, the leakage
error dominates,

IV. THE iSWAP GATE

The iswaAP gate is another type of two-qubit entangling
gate that, combined with single-qubit gates, is sufficient
for universal quantum computation [47]. This gate is com-
promised by the parasitic ZZ phase accumulation, and
processes for eliminating such parasitic phases has been
a key aspect for implementing high-fidelity [SWAP gate
[14.2748]. The isWAP gate requires a complete swap-
ping process between |01) and |10}, thus the modulation

frequency e, should satisfy the resonance condition @, =

Aof ﬁiﬂw'&‘[l in Eq. (8a). This requirement also means that
the pulse should perform a complete 7 rotation in the sub-
space spanned by |01} and |10}, which implies o1 10/ gae =
., where tg. is the gate time or the length of the pulse.
Thus the range of pulse parameters is rather restricted. As
a result, the extra phase on |11} state due to phase { accu-
mulation, see Eq. (9), cannot be easily compensated by
optimization of the pulse.

In Fig. 4 we show the simulation result for implement-
ing an iSWAP gate with the same qubit parameters as in
Sec. I1I, except that we show the result for two different
E; 1. As the top panel demonstrates, the infidelity curves
have deep valleys for both cases but are clearly less than
ideal when Ji- is away from the valley. The main contribu-
tion to the gate error is the phase error, as demonstrated
by the bottom panel, where the ZZ phase for the opti-
mized gate is plotted against Jp. The valleys for fidelity
curves happen right at the points where the ZZ phase
error crosses zero. As a numerical comparison, we model
the error of incomplete rotation between |01) and |10} as
{7/01) = siny |01} + icosy |10} and vice versa. The rota-
tion error then again can be estimated by 2 sin“(¥)/5. The

{a}l EJ’.T-'{EG.T:I T4
lﬂ'a | - EJ.T-l';EL\'.I':' ?B 4“_'_.4-0
“*.‘1. __.-" " )
e l"'.‘ “-t:“:- "’r‘"
= LA e
5 1075} W1 f L
P sl
4 'hd
i
1077 |
0.10/® e
o
-",‘
-
» 0.05]
[1n] - P
& - ~ e
N 0.00] A
o '_4”"
SR ool
—0.05f «*"
10.0 12.5 15.0
J{:'I.'rh {MHZ}

FIG. 4. Simulation results for isWaP gate for Err/Ecr=T4
(blue) and E; v/ Ery = 78 {orange). {(a) The total coherent error
of iswar gate. (h) ZZ phase accumulated during the iswap
operation. The dashed lines are smooth fittings.
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(a) (b)
10-1| — total error 1071} total error
102 rotation error 102} rotation error
S10-2f~ — |10t~
105 [ 1075} !
10-¢ '!«' 107%|
3.0 3.1 32 105 11.0 115
JE; 4/ h (GHZ) Jo/h {MHz)

FIG. 5. The total coherent error (blue solid) of iSWAP gate
under the variation of (a) §E; v and (b) J- . compared with the
rotation error (red dashed). The gate parameters are optimized at
Jo/h = 0.011 GHz for Ej 1/Ec.y = 78, as in Fig. 4.

phase error, on the other hand. is modeled as an extra phase
on |11} state &7|11) = ¢ |11}, and by Eq. (12), it con-
tributed approximately 3(8¢)°/20 to the total error. Our
numerical evaluation shows that the rotation error is sev-
eral orders of magnitude less than the total error, except at
the dip of the error curve, thus we do not show the rotation
error in Fig. 4. The phase error, on the other hand, is nearly
indistinguishable from the total error, and thus is also not
displayed in the plot.

The unconditional phase £ mostly comes from the
off-resonant state |00} and |11}, ¢ = oo+ 1. In
Appendix B, we provide a perturbative estimate for such
a phase, which captures the main contribution to ZZ cou-
pling. The corrections depend on the static energy spec-
trum and thus can be controlled by the static Josephson
energy E .1 of the tunable qubit. In Fig. 4, we show the
comparison of ISWAP gate for different E; 7 in the range of
10 MHz = Jo/h = 15 MHz. As demonstrated by the top
panel, the infidelity curves now have the valleys at a dif-
ferent coupling J¢. In the bottom panel, the change in £; 5
correspondingly induces changes in the slope and offset of
the ZZ phase curve, thus also changing the point where the
curve crosses zero. Therefore, a ZZ-free iSWAP gate can be
achieved by tuning the static Josephson energy £, r of the
tunable qubit, which can be implemented in sifu by uning
the gate voltage.

In Fig. 5 we again show the sensitivity of gate fidelity
to the system parameters. The pulse parameters are opti-
mized at Jo/h = 11 MHz for E; y/Ecy = 78, as in Fig. 4.
The infidelity of iSWAP gate can be kept below 107 if
the drive amplitude variates within a range of approxi-
mately 60 MHz, and if J- variation within of range of
approximately 0.6 MHz. The gate error due to sensitivity
is dominated by the rotation error.

V. THE +/iswar GATE

Here we provide simulations of +/iSWAP gate. While the
gate fidelity is also limited by an error due to an unwanted

conditional phase £, for a +/iSWAP gate, a complete swap
between states [01) and |10} is no longer necessary as
only a swap probability of 1/2 is needed. This loosens the
restriction on the pulse parameters, and it is possible to cor-
rect the ZZ phase by simply adjusting the pulse parameters.
We find two ways to design the pulse shape: (i) a one-tone
pulse that performs an off-resonant Rabi oscillation and (ii)
a two-tone pulse that combines two sinusoidal pulses, with
modulation frequency offset by some small value. For the
error budget, we define the phase error is modeled and cal-
culated in the same way as that for iSWAP gate, so it is
estimated by 3(3¢)% /20. We model the rotation error as

7101} = cos (% +y) 01) -I—fsin(% n y) 110y,

where € can be positive or negative, and similar error
model holds for state |10}, The rotation ermror is then
approximately 3sin®(2y)/20. Since it is second-order
effect, itis not the major error mechanism for +/ISWAP gate.
We also include the leakage error U1y =cose |11} +
sine |02}, which approximately contributes 9 sin () /40 to
the total error.

A. One-tone pulses

A one-tone pulse may achieve the +/iSWAP gate by
an off-resonant Rabi oscillation. In the reduced subspace
spanned by |01} and [10}, the unitary evolution matrix
describes the Rabi oscillations, see Eq. (C1). The /iswap
gate requires the unitary matrix to have magnitude 1/ V2
in all entries, including the off-diagonal elements

(1 !
Y S01,10

where ggp 10 15 the effective coupling between [01} and |10}
states, and & = ayp — A is the frequency detuning. This
equation depends on the effective coupling gg,10 and is
not always satistied. The off-resonant Rabi oscillation also
introduces extra phases on the off-diagonal terms, but this
does not change the ZZ phase in the local-equivalent form,
see Appendix C. Nevertheless, the off-resonant case intro-
duces change into the ggy,j0 term, which then changes the
offset of ZZ phase-accumulation rate as already explained
for the iswAP gate. Thus, it (s possible to correct the ZZ2
phase error for +/ISWAP gate by only changing the pulse
parameters.

Figure 6(a) shows the simulation result of +/ISWAP gates
using one-tone pulses, with coupling J¢ ranging tfrom 10
to 30 MHz. The ZZ phase curve now has a plateau of zero
phase error, rather than a single-point intersection with the
Jofh axis, as shown by Fig. 6(b). The endpoints of the
zero plateau correspond to two types of extrema for the
ZZ phase, one happens close to resonance, and the other
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(a) ’ (b) , (©)
103, FA i ' ; 1073
E : i: lI D.l [ F [}
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st ] f fo ] g
i [ [ ", [ a 0.0 ot A = e
1075; f b A N b ¥ 107 o
E r,! ; ‘*;L,Jl i g f_..""'
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106 ff!:ﬁ L " —0.1} L 10-6| t*
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Jefh (MHZ) Jo/h (MHz) Je/h (MHz)

FIG. 6. The simulation results for one-tone and two-tone pulses +/iSWaP gate. The dashed lines are smooth fittings. {a) The error for
one-tone +/ISWAP gate. The total error (hlue dots) is decomposed into phase error (orange triangles) and leakage error (green crosses).
(b) The conditional phase £ of the one-tone gate is presented in (a). The phase vanishes in a broad range of Ji-, but cannot be reduced
for other intervals of J¢, resulting in strong enhancement of the gate error in these intervals, cf. panel (a). (¢) The error for two-tone
A/ ISWAP gate. The total gate error (hlue dots) remains small in the whole interval of Ji and is dominated by leakage error (green

crosses). The qubit parameters are the same as in Fig. 2 or Fig. 4.

is related to the parameter ggp,jo. In the platean region,
the phase error is insignificant, and the error is dominated
by the leakage error out of the computational subspace.
On the other hand. in the parameter range outside the
platean, the ZZ phase deviates from zero, and the error
curve has peaks. The error budget shows that the major
contribution of error along the peaks comes from the phase
error. Also, there is a discontinuity of ZZ phase error at
Jo = 20 MHz, which corresponds to the discontinuity in
the pulse parameters. This discontinuity is related to the
choice of a different branch of the Rabi-oscillation period
when the swapping process switches from a 37 /2 rotation
to a 5 /2 rotation; the detail of the analysis above can be

found in Appendix D.

B. Two-tone pulses

Another way to correct the ZZ phase error is to com-
posite two pulses with close but different modulation
frequencies, so that the combined pulse is

E;f)=Esr

+ (OB E) 11 coslayp1f) 4+ 8E) 12 cos(emy 21)).
(14)

This introduces alternative pulse parameters, adding more
degree of freedom for Z7 phase elimination. As shown in
Fig. 6(c) for J-/h ranging form 10 to 30 MHz, the two-
frequency method can correct the ZZ phase error more
efficiently, restricting the ZZ phase error to have amplitude
<10~*. We optimize only the driving amplitudes of the
two-tone pulses, but keep modulation frequencies w, ; and
ey o fixed across different Jo. The reason for this is to sim-
plify the optimization procedure, but as Fig. 6(c) shows,
although the infidelity increases monotonically with Ji, it
can be kept <10~* across this range of Jg, thus our way

to optimize only driving amplitudes can still be justified.
The monotonic increase is mainly the result of increas-
ing leakage of |11} state, which increases from the order
of 10~% to the order of 10~* as Jr increases from 10 to
30 MHz, while the other error mechanisms, including the
phase error, contribute below 1077 to the total error, sev-
eral orders of magnitude less than the leakage error. This
increase in leakage is due to the increasing coupling con-
stant Jg, which also increases the coupling between |11}
and |02} state,

VL. EFFECT OF DECOHERENCE ON GATES

The results in the previous sections were obtained for
unitary system evolution. For physical qubits, we also
need to take the decoherence process into consideration.
Therefore, we also use the same qubit and pulse parame-
ters to simulate the following master equation with finite
relaxation times:

S ECIECES S TL LB (15)

A =
a=F,7 Lt

Here I:I(rj is the two-qubit Hamiltonian defined as in
Eq. (1), and the superoperator Ty is defined as

Jr
. noaat S af n  om
D(p) = chﬂ'Jpcw' — PCoiCuy — CjCayld
=

ery =G F1Y 1)+ 1,
i

Ery =G +1 Y _lijhij +1l.
i

The Ty, stands for the relaxation times of each qubit, and
for convenience, we will set I p = I',r in simulations.

(16)
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Here j; is the truncation number of states. For tg. < 7).
we expect that the fidelity F' owill follow an exponen-
tial relation with respect to the gate time, so 1 — F =~
Hyue/ 5T (assuming that T = 2T) [49]. For example,
the error for both gates around I} = 100 ps is around
6 x 1074, close to the theoretical prediction. The simu-
lated fidelity F is calculated with process fidelity F, and
chi matrix y of the process by F' = [4F, + Tr(;)]/5 [50].

In Fig. 7 we show the simulation results with dissipa-
tion for both CZ gate and {SWAP gate, using parameters
for Figs. 2 and 4 at Jo/h =10 MHz. We also simu-
late for both one-tone and two-tone +/iSWAP gate, which
is not shown in the plot because the curves of +/ISWAP
gate fidelity and iswAP gate fidelity as a function of T
are nearly indistinguishable on the plot. We note that for
fault-tolerant error-correction code, the plot suggests that
T should be greater than 10 ps to achieve the reported
threshold error rate 0.57% for surface code [51]. In truth,
several experiments that use typical transmon qubits to
implement surface code report T7's that are above this
threshold [52,53]. However, if we aim for higher fidelity
that surpasses 0.1%, we need at least T} 2 70 ps. Recent
nanowire gatemons have seen an improvement of 7 to
over 20 ps [54], which would satisfy the former thresh-
old, but still needs to be further improved to pass the latter.
Therefore, understanding the decoherence mechanism and
improving the qubit coherence should be a crucial part for
development of gatemon-based quantum processors.

The above estimate of nonunitary error on the entangling
gates 1s made for 75-ns gate time for the case of 77 = 2T}
(no extra dephasing rate due to gate-voltage fluctuations).
This estimate gives the I 2 70 us threshold as a lower
bound to achieve 99.9% fidelity in entangling gates. In
reality, T3 may be shorter than 277 or system parameters

13-4_

104 108 108
T; (ns})

FIG. 7. Simulations with dissipation for CZ and /SWAP gates.
The qubit and pulse parameters are the same as in Figs. 2 and 4,
with J./h = 10 MHz. As T, approaches | ms, the gate error for
ISWAP saturates towards its unitary estimate of approximately
B % 107, which is higher than that estimate for the CZ gate
{approximately 10~%),

may require longer gate times, both leading to even longer
T time requirements.

VIL. CONCLUSION

We described implementation of parametric entangling
gates on superconductor-semiconductor hybrid qubits
using voltage modulation pulses. We simulate CZ gate,
ISWAP gate, / ISWAP with this idea, and demonstrate that all
gates can have coherent error =107, with proper choice
of qubit and pulse parameters. In particular, the CZ gate
has the least stringent conditions and does not require an
extra procedure to correct the accumulated ZZ phase. The
iSWAP gate, on the other hand, is mainly limited by the Z2
phase but can be corrected by tuning the static Josephson
energy, which changes the offset of the ZZ phase curve
by an ac-Stark shift term. The +/iSWAP has less stringent
conditions than the iSwAP gate, thus can be partially cor-
rected by choice of pulse parameters alone. Using one-tone
pulses, the conditional ZZ phase can be corrected in a finite
range, unlike that in the iSWAP case where the correctable
static ZZ phase has to be equal to the offset determined by
the qubit parameters. For two-tone pulses, the ZZ phase
accumulation can be corrected in a wider range of qubit
parameters by tuning the pulse amplitudes only, in this
case, the gate performance is limited by leakage emrors.

We also simulate the sensitivity of the gate fidelity to
the variations of the drive amplitude and the coupling con-
stant. We find that to keep the coherent error below 107,
the variation of £ 1 should be no more than 60 MHz
for both CZ and iSWAP gate. while the varation of J¢
should be no more than 0.5 MHz for CZ gate, and no
more than 0.6 MHz for iswAP gate. For decoherence, we
find that to have fault-tolerant gates ready for error cor-
rection, we need T = 70 ps. The current state-of-the-art
superconductor-semiconductor hybrid qubits fall short of
this demand, but our simulation may set a standard for
future improvements in hardware.

Although the coherence of gatemon qubit is still less
than ideal, future advancement in hardware fabrication can
alleviate such a limit and extend gatemon’s 7| to be above
the threshold mentioned earlier. Further investigation of
superconducting-semiconducting hybrid structures could
bring fruitful results for developing voltage-controlled
superconducting circuits, such as gatemon qubits and tun-
able resonators [53].
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APPENDIX A: INTERACTION HAMILTONIAN

To derive a more complete Hamiltonian, we follow the
method presented in Ref. [19], but make changes to fit
our model. Define the variable & = /2E - /E; ;, where i =
F, T. With the transformation into instantaneous eigenba-
sis of single qubit, we may write the truncated Hamiltonian
as [19]

2
Hy () = Z[UFJﬁF.:' + v (017,]
i=0
+ g(O[Ar67 g + V2AFG7 LA,

+ V2A06F 1] + 1 (G - (AT)

where [1,; is projection operator of nth single-qubit eigen-
state, and &;,, stands for the Pauli y matrix between
single-qubit states |i} and |j} for qubit Q. The coefficients
Aq and A; are determined by &, but in the transmon regime,
they are close to unity. The notation wg;(f) stands for the
instantaneous frequencies of qubit @, and we use

g () = vg; — vy (A2)

to denote the single-qubit instantaneous transition fre-
quency. The coupling g is defined by,

g(t) = Jo/ 14/ Ergr(n), (A3)
and
® = (0701 & 1270} \4)
L) =y T T . (.

Here |i(t)y is the ith eigenstate for the time-dependent
Hamiltonian. The 0 to 2 transition term is present in the
interaction picture because of the ¢* perturbation afier
expanding the cos term in the single qubit Hamiltonian.
Also, for the combined system, we use the notation,

v () = vr: + vr, (1), (AS)
and denote the two-qubit transition frequencies as
g e (1) = Wy (1) — vy (1) (A6)

MNow assume a periodic modulation with frequency w, on
the tunable qubit. This means that we can write down the

instantaneous eigenfrequencies for the tunable qubit as a
Fourier series

Z VieeTj COS(Micig 1), (A7)

m=l

vrilf) =

and similarly for eog g (1), vy (6), and wy (¢). Before trans-
form to interaction picture, we first need the Jacobi-Auger
identity, which states that %" =3 _ J.(x)e™,
where J, 1s the Bessel function of first kind. Then,

& fodrtoy plty _ il ZG"“M{M{F”J“%’
nelk {AEJ

{mkir.hr'j} = {&:'El;n,nj !mhm,n‘;'s v -}1.

the coefficient G, 15

Gpllwgg 1) = Z (n"’r& (wh‘si.i' )) , (A9)

[

where the set 5, of integer sequences is defined as

(A10)

8, = {{flJz, N e DY KMy = n} .
k=l

MNow transform the Hamiltonian ﬁ,q,; into the interaction
picture with the unitary matrix

;2
Ui = exp —i f df Y [or M+ vpllnl, (Al
1]

i=0

which eliminates the diagonal element. With the notation
above, the matrix elements then transform as

Erin: |H} ‘:-“Sl m:

= ity Z G"{{&J*HI,}'}}E“WPF i} (rs|. (Al2)

weE

From the off-diagonal terms in Hy(f), we expect that

Hint) = ) ) gy, (1) nmooy bl

nek i s

+ 3 QW (eer2ma—ing; @ |2) (0] + he,
neE

(Al3)
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where a runs over all the integers. The coupling coefficients and resonant frequencies for are

gf..'?ﬂ (0 = —g(OAedr(DGu({en11 00}).
g o0 = g(Orpir()Gy({wg 100 D),

gt (0 = 28 A Ar(DGy([@i2,11]),

g% (0 = 22 ArAT()G, ({ega 2D,

Eg:’jm(f} = V22 (Ohe Ar(DG, ({agaz ),

3&?11(“} = \Egﬁf}i}“ﬁr(f}ﬂn({&&;l|.0z]l..

g1 (0 = —v2e (O AFAT(OG, (@21 10]),

2l (0 = V2O Arir(D)Ga({enao 1))

and

Q1) = G ({onre)),  @nre = 2oro — ir.
(AI5)

Although the expression for (7, complicated, for weak
modulation on the system spectrum, the leading contri-
bution to (, can be simplified to the Bessel function
Tulen s g feon ), where @i e is the amplitude of fre-
quency modulation to the harmonic mode, which is deter-
mined by the Josephson modulation amplitude in the actual
system. In particular, form = 0,

ek, P
Gollwky #501) = Jo (L) . (Al6)
iy,
and form = 1,
.y
G ({emy oy }) =y (M) (A1T)
g

When the modulation is weak, we can further sim-
plify by the approximation Jo(ew)z /@) =1 and
Jyleon s pyo feon ) 52 ey e f 2en,. For g(£) that is nearly con-
stant under weak modulation, the n = 0 terms then roughly
correspond to the static Hamiltonian, and the # = 1 terms
correspond to the drive Hamiltonian as presented in
Eqgs. (8).

For the qualitative analysis below, we will assume g'"
to be constant for convenience.

APPENDIX B: QUALITATIVE ANALYSIS ON
PHASE ACCUMULATION FOR OFF-RESONANT
STATES

The unitary operator used in Eq. (A11) is essentially a
single-qubit operation. Therefore, to analyze the ZZ phase

1,00 = fip gl 4 e
10,00 = —Wp 0 + OF1
w211 = @ +orm — NF — i
W21,12 = WFpl — @101 — NF + 77t
) ) (A14)
iz = Weg +oOrm — 0
w1102 = WpeL — GO + s
Wo21,10 = Wro1 + o — NF:

0,11 = fEg — g — F

due to the evolution, it is sufficient to look at the interac-
tion Hamiltonian (A 13). For convenience, let us denote the
two-qubit state by a single letter £, [, etc. We can write the
relevant two-qubit term as,

" {n)
He=3" g k) (1] &=, (BI)
nook

with the simimation of # runs over all integers. Here we

assume gE.'} = SL_"] are real effective coupling between

states |k} and |f) for each mode », and w};} = —w}ﬂ_“} =
ey — g + Hedy, with notation as in Appendix A. Thus
we have the relation,
i (n (']
o +olf = o™ (B2)
Suppose the system state is V() = 3 cp |k}, The time
evolution of the state then satisfies the first-order time
differential equation:

cp = Z Z —ig}:}eﬁug};ﬂ.

neZ K

(B3)

This linear differential equation is not easy to solve. How-
ever, since the Hamiltonian is bounded and Lipschitz, it is

reasonable to assume that the recursion relation:

i
Y () = () — ;'f H (€ ywr'? (1'ydr! (B4)
0

converges to a fixed point [56]. With RWA., by choosing
a proper %%, we can assume that the recursion con-
verges rapidly, thus giving us a good estimate within a few
recursive steps.

MNow assume that the initial state is (0 = |&), such that

no wi}'} is close to ), Suppose also that Iwﬁ:’] | 3 g | forall
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LI in concemns, and the terms with wj,’ 2 0 do not con-
tribute. In this case, we expect that yr(f) does not deviate

") () (i
i S e v B
€@ = i (e Z Z o\

red Uk e Mk Dy
|g{:.ﬂl
i k gii S!.E
Ci _]+ZZ l:ri] it + ZZ ':”][:H—H}
neZ ki g iR EE !r;é.f
Let
() ()
£ g

€ = max § ||, 22 . (B&)

ml#l *}J @,

the largest correction then is present in the |c}f’| term as
linear in time . Thus, to the leading order of e, the phase
accumulation rate of ¢ is approximately

(m :

S

I.?fJ :

(BT)

wwzz

We note that for such approximation to hold, g“” should

be consistently smaller than m}';f when there is no reso-

nance between m and m’. We argue from Eq. (A9) that g‘”]
has a leading term Jy, (e2)11)1 /@, ), which asymptotically is

restricted by
i (ml;uc "
m! A 2ay,

for an.ggfe, < /m+ 1 [57] Therefore, we expect the
contribution from higher m modes to be small enough, and
focus only on the order of magnitudes for lower s modes.
In particular, we are using m = | mode to build the gate,
s0 the main concern is for the £ = 0 and & = 1 modes. For
concreteness, in Table Il we show an example of relevant
transition frequencies for the chosen qubit parameters. The
qubit parameters are the same as those used for simula-
tion, with Jo = 10 MHz. Using the static spectrum as a
reference, we expect that for m = 0 mode, ey has the
lower bound to be about 0.5 GHz. For m = 1 mode, we
are concerned with the magnitude of e p — ayp, where ay
should be close to transition frequency of either 01 « 10
or 11 «» 02, The lower bound is the difference between
the transition frequency between 01 «» 10 and 12 « 21,
which is about 0.003 GHz, but since the states |12} and
|21} are out of computational subspace, and there is no

— ok ok (- —nJamt 1) 4 Z

from |k} too much by the RWA assumption. Thus we have
% — 1, and
ko= s

tntn'y

l ]:\‘.'I.PU
e ¥ —'f'—wfeff]—n) 1£k

Wy
(B3)
() (a'
gﬂ gﬂ e{ﬂﬁgr}l — ]_}
[11] ww] '
nn'cE -‘-'?H Ll

direct coupling that relates these two transition processes,
we argue that this lower bound should not have a signifi-
cant contribution to the correction. The next lower bound
is the difference between transition frequencies of 01 < 10
and 11 < 02 or 11 « 20, which is about 0.2 GHz. As a
comparison, g‘” should be of the order of 7 /f;,.. which
for our choice of gate time is about 0.04 GHz. Thus, we
argue that the approximation we make here should be
reasonable for a rough estimate.

The m = 0 term is approximately the static ZZ inferac-
tion rate found by second-order perturbation theory, and
determines the slope in Fig. 4(b). The m = 1 terms pro-
vide the ZZ phase a downward shift. and are similar
to the ac Stark shift that is present in the off-resonant
microwave method [2,3,58,59]. The difference is that in
the microwave drive method, the numerator is the ampli-
tude of the transverse drive, while here the numerator is
given by Eq. (A14), which has a more complicated depen-
dence on the pulse shape and modulation amplitude. As
the iSWAP gate requires that gmfm = 7T [tgae, and all the
other gﬂ] should be proportional to gf],llfm as they corre-

spond to the same harmonic mode, we see that the offset is
then approximately

i |2 iy |2
m | & x| gy B8
Z tl] i +Z [— I:|r U (B%)
& gy tyate | Bpy 10 ki Wrp o femte [E0,00

TABLE II. Relevant transtion frequencies of the two-qubit
system, calculated at Ji; = 10 MHe.

Transition process Transition frequency (GHz)
00« 11 10.1058

01 < 10 0.7923

11 « 22 9.6635

12 = 21 0.7959

02«11 10151

10 « 21 9.8863

11«20 0.5734
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In summary, for off-resonant state |7 ), the accumulation
rate of ¢y as determined by » = 0, | harmonic mode is

(0 42 _ _
IR L +) 2@y — ;) @),
Tgate b £y — deky iz (@ — g ) — ‘Lﬁ &,
(B9)

where cj; stands for the time average of corresponding fre-
quency. As a demonstration, we compare the theoretical
estimation and numerical result in Fig. 8. We use static g'¥
for simplicity, and for g terms, we estimate gf'j to be
7 g s mentioned before, then multiply by a factor of |

Upati, oir = Qf
;-e_ss@ufz%ﬂ zin ( ;ﬂh)

oo & i,
Faip 2 gate } Y . gare
e [cos( 5 ) I'. SII'I( 3 ):|

or +/2 for estimation of other terms based on the relations
given in Eq. (Al4). As the plot shows, although the theo-
retical estimation does not give a exact agreement, it still
demonstrates the overall tendency of ZZ phase curve.

APPENDIX C: LOCAL EQUIVALENCE CLASS
FOR +/iswaP GATE INDUCED BY ONE-TONE
PULSES

In the reduced subspace of |01} and |10}, the off-
resonant Rabi oscillation results in a unitary evolution of
the form

where £2 = ,n'gff+ 42, Notice that the diagonal terms have exactly equal and opposite phases

it
o = =B = ;'“E — arg [cns (

hence performing single qubit Z rotation on both qubits by
equal and opposite angles &, and &, will bring the diago-
nalterms to have zero phases, without affecting |00} or |11}
state. Also notice that such single-qubit rotations remove
the phase term §fu./2, thus the phase factor e/ will

0.10r = Ey/Ecr=74
- /.
L] EJ,T.I'IIEC:T=TS"‘.‘"
e
y  0.05 s )
= A o
N A e
N 0.00f et 5
R
seett
—0.05F+*
10.0 12.5 15.0
Jo/h (MHz)

FIG. 8. Comparison between the theoretical estimation and the
numerical simulation as presented in Fig. 4ib). The dots are
the numerical value, and the dashed lines are the thecretical
estimation.

z'e"ﬁfﬂ"*"zgg sin (ﬂgm)
. (€
1 } nf e '5 . ﬂr te
T gae — e
e~ [cos( > )+:ﬂsm( 5 )]
ﬂfym 3 . ﬂ;gate
5 )—1Qs1n( 3 )]1 (C2)

disappear in the local equivalent form. After this step,
assuming that the only prominent process other than the
off-resonant Rabi oscillation is the ZZ-rotation term, then
the unitary evolution is equivalent to the unitary operator
below when Eq. (13) is satisfied:

it 0 0 0
0 ' i ' er 0
i _ V2 V2
LiISWaAP — D '| 'I {} ]
f—e " —
V2 V2
0 0 0 gic/d
(C3)
where

L9 8 02
y=m‘g[~:us( ;Em)—iﬁsiu( F‘;m)] (C4)

The operator ffm can be locally transtormed into
0 et (8. 2) by virtual £ rotation betore and after the Rabi
oscillation

i % L0 = OB ememih=lvA - (C5)

so the phase factor y also disappears in the final result.

044012-12



VOLTAGE-ACTIVATED PARAMETRIC ENTANGLING GATES. ..

PHYS. REV. APPLIED 20, 044012 (2023)

APPENDIX D: BRANCHES AND EXTREMA OF
RABI OSCILLATION FOR ONE-TONE /isWAP
GATE

The effectiveness of ZZ phase correction is determined
by the off-resonant condition {13), and this condition has
two types of extrema corresponding to the two parame-
ters under optimization. These extrema correspond to the
point in Fig. 9(e) where the plateau of zero ZZ phase turns
into a line of positive slope. The first type of extrema hap-
pens at § = 0, as shown in Figs. %b) and 9(d), where we
plot the probability of measuring the |01} and |10} state
over the duration of the pulses, with the initial state to be
[10}. The Rabi oscillations for both cases are close to reso-
nance, with the difference being that panel (b) corresponds
to a 3 /2 rotation, while panel (d) corresponds to a 57/2
rotation. This suggests that when we make a discontinu-
ous change in the pulse parameters during the optimization
for +/iIsWAP gate around J- = 20 MHz, we are actually
switching to the branch of Rabi oscillation with a different
period.

The second type of extrema is related to the param-
eter gor, as shown in Fig. 10. While specific values of
£o1,10 might help correct the ZZ phase error, the maximum
swapping probability for this particular gy, 1o can be less
than 1/2, making the swapping insufficient. The optimiza-
tion then will prioritize condition {13), leaving ZZ phase
error to be only partially corrected. This case is shown in

Jh=10 (MHz)

J. /=16 (MHz)

1.0 . 1.0}
{a} . 01 {b]
0.8 . 10 0.8} ! %
& ™ / \x
E 0.6 '-{_{F"’_'_"x_'_ 0.6f .'llur'.l \\
E 0.4 P 0.4} ;..-“ - /
0.2 / o2t /
0,0 .—/. . . m-—/ . , ,
0 25 50 75 [V] 25 50 75
J./h=24 (MHz) J.fh=27 (MHz)
1.0f—. - 1.0f—.
(c) / d)y,
0.8 \ f o.8f /)
L"' ! ,l'l I'. '.
Z 06 Yavi C I X1 \/ \
E LA re i | -
e 04 ;= / 0.4r { ! /
o f Y ! | b /
02 / \ .2t/ VoS
\ _ \
I}.D L ._/ . \I\_.-rf . U_D _I_.A‘ . . \_/ll .
0 25 50 75 [V] 25 50 75

Time {ns)

Time (ns)

FIG. 9. The probability evolution with initial state |10} for (a)
Jo =10 MHz, (b) 16 MHz, (¢) 24 MHz, (d) 27 MHz. The ver-
tical axis is the probability of measuring state |01} or |10). The
result is obtained using the optimized pulse parameters of the
corresponding points in Fig. 6.

1.0+
0.5+
0.0
=0.5
-04 =02 00 02 04
§ (GHz)

FIG. 10. Ewaluation of the term on the lefi-hand side of the
condition (1 3) for different gny 19. The black dashed line indicates
where the curves cross 1/+/2 (the —1/+/2 line is out of the range
of the plot). For the detuning range |5 = 0.5 GHz, the curve does
not necessarily reach the value £1/+/2 = 0.707.

panel (¢) of Fig. 9 where the amplitude of the probability
oscillation is close to 1/2,
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