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This paper develops a new approach to post-selection inference for
screening high-dimensional predictors of survival outcomes. Post-selection
inference for right-censored outcome data has been investigated in the lit-
erature, but much remains to be done to make the methods both reliable
and computationally-scalable in high dimensions. Machine learning tools are
commonly used to provide predictions of survival outcomes, but the esti-
mated effect of a selected predictor suffers from confirmation bias unless the
selection is taken into account. The new approach involves the construction of
semiparametrically efficient estimators of the linear association between the
predictors and the survival outcome, which are used to build a test statistic for
detecting the presence of an association between any of the predictors and the
outcome. Further, a stabilization technique reminiscent of bagging allows a
normal calibration for the resulting test statistic, which enables the construc-
tion of confidence intervals for the maximal association between predictors
and the outcome and also greatly reduces computational cost. Theoretical
results show that this testing procedure is valid even when the number of pre-
dictors grows superpolynomially with sample size, and our simulations sup-
port this asymptotic guarantee at moderate sample sizes. The new approach
is applied to the problem of identifying patterns in viral gene expression as-
sociated with the potency of an antiviral drug.

1. Introduction. The problem of identifying associations between high-dimensional
predictors and a survival outcome is of great interest in the biomedical sciences. In virol-
ogy, for example, the potency of an antiviral drug (in controlling viral replication) is typically
assessed in terms of a type of survival time outcome, and it is important to identify associa-
tions between patterns of viral gene expression and the drug’s potency (Gilbert et al. (2017)).
In cancer genomics, patterns of patients’ gene expression can also influence survival time
outcomes. Diffuse large B-cell lymphoma, for instance, has been studied with the aim of
identifying such patterns from massive collections of gene-expression data (Rosenwald et al.
(2002); Bøvelstad, Nygård and Borgan (2009)). In earlier work (Huang, McKeague and Qian
(2019)), we introduced an approach to this general problem based on marginal accelerated
failure time modeling. In the present paper, we expand this approach to provide a semipara-
metrically efficient and more computationally tractable method that can handle the screening
of extremely large numbers of predictors (as is typical with gene expression data).

Our approach is based on marginal screening of the predictors, and specifying the link be-
tween the survival outcome and the predictors by a general semiparametric accelerated failure
time (AFT) model that does not make any distributional assumption on the error term. The
error term is merely taken to be uncorrelated with the predictors (i.e., the so-called assump-
tion lean linear model setting). Let T be the (log-transformed) time-to-event outcome, and
U = (U1, . . . ,Up)T denote a p-dimensional vector of predictors. Note that p = pn can grow
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with n, but we omit the subscript n throughout for notational simplicity unless otherwise
stated. The AFT model takes the form

T = α0 + UT β0 + ε,(1)

where α0 ∈ R is an intercept, β0 ∈Rp is a vector of slope parameters and ε is the zero-mean
error term that is uncorrelated with U . The transformed survival outcome T is possibly right-
censored by C, and we only observe X = min{T ,C} and δ = 1(T ≤ C). The problem is to
test the global null β0 = 0. We emphasize that model (1) is locally nonparametric (van der
Laan and Robins (2003)) and holds without distributional assumptions (such as independent
errors) apart from mild moment conditions, by defining the second term as the L2-projection
of T onto the linear span of U1, . . . ,Up .

An especially attractive feature of the AFT model is that the marginal association between
T and each predictor can be represented directly in terms of a correlation, and does not re-
quire any structural assumptions. This allows us to reduce the high-dimensional screening
problem (involving all p components of β0) to a single test of whether the most correlated
predictor with T is significant. A popular approach to the screening of predictors in survival
analysis is to use relative or excess conditional hazard function representations of associa-
tions. However, the AFT approach has the advantage that a lack of any marginal correlation
implies the absence of all correlation between T and U (under the mild assumption that the
covariance matrix of U is invertible); in the hazard-rate setting, there is no such connection
and the semiparametric model needs to hold for testing methods to be useful.

Koul, Susarla and Van Ryzin (1981) (henceforth, KSV) introduced the technique of in-
versely weighting the observed outcomes by the Kaplan–Meier estimator of the censoring
distribution, enabling the use of standard least squares estimators from the uncensored linear
model. Subsequently, two additional sophisticated methods were proposed to fit the semi-
parametric AFT model. The Buckley–James estimator (Buckley and James (1979); Ritov
(1990)) replaces the censored survival outcome by the conditional expectation of T given
the data. The rank-based method is an estimating equation approach formulated in terms of
the partial likelihood score function (Tsiatis (1990); Lai and Ying (1991a,b); Ying (1993);
Jin et al. (2003)). A difficulty with the Buckley–James and rank-based methods is that they
fail to preserve a direct link with the AFT, which is essential for marginal screening based
on correlation. Our new marginal screening test will rely on finding an asymptotically effi-
cient estimator of each marginal slope parameter; this will have a considerable advantage in
terms of efficiency over the marginal screening method based on the KSV estimator (Huang,
McKeague and Qian (2019)).

The marginal KSV estimators stem from regressing the estimated synthetic response Y =
δX/Ĝn(X) on successive components of U , where Y is regarded as an inverse probability
weighted estimate, and Ĝn is the standard Kaplan–Meier estimator of the survival function of
C. Under independent censoring, the use of least squares estimators, treating Y as a response
variable, is justified in view of the uniform consistency of Ĝn under mild conditions (e.g.,
when the distribution functions of T and C have no common jumps; see Stute and Wang
(1993)). Independent censoring is a common assumption in the high-dimensional screening
of predictors for survival outcomes (He, Wang and Hong (2013); Song et al. (2014); Li et al.
(2016)).

1.1. Key contributions. We now outline the various novel steps involved in developing
our proposed test. In Huang, McKeague and Qian (2019), we showed that |Corr(Uk, T )|
and |Corr(Uk, Ỹ )|, for k = 1, . . . , p, are maximized at a common index k. This was used to
justify replacing T by Ỹ = δX/G(X) (and in turn its estimate Y ) in the empirical version of
the Uk-specific slope parameter �k(P ) = CovP (Uk, T )/VarP (Uk), for use as a test statistic
for the global null hypothesis β0 = 0 in the sense that it suffices to test �k(P ) = 0 for all k.
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Our aim now is to replace this test statistic by one that is more efficient (when k is treated as
fixed), and also that is easier to calibrate taking the selection of k into account. Writing P̃n

as the empirical distribution of (Uk, Ỹ ), when G is known, the influence function of �k(P̃n)

will be derived from that of the sample correlation coefficient in the uncensored case (Devlin,
Gnanadesikan and Kettenring (1975)). This will lead to the influence function IFk(O|P) of
the (inefficient) KSV estimator �̂k(P̃n) that replaces the unknown G in �k(P̃n) by Ĝn. This
derivation will be based on the influence function of Ĝn and some empirical process and
Slutsky-type arguments. The next step is to project IFk(·|P) onto the tangent space of the
observation model to obtain an efficient influence function IF∗

k , which in turn will lead to
an asymptotically efficient one-step estimator of �k(P ). This will be accomplished in part
using results of van der Laan and Robins (2003) and van der Laan, Gill and Robins (2000).
The one-step estimator takes the form Sk(P̂n,Pn) = �k(P̂n) + Pn IF∗

k(·|P̂n), where P̂n is a
plug-in estimator of the various features of P that appear in IF∗

k , �k(P̂n) = �̂k(P̃n), and Pn

is the empirical distribution of the data (acting as an expectation operator). Estimation of
those features will involve estimation of the function E[Ỹ |Uk = u,X ≥ s] as in van der Laan
and Hubbard (1998), the empirical distribution of the predictor Uk and a local Kaplan–Meier
estimator of the conditional censoring distribution given Uk .

Our main contribution is a method to calibrate the test. This will be done by introducing
a stabilized version of Sk(P̂n,Pn) that “smooths out” the implicit selection of k, along the
lines of Luedtke and van der Laan (2018) in the uncensored case. This stabilized version is
constructed by taking a weighted average over subsamples, and is asymptotically equivalent
to a martingale sum (provided P̂n has no effect asymptotically), which leads to a standard
normal limit even under growing dimensions, when p = pn → ∞ and log(pn)/n1/4 → 0.
Although the stabilized one-step estimator can have slightly diminished power compared
with its unstabilized counterpart when k is given, at least in the uncensored case (Luedtke
and van der Laan (2018)), it vastly reduces computational cost by avoiding the need for a
double bootstrap (Huang, McKeague and Qian (2019)).

It would be interesting to extend the proposed methodology to handle measures of associ-
ation other than a slope parameter, providing theoretical guarantees for our method in such
settings would require substantial additional arguments. However, even for the maximal slope
parameter we consider, our theoretical results build on dozens of lemmas whose proofs rely
on carefully studying the form of remainder terms that arise in a first-order expansion of the
estimated parameter. While similar results could presumably be established for other associ-
ation parameters, the technical details of the needed arguments may change considerably and
studying them would be greatly beyond the scope of this paper.

The most challenging step in validating our method (i.e., showing asymptotic normality of
the test statistic) involves finding an exponential tail bound for a “remainder term” involving
a collection of martingale integrals with integrands falling in a general class Hn of càglàd
functions of bounded variation that depends on sample size. Although the task of bounding
families of martingale integrals with predictable integrands commonly arises in standard sur-
vival analysis settings, the difficulty here is that we have unpredictable integrands (a case
in which standard martingale inequalities fail). The unpredicability of such integrands is a
novel aspect of the problem that, to our knowledge, has not arisen elsewhere in the survival
analysis literature, but that arises here because P̂n involves unpredictable elements relative to
the subsamples used in the stabilization.

More specifically, let Nn(s) be the aggregated counting process given by the number of
censored observations occurring by time s, as s varies over the follow-up period T , and
denote its compensator by An and corresponding martingale M̄ = Nn − An. Then we show
(under suitable conditions) that the upper bound on the class of martingale integrals given by

sup
h∈Hn

∣∣∣∣
∫
T

h(s) dM̄(s)

∣∣∣∣
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is asymptotically negligible as n → ∞. This result is general enough to give control over
unpredictable integrands with respect to the natural filtration of the martingale, provided they
can be viewed as belonging to the class of deterministic functions Hn. In this way, bracketing
entropy techniques are shown to be applicable by adapting a probability inequality bound for
a family of counting process integrals due to van de Geer (1995).

In practice, the implementation of our stabilized one-step estimator to screen predictors of
dimension p = 106 based on data of n = 500 on a single-core laptop only takes one minute.
Hence, our proposed test enjoys both statistical and computational efficiency. Further, it pro-
vides an asymptotically valid confidence interval for the slope parameter of the selected pre-
dictor. As far as we know, no other competing method provides all of these features in the
setting of high-dimensional marginal screening for survival outcomes.

1.2. Prior literature. Variable selection methods for right-censored survival data are
widely available, although formal testing procedures are far less prevalent. For example,
variants of regularized Cox regression have been studied by Tibshirani (1997); Fan and Li
(2002); Bunea and McKeague (2005); Zhang and Lu (2007); Bøvelstad, Nygård and Borgan
(2009); Engler and Li (2009); Antoniadis, Fryzlewicz and Letué (2010); Binder, Porzelius
and Schumacher (2011); Wu (2012); Sinnott and Cai (2016). Penalized AFT models have
been considered by Huang, Ma and Xie (2006); Datta, Le-Rademacher and Datta (2007);
Johnson (2008); Johnson, Lin and Zeng (2008); Cai, Huang and Tian (2009); Huang and
Ma (2010); Bradic, Fan and Jiang (2011); Ma and Du (2012); Li, Dicker and Zhao (2014).
These methods ensure the consistency of variable selection only (i.e., the oracle property),
and do not address the issue of post-selection inference. Fang, Ning and Liu (2017) have es-
tablished asymptotically valid confidence intervals for a preconceived regression parameter
in a high-dimensional Cox model after variable selection on the remaining predictors, but
this does not apply to marginal screening (where no regression parameter is singled out, a
priori). Yu, Bradic and Samworth (2021) recently constructed valid confidence intervals for
the regression parameters in high-dimensional Cox models, but their approach also does not
apply to marginal screening because it is predicated on the presence of active predictors (and
also preselection of parameters of interest). Zhong, Hu and Li (2015) considered the prob-
lem for preconceived regression parameters within a high-dimensional additive risk model.
Chai et al. (2019) considered the same problem in a high-dimensional AFT model. Taylor
and Tibshirani (2018) proposed a method of finding post-selection corrected p-values and
confidence intervals for the Cox model based on conditional testing. However, to the best of
our knowledge, their method has not been explored theoretically (except in the uncensored
linear regression setting with fixed design and normal errors; see Lockhart et al. (2014)).
Statistical methods for variable selection based on marginal screening for survival data have
been studied by Fan, Feng and Wu (2010), who extended sure independence screening to
survival outcomes based on the Cox model. Their method applies to the selection of compo-
nents of ultrahigh dimensional predictors, but no formal testing is available. Other relevant
references include Zhao and Li (2012), Gorst-Rasmussen and Scheike (2013), He, Wang and
Hong (2013), Song et al. (2014), Zhao and Li (2014), Hong, Kang and Li (2018), Li et al.
(2016), Hong et al. (2018), Pan et al. (2019), Xia, Li and Fu (2019), Hong et al. (2020) and
Liu, Chen and Li (2020).

1.3. Overview. The article is organized as follows. In Section 2, we formulate the estima-
tion problem and introduce background material on semiparametric efficiency. The one-step
efficient estimator of the target parameter is developed in Section 3 in the case of a single pre-
dictor. In Section 4, we develop an asymptotic normality result for calibrating the proposed
test statistic that takes selection of the predictor into account. Various competing methods
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are discussed in Section 5. Numerical results reported in Section 6 show that the proposed
approach has favorable performance compared with these competing methods. In Section 7,
we present an application using data on viral gene expression as related to the potency of an
anti-retroviral drug for the treatment of HIV-1. Concluding remarks are given in Section 8.
Proofs are placed in the Appendix and in the Supplementary Material (Huang, Luedtke and
McKeague (2023)).

2. Preliminaries. First we recall the standard survival analysis model with indepen-
dent right censorship. Let T and C denote a (log-transformed) survival time and censor-
ing time, respectively, and suppose we observe n i.i.d. copies of O = (X, δ,U) ∼ P , where
X = min{T ,C}, δ = 1(T ≤ C) and U = (Uk, k = 1, . . . , p) is a p-vector of predictors. We
denote the joint distribution of (T ,U) by Q and the censoring distribution by G, and we
also assume throughout that the censoring time C is independent of (T ,U). Though this joint
independence assumption will be stronger than needed, it will greatly simplify the develop-
ments when U is of large dimension relative to sample size. The distribution P belongs to the
statistical model M, which is the collection of distributions P1 parameterized by (Q1,G1)

such that P1 has density with respect to an appropriate dominating measure ν given by

dP1

dν
(x, δ,u) = [

q1(x|u)G1(C ≥ x)
]δ[

Q1(T ≥ x|U = u)g1(x)
]1−δ

q1(u),

where q1 and g1 are the densities of Q1 and G1 with respect to ν. Let the follow-up period be
T = (−∞, τ ]. The sample space is denoted by X = T ×{0,1}×Rp and the empirical distri-
bution on this space is denoted Pn. Moreover, for a distribution P1 on the support of O and a
function f mapping from a realization of O to Rd , we let P1f ≡ P1f (O) ≡ ∫

f (o) dP1(o).
Our approach to marginal screening is based on an estimator of the maximal (absolute)

slope parameter from fitting a marginal linear regression of the survival outcome T against
each predictor Uk . That is, we target the parameter

�(P ) ≡ max
k=1,...,p

∣∣�k(P )
∣∣(2)

and the indices that attain this maximum, where �k : M →R is given by

�k(P ) = CovP (Uk, T )

VarP (Uk)
.(3)

In general, �k(P ) is not equal to the marginal regression coefficient of Uk in (1). Throughout,
we assume that Uk and T have nondegenerate finite second moments. Further, in order for
the target parameter to be proportional to the maximal absolute (Pearson) correlation, we
implicitly assume that all the Uk are prestandardized to have unit variance—this assumption
only plays an interpretive role in the sequel. The parameter �k(P ) can be identified in terms
of the conditional mean lifetime E[T |Uk] and the marginal distribution of Uk . Indeed,

CovP (Uk, T ) = CovP

(
Uk,E[T |Uk]).(4)

The proposed one-step estimator of �k(P ) that we will develop also involves estimation
of G.

We will need some general concepts from semiparametric efficiency theory (e.g., Pfanzagl
(1990)). Suppose we observe a general random vector O ∼ P . Let L2

0(P ) denote the Hilbert
space of P -square integrable functions with mean zero. Consider a smooth one-dimensional
family of probability measures {Pε} passing through P and having score function k ∈ L2

0(P )

at ε = 0. The tangent space TM(P ) is the L2
0(P )-closure of the linear span of all such score

functions k. For example, if nothing is known about P , then Pε(do) = (1 + εk(o))P (do)
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is such a submodel for any bounded function k with mean zero (provided ε is sufficiently
small), so TM(P ) is seen to be the whole of L2

0(P ) in this case.
Let ψ : M → R be a parameter that is pathwise differentiable at P : there exists g ∈

L2
0(P ) such that limε→0(ψ(Pε) − ψ(P ))/ε = 〈g, k〉, for any smooth submodel {Pε} with

score function k, as above, where 〈·, ·〉 is the inner product in L2
0(P ). The function g is called a

gradient (or influence function) for ψ ; the projection IFψ of any gradient on the tangent space
TM(P ) is unique and is known as the canonical gradient (or efficient influence function). The
supremum of the Cramér–Rao bounds for all submodels (the information bound) is given
by the second moment of IFψ(O). Furthermore, the influence function of any regular and
asymptotically linear estimator must be a gradient (Proposition 2.3 in Pfanzagl (1990)).

A one-step estimator is an empirical bias correction of a naïve plug-in estimator in the
direction of a gradient of the parameter of interest (Pfanzagl (1982)); when this gradient is the
canonical gradient, then this results in an efficient estimator under some regularity conditions.
A one-step estimator for ψ(P ) is constructed as follows. First, one obtains an initial estimate
P̂ of P . For any gradient D(P̂ ) of the parameter ψ evaluated at P̂ , by the definition of the
gradient this initial estimate satisfies

ψ(P̂ ) − ψ(P ) = −PD(P̂ ) + Remψ(P̂ ,P ),

where Remψ(P̂ ,P ) is negligible if P̂ is close to P in an appropriate sense. As D(P ) has
mean zero under P , we expect that PD(P̂ ) is close to zero if D is continuous in its argument
and P̂ is close to P . However, the rate of convergence of PD(P̂ ) to zero as sample size
grows may be slower than n−1/2. The one-step estimator aims to improve ψ(P̂ ) and achieve
n1/2-consistency and asymptotically normality by adding an empirical estimate PnD(P̂ ) of
its deviation from ψ(P ). By the above, the one-step estimator ψ̂ ≡ ψ(P̂ )+PnD(P̂ ) satisfies
the expansion

ψ̂ − ψ(P ) = (Pn − P)D(P̂ ) + Remψ(P̂ ,P ).

Under an empirical process and L2(P ) consistency condition on D(P̂ ), the leading term
on the right-hand side is asymptotically equivalent to (Pn − P)D(P ), which converges in
distribution to a mean-zero Gaussian limit with consistently estimable covariance. The con-
struction of this one-step estimator is generally nonunique because there is generally more
than one gradient for ψ ; this is true in our setting when ψ = �k and we assume that C

is independent of (T ,U). To minimize the variance of the Gaussian limit, then D(P̂ ) can
generally be chosen to be equal to the canonical gradient of ψ at P̂ , since under conditions
the mean-square limit of the efficient influence function at P̂ will be equal to the efficient
influence function at P .

3. One-step estimator with a single predictor. Restricting attention to the case of a
single predictor Uk for any given k, in this section we develop an asymptotically efficient
one-step estimator of �k(P ). To this end, we need to estimate the involving features of P in
the development of the one-step estimator, and introduce an estimator P̂n that consists of the
following three items:

(i) Qn : the empirical distribution used to estimate the marginal distribution of the given
predictor Uk , denoted by Qu.

(ii) Ĝn(·|u) : the Kaplan–Meier estimator of the censoring distribution conditional on
c(Uk) = c(u), with c a fixed, user-defined coarsening so that c(Uk), Uk ∼ Qu, is a finitely
supported discrete random variable. Here, Ĝn is defined as a maximum likelihood estimator
in a model whose tangent space for G is denoted by T∗(G). The corresponding estimator of
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the conditional cumulative hazard function is


̂n(·|u) =
∫ ·

0

1(Yn(u, s) > 0)

Yn(u, s)
Nn(u, ds),

where

Nn(u, s) =
n∑

i=1

1
(
Xi ≤ s, δi = 0, c(Uk,i) = c(u)

)
, Yn(u, s) =

n∑
i=1

1
(
Xi ≥ s, c(Uk,i) = c(u)

)
denote the stratified basic counting process and the size of the risk set at time s, respectively.

(iii) Ên(u, s, k) : an estimator of E[Ỹ |Uk = u,X ≥ s] under P̃ (the joint distribution
of (Uk, Ỹ )), which is restricted to take values in some P -Donsker family of uniformly
bounded functions of (u, s) ∈ R × T with given k. Note that along with (ii), this is equiv-
alent to estimating E[T |Uk = u,X ≥ s], according to the equality E[T |Uk = u,X ≥ s] =
G(s)E[Ỹ |Uk = u,X ≥ s]. We suppress the argument s if s = −∞, namely using Ên(u, k)

to estimate E[Ỹ |Uk = u] that is equal to E[T |Uk = u]. Also, we require that, for the given k

and each u, the process s �→ Ên(u, s, k) is predictable with respect to the filtration

σ
{
Nn

(·, s′), Yn

(·, s′),Uk,i, i = 1, . . . , n, s ′ ≤ s ∈ T
}
.(5)

In view of (4), which can be expressed in terms of E[Ỹ |Uk], Qu and G, we see that �k(P )

can be estimated by plugging-in P̂n:

�k(P̂n) = CovQn
(Uk, Ên(Uk, k))

VarQn
(Uk)

.

From (13) in Appendix A, with the dependence on k made explicit, we find that the
influence function of �k(P ) is IF∗

k(·|P) = IFipw
k (·|P) − IFcar

k (·|P), where IFipw
k (·|P) and

IFcar
k (·|P) can be expressed in terms of the features of P by

IFipw
k (·|P) :

o �→ (u − Qu[Uk])(ỹ − Qu[E[Ỹ |Uk]])
VarQu(Uk)

− CovQu(Uk,E[Ỹ |Uk])
Var2

Qu
(Uk)

(
u − Qu[Uk])2;

IFcar
k (·|P) :

o �→ (u − Qu[Uk])
VarQu(Uk)

∫
T

E[Ỹ |Uk = u,X ≥ s]{1(x ∈ ds, δ = 0) − 1(x ≥ s) d
(s)
}
.

(6)

Here, the form of IFcar
k (·|P) is derived by inserting

E[T |Uk = u,X ≥ s] = G(s)E[Ỹ |Uk = u,X ≥ s]
into (12) of Appendix A. This implies that IF∗

k(·|P) = IFipw
k (·|P) − IFcar

k (·|P) is represented
by the introduced features of P , and enables the estimation of IF∗

k(·|P) in terms of P̂n.
The one-step estimator is then given by

Sk(Pn, P̂n) = �k(P̂n) + Pn IF∗
k(·|P̂n)

= �k(P̂n) + Pn(Uk −Qn[Uk])(δX/Ĝn(X|Uk) −Qn[Ên(Uk, k)])
VarQn

(Uk)

− �k(P̂n) − Pn IFcar
k (·|P̂n)(7)

= Pn(Uk −Qn[Uk])Y
VarQn

(Uk)

− 1

VarQn
(Uk)

Pn

[(
Uk −Qn[Uk])

∫
T

Ên(Uk, s, k)M̂(ds|Uk)

]
,
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where M̂(ds|u) = 1(X ∈ ds, δ = 0, c(Uk) = c(u)) − 1(X ≥ s, c(Uk) = c(u))d
̂n(s|u). For
the second equality, note that the second term in PnIFipw

k (·|P̂n) is precisely �k(P̂n). The third
equality holds by Pn(Uk − Qn[Uk])Qn[Ên(Uk, k)] = Qn(Uk − Qn[Uk])Qn[Ên(Uk, k)] = 0
and Y = δX/Ĝn(X|Uk).

Under the following conditions, we next establish the asymptotic linearity of this one-
step estimator. The proof of this result and relevant remarks are given in Appendix B and
Section S5 of the Supplementary Material (Huang, Luedtke and McKeague (2023)).

(A.1) Each predictor Uk has bounded support and is nondegenerate.
(A.2) The survival function of the censoring, G, is continuous and G(τ) > 0.
(A.3) There is a positive probability of a subject still being at risk at the end of follow-up

for each subgroup defined by the coarsening of Uk : P(X ≥ τ, c(Uk) = c(u)) > 0.
(A.4) There exists a uniformly-bounded, nonrandom function (u, s) �→ Ē(u, s, k) that is

indexed by k and left-continuous in s, such that given k, E{|Ên(u, s, k) − Ē(u, s, k)|} =
o(n−1/4) for each (u, s) and sup(u,s) |Ên(u, s, k) − Ē(u, s, k)| is bounded in probability,
where E denotes the expectation over O1, . . . ,On.

Condition (A.1) is a mild requirement on the marginal distributions of the predictors; they are
not required to be continuous and they can have different supports. Condition (A.4) imposes a
mild stability control on the behavior of the estimator Ên. When Ē(Uk, k) �= E[Ỹ |Uk], where
Ē(u, k) = Ē(u,−∞, k) and Ē is from (A.4), we need a correction to IF∗

k given by

IF†
k(·|Ē,P ) : o �→ CovQu(Uk, Ē(Uk, k) − E[Ỹ |Uk])

Var2
Qu

(Uk)

[(
u − Qu[Uk])2 − VarQu(Uk)

]
.

To introduce the following theorem, we need additional notation—let �(·|S) denote the pro-
jection operator onto a closed linear subspace S ⊆ L2

0(P ) and ⊥ denote the orthogonal com-
plement in L2

0(P ).

THEOREM 3.1. Under conditions (A.1), (A.2), (A.3) and (A.4),

Sk(Pn, P̂n) − �k(P ) = [Pn − P ]�(
IF∗

k(·|Ē,Qu,G) + IF†
k(·|Ē,P )|T∗(G)⊥

) + op

(
n−1/2)

,

where T∗(G) is the tangent space defined in (ii) above.

Suppose that Ên(u, s, k) consistently estimates the true conditional residual life func-
tion, that is, Ē(u, s, k) = E[Ỹ |Uk = u,X ≥ s] for all (u, s) with given k, in which case
IF†

k(·|Ē,P ) = 0. Recall from Appendix A that IF∗
k(·|Ē,Qu,G) = �(IFipw

k (·|P)|Tcar(G)⊥),
with Tcar(G) as defined in (11) thereof and, therefore, IF∗

k(·|Ē,Qu,G) ∈ Tcar(G)⊥. Fur-
thermore, T∗(G) ⊆ Tcar(G), and so T∗(G)⊥ ⊇ Tcar(G)⊥. Consequently, we know that
IF∗

k(·|Ē,Qu,G) ∈ T∗(G)⊥, which yields that

�
(
IF∗

k(·|Ē,Qu,G)|T∗(G)⊥
) = IF∗

k(·|Ē,Qu,G) ≡ IF∗
k(·|P).

Hence, Sk(Pn, P̂n) is asymptotically linear with the influence function equal to the efficient
influence function, that is, Sk(Pn, P̂n) is asymptotically efficient. Furthermore, under regular-
ity conditions, the empirical variance of IF∗

k(O|P̂n) converges to the variance of IF∗
k(O|P)

under O ∼ P , that is, to the variance of the one-step estimator.

4. Stabilized one-step estimator. For the inference of the target parameter �(P ) de-
fined in (2), we need to incorporate the selection of the most informative predictor into the
one-step estimator developed in (7). We adapt the stabilization approach of Luedtke and van
der Laan (2018) to leverage data for the predictor selection and to introduce the resulting
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variation into the inference procedure. The idea is first to randomly order the data, and con-
sider subsamples consisting of the first j observations for j = qn, . . . , n − 1, where {qn} is
some positive integer sequence such that both qn and n − qn tend to infinity. Based on the
subsample of size j , an estimator of the label of the most informative predictor is

kj = arg max
k=1,...,p

∣∣�
Ĝj ,k

(Pj )
∣∣ ≡ arg max

k=1,...,p

∣∣∣∣CovPj
(Uk, δX/Ĝj (X))

VarPj
(Uk)

∣∣∣∣,(8)

where Ĝj is the usual Kaplan–Meier estimator of G based on the subsample of size j , and
Pj is the empirical distribution of this subsample.

A reduced version of the earlier condition (A.3) is now understood without any predic-
tors as

(A.5) There is a positive probability of a subject still being at risk at the end of follow-up:
P(X ≥ τ) > 0.

The stabilized one-step estimator of �(P ) is then given by

(9) S∗
n = 1

n − qn

n−1∑
j=qn

wnjmjSkj
(δOj+1, P̂nj ),

where mj ∈ {−1,1} is the sign of �
Ĝj ,kj

(Pj ), Skj
refers to (7) with the predictor Uk now

being Ukj
and P̂nj ≡ (Êj ,Qj , Ĝn) that refers to P̂n based on only the first j observations to

estimate part of the parameters of P . Here, δOj+1 is the Dirac measure putting unit mass at
Oj+1, wnj ≡ σ̄n/σ̂nj with σ̄n = {(n − qn)

−1 ∑n
j=qn+1(1/σ̂nj )}−1,

σ̂ 2
nj = 1

j

j∑
i=1

{
mj IF∗

kj
(Oi |P̂nj ) − 1

j

j∑
i=1

mj IF∗
kj

(Oi |P̂nj )

}2

,

and IF∗
kj

is IF∗
k with the predictor taken as Ukj

.

Note that P̂nj in the stabilized one-step estimator S∗
n involves subsamples. As we will see

from simulation studies, however, using the full-sample estimator P̂n instead, considerably
improves the performance of S∗

n in small samples.
The following 95% confidence interval for �(P ) is justified by the asymptotic normality

of S∗
n given in Theorem 4.1 below:

[LBn,UBn] =
[
S∗

n ± 1.96
σ̄n√

n − qn

]
,

and the two-sided p-value is

2
(
1 − 


(∣∣√n − qnS
∗
n/σ̄n

∣∣)),
where 
 is the cumulative distribution function of N (0,1).

THEOREM 4.1. Suppose the number of predictors p = pn satisfies log(pn)/n1/4 → 0,
and the smallest subsample size qn used for stabilization satisfies n−qn → ∞, n/qn = O(1)

and q
1/4
n / log(n ∨ pn) → ∞. Assume (A.1), (A.2), (A.5), the asymptotic stability conditions

(A.7)–(A.8) that are stated just before the proof in Appendix C, and the nondegeneracy con-
dition

(A.6) VarQu(Uk), Var(Uk1(X ≥ s)) and Var(IF∗
k(O|P)) are bounded away from zero and

infinity, as functions of k ∈ {1, . . . , pn} and s ∈ T .
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Then S∗
n is an asymptotically normal estimator of �(P ) :

√
n − qnσ̄

−1
n

[
S∗

n − �(P )
] d−→ N (0,1).

The proof is postponed to Appendix C. Note that condition (A.7) in Appendix C re-
moves the need to include IF† in IF∗ when constructing S∗

n . In practice, it is advisable to
pre-standardize each predictor (as is commonly recommended in the variable selection liter-
ature) to provide scale invariance; the above result is given in terms of the unstandardized
predictors for simplicity of presentation.

The stabilized one-step estimator is reminiscent of bagging, the aggregation of multiple
weak learners constructed from subsets of the data (in this case, Skj

for j ≥ qn). The value of
qn determines how many weak learners are collected (n − qn of them) and plays the role of a
tuning parameter. Taking a smaller qn is expected to reduce variability in the performance of
S∗

n , but taking too small value of qn leads to overfitting. In practice, we recommend setting
qn = n/2 (which satisfies the conditions in Theorem 4.1) as a reasonable trade-off, although
in practice it is advisable to run the analysis for a few values of qn and compare the results.

REMARK 4.2 (Estimation of the conditional residual life function). Along the lines of
van der Laan and Hubbard (1998), such an estimator Êj (u, s, k) can be constructed by re-
gressing Y on Uk using only a subsample {Oi = (Xi, δi,U i ), i : Xi ≥ s, i ≤ j} in the fashion
of Koul, Susarla and Van Ryzin (1981), leading to

Êj (u, s, k) = Pj

[
Y1(X ≥ s)

]
(10)

+ CovPj
(Uk1(X ≥ s), Y1(X ≥ s))

VarPj
(Uk1(X ≥ s))

(
u − Pj

[
Uk1(X ≥ s)

])
.

Note that for the given k and each u, the process s �→ Êj (u, s, k) is unpredictable with respect
to the filtration defined in (5). This is the unpredictability issue referred to in the Introduction.

REMARK 4.3 (Additional stabilization). A practical issue in implementing a test based
on the stabilized one-step estimator is variation due to the ordering of the data. Ordering the
data in a different way can change the value of S∗

n and the resulting p-value, making the result
difficult to reproduce. One way to address this issue is to use a Bonferroni correction of the
minimal p-value resulting from R ≥ 1 random orderings of the data, taking into account the
trade-off in terms of computational cost (which grows proportionally to R). Then the null is
rejected if the minimum of the p-values obtained from the R random orderings is less than
5% (after Bonferroni correction for R-fold multiple testing). We refer to the resulting method
as the R-fold stabilized one-step test. In practice, we recommend setting R = 10.

REMARK 4.4 (Computational cost). The stabilized one-step estimator does not involve
subsampling in the usual sense, for example, in the way it is used in bootstrapping, forming
say 1000 independent subsamples, each without replacement, although the idea is similar in
some respects. We only make use of certain subsamples, namely those formed from the first
j observations in a given ordering of the data (for a small number if random orderings of
the data), as j runs from qn to n − 1. More specifically, our test statistic S∗

n is a weighted
average of statistics combining each one of these subsamples with its successive observation,
for a total of n − qn terms. This averaging stabilizes the asymptotic behavior of S∗

n , and
consequently simplifies the calibration of our test and CIs (via an asymptotically normal
limit that is proved using martingale methods). Standard subsampling is computationally
much more intensive, requiring say 1000 subsamples, and in our high-dimensional setting
becomes computationally prohibitive.
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5. Competing methods.

Marginal Cox models with Bonferroni correction (Bonferroni Cox). This procedure uses
marginal Cox models for linking the survival outcome T to each predictor Uk , k = 1, . . . , p.
Provided the asymptotic normality of the maximum partial likelihood estimator (Andersen
and Gill (1982)), we conduct a Z-test with Bonferroni correction to investigate whether each
marginal regression coefficient is zero or not.

Marginal one-step estimators with Bonferroni correction (Bonferroni one-step). For each
predictor Uk, k = 1, . . . , p, the marginal test statistic is Bk ≡ √

nSk(Pn, P̂n)/σ̂k , where σ̂ 2
k is

the sample second moment of IF∗
k(O|P̂n). Marginal testing over all k with Bonferroni cor-

rection controls the familywise error rate of the global null hypothesis β0 = 0. This method
is theoretically supported by Theorem 3.1.

One-step estimator with the selected predictor (naive one-step). With the label k of the
most correlated predictor Uk estimated by k̂n ≡ arg maxk=1,...,p |�

Ĝn,k
(Pn)|, where Ĝn and

Pn are as defined below (8) but based on the full sample instead, the test statistic turns to be
B

k̂n
. When simply taking k̂n as given, it implies that B

k̂n
follows an asymptotically standard

normal null distribution. We include this estimator to showcase the consequence of ignoring
the selection bias that results from such naive use of k̂n.

Oracle one-step estimator (oracle one-step). In this case, the label k of the most corre-
lated predictor Uk is given, and the test statistic is simply Bk , which has an asymptotically
standard normal null distribution. Assuming knowledge of k is of course unrealistic, but this
estimator serves as a benchmark against which the other methods can be compared.

6. Simulation results. In this section, we report the results of simulation studies eval-
uating the performance of the stabilized one-step estimator (with qn = n/2) in comparison
with the competing methods in Section 5. The log-transformed survival times are generated
under one of the following AFT scenarios:

Model N: T = ε;
Model A1: T = U1/4 + ε;
Model A2: T = ∑p

k=1 βkUk + ε with β1 = · · · = β5 = 0.15, β6 = · · · = β10 = −0.1, βk =
0 for k ≥ 11.

The noise ε is distributed either as N (0,1) independently of U , or as N (0,0.7(|U1| + 0.7))

(conditionally on U ). The predictors U have a p-dimensional multivariate normal distribution
with unit variances and an exchangeable correlation structure such that Corr(Uk,Uj ) = 0.75,
k �= j . In Model N, there is no active predictor, while there is only a single active predictor in
Model A1. In Model A2, there are ten active predictors, each having weaker influence than
the single predictor in Model A1; the most correlated predictor is not unique in this model.
The censoring time C is taken to be the logarithm of an exponential random variable with rate
parameters that give either light censoring (10%) or heavy censoring (30%). Here, we just
consider light censoring; results for the heavy censoring case are given in the Supplementary
Material (Huang, Luedtke and McKeague (2023)). For each data generating scenario, we fix
the sample size at n = 500, and consider 5 values of p of the form 10a (for a = 2,3, . . . ,6).
A nominal significance level of 5% is used throughout. The Kaplan–Meier estimator Ĝn is
used in S∗

n , as justified by the independent censoring assumption; although a more sophisti-
cated conditional Kaplan–Meier estimator could be used instead, doing so would involve an
additional computational cost.
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FIG. 1. Empirical rejection rates based on 1000 samples (n = 500) generated from models with independent
and dependent errors under light censoring (10%), for p in the range 102–106, using the full sample to obtain
P̂n. The panels tagged by Null give the results under the null model, while those tagged by Alternative A1 and
Alternative A2 display the results under two different alternative models.

Empirical rejection rates based on 1000 Monte Carlo replications under the various sce-
narios are displayed in Figure 1, using the full sample-based P̂n to estimate the features of P .
The panels for Null show type I error rates under Model N for independent and dependent er-
rors, respectively, with the nominal level of 5% shown by the horizontal black dashed line and
the type I error of the oracle one-step estimator shown by the horizontal orange dot–dashed
line. The results of the naive one-step estimator is as highly anticonservative as expected (re-
sults not shown). Similarly, the panels for (Alternative A1, Alternative A2) show the power
under Model A1 and Model A2, with independent and dependent errors, respectively.

The left panels of Figure 1 show the results for independent errors. The stabilized one-
step estimator provides the closest-to-nominal type-I error (apart from the oracle one-step
estimator). The right panels of Figure 1 give the results in the case of dependent errors, and
show that the variants of stabilized one-step estimators outperform other methods in power—
the Bonferroni one-step method when p is larger than 1000 and the Bonferroni Cox method
when p is larger than 104. These two competing methods are favored in terms of power over
the stabilized one-step estimator in the case of independent errors, but not in the case of
dependent errors. The computational cost of the Bonferroni one-step and the Bonferroni Cox
methods is prohibitive for p = 106 and they are not included.

In the same figure, we examine the effect of multiple random orderings on the performance
of the stabilized one-step estimator (taking R = 10 in the R-fold stabilized one-step test). The
type-I error is now always below 5%, and the power remains the same or even improved.

It is of interest to understand how power changes with signal strength. To this end, we
consider the following two alternative models in which the signal strength is represented
by η (we restrict attention to p = 104 and p = 105, n = 500 under light censoring).

Model A3: T = ηU1 + ε with the value of η from 0.1 to 0.2 in increments of 0.025.
Model A4: T = ∑p

k=1 βkUk +ε with β1 = · · · = β10 = η, βk = 0 for k ≥ 11, and the value
of η from 0.01 to 0.02 in increments of 0.0025.

Note that Model A3 reduces the signal strength from 0.25 as in Model A1 to 0.2 or below,
while Model A4 attenuates the signal in Model A2 by a factor of ten. Figures 2 and 3 show
that Bonferroni Cox and the stabilized one-step estimator share similar power behavior for
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FIG. 2. Empirical rejection rates based on 1000 samples of (n,p) = (500,104) generated from alternative
models A3 and A4 with varying values of signal strength η along with independent and dependent errors under
light censoring (10%).

p = 104 (except in the case of relatively low signal strength), but the stabilized one-step
estimator clearly outperforms Bonferroni Cox when p = 105.

REMARK 6.1 (Interpretation of �k(P )). The values of the marginal regression coeffi-
cients (3) are of course determined by the corresponding regression coefficients in the AFT
model (1) that generates the data. Specifically, in our simulation models A1 and A3 (that
have independent errors), the regression coefficient of the (only) active predictor in the AFT
model agrees with (3). However, in Model A2 (with independent errors) it can be shown that
the marginal regression coefficients are

�k(P ) = CovP (Uk, T )

VarP (Uk)
=

{
0.225 if k = 1, . . . ,5,

0.1625 if k = 6, . . . ,10,

FIG. 3. As in Figure 2, except for p = 105.
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in contrast with the AFT model regression coefficients 0.15 and −0.1 for k = 1, . . . ,5
and k = 6, . . . ,10, respectively. Note that the marginal regression coefficients of Uk , k =
6, . . . ,10, are positive, whereas the corresponding AFT model coefficients are negative; this
is essentially due to high correlation between predictors. Further, in Model A4, in which
T = η

∑10
k=1 Uk + ε (with independent errors and regression coefficients η), the correspond-

ing marginal regression coefficients are 7.75η.

7. Application to viral replication data. A widely used measure of the potency of an
antiviral drug is the concentration needed to achieve a 50% reduction of the (in vitro) rate of
viral replication (IC50, in units of μg/mL). In this application, we treat IC50 as a survival time
outcome of interest. If the virus is highly resistant, then a 50% reduction in viral replication
rate may not be observed, resulting in a right-censored outcome. We consider the antiviral
VRC01, an antibody for HIV-1 that is currently being evaluated in a Phase 2b trial for the
prevention of HIV-1 infection (Gilbert et al. (2017); Magaret et al. (2019)). In this case,
a reduction in viral replication is thought to be caused by a VRC01-mediated neutralization,
and the lower IC50, the more sensitive the virus is to VRC01-mediated neutralization.

Data on a total of 624 pseudoviruses were retrieved from the CATNAP database (Yoon
et al. (2015)). We restrict attention to a subgroup of size (n = 611) after removing 13 pseu-
doviruses with unreliable IC50 measurements. The censoring rate of IC50 is 16% in the an-
alyzed data set. The 611 pseudoviruses are of 24 subtypes, where Subtypes B and C are
predominant over others: 293 of them (48.0%) belong to Subtype C and 81 (13.3%) are of
Subtype B. In terms of geographic regions where the viruses originate, 126 of 611 pseu-
doviruses are from Asia (20.6%), 96 from Europe or the Americas (15.7%), 170 from North-
ern Africa (27.8%) and 219 from Southern Africa (35.9%). Pseudoviruses of different sub-
types may present varied gene expression, so we analyze the data for Subtypes B and C
separately. We set the end of follow-up τ to the 90th percentile of IC50 in each data set with
the corresponding sample size as indicated in Table 1. We aim to investigate whether the po-
tency of VRC01 depends on HIV-1 proteomic characteristics that are presented in lieu of the
envelope (Env) amino acid (AA) sequence features. Data on 817 features are available:

1. Binary features: indicating whether a particular AA sequence appears at a particular
position, or whether a position is the starting site of some given enzymatic process. There are
799 features of this type.

2. Count features: representing total numbers of enzyme-directed chemical reactions
observed to take place within a given region, or the total length of the aligned sequences over
a region. There are 18 count features.

To simplify interpretation of the effects of binary or count features, we carry out separate
analyses for each type. Binary features and binary interactions are included when their inci-
dence rates fall in the range 5–95%. All count features are first standardized, then all pairwise

TABLE 1
Numbers of binary and count features for Subtypes B and C; proportion included among all possible are given in

parentheses

Binary effects Count effects

Main Interaction Main Interaction

Subtype B (n = 81) 220 (28%) 11,642 (48%) 17 (94%) 136 (100%)

Subtype C (n = 293) 252 (32%) 12,698 (40%) 17 (94%) 136 (100%)
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TABLE 2
Results of applying the Bonferroni Cox and the Bonferroni one-step methods as well as the stabilized one-step
estimator to data on Subtypes B and C; the numbers of binary and count features are denoted pbin and pcount,

respectively

(n,pbin,pcount) Method

Binary effects Count effects

95% CI p-value 95% CI p-value

Subtype B
(81,11,862,153)

Bonferroni Cox NA 0.08 NA 0.04
Bonferroni One-Step NA 0.01 NA 0.04
Stabilized One-Step (7.8,9.5) < 0.001 (12.7,13.5) < 0.001

Subtype C
(293,12,950,153)

Bonferroni Cox NA < 0.001 NA 0.34
Bonferroni One-Step NA < 0.001 NA 0.91
Stabilized One-Step (10.4,23.1) < 0.001 (3.3,5.0) < 0.001

interactions of these features are also standardized. Although throughout we are using corre-
lation as the measure of association, for binary and count features other association measures
may be reasonable (but are beyond the scope of the present analysis). The total number of
features included in the analysis varies by feature type as well as viral subtype, as given in
Table 1.

As discussed at the end of Section 6, in implementing the stabilized one-step estimator we
recommend using the full sample to estimate the parameters of P , along with R random or-
derings of the data. Histograms of p-values based on 1000 random orderings of the data with
respect to different virus subtypes are given in Figures S.1–S.2 in the Supplementary Material
(Huang, Luedtke and McKeague (2023)). These histograms show the strong dependence of
the p-value on the random ordering. In Table 2, we report the p-values of the stabilized one-
step estimator and 95% confidence intervals using qn = n/2 and R = 200 random orderings
of the data (separated by virus subtype). The reported confidence interval corresponds to the
minimal p-value. This table also presents the results of applying the Bonferroni Cox and the
Bonferroni one-step methods to the original data. Though both of the Bonferroni Cox and the
Bonferroni one-step methods also return significant results, except in the case of binary fea-
tures and Subtype B or the case of count features and Subtype C, these two methods generally
yield more conservative conclusions than the stabilized one-step estimator, as expected.

The confidence intervals based on the stabilized one-step estimator in Table 2 represent
changes in IC50 (in units of μg/mL) due to the presence of the identified binary feature, or
due to a unit increase in the identified count feature. Genetic descriptions of these identified
features are provided in Table S.1 of Section S7 in the Supplementary Material (Huang,
Luedtke and McKeague (2023)).

8. Discussion. Though we have focused on using the correlation as the marginal associ-
ation measure, our results can be extended to a wide range of other measures. For example,
more robust association measures that have been used in marginal screening include quan-
tile correlation (Ma, Li and Tsai (2017)) and copula-based correlation (Xia and Li (2021)).
The key requirements on such a measure are that (a) it be pathwise differentiable in the full
data model where censoring is not present, and (b) the efficient influence function be non-
degenerate in this full data setting. Requirement (a) is sufficient for the association measure to
be pathwise differentiable even in the presence of right censoring, thereby allowing the con-
struction of a one-step estimator for each marginal association. Requirement (b) enables the
use of first-order asymptotics to study the behavior of these one-step estimators; without this
condition, the centered estimator, scaled by the square root of sample size, would converge
weakly to zero rather than to a nondegenerate mean-zero normal distributed random variable.
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Requirement (b) also ensures that the variance estimates used for standardization in the sta-
bilized one-step estimator do not converge to zero, a condition that is required by existing
theory for this estimator. Examples of parameters satisfying (a) and (b) include the Spear-
man correlation, odds ratio and model-agnostic hazard ratio (Whitney, Shojaie and Carone
(2019)). Examples of parameters satisfying (a), but not (b), include the nonparametric R2,
distance correlation (Székely, Rizzo and Bakirov (2007)) and maximum mean discrepancy
(Smola, Gretton and Borgwardt (2006)).

APPENDIX A: DERIVATION OF THE ONE-STEP ESTIMATOR

First, consider �k(P ) for a given k, which can be reexpressed via (3) as

�k,G(P ) ≡ CovP (Uk, δX/G(X))

VarP (Uk)
,

explicitly in terms of its dependence on the survival function of the censoring (G). For nota-
tional simplicity, we suppress the dependence on k, and write �G(P ) and U , both here and
in the corresponding proofs in the sequel. Following the proof in Section S3.1 concerning
inverse probability weighting when G is known, the influence function of �G(Pn) is

IFipw(·|P) : o �→ (u − P [U ])(ỹ − P [T ])
VarP (U)

− CovP (U,T )

Var2
P (U)

(
u − P [U ])2

,

where ỹ = δx/G(x). In Section S3.2, it can be shown that plugging-in the Kaplan–Meier
estimator of G into �G(Pn) leads to improved efficiency, even when G is known; this esti-
mator is regular and asymptotically linear with influence function IF(·|P) as given in Theo-
rem S3.1. However, as will become apparent, IF(·|P) ∈ Tnu(G)⊥ does not fall in the tangent
space TM(P ) at P in the model M, where Tnu(G) is as defined in (S3.6) and ⊥ denotes
the orthogonal complement in L2

0(P ). Therefore, we need to project IF(·|P) onto TM(P )

to obtain an efficient influence function IF∗. Once we have access to IF∗, it will be then be
feasible to construct an asymptotically efficient one-step estimator of �(P ).

To compute this projection, despite our assumption of independent censoring, it is conve-
nient to consider the broader coarsening-at-random (CAR) model Mcar ⊇ M. Under Mcar,
G is viewed as a survival function for C conditionally on U , and this survival function may
depend nontrivially on U . Since we have assumed that C is independent of (T ,U) for the
particular distribution that generated our data, this conditional survival function is equal to
the marginal survival function G(·) for that distribution. This observation slightly simplifies
the expression for the tangent space for G in Mcar, which is given by

Tcar(G) =
{∫

T
H(U, s) dM(s)

∣∣H : R× T →R

}
,(11)

where H is any measurable function for which the integral has finite variance, and dM(s) =
1(X ∈ ds, δ = 0) − 1(X ≥ s)d
(s) with 
(·) as the cumulative hazard function correspond-
ing to G(·) with respect to the filtration Fs = σ {1(X ≤ s′, δ = 0),1(X ≥ s ′),U, s′ ≤ s ∈ T }.
See Example 1.12 in van der Laan and Robins (2003) for further details. Moreover, since
M ⊆Mcar, Tnu(G) ⊆ Tcar(G).

To obtain the efficient influence function IF∗, we could project IF(·|P) onto TM(P ). To
compute this projection, it will be useful to first show that Tcar(G)⊥ ⊆ TM(P ). This can be
shown as follows. Let Tcar(Q) and TM(Q), respectively, denote the tangent space gener-
ated by local fluctuations of P in the CAR and M models that modify Q but leave G un-
changed. Because both CAR and M could induce a (locally) nonparametric model for Q,
Tcar(Q) = TM(Q). Furthermore, because P factorizes as a product of mappings of the
variation-independent components Q and G, we can write (i) Tcar(P ) = Tcar(Q) ⊕ Tcar(G)
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and (ii) TM(P ) = TM(Q)⊕TM(G), as orthogonal sums. By (i) and the fact that Tcar(P ) =
L2

0(P ), we have Tcar(Q) = Tcar(G)⊥. Hence, by (ii) and the fact that Tcar(Q) = TM(Q), we
find that Tcar(G)⊥ ⊆ TM(P ). Using �(·|S) to denote the projection operator onto a closed
linear subspace S ⊆ L2

0(P ), we have

IF∗(·|P) = �
(
IF(·|P)|TM(P )

)
= �

(
�

(
IF(·|P)|Tcar(G)

) + �
(
IF(·|P)|Tcar(G)⊥

)|TM(P )
)

= �
(
�

(
IF(·|P)|Tcar(G)

)|TM(P )
) + �

(
�

(
IF(·|P)|Tcar(G)⊥

)|TM(P )
)

= �
(
IF(·|P)|Tnu(G)

) + �
(
IF(·|P)|Tcar(G)⊥

)
,

where the final equality uses that (1) TM(P ) ∩ Tcar(G) = Tnu(G); (2) Tcar(G)⊥ ⊆ TM(P ).
By Lemma S4.4, we know that IF(·|P) ∈ Tnu(G)⊥, implying that the first term on the right-
hand side is zero. The same lemma tells us that IF(·|P) = �(IFipw(·|P)|Tnu(G)⊥), so the
above display, along with the fact that Tnu(G) ⊆ Tcar(G), implies that

IF∗(·|P) = �
(
IFipw(·|P)|Tcar(G)⊥

)
.

It remains to project IFipw(·|P) onto Tcar(G)⊥. The projection of IFipw(·|P) onto Tcar(G)

is given by

IFcar(·|P) :
(12)

o �→ (u − P [U ])
Var(U)

∫
T

E[T |U = u,X ≥ s]1(x ∈ ds, δ = 0) − 1(x ≥ s) d
(s)

G(s)

by Proposition 5.4 of van der Laan, Gill and Robins (2000). Its projection onto Tcar(G)⊥ is
then given by

IF∗(·|P) = IFipw(·|P) − IFcar(·|P).(13)

In general, IF(·|P) is not equivalent to IF∗(·|P), so IF(·|P) does not fall in the tangent space
TM(P ) at P for the model M and, therefore, plugging-in the Kaplan–Meier estimator of G

into �G(Pn) is inefficient; see Section S3.2 for further discussion.

APPENDIX B: PROOF OF THEOREM 3.1

PROOF. In this theorem, our objective is to show that, under regularity conditions,
S(Pn, P̂n) is asymptotically linear with influence function

�
{
IF∗(·|Ē,Qu,G)|T∗(G)⊥

}
.

Let P̂ ′
n = (Ên,Qn,G) denote the estimate of P but with Ĝn replaced by the true censoring

distribution G. Note also that S(Pn, P̂
′
n) = �(P̂n) + Pn IF∗(·|Ên,Qn,G), where equations

(2)–(4) imply that � does not depend on the censoring distribution so that �(P̂n) = �(P̂ ′
n).

We have that

S(Pn, P̂n) − �(P ) = S
(
Pn, P̂

′
n

) − �(P ) + S(Pn, P̂n) − S
(
Pn, P̂

′
n

)
= S

(
Pn, P̂

′
n

) − �(P ) + Pn

[
IF∗(·|Ên,Qn, Ĝn) − IF∗(·|Ên,Qn,G)

]
(14)

= S
(
Pn, P̂

′
n

) − �(P ) + P
[
IF∗(·|Ên,Qn, Ĝn) − IF∗(·|Ên,Qn,G)

]
+ [Pn − P ][IF∗(·|Ên,Qn, Ĝn) − IF∗(·|Ên,Qn,G)

]
.
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The last term on the right-hand side of (14) is op(n−1/2) by (S5.4.2) of Lemma S5.4, with
the required conditions verified in Lemmas S5.1–S5.3. Moreover, Lemma S5.5 shows that

P
[
IF∗(·|Ên,Qn, Ĝn) − IF∗(·|Ē,Qu, Ĝn) + IF∗(·|Ē,Qu,G) − IF∗(·|Ên,Qn,G)

]
= op

(
n−1/2)

,

which would simplify the middle term in (14) as follows. At last, Lemma S5.6 gives the
asymptotic linearity of the term S(Pn, P̂

′
n) − �(P ) in (14).

To simplify the middle term on the right-hand side in (14), we further decompose it as

P
[
IF∗(·|Ên,Qn, Ĝn) − IF∗(·|Ên,Qn,G)

]
= P

[
IF∗(·|Ē,Qu, Ĝn) − IF∗(·|Ē,Qu,G)

]
+ P

[
IF∗(·|Ên,Qn, Ĝn) − IF∗(·|Ē,Qu, Ĝn) + IF∗(·|Ē,Qu,G) − IF∗(·|Ên,Qn,G)

]
,

with the last line of the above display shown as op(n−1/2) by Lemma S5.5 as men-
tioned earlier. Expressing the first term of the above display using the notation 
(G̃) =
P [IF∗(·|Ē,Qu, G̃)], for G̃ equal to Ĝn or G, upon inserting them back into (14) we have
that

S(Pn, P̂n) − �(P ) = S
(
Pn, P̂

′
n

) − �(P ) + 
(Ĝn) − 
(G) + op

(
n−1/2)

,

together with the previously developed results.
In Lemma S5.6, S(Pn, P̂

′
n) is shown to be a regular asymptotically linear estimator of

�(P ) with influence function IF∗ + IF† in the model M(G) with G known. Further, because
we specified that Ĝn is estimated via maximum likelihood, the delta method can be used to
show that 
(Ĝn) is an asymptotically efficient estimator of 
(G) in the model used for G

(with tangent space given by T∗(G)). Combining the above results, we have verified all the
required conditions of Theorem 2.3 in van der Laan and Robins (2003), from which we
conclude that

S(Pn, P̂n) − �(P ) = [Pn − P ]�{
IF∗(·|Ē,Qu,G) + IF†(·|Ē,P )|T∗(G)⊥

} + op

(
n−1/2)

,

and the proof is complete. �

REMARK B.1. If Ē(u) �= E[Ỹ |U = u] for some u, it is still possible that IF†(·|Ē,

P ) = 0. For instance, if we assume that �(P ) does not depend on the limit of Ên(u) to en-
sure identifiability, then recalling the definition of �(P ) in (2), we have CovQu(U, Ē(U)) =
CovQu(U,E[Ỹ |U ]), and thus IF†(·|Ē,P ) = 0.

REMARK B.2. Regardless of whether IF†(·|Ē,P ) = 0 or not, the variance of the influ-
ence function of S(Pn, P̂n) is no larger than that of IF∗(·|Ē,Qu,G) + IF†(·|Ē,P ) because
projections only decrease the variance. For any real number m, define

IF†
m(·|Ē,P ) : o �→ CovQu(U, Ē(U)) − m

Var2
Qu

(U)

[(
u − Qu[U ])2 − VarQu(U)

]
.

When m = m∗ ≡ CovQu(U,E[Ỹ |U ]), we have IF†
m∗(·|Ē,P ) = IF†(·|Ē,P ). Note also that

|m∗| ≤ c Var1/2
Qu

(E[Ỹ |U ]) ≤ M since Var1/2
Qu

(U) ≤ c, where the upper bounds c and M exist

according to (A.1) and (A.2). Therefore, we see the variance of IF∗(·|Ē,Qu,G)+IF†(·|Ē,P )

is upper bounded by

sup
−M≤m≤M

P
([

IF∗(·|Ē,Qu,G) + IF†
m(·|Ē,P )

]2)
.(15)
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For each given m, the variance of IF∗(·|Ē,Qu,G) + IF†
m(·|Ē,P ) can be estimated via the

sample variance of the same quantity but with the unknown parameters replaced by the corre-
sponding estimates. Therefore, the quantity in (15) can be estimated by taking the supremum
of these estimates over m ∈ [−M,M], and we denote this resulting estimate by σ †2

n . Then
σ †2

n is also a valid upper bound of the sample variance of the influence function of S(Pn, P̂n),
so the Wald-type confidence intervals constructed using σ †2

n will have conservative coverage
asymptotically. An alternative is to construct a (conservative) confidence interval using the
bootstrap percentile t-method.

APPENDIX C: PROOF OF THEOREM 4.1

Before proceeding to the proof, we make the following asymptotic stability assumptions:

(A.7) Ên defined in (10) for a given predictor Uk consistently estimates (pointwise in its
arguments) the true conditional mean residual life function E0(u, s, k) ≡ E[Ỹ |Uk = u,X ≥
s], which is assumed to be uniformly bounded and left continuous in s, and with kj defined
in (8),

E
[

sup
(j,s)∈{qn,...,n}×T

∣∣E0(Ukj
, s, kj ) − E0(Ukj−1, s, kj−1)

∣∣] = o
(
n−1/2)

.

(A.8) If the slope parameter �k(P ) �= 0 for some k, there exists a sufficiently large c > 0
and a sequence of nonempty subsets K∗

n ⊆ Kn = {1, . . . , pn} such that

inf
k∈K∗

n

∣∣∣∣Cov(Uk, T )

Var(Uk)

∣∣∣∣ − sup
l∈Kn\K∗

n

∣∣∣∣Cov(Ul, T )

Var(Ul)

∣∣∣∣ ≥ c

√
log(n ∨ pn)

qn

,

where the supremum over l ∈ Kn \K∗
n is defined to be 0 if K∗

n =Kn, and

Diam
(
K∗

n

) ≡ sup
k,l∈K∗

n

∣∣∣∣
∣∣∣∣Cov(Uk, T )

Var(Uk)

∣∣∣∣ −
∣∣∣∣Cov(Ul, T )

Var(Ul)

∣∣∣∣
∣∣∣∣ = o

(
n−1/2)

.

Condition (A.7) guarantees that differences in selected predictors when the used subsample
size changes from j −1 to j have asymptotically negligible effect on the corresponding mean
residual life functions. Condition (A.8) ensures a separation of the sequence of alternative
hypotheses from the global null in an asymptotic sense. The first part of this condition extends
the usual root-n rate decay restriction made on local alternatives studied for hypothesis tests
(Davidson and MacKinnon (1987)) to our setting, where the number of predictors grows
with sample size. The second part of this condition can be viewed as a type of identifiability
condition for the set of predictors K∗

n that are most associated with T .
The proof below is developed in a special case of taking a user-defined coarsening c so

that c(U) is a degenerate random variable, which reasonably reduces Ĝn(·|u) to Ĝn(·), and
this is supported by the independent censoring assumption.

PROOF. We will show the asymptotic normality of
√

n − qnσ̄
−1
n [S∗

n − �(P )], where
�(P ) is defined in (2). From the expression S∗

n in (9), the desired result will follow from the
limiting distribution of

1√
n − qn

n−1∑
j=qn

σ̂−1
nj mj

[
Skj

(δOj+1,P ) − �kj
(P )

]
,

with certain remainder terms shown to be asymptotically negligible in Lemmas S6.19–
S6.22, based on concentration results and supportive preliminaries developed in Lem-
mas S6.1–S6.18.
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We start by introducing a decomposition of the stabilized one-step estimator. The dis-
tribution of P is identified by (E0,Qu,G), where E0(u, s, k) ≡ E[Ỹ |Uk = u,X ≥ s]. Re-
placing in various ways each feature of P by its estimator introduced in Section 3 gives
P̂nj = (Êj ,Qj , Ĝn); P̂ ′′

nj = (E0,Qj , Ĝn) and P̂ ′′′
nj = (E0,Qj ,G). Therefore, we are able to

decompose the statistic of interest as
√

n − qnσ̄
−1
n

[
S∗

n − �(P )
]

= 1√
n − qn

n−1∑
j=qn

σ̂−1
nj mj

[
Skj

(δOj+1, P̂nj ) − Skj

(
δOj+1, P̂

′′
nj

)]

+ 1√
n − qn

n−1∑
j=qn

σ̂−1
nj mj

[
Skj

(
δOj+1, P̂

′′
nj

) − Skj

(
δOj+1, P̂

′′′
nj

)]
(16)

+ 1√
n − qn

n−1∑
j=qn

σ̂−1
nj mj

[
Skj

(
δOj+1, P̂

′′′
nj

) − Skj
(δOj+1,P )

]

+ 1√
n − qn

n−1∑
j=qn

σ̂−1
nj mj

[
Skj

(δOj+1,P ) − �kj
(P )

]

+ 1√
n − qn

n−1∑
j=qn

σ̂−1
nj mj

[
�kj

(P ) − �(P )
] ≡ (I) + (II) + (III) + (IV) + (V).

Using Lemmas S6.19–S6.22 mentioned above, in conjunction with (A.7)–(A.8), gives the
asymptotic negligibility of (I), (II), (III) and (V). Therefore, the remaining task is to show
the asymptotic normality of (IV). Modifying the expression in (7), with (Pn, P̂n) replaced
by (δOj+1,P ) and with the predictor taken as Ukj

, gives that Skj
(δOj+1,P ) = �kj

(P ) +
IF∗

kj
(Oj+1|P). This further implies that

(IV) = 1√
n − qn

n−1∑
j=qn

σ̂−1
nj mj IF∗

kj
(Oj+1|P),

where IF∗
kj

(·|P) is IF∗
k(·|P) with the predictor Uk taken as Ukj

. Decompose (IV) into two
terms:

1√
n − qn

n−1∑
j=qn

[
σnj

σ̂nj

− 1
]
mj

σnj

IF∗
kj

(Oj+1|P) + 1√
n − qn

n−1∑
j=qn

mj

σnj

IF∗
kj

(Oj+1|P).(17)

Note that σ̂nj in the first term above involves the partial-sample estimator P̂nj .
Let � denote “bounded above up to a universal multiplicative constant that does not de-

pend on (j, n),” and σ 2
nj ≡ ∫

IF∗
kj

(o|P)2 dP (o) = Var(IF∗
kj

(O|P)). Note that σ 2
nj is bounded

away from zero by (A.6), which implies that mink∈N Var(IF∗
k(O|P)) is bounded away from

zero; namely, there exists some constant ε > 0 so that σ 2
nj ≥ mink∈N Var(IF∗

k(O|P)) ≥ ε. The
first term in the decomposition of (IV) in (17) is seen to be of order op(1) as follows. Let
Onj ≡ σ({O1, . . . ,Oj }, Ĝn), and

Hnj ≡ 1√
n − qn

[
σn,j−1

σ̂n,j−1
− 1

]
mj−1

σn,j−1
IF∗

kj−1
(Oj |P);

the first term in the decomposition of (IV) in (17) is equal to
∑n−1

j=qn
Hn,j+1. Note that

E|Hnj | < ∞, using the fact that σ 2
nj is bounded away from zero by (A.6) and so is σ̂ 2

nj by
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(S6.11.1) of Lemma S6.11, and also that Hnj is Onj -measurable. Along with

E[Hn,j+1|Onj ] = 1√
n − qn

E

[(
σnj

σ̂nj

− 1
)

mj

σnj

E
[
IF∗

kj
(Oj+1|P)|Onj

]] = 0,

{(Hnj ,Onj ), j = qn + 1, . . . , n} is a martingale difference sequence. Moreover, we have that

|Hn,j+1| �
√

log(n ∨ pn)

qn(n − qn)
≡ Bn.(18)

Then Chebyshev’s inequality implies that for ε > 0,

P

(∣∣∣∣∣
n−1∑
j=qn

Hn,j+1

∣∣∣∣∣ ≥ ε

)
≤ ε−2E

[(
n−1∑
j=qn

Hn,j+1

)2]

= ε−2

(
n−1∑
j=qn

E
[
H 2

n,j+1
] + 2

∑
qn≤i<j≤n−1

E
[
Hn,i+1E[Hn,j+1|Onj ]]

)

= ε−2
n−1∑
j=qn

E
[
H 2

n,j+1
] ≤ ε−2(n − qn)B

2
n → 0;

this result disposes of the first term in the decomposition of (IV) in (17).
Observe that the second term in (17) is a sum of martingale differences because

E[mj IF∗
kj

(Oj+1|P)|O1, . . . ,Oj ] = 0. Therefore, it converges in distribution to standard
normal by the martingale central limit theorem for triangular arrays (e.g., Theorem 2 in
Gaenssler, Strobel and Stute (1978)) under the following conditions:

1

n − qn

n−1∑
j=qn

E

[ [IF∗
kj

(Oj+1|P)]2

σ 2
nj

∣∣∣O1, . . . ,Oj

]
p−→ 1;

1

n − qn

n−1∑
j=qn

E

[ [IF∗
kj

(Oj+1|P)]2

σ 2
nj

1
(∣∣∣∣ IF∗

kj
(Oj+1|P)

σnj

∣∣∣∣ > ε0
√

n − qn

)∣∣∣O1, . . . ,Oj

]
p−→ 0

for every ε0 > 0. The first condition follows from the definition of σ 2
nj , which implies that

each term in the summation is identically equal to 1. The second condition holds because
IF∗

k(·|P) is uniformly bounded over k in view of (13) and (6) (giving the expression for IF∗
k),

(A.1)–(A.5), (A.6)–(A.7) and further, σ 2
nj is assumed to be uniformly bounded away from

zero by (A.6). �
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details, R code and additional results involving the simulation studies and the real data appli-
cation are placed in the supplement (Huang, Luedtke and McKeague (2023)).
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