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ABSTRACT: High-entropy alloys (HEAs), characterized as compositionally
complex solid solutions with five or more metal elements, have emerged as a novel
class of catalytic materials with unique attributes. Because of the remarkable
diversity of multielement sites or site ensembles stabilized by configurational
entropy, human exploration of the multidimensional design space of HEAs
presents a formidable challenge, necessitating an efficient, computational and data-
driven strategy over traditional trial-and-error experimentation or physics-based
modeling. Leveraging deep learning interatomic potentials for large-scale
molecular simulations and pretrained machine learning models of surface
reactivity, our approach effectively rationalizes the enhanced activity of a
previously synthesized PdCuPtNiCo HEA nanoparticle system for electrochemical
oxygen reduction, as corroborated by experimental observations. We contend that
this framework deepens our fundamental understanding of the surface reactivity of
high-entropy materials and fosters the accelerated development and synthesis of monodisperse HEA nanoparticles as a versatile
material platform for catalyzing sustainable chemical and energy transformations.

1. INTRODUCTION
The escalating issues of the energy crisis and environmental
pollution underscore the urgency of the transition to a
sustainable global economy. A pivotal aspect of this shift is the
advancement of renewable energy technologies, especially
those facilitating the conversion of chemical energy to
electrical energy in fuel cells. At the heart of these energy
conversion devices is the oxygen reduction reaction (ORR),
whose efficiency is considerably hindered by the dearth of
effective electrocatalysts.1,2 Platinum (Pt) stands as the most
effective pure metal catalyst for the ORR, yet its widespread
application is constrained by its high cost and scarcity. Efforts
to reduce the loading of precious metals while enhancing site-
specific activity have concentrated on the modification of Pt
sites with strategies such as defect engineering, core−shell
nanostructuring, and near-surface alloying.3 A major limitation
of these Pt-based site ensembles is long-term durability,
severely compromised by interfacial processes such as leaching,
dealloying, and degradation dynamically occurring under
operating conditions.4

High-entropy alloys (HEAs) represent a novel class of
materials in a solid solution phase with five or more principal
components and have demonstrated promising attributes

across numerous application domains, including heterogeneous
catalysis.5−7 Characterized by high configurational entropy,
HEAs exhibit superior thermodynamic stability and miscibility
beyond conventional alloys.5 Moreover, the exceptional
diversity of multielement sites at HEA surfaces potentially
introduces active site ensembles tailored for specific rate-
determining steps. For instance, Pedersen et al. highlighted
that traversing from simple Pt alloys to HEAs broadens the
distribution of the binding energies of key reaction
intermediates (e.g., *OH), increasing the likelihood of
achieving optimal binding properties that align with the
activity volcanoes.8 Numerous experimental investigations
have underscored the significant promise of HEAs as ORR
electrocatalysts.9−13 With a low-temperature solution-based
approach, He et al. synthesized a CrMnFeCoNi HEA that
demonstrated an exceptional ORR efficiency, showcasing a
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half-wave potential of 0.78 V and an onset potential of 0.88 V
vs RHE, rivaling that of commercial Pt/C catalysts.14 In
another study, Li et al. crafted an AlCuNiPtMn HEA with a
modest Pt content of approximately 20−30 at % while
exhibiting improved durability and ORR activity in comparison
to commercial Pt/C.15 Furthermore, Bueno et al. fabricated
PdCuPtNiCo HEA nanoparticles by annealing colloidally
derived core@shell nanoparticles and showed them to be not
only durable but also more active than commercial Pt catalysts
for the ORR.16 The partial substitution of Pt/Pd with more
Earth-abundant elements such as Ni, Co, and Cu drastically
reduces the cost of electrocatalysts. Nonetheless, the under-
lying mechanisms of augmented activity have yet to be fully
elucidated.
Despite the promising prospects of HEA catalysts, accurately

predicting their stability and activity is challenging. The
complexity of many-body interactions in HEAs precludes the
development of accurate classical force fields, necessitating
quantum mechanical treatments, which are impractical for
large HEA nanoparticles with more than a few hundred atoms.
Even with slab-model practice, the extraordinary diversity of
local site environments on HEA surfaces renders high-
throughput first-principles calculations of reactivity properties
for each site infeasible. Although computational workflows
accelerated by machine learning (ML) algorithms have been
devised to model HEA catalysis,8,17,18 surface segregation�a
critical phenomenon in the equilibrium configuration of alloys
driven by symmetry breaking or reactive species�has been
largely overlooked.
In this work, we introduce a computational and data-driven

framework to overcoming the aforementioned challenges, with
our recently reported PdCuPtNiCo HEAs as a specific
example.16 The observed discrepancy between experimentally
measured ORR activity trends and those predicted by
conventional modeling approaches, such as homogeneous
mixing models, underscores the limitations of these methods in
accurately capturing the complex heterogeneous elemental
distributions within HEA nanoparticles. These models fail to
account for the intraparticle heterogeneity and the resultant
distribution of active sites, which could significantly influence
the catalytic activity of HEAs under relevant conditions. As
depicted in Figure 1, our framework encompasses three main
components: phase stability evaluation using empirical
thermodynamic rules, surface modeling of HEA nanoparticles
through large-scale Monte Carlo simulations driven by deep
learning interatomic potentials, and activity prediction via the
integration of a pretrained theory-infused neural network
(TinNet)19 that accurately predicts the surface reactivity of

metal sites with a descriptor-based electrokinetic model. This
framework successfully captures the enhanced ORR activity of
the PdCuPtNiCo HEA nanoparticle system compared to pure
Pt as observed in our experiment and elucidates the reactivity
origin of HEA surface sites within the framework of the d-band
theory. The framework not only facilitates accurate modeling
of HEA catalysis but also advances our fundamental under-
standing of high-entropy materials’ surface reactivity, poten-
tially accelerating the design and synthesis of monodisperse
HEA nanoparticle catalysts for sustainable chemical and energy
transformations.

2. COMPUTATIONAL METHODS
Spin-polarized density functional theory (DFT) calculations
for all high-entropy alloy (HEA) systems were conducted using
the Vienna Ab initio Simulation Package (VASP).20,21 The
projector-augmented wave method was used to describe the
electron−core interaction with a kinetic energy cutoff of 500
eV. The exchange-correlation energy was approximated
through the generalized gradient approximation (GGA),
adopting the revised Perdew−Burke−Ernzerhof (RPBE)
functional.22 In preparation for the training of the deep
learning interatomic potential, 120,085 structures were
generated via the special quasi-random structure approach.23

This process ensured a comprehensive sampling within the
configurational space, incorporating both bulk in the fcc-phase
and surface slab structures with {111} orientation across
diverse unit cells (e.g., 3 × 3 × 4, 3 × 3 × 5, 3 × 4 × 5,

× ×7 7 5, × ×12 12 5) and compositions (ranging
from mono- to quinary-component systems with varied
concentrations). Each slab configuration includes a 15 Å
vacuum spacing to eliminate interactions between periodic
images along the z-axis. The lattice constant of the
Pd0.25Cu0.20Pt0.20Ni0.22Co0.13 HEA system of interest, 3.74 Å,
was estimated based on the bulk composition using Vegard’s
law.24 Considering the secondary effect of geometric relaxation
on the energy trend in Monte Carlo simulations, only single-
point calculations were executed.25 A Monkhorst−Pack mesh
of 3 × 3 × 3 and 3 × 3 × 1 k-points was used to sample the
Brillouin zone for bulk structures and surface slabs,
respectively. The Methfessel−Paxton smearing scheme was
used with a smearing parameter of 0.1 eV. Electronic energies
were extrapolated to kBT = 0 eV.
The atomistic line graph neural network (ALIGNN),26 a

flavor of message passing graph neural networks, was employed
to predict the potential energy of the HEA systems. To train
the ALIGNN models, the whole data set was randomly divided
into training and test sets with the split ratio of 9:1. The
trained ALIGNN models achieve a mean absolute error
(MAE) of 2.664 meV/atom on the test data set. The detailed
parameters of the ALIGNN models, such as the number and
size of layers, optimizer, and learning rate, can be found in the
Data/Code Availability section. The canonical MC simulations
(NVT) were conducted with the trained deep learning
potential to attain equilibrium configurations.25 We used the
slab model of fcc(111) with a 10 × 10 × 50 lattice as a
representative model of spherical nanoparticles. The thickness
of this slab is approximately 10 nm, which closely matches the
nanoparticle diameter in experiments.16 In the synthesis
procedure,16 HEAs are annealed under a H2 gas environment
at 900 K. For simplicity, H2 was not incorporated in our
simulations because the hydrogen binding strengths are similar

Figure 1. A computational and data-driven framework for the
modeling of HEA catalysis.
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across transition metals considered here and the *H coverage
is expected to be low at the annealing temperature of 900 K. In
each MC step, two atoms are randomly selected and then
swapped based on the acceptance probability min(1, e−ΔE/RT)
where ΔE is the potential energy difference between the new
and old configurations. We run 10 independent MC
simulations with different randomly sampled initial config-
urations and obtain the segregation profile by taking the
average and standard deviations on the 10 equilibrium surface
configurations.
The pretrained theory-infused neural network (TinNet)

without fine-tuning was used to predict OH adsorption
energies.19 The models were trained on ∼1000 OH adsorption
energies on the top site of fcc(111) metal and bimetallic alloy
surfaces. The OH adsorption energy difference between HEA
and Pt surface under the catalytically relevant OH coverage, 1/
4, is calculated using surface slabs with 1/9 OH coverage as
follows:

E E(HEA, 1/4) (Pt, 1/4)DFT DFT (1)

E E(HEA, 1/9) (Pt, 1/9)DFT DFT (2)

=[ ]
+

E E

E E

(HEA, 1/9) (M, 1/9)

(M, 1/9) (Pt, 1/9)

DFT DFT

DFT DFT (3)

[ ]
+

E E

E E

(HEA, 1/9) (M, 1/9)

(M, 1/9) (Pt, 1/9)

ML ML

DFT DFT (4)

where M refers to the pure metal M surface site with the same
element as the adsorption site atom of HEA. The first
approximation is made based on the fact that the effect of
adsorbate coverage on adsorption energy usually depends on
adsorbate−adsorbate interactions rather than on the surface
itself. The 1/9 OH coverage on a HEA corresponds to one OH
molecule being adsorbed on a 3 × 3 periodic unit cell which
better captures the local environment compared to a 2 × 2 unit
cell. On top of the TinNet-predicted OH adsorption energies,
zero-point energy corrections and entropic contributions to the
free energies were added for electrokinetic models, and the
values were taken from ref3. The linear scaling relationships are
employed in order to represent the free adsorption energy of
each ORR intermediate using that of *OH on the same surface
s i t e . S p e c i fi c a l l y , * = * +G G 3.2OOH OH e V ,

* = *G G2O OH.
2

3. RESULTS AND DISCUSSION
3.1. Phase Stability. To ascertain the phase stability of a

HEA system, we utilized the Hume−Rothery rules.27 These
foundational principles elucidate the conditions under which a
multiprincipal-component metallic system can form a solid
solution or other phases. To predict the formation of a single-
phase solid solution, two primary criteria have been widely
used. The first is the atomic radius difference, quantifying the
variation in atomic sizes of the components in a mixture or
compound,

=
=

c
r
r

(1 )
i

n

i
i

1

2

(5)

where ci represents the molar ratio of component i and r is the
atomic radius. A higher value of δ indicates a greater disparity

in the sizes of the atoms present, which can influence the
material’s structural and electronic properties. A smaller δ is
preferable to minimize internal stress, which impedes random
diffusion and mixing. The second criterion is the Ω parameter,

=
| |
T S

H
m mix

mix (6)

representing the entropy driving force relative to the absolute
magnitude of the mixing enthalpy. The enthalpy of mixing is
calculated as

=
=

H c c
i i j

n

ij i jmix
1, (7)

where = H( 4 )ij AB
mix is the regular solution interaction

parameter between the ith and jth elements and HAB
mix is the

enthalpy of mixing of binary liquid alloys calculated based on
the Miedema macroscopic model.28 A higher Omega value is
essential to lower the Gibbs free energy, thus favoring the
mixing process. Illustrated in Figure 2 is the schematic decision

boundary described by δ and Ω that maps numerous
multiprincipal-component metallic systems with their respec-
tive phases collected from ref 27. The dashed rectangle in the
top-left signifies the domain of single-phase solid solutions.
Moving beyond this domain results in the emergence of
intermetallic compounds and amorphous structures. Addition-
ally, the valence electron concentration (VEC, defined as the
average number of valence electrons per atom) rule suggests
that fcc solid solutions typically exhibit a higher VEC
compared to bcc solid solutions.29 The VEC of our HEA
system is 10 which is higher than the fcc/bcc VEC boundary
located at around 8. As verified by experimental character-
ization, the Pd0.25Cu0.20Pt0.20Ni0.22Co0.13 HEA system of our
interest forms a stable fcc single-phase solid solution,
consistent with the decision boundaries in Figure 2.

3.2. Surface Stability. To assess the surface stability of our
HEA system under annealing conditions, we employed
machine learning interatomic potentials based on graph neural
networks, particularly the atomistic line graph neural network
(ALIGNN), in molecular simulations to obtain equilibrium

Figure 2. Phase stability is characterized by two criteria of Ω and δ.
Each point represents a multiprincipal-component alloy or com-
pound. The color coding is based on the valence electron
concentrationn (VEC), which distinguishes between fcc and bcc
solid solutions.
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configurations. Details of model development can be found in
the Method section. Figure 3a presents a parity plot comparing

DFT-calculated and ALIGNN-predicted per-atom energies.
Both training and test data sets exhibit mean absolute errors
(MAEs) below 5 meV/atom, indicating a balanced model
without noticeable underfitting or overfitting. To determine
the equilibrium surface configurations after high-temperature
annealing, canonical Monte Carlo simulations were conducted
using the trained deep learning potential, with an equilibrium
achieved after approximately 16,000 steps. The occurrence
probability of each element across the surface layers, illustrated
in Figure 3b, maps the segregation profile perpendicular to the
surface. The average and standard deviation was obtained from
10 different initial samplings. This analysis revealed a
pronounced segregation of Cu and Pd to the surface, with Pt
only slightly higher than the bulk concentration, while Co and
Ni were preferentially located in the bulk.
The underlying mechanisms driving Cu and Pd segregation

can be elucidated through Helmholtz free energy components
F = U − TS of canonical ensembles, encompassing internal
energy (U) and entropy (S). According to the cohesion
theory,30 the cohesive energy trend among late transition and
noble metals is mainly dictated by the d-band, approximated as

E
W

N N
20

(10 )d
d

d d (8)

whereWd represents the d-band width and Nd is the number of
d-electrons. For Cu, with a fully occupied d-band (Nd = 10), its
cohesive contribution is minimal, making metallic bonds with
Cu energetically less favorable. Consequently, to minimize the
system’s internal energy, Cu atoms tend to segregate onto the
surface. Pd has only marginally higher cohesive and surface
energies compared to Cu,31 which partially contributes to the
surface segregation of Pd. Moreover, given the abundance of
P d i n t h e H E A ’ s b u l k c o m p o s i t i o n
(Pd0.25Cu0.20Pt0.20Ni0.22Co0.13 as targeted in our simulations),
segregation to the surface occurs as the bulk strives for an
equimolar distribution to maximize the configurational
entropy,

=
=

S R x xln( )
i

m

i iconfig
1 (9)

thereby rationalizing the segregation of Pd atoms at the HEA
surface as observed in Monte Carlo simulations. For the
remaining metals�Co, Ni, and Pt�their cohesive energies
and surface energies are all larger than those of Cu and Pd,31

which is why they do not exhibit surface segregation.
3.3. ORR Activity. For equilibrium configurations from

Monte Carlo simulations, we aimed to predict the ORR
activity of surface sites. We used OH adsorption energies as the
surface reactivity descriptor. As depicted in Figure 4a, the
equilibrium configuration of a large slab (10 × 10 × 50) can be
sampled with 3 × 3 × 4 sub-slabs while considering periodic
boundary conditions. Each small slab’s central surface atom
represents a surface site within the whole slab of 10 × 10 × 50.
The 3 × 3 × 4 unit cell, encompassing all first-nearest
neighboring atoms around the surface site, is sufficiently large
to capture the local environment primarily determining the
chemisorption properties of the surface site while being
computationally feasible in DFT. For simplification, the OH
adsorption energy at the atop site is designated as the reactivity
descriptor, given its stability on the 111 facet of most transition
and noble metals, particularly with the consideration of ice
bilayer structures.32−34 To mitigate errors stemming from
deviations in OH surface coverage under the reaction
conditions, we focus on predicting changes in the intrinsic
reactivity caused by variations in the local environment relative
to pure metal (111) surface sites. The change in the reactivity
descriptor can be accurately predicted using our pretrained
TinNet model due to error cancellation.35 This precision is
highlighted in the parity plot, which compares DFT-calculated
adsorption energies against those predicted by TinNet,
presented in Figure 4b. The plot demonstrates that a test
mean absolute error (MAE) of 0.14 eV on HEAs, though
higher than that of training set (0.03 eV) and validation set
(0.08 eV) due to the complexity of the multielemental sites on
HEAs, is relatively small considering the DFT uncertainty at a
similar magnitude, underscoring the model’s efficacy in
capturing the shifts in reactivity descriptors.
In the electrokinetic model to determine ORR activity,36 the

four-electron transfer mechanism is adopted, with site-specific
reaction rate quantified by the highest thermodynamic barrier
among the four elementary electron-transfer steps, at
equilibrium potential of 1.23 V vs RHE,

* + + * + GO H O e OOH OH2 2 1 (10)

* + * + GOOH e O OH 2 (11)

Figure 3. (a) The parity plot between DFT-calculated and ALIGNN-
predicted energies per atom. (b) Surface segregation profile in the
equilibrium configuration of the HEA.
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* + + * + GO H O e OH OH2 3 (12)

* + GOH e OH 4 (13)

=
=

r
N

A1
e

i

N
G G G G k T

1

max( , , , )/1 2 3 4 B

(14)

where N denotes the number of surface sites and A is the pre-
exponential factor which is assumed to be the same for all the
surface sites. The ORR activity relative to Pt(111) is defined at
the equilibrium potential as ln (r/rPt). Employing linear scaling
relationships between the adsorption energies of all ORR
intermediates and OH yields a volcano-shaped activity
function over OH adsorption free energy relative to Pt(111)

Figure 4. (a) Slab segmentation. (b) Parity plot between DFT-calculated and TinNet-predicted changes in OH adsorption energies. (c) ORR
activity map and OH adsorption energy distribution histograms in the equilibrium configuration of HEA surfaces.

Figure 5. (a) The lattice constants of HEA, Cu, Pd, and Pt. (b) The ligand effect. The distribution histogram of average rd of the first nearest
neighbors of (c) Cu sites, (d) Pd sites, and (e) Pt sites on the surface of the equilibrium configuration of the HEA.
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(refer to Figure 4c). A histogram of the TinNet-predicted OH
adsorption free energy difference, with surface sites categorized
by elements, is plotted (Figure 4c). Notably, numerous sites
align near the activity peak, resulting in the HEA’s specific
activity being 2.16 times that of Pt(111). This enhancement in
activity primarily stems from Pd (1.55 out of 2.16) and Pt
(0.60 out of 2.16) sites, with Cu sites contributing minimally
(0.01 out of 2.16), suggesting an optimization strategy that
reduces Cu to increase the number of active surface sites.
Interestingly, compared to pure metals, the distribution of Cu
and Pd site reactivity exhibits a significant shift toward the
weakening side, whereas Pt sites show no systematic shifts.
To unravel the reactivity origin of the surface sites,

specifically, the d-band theory37 is employed for further
analysis. In transition and noble metals, a low-lying d-band
or d-band center tends to weaken orbital hybridization and,
thus, OH adsorption on surface sites. There are two main
factors of the d-band center shift, the strain effect characterized
by the bulk lattice constant and the ligand effect governed by
the d-orbital radius rd of the neighboring atoms (see Figure
5b).38 A reduced lattice constant or enlarged d-orbital radius of
the neighbors tends to increase d−d orbital coupling between
the site atom and its neighbors, lowering the d-band center and
weakening OH binding. The rd values of Cu, Pd, Pt, Ni, and
Co are 0.49, 0.67, 0.79, 0.52, and 0.56 Å, respectively. The
distribution histogram of the average rd of first-nearest
neighbors of the three types of surface sites in HEAs are
plotted in Figure 5c−e. For Cu sites in the HEA, the lattice
expansion reative to the pure Cu (see Figure 5a) weakens the
orbital coupling and strengthens OH binding. Due to a small rd
of Cu compared to its neighboring metals, the increase of
interorbital coupling in HEAs weakens OH binding. If the
ligand effect dominates, then OH binding on Cu sites shifts to
a weakening side. For Pd sites, opposite to Cu sites, the lattice
compression strengthens orbital coupling and weakens OH
binding. However, due to a large rd of Pd compared to its
neighboring metals, the decrease of interorbital coupling in
HEAs strengthens OH binding. We can postulate that the
strain effect dominates in this scenario, which leads to a
weakened OH binding distribution as observed in Figure 4c.
For Pt sites, the two effects work in the different directions; as
a result, no systematic shifts of OH binding were observed on
Pt sites.

4. CONCLUSIONS
In conclusion, our study introduces an integrated computa-
tional and data-driven approach for understanding high-
entropy alloy (HEA) catalysis. This framework has effectively
demonstrated its capability by unraveling the origin of
enhanced ORR activity of the PdCuPtNiCo HEA system, as
previously observed in our experiment. Our approach stands as
a significant step forward in multiscale simulations of HEAs in
catalysis, offering physical insights into the surface behavior of
high-entropy materials in catalytic reactions, including but not
limited to ORR. Furthermore, the versatility and predictive
power of this framework signal accelerating the development
and optimization of monodisperse HEA nanoparticles for
surface reactions, opening up a promising path for their
applications in advancing sustainable energy solutions.
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