

1 Ecology: Article

2 **Local and Regional Geographic Variation in Inducible Defenses**

3 James J. Corbett and Geoffrey C. Trussell*

4 Department of Marine and Environmental Sciences and Coastal Sustainability Institute,

5 Northeastern University, Nahant MA 01908 USA

6 *Contact/Corresponding Author: g.trussell@northeastern.edu

7 Keywords: *Carcinus maenas*, countergradient variation, inducible defenses, invasive species,

8 *Littorina obtusata*, ocean warming, phenotypic plasticity, predatory crab, regional and local

9 scales, trade-offs

10

11 **Data Availability Statement:** Data (Trussell and Corbett, 2023a-d) are available at the

12 National Science Foundation BCO-DMO data repository ([https://www.bco-](https://www.bco-dmo.org/dataset/911221)

13 [dmo.org/dataset/911221](https://www.bco-dmo.org/dataset/911365); [https://www.bco-](https://www.bco-dmo.org/dataset/911365)

14 [dmo.org/dataset/911390](https://www.bco-dmo.org/dataset/911390); [https://www.bco-](https://www.bco-dmo.org/dataset/911409)

15

16

17

18

19

20

21

22

23

24

Abstract

25 Invasive predators can cause substantial evolutionary change in native prey populations.
26 Although invasions by predators typically occur over large scales, their distributions are usually
27 characterized by substantial spatiotemporal heterogeneity that can lead to patchiness in the
28 response of native prey species. Our ability to understand how local variation shapes patterns of
29 inducible defense expression has thus far been limited by insufficient replication of populations
30 within regions. Here, we examined local and regional variation in the inducible defenses of 12
31 native marine snail (*Littorina obtusata*) populations within two geographic regions in the Gulf of
32 Maine that are characterized by vastly different contact histories with the invasive predatory
33 green crab (*Carcinus maenas*). When exposed in the field to water-borne risk cues from the
34 green crab for 90 days, snails expressed plastic increases in shell thickness that reduce their
35 vulnerability to this shell crushing predator. Despite significant differences in contact history
36 with this invasive predator, snail populations from both regions produced similar levels of shell
37 thickness and shell thickness plasticity in response to risk cues. Such phenotypic similarity
38 emerged even though there were substantial geographic differences in shell thickness of juvenile
39 snails at the beginning of the experiment, and we suggest that it may reflect the effects of
40 warming ocean temperatures and countergradient variation. Consistent with plasticity theory, a
41 trend in our results suggests that southern snail populations, which have a longer contact history
42 with the green crab, paid less in the form of reduced tissue mass for thicker shells than northern
43 populations.

44

45

46

47

Introduction

48 Inducible defenses are plastic changes in prey phenotypes in response to predator risk
49 cues that reduce prey vulnerability to predation (Harvell 1990). Such plasticity has been
50 documented in a broad array of taxa and manifests in a variety of forms including changes in
51 morphology, life history, behavior, and chemical defense (Tollrian & Harvell 1999, Appleton &
52 Palmer 1988, Dodson 1989). The existence of inducible defenses implies a trade-off between
53 defended and undefended phenotypes. That is, relative to undefended phenotypes, defended
54 phenotypes reduce vulnerability to predation but are more costly in the absence of predators
55 (Tollrian & Harvell 1999). Otherwise, prey would be expected to express defensive traits
56 constitutively, even in the absence of predation risk (Lively 1986 a,b). Inducible defenses can
57 thus allow individuals to defer the cost of a defended phenotype when predation risk is low while
58 retaining the ability to produce a defense when appropriate cues signal that predation risk is high
59 (Schlichting & Pigliucci 1998, West-Eberhard 2003). Hence, inducible defenses can be
60 particularly effective in environments where predator-prey interactions are unpredictable (Lively
61 1986 a,b) or occur intermittently, such as along the edges of range shifts or invasions (*sensu*
62 Levins 1968, Baldwin 1896, Trussell & Nicklin 2002).

63 The frequency of predator-prey interactions likely varies considerably across spatial
64 scales, potentially leading to local and broad scale (regional) geographic variation in the
65 expression of inducible defenses. It is well known that the expression of inducible defenses can
66 vary regionally (Trussell & Smith 2000, Trussell & Nicklin 2002, Edgell et al., 2009, Kishida et
67 al., 2007, Long et al., 2011, Jones & Long 2018, Nunes et al., 2014), but what remains less clear
68 is how regional (\geq 100s of km) patterns in inducible defense expression vary with more local
69 scale (\leq 10s of km) patterns. Attention to scale-dependent patterns in the expression of inducible

70 defenses will help identify the factors shaping local vs. regional patterns of adaptation as well as
71 enhance our understanding of the role that inducible defenses may play in shaping local and
72 regional variation in community structure and dynamics via trait-mediated indirect interactions
73 (Werner & Peacor 2003, Peckarsky et al., 2008, Trussell & Schmitz 2012, Schmitz & Trussell
74 2016).

75 Predator invasions often encompass broad geographic ranges, exerting strong selective
76 forces on native prey populations (Strauss et al., 2006, Sax et al., 2007, Trussell & Smith 2000).

77 Native prey populations lacking an evolutionary history with an invasive predator may fail to
78 recognize it as a threat (the naïve prey hypothesis) and thus suffer heavy mortality and even local
79 extinction (Case & Bolger 1991, Cox & Lima 2006, Sih et al., 2010). Yet prey species may
80 rapidly evolve adaptations, including inducible defenses, that mitigate their vulnerability (Carroll
81 et al., 1997, Reznick & Endler 1982, Trussell & Smith 2000, Stuart et al., 2014, Bible et al.,
82 2017). We also know that the inducible defenses of prey from invaded regions can differ
83 substantially from those of prey in uninhabited or recently invaded regions (Nunes et al., 2014,
84 Trussell & Smith 2000, Freeman & Byers 2006), but the strength of inference in many of these
85 studies is limited because of low replication of local populations within different geographic
86 regions (Schmitz & Trussell 2016). Such local variation may be key to the capacity of
87 populations to evolve as invasion progresses and may ultimately couple or decouple local and
88 regional patterns of inducible defense expression. Indeed, while it is convenient to conceptualize
89 invasions as homogenous fronts that sweep across vast geographic ranges, predator invasions are
90 often patchy and chaotic in nature (Petrovskii et al., 2005, Morozov et al., 2006). The assessment
91 of inducible defense expression in multiple populations across local and regional scales is thus

92 essential to more robust predictions of how predator invasions will impact prey populations and
93 natural communities within and across geographic regions (Schmitz & Trussell 2016).

94 Multiple invasions of the European green crab (*Carcinus maenas*) have been highly
95 disruptive across the globe by impacting commercial shellfisheries (Glude 1955, Lafferty &
96 Kuris 1996), facilitating additional invasions (Green et al., 2011, Grosholz 2005), and altering
97 the dynamics of coastal ecosystems (Grosholz et al., 2000, Trussell et al., 2002, Kimbro et al.,
98 2009). In the southern Gulf of Maine (GOM), green crabs have been common since the early
99 1900's (Say 1817, Welch 1968, Audet et al., 2003), but only recently (during the past 20 years)
100 have they become well established in the northern GOM (Audet et al., 2003, Edgell & Rochette
101 2008). The latitudinal progression of the green crab invasion into the GOM provides an excellent
102 system to explore local and regional variation in the expression of inducible defenses. For
103 example, a reciprocal transplant experiment in the field over 20 years ago (Trussell & Smith
104 2000) found that a northern GOM population of the snail, *Littorina obtusata*, exhibited
105 significantly higher shell thickness plasticity in response to green crab risk cues than a southern
106 population. While these different responses may reflect geographic differences in contact history,
107 the lack of replicate populations in each region substantially limited the strength of inference
108 with respect to regionally-based processes. Such regionally-based processes may be particularly
109 important for species having limited dispersal such as *L. obtusata*, which lacks planktonic
110 dispersal and instead produces egg capsules that undergo direct development. Hence, to explore
111 this issue further, we examined local and regional variation in inducible defenses with a field
112 experiment that exposed juvenile *L. obtusata* from multiple northern and southern GOM
113 populations to the presence or absence of green crab risk cues.

114

115

Materials and Methods

116 We conducted crab surveys in 2019, 2020, and 2021 at eight sites in the Gulf of Maine
117 (GOM) that are sheltered from direct wave action to characterize local and regional variation in
118 green crab abundance (Fig. 1, Appendix S1: Table S1). Four sites were located in the northern
119 Gulf (Quoddy Region) and the other four were located in the southern Gulf (Nahant, MA to Cape
120 Ann, MA). Surveys lasted 1 hour each, began and concluded within 2 hours of low tide, and were
121 conducted approximately every two months at all 8 sites from April through November/early
122 December. Tidbit loggers (Onset Computer Corp.) were also installed underneath the fucoid algal
123 canopy in the mid-intertidal zone at these sites in early 2021 to record seawater temperatures in
124 the two regions.

125 To assess local and regional variation in shell thickness plasticity, we conducted a field
126 experiment that utilized 12 *L. obtusata* populations in the GOM, with 6 in the northern Gulf and 6
127 in the southern Gulf. Hence, in addition to the 4 sites surveyed for crab abundance within each
128 region, our experiment included two additional sites to increase site replication and power within
129 each region (Fig. 1, Appendix S1: Table S1). Juvenile *L. obtusata* (5-6mm in length) were also
130 collected from each population in late-April and individually tagged with color-coded paint that
131 was sealed with cyanoacrylate glue. Initial shell length and shell thickness were measured with
132 digital calipers (Trussell 1996) and initial tissue mass was determined using a non-destructive
133 weighing technique (see Palmer 1982).

134 In mid-May, 2021 snails were placed in replicate chambers and returned to their native
135 sites in the mid-intertidal zone where *L. obtusata* and *C. maenas* co-occur. We placed four snails
136 (hereafter “response snails”) into one of two paired chambers (10 x 10 x 7cm, 1 x w x h) that had
137 mesh windows (mesh size = 3mm) to allow water flow and the transmission of risk cues (Appendix

138 S1: Figure S1). These response chambers also contained approximately 60g of brown algae
139 (*Ascophyllum nodosum*) to serve as food for response snails. The other chamber (the “stimulus
140 chamber”) was perforated with small holes on all sides, which allowed response snails to be
141 exposed to water borne cues signaling either the presence (Crab, + C) or absence (No Crab, – NC)
142 of predation risk. The Crab treatment was created by placing a mature male green crab and 30
143 adult *L. obtusata* to serve as food for the crab in the stimulus chamber whereas stimulus chambers
144 for the No Crab treatment received just 30 adult *L. obtusata*. These paired response-stimulus
145 chambers were housed within a larger plastic chamber (14 x 14 x 16 cm) that also had mesh
146 windows (mesh size = 3mm) to permit water flow. At each site, replicate chambers (n = 4 for each
147 treatment) were anchored beneath the fucoid canopy and Tidbit loggers (Onset Computer Corp.)
148 placed within a subset of chambers recorded seawater temperature at 5-minute intervals. The food
149 supply for crabs was replaced approximately every 21 days while fucoid algae that served as food
150 for the response snails was replaced at day 42. Replicate chambers remained in the field for 90
151 days before their return to the Northeastern University Marine Science Center (Nahant,
152 Massachusetts) for final measurements of shell length, shell thickness, and tissue mass in response
153 snails.

154 *Statistical Analyses* – Mean annual crab abundance was analyzed with a nested ANOVA
155 that considered Region as a fixed effect and Site as a random effect nested within Region. Seawater
156 temperature data (monthly mean values coinciding with high tide) collected in 2021 prior to and
157 during the experiment, and across both time periods, were analyzed in two ways. For data across
158 both time periods (i.e., overall temperature), we conducted an ANOVA that considered Region as
159 a fixed effect and Site as a random effect nested within Region. For temperature data involving
160 the time periods before and during the experiment, we conducted a two-factor ANOVA that

161 considered Region and Period as fixed effects, and Site as a random effect nested within Region.
162 We also conducted analyses (linear regression, ANCOVA) to explore the relationship between
163 shell thickness and seawater temperature. Initial mean shell thickness for each site was regressed
164 as a function of mean water temperature at each respective site prior to response snail collection
165 (early-March through late-April). Only four sites from each region were included in this analysis
166 because pre-experiment temperature data were not available for all sites. For final shell thickness
167 data on response snails from the field experiment, we first conducted separate ANCOVAs for the
168 northern and southern GOM that considered Risk as a fixed effect. In this analysis the mean shell
169 thickness for each site served as the response variable and mean seawater temperature at each site
170 during the experiment served as the covariate. These separate analyses were necessary because
171 divergent seawater temperatures in the northern and southern GOM did not overlap, thus violating
172 a key premise of ANCOVA. For both regions, these analyses revealed no effect of risk cues on the
173 relationship between mean shell thickness and seawater temperature (see Results). We therefore
174 combined the risk treatment data for each region and performed separate linear regressions for
175 each region with mean shell thickness as the response variable and mean seawater temperature as
176 the covariate.

177 Initial trait values for shell thickness were analyzed with a two-factor ANCOVA that
178 considered Region (North, South) as a fixed effect, Site as a random effect nested within Region
179 and initial shell length as the covariate. Trade-offs in the form of reduced tissue mass are driven
180 by architectural constraints on the internal volume of the shell and these constraints are directly
181 shaped by shell thickness (Palmer 1981, Trussell 2000). Because we wanted to determine how
182 investment into shell thickening influenced variation in tissue mass, our analysis of initial tissue
183 mass used the same ANCOVA model as above but with initial mean shell thickness as the

184 covariate. Final mean shell thickness and final tissue mass were analyzed with a three-factor
185 ANCOVA that considered Region (North, South) and Risk Treatment (Crab, No-Crab) as fixed
186 effects, Site as a random effect nested within Region, and replicate chambers as a random effect
187 nested within each treatment combination. For these analyses, final shell length was used as the
188 covariate for shell thickness and final mean shell thickness was used as the covariate for final tissue
189 mass. All analyses were conducted using JMP Software (Version 15.0, SAS Institute, Cary, NC).

Results

191 Regional variation in crab density varied among years (Region*Year: $F_{2,12} = 4.48$, $P = 0.0352$) but overall crab density was consistently more than two times higher in the northern versus
192 southern GOM (Region: $F_{1,6} = 22.49$, $P = 0.0032$, Fig. 2). Site explained 16.9% of the variation in
193 crab density ($\sigma^2 = 55.6$, Wald $P = 0.1292$). By contrast, mean (\pm SE) water temperature from early
194 March to early August was substantially higher in the southern (11.50 ± 0.26 °C) than in the
195 northern (7.91 ± 0.26 °C) GOM (Region: $F_{1,6} = 97.90$, $P < 0.0001$, Fig. 3). Site explained 1.1% of
196 the variation in seawater temperature ($\sigma^2 = 0.20$, Wald $P = 0.1821$). To further examine potential
197 water temperature effects on shell thickness, we examined regional differences in water
198 temperature for the time period (approximately 7 weeks) preceding the collection of juvenile snails
199 and during the 90 day experimental period. A significant interaction (Region*Period: $F_{1,6} = 61.62$,
200 $P = 0.0002$) revealed that regional effects (Region: $F_{1,9} = 97.26$, $P < 0.0001$) depended on time
201 period (Period: $F_{1,6} = 1,003.60$, $P < 0.0001$, Fig. 3). Site explained 3.1% of the variation in seawater
202 temperature ($\sigma^2 = 0.18$, Wald $P = 0.3800$). Prior to the experiment, mean water temperature
203 differed by 1.49 °C among regions, with temperatures averaging $5.79 (\pm 0.34)$ °C in the southern
204 GOM and $4.30 (\pm 0.34)$ °C in the northern GOM (Fig. 3). During the experiment, this regional

206 difference increased to 5.35 °C, with temperatures averaging 15.52 (± 0.26) °C in the southern
207 GOM and 10.17 (± 0.26) °C in the northern GOM (Fig. 3).

208 Comparison of initial juvenile mean shell thickness as a function of water temperature prior
209 to the experiment revealed that shell thickness was positively correlated with water temperature
210 (linear regression, $Y = 0.073X + 0.42$, $R^2 = 0.65$, $F_{1,6} = 10.96$, $P = 0.0162$, Fig. 4a). The relationship
211 between final shell thickness and water temperature during the experiment was not affected by risk
212 cues for northern (Risk: $F_{1,8} = 0.74$, $P = 0.4166$) and southern (Risk: $F_{1,8} = 1.24$, $P = 0.2976$) snails.
213 Analysis of combined data (both risk treatments) for each region revealed no relationship between
214 final shell thickness and seawater temperature during the experiment for northern snails (linear
215 regression, $Y = -0.03X + 1.52$, $R^2 = 0.10$, $P = 0.3295$, Fig. 4b) but there was a positive trend for
216 southern snails (linear regression, $Y = 0.04X + 0.61$, $R^2 = 0.31$, $P = 0.0604$; Fig. 4c).

217 Comparison of the initial shell thickness of juvenile snails before their exposure to the
218 presence and absence of risk cues revealed that southern snails were significantly thicker (10.5%)
219 than northern snails (Region: $F_{1,9.9} = 9.04$, $P = 0.0133$, Fig. 5a). Site explained 30.7% of the
220 variation in juvenile shell thickness ($\sigma^2 = 0.002$, Wald $P = 0.0388$). We did not detect any regional
221 differences in the initial tissue mass (Region: $F_{1,10.01} = 0.46$, $P = 0.5108$) of juvenile snails prior to
222 beginning the experiment (Fig. 5b). Site explained 82.1% of the variation in juvenile tissue mass
223 ($\sigma^2 = 1.03 \times 10^{-4}$, Wald $P = 0.0271$).

224 After 90 days in the field, snails raised in the presence of risk cues produced shells that
225 were significantly thicker than those of snails raised without risk cues (Risk: $F_{1,11.2} = 8.43$, $P =$
226 0.0141, Fig. 6a) but these responses were rather subtle for both northern (3.3%) and southern
227 (1.7%) snails. The effect of risk cues did not vary between regions (Risk*Region: $F_{1,9.2} = 1.81$, P
228 = 0.2109) and the observed regional differences in the initial shell thickness of juvenile snails

229 before beginning the experiment were no longer apparent after 90 days in the field (Region: $F_{1,9.8}$
230 $= 0.34$, $P = 0.5738$). Site explained 36.1% of the variation in shell thickness ($\sigma^2 = 0.004$, Wald P
231 $= 0.0368$). Variation in final tissue mass after adjusting for investment into final shell thickness
232 revealed that risk cues significantly reduced final tissue mass (Risk: $F_{1,8.3} = 25.56$, $P = 0.0009$).
233 The effect of region (Region: $F_{1,10} = 0.50$, $P = 0.4964$) was not significant but there was a trend
234 (Risk*Region: $F_{1,8.05} = 4.12$, $P = 0.0768$) suggesting that the adverse effect of risk cues on tissue
235 mass was stronger for northern (-16.7%) versus southern (-6.9%) snails (Fig. 6b). Site explained
236 69.1% of the variation in tissue mass ($\sigma^2 = 2.5 \times 10^{-4}$, Wald $P = 0.0279$

237 Discussion

238 It is well established that invasive predators often have strong impacts on recipient
239 ecosystems (Simberloff & Von Holle 1999, Grosholz et al., 2000). Because many invasions
240 occur over broad geographic scales, examining geographic variation in antipredator defenses can
241 provide key insights to the adaptive capacity of native prey species (Kishida et al., 2007, Long et
242 al., 2011, Jones & Long 2018, Nunes et al., 2014). In this study, we compared inducible defense
243 expression in snails from two regions having substantially different contact histories with the
244 invasive predatory green crab. Such regionally-based processes can shape the evolution of
245 genetic and plastic controls on phenotypic variation, but their influence may also depend on the
246 effects of local-scale processes on phenotypes (Kawecki & Ebert 2004, Blanquart et al., 2013,
247 Schmitz & Trussell 2016) such as variation in (1) food availability and snail foraging rates and
248 attendant effects on growth rates (Kemp & Bertness 1984, Trussell 1996, Appleton & Palmer
249 1988) and (2) the effects of water turbulence on the ability of prey to detect predator risk cues
250 (Smee & Weissburg 2006). Hence, our experiment utilized snails from multiple local populations

251 within each region to explore how inducible defense expression varies with spatial scale and thus
252 invasion history.

253 Theory predicts that selection will favor the evolution or maintenance of plasticity in prey
254 traits in variable, unpredictable environments such as at the edge of invasive predator fronts and
255 less plasticity in more constant, predictable environments (Levins 1968, Lively 1986a,b, West-
256 Eberhard 2003) such as those that may be created after invasive predators have become fully
257 established. Assuming sufficient genetic variation, plasticity can evolve in response to changing
258 environments and accompanying shifts in selection pressure (Schlichting & Pigliucci 1998,
259 Windig et al., 2004) that favor increased or decreased plasticity (genetic accommodation) or the
260 evolutionary loss of plasticity via genetic assimilation (West-Eberhard 2003).

261 Edgell et al. (2009) explored these ideas in the laboratory by examining how trans-
262 Atlantic differences in contact history between green crabs and snails may shape snail trait
263 plasticity. Using populations from the United Kingdom (UK), where *L. obtusata* and green crabs
264 have the longest contact history (the UK is part of the native range of green crabs), and the
265 northern (more recent invasion history) and southern (longer invasion history) GOM, they
266 examined geographic variation in plasticity of shell retractability in the presence and absence of
267 green crab risk cues. Shell retractability measures the capacity of snails to retract deep into their
268 protective shell when confronted with predation risk. In the UK, retractability was canalized (not
269 plastic) but plasticity in retractability for snails from the southern and northern GOM was
270 moderate to high, respectively, revealing an inverse relationship between contact history and trait
271 plasticity.

272 Consistent with theory and the results of earlier empirical work that included two of the
273 populations used in this study (Trussell & Smith 2000, Trussell & Nicklin 2002, Edgell et al.

274 2009), we predicted that juvenile northern snails would exhibit higher shell thickness plasticity
275 than southern snails despite the relatively recent (~ the last 20 years) increases in green crab
276 density in the northern GOM (Fig. 1) because of their significantly thinner shells prior to their
277 exposure to our experimental treatments (Fig. 5a). Yet, after 90 days of exposure to experimental
278 treatments in the field, we found that both mean shell thickness in the absence of risk cues and
279 shell thickness plasticity in response to green crab risk cues did not vary across these two regions
280 or across sites within each region (Fig. 6a). For example, the average degree of shell thickness
281 plasticity was 3.3% for northern snails and 1.7% for southern snails. Thus, despite their
282 substantially different contact histories, reaction norms for the shell thickness of southern and
283 northern snails have evolved similar degrees of plasticity and have done so rather rapidly. As
284 noted above, two of the populations (West Quoddy, ME and Lobster Cove, MA) in this study
285 were used in earlier work in the late 90's and early 2000's, which found that shell thickness
286 plasticity was significantly higher for northern than for southern snails (Trussell & Smith 2000,
287 Trussell & Nicklin 2002).

288 These results are especially intriguing given the substantial differences in the shell
289 thickness of snails at the beginning of the experiment. On average, juvenile southern snails were
290 ~11.5% thicker than northern snails, but this difference disappeared after 90 days of growth in
291 the field, regardless of risk treatment. Thus, other factors were clearly influencing the trajectory
292 of shell thickening as snails grew. One possibility is that northern snails raised in the absence of
293 risk (No Crab, - C) were able to produce shells of similar thickness to their southern counterparts
294 because they responded to naturally occurring risk cues associated with the significantly higher
295 ambient green crab density in the northern GOM. However, if such naturally occurring risk cues
296 were operating additively with our experimental application of risk, then one might also expect

297 shell thickening in the presence of experimental risk (Crab, + C) to be significantly greater in
298 northern versus southern snails. We did not observe this pattern, and therefore suggest that the
299 effects of naturally occurring cues were either minimal or that our experimental application of
300 risk cues rendered natural cues unimportant by exceeding some threshold risk level above which
301 additional cue did not matter.

302 We also know that water temperature can also influence broad-scale patterns of shell
303 thickening (Trussell 2000, Trussell & Smith 2000) and other aspects of snail shell morphology,
304 with colder waters limiting calcification rates or increasing the dissolution of deposited shell
305 material (Vermeij 1978, Graus 1974). In this study we found that initial shell thickness in
306 juvenile snails was associated with the seawater temperatures that they experienced prior to their
307 collection for the experiment (Fig. 4a). This pattern was driven by thinner shells in the colder
308 waters of the northern GOM and thicker shells in the warmer waters of the southern GOM. Yet,
309 we did not detect any relationship between shell thickness and seawater temperature during the
310 experiment (Figs. 4b,c). This result was surprising because, as noted above, northern snails in
311 both risk treatments were able to achieve shell thicknesses similar to those of southern snails
312 after 90 days in the field. We suggest that the ability of northern snails to catch up to their
313 southern counterparts may also reflect a countergradient response (Conover & Schultz 1995,
314 Trussell 2000) that is driven by recent, dramatic ocean warming in the GOM (Mills et al., 2013,
315 Pershing et al., 2021), and the effects of such warming may be particularly strong during the
316 growing season. For example, water temperature data collected during experiments in the late
317 1990's (Trussell & Smith 2000) recorded seawater temperatures of 14.61 °C and 8.47 °C during
318 the growing season for the southern and northern GOM, respectively. In this study, temperatures
319 over the same general time period were 15.52 °C and 10.17 °C for the southern and northern

320 GOM, respectively. Hence, we hypothesize that the 1.7 °C increase in water temperature in the
321 northern GOM may have been sufficient to trigger a countergradient response that allowed
322 northern snails to overcome their thinner shells as juveniles and this response may have matched
323 or superseded that driven by risk cues.

324 A central tenet of plasticity theory is that plastic traits should be accompanied by trade-
325 offs, otherwise selection will favor the evolution of fixed traits (Levins 1968, Van Tienderen
326 1991, West-Eberhard 2003). For many marine mollusks, including *L. obtusata*, the costs paid for
327 thicker shells often come in the form of reduced tissue mass and/or tissue mass growth because a
328 thicker shell constrains the internal habitable volume available to support tissue mass for a shell
329 of a given size and shape (Palmer 1981, 1992, Kemp & Bertness 1984). Such architectural
330 constraints may have a direct bearing on fitness because snail fecundity is often a positive
331 function of tissue mass (Spight & Emlen 1976). Despite the substantial differences in the shell
332 thickness of juvenile snails from both regions prior to the exposure to risk treatments (Fig. 4a),
333 we did not detect expected differences in initial tissue mass (Fig. 4b). The absence of a trade-off
334 in juvenile snails may reflect regional differences in the influence of other factors on tissue mass
335 such as water temperature or may simply be due to snails being too early in ontogeny for the
336 trade-off to manifest (Relyea & Hoverman 2003).

337 We also examined the effect of risk cues on the final tissue mass of snails after adjusting
338 for their investment in shell thickness (Fig. 6b). Risk cues adversely affected tissue mass and the
339 marginally significant interaction suggests that this effect was more substantial for northern
340 snails. Based on theory, we predicted that southern snails would pay less in terms of reduced
341 tissue mass because natural selection has had more time to optimize the trade-off (Murren et al.,
342 2015, DeWitt et al., 1998, 1999). Although further studies are needed, our results are consistent

343 with the view that the longer contact history between green crabs and snails in the southern
344 GOM has allowed natural selection to reduce the impact of this trade-off. Future work examining
345 temporal transitions in shell thickness plasticity and associated trade-offs in tissue mass will
346 further illuminate how selection is shaping spatiotemporal variation in shell thickness plasticity
347 as the green crab invasion continues to unfold.

348 Given the significant ecological change wrought by invasive predators globally (Ruiz et
349 al., 1997, Molnar et al., 2008), continued attention to invasion scenarios will enhance our
350 understanding of how inducible defenses may mitigate the consequences of invasive predators
351 for native prey populations and communities (Trussell & Schmitz 2012, Schmitz & Trussell
352 2016). Moreover, because invasive predators often represent a potent agent of selection, theaters
353 of biological invasion should provide key insights into rapid evolutionary change, including the
354 evolution of phenotypic plasticity, and how patterns of adaptation unfold across local and broad
355 geographic scales (Mooney & Cleland 2001, Strauss et al., 2006, Scoville & Pfrender 2010).

356 **Acknowledgments**

357 This paper was submitted as part of a Ph.D. from Northeastern University's Department
358 of Marine and Environmental Sciences. The authors would like to thank Ron Etter, Tarik
359 Gouhier, Ted Grosholz, Randall Hughes, Katie Lotterhos, Eric Sanford, and an anonymous
360 reviewer for their many helpful comments that improved the manuscript. Special thanks to
361 Jackson Cabot and Danielle Whalen for their assistance in the field. This work was supported by
362 a grant from the U.S. National Science Foundation (OCE-2017626) and the Doherty
363 Professorship in Marine and Environmental Science to G.C. Trussell. This is Contribution No.
364 430 from the Coastal Sustainability Institute/Marine Science Center.

365 **Author Contributions:** JJC and GCT designed the experiment, performed fieldwork and
366 measurements, and wrote the manuscript. JJC conducted the statistical analyses.

367 **Conflict of Interest Statement:** The authors declare no conflicts of interest.

368 **Literature Cited**

369 Appleton, R.D., and A.R. Palmer. 1988. "Water-borne stimuli released by predatory crabs and
370 damaged prey induce more predator-resistant shells in a marine gastropod." *Proceedings of
371 the National Academy of Sciences USA* 85: 4387-4391.

372 Audet, D., D.S. Davis, G. Miron, M. Moriyasu, K. Benhalima, and R. Campbell. 2003.
373 "Geographical expansion of a nonindigenous crab, *Carcinus maenas* (L.), along the Nova
374 Scotian shore into the southeastern Gulf of St. Lawrence, Canada." *Journal of Shellfish
375 Research* 22: 255-262.

376 Baldwin, J.M. 1896. "A new factor in evolution." *American Naturalist* 30: 441-451.

377 Bible, J.M., K.R. Griffith, and E.S. Sanford. 2017. "Inducible defenses in Olympia oysters in
378 response to an invasive predator". *Oecologia* 183:809-819.

379 Blanquart, F., O. Kaltz, S.L. Nuismer, and S. Gandon. 2013. "A practical guide to measuring local
380 adaptation." *Ecology Letters* 16: 1195-1205.

381 Carroll, S.P., H. Dingle, and S.P. Klassen. 1997. "Genetic differentiation of fitness-associated
382 traits among rapidly evolving populations of the soapberry bug." *Evolution* 51: 1182-1188.

383 Case, T.J., and D.T. Bolger. 1991. "The role of introduced species in shaping the distribution and
384 abundance of island reptiles." *Evolutionary Ecology* 5: 272-290.

385 Conover, D.O., and E.T. Schultz. 1995. "Phenotypic similarity and the evolutionary significance
386 of countergradient variation". *Trends in Ecology and Evolution* 10:248-252.

387 Cox, J.G., and S.L. Lima. 2006. “Naiveté and an aquatic–terrestrial dichotomy in the effects of
388 introduced predators.” *Trends in Ecology & Evolution* 21: 674-680.

389 DeWitt, T.J., A.Sih, and J.A. Hucko. 1999. “Trait compensation and cospecialization in a
390 freshwater snail: size, shape, and antipredator behaviour”. *Animal Behaviour* 58: 397-407.

391 DeWitt, T.J., A. Sih, and D.S. Wilson. 1998. “Costs and limits of phenotypic plasticity.” *Trends
392 in Ecology & Evolution* 13: 77-81.

393 Dodson, S. 1989. “Predator-induced reaction norms.” *Bioscience* 39: 447-452.

394 Edgell, T.C., and R. Rochette. 2008. “Differential snail predation by an exotic crab and the
395 geography of shell-claw covariance in the northwest Atlantic”. *Evolution* 62:1216-1228.

396 Edgell, T. C., B.R. Lynch, G.C. Trussell, and A.R. Palmer. 2009. “Experimental evidence for the
397 rapid evolution of behavioral canalization in natural populations.” *American Naturalist* 174:
398 434-440.

399 Freeman, A.S., and J.E. Byers. 2006. “Divergent induced responses to an invasive predator in
400 marine mussel populations.” *Science* 313: 831-833.

401 Graus, R.R., 1974. “Latitudinal trends in the shell characteristics of marine gastropods.” *Lethaia*
402 7: 303-314.

403 Glude, J.B. 1955. “The effects of temperature and predators on the abundance of the soft-shell
404 clam, *Mya arenaria*, in New England.” *Transactions of the American Fisheries Society* 84:
405 13-26.

406 Green, P.T., D.J. O'Dowd, K.L. Abbott, M. Jeffery, K. Retallick, and R. MacNally. 2011.
407 “Invasional meltdown: invader–invader mutualism facilitates a secondary invasion.” *Ecology*
408 92: 1758-1768.

409 Grosholz, E.D., G.M. Ruiz, C.A. Dean, K.A. Shirley, J.L. Maron, and P.G. Connors. 2000. "The
410 impacts of a nonindigenous marine predator in a California bay." *Ecology* 81: 1206-1224.

411 Grosholz, E.D. 2005. "Recent biological invasion may hasten invasional meltdown by
412 accelerating historical introductions." *Proceedings of the National Academy of Sciences USA*
413 102: 1088-1091.

414 Harvell, C.D. 1990. "The ecology and evolution of inducible defenses." *The Quarterly Review of
415 Biology* 65: 323-340.

416 Jones, E. and J.D. Long. 2018. "Geographic variation in the sensitivity of an herbivore-induced
417 seaweed defense." *Ecology* 99: 1748-1758.

418 Kawecki, T., and D. Ebert. 2004. "Conceptual issues in local adaptation." *Ecology Letters* 7: 1225-
419 1241.

420 Kemp, P., and M.D. Bertness. 1984. "Snail shape and growth rates: evidence for plastic allometry
421 in *Littorina littorea*." *Proceedings of the National Academy of Sciences USA* 81: 811-813.

422 Kimbro, D.L., E.D. Grosholz, A.J. Baukus, N.J. Nesbitt, N.M. Travis, S. Attoe, and C. Coleman-
423 Hulbert. 2009. "Invasive species cause large-scale loss of native California oyster habitat by
424 disrupting trophic cascades." *Oecologia* 160: 563-575.

425 Kishida, O., G.C. Trussell, and K. Nishimura. 2007. "Geographic variation in a predator-induced
426 defense and its genetic basis." *Ecology* 88: 1948-1954.

427 Lafferty, K.D., and A.M. Kuris. 1996. "Biological control of marine pests." *Ecology* 77: 1989-
428 2000.

429 Levins, R. 1968. Evolution in changing environments: some theoretical explorations. *Princeton
430 University Press*, Princeton, NJ.

431 Lively, C.M. 1986a. "Predator-induced shell dimorphism in the acorn barnacle *Chthamalus*
432 *anisopoma*." *Evolution* 40: 232-242.

433 Lively, C.M. 1986b. "Competition, comparative life histories, and maintenance of shell
434 dimorphism in a barnacle." *Ecology* 67: 858-864.

435 Long, J.D., J.L. Mitchell, and E.E. Sotka. 2011. "Local consumers induce resistance
436 differentially between *Spartina* populations in the field." *Ecology* 92: 180-188.

437 Mills, K.E., A.J. Pershing, C.J. Brown, Y. Chen, F-S. Chiang, D.S. Holland, S. Lehuta, J.A. Nye,
438 J.C. Sun, A.C. Thomas, and R.A. Wahle. 2013. "Fisheries management in a changing climate:
439 Lessons from the 2012 ocean heat wave in the Northwest Atlantic." *Oceanography* 26: 191-
440 195.

441 Molnar, J.L., R.L. Gamboa, C. Revenga, and M.D. Spalding. 2008. "Assessing the global threat
442 of invasive species to marine biodiversity". *Frontiers in Ecology and the Environment* 6:485-
443 492.

444 Mooney, H.A., and E.E. Cleland. 2001. "The evolutionary impact of invasive species".
445 *Proceedings of the National Academy of Sciences USA* 98: 5446-5451.

446 Morozov, A., S. Petrovskii, and B.L. Li. 2006. "Spatiotemporal complexity of patchy invasion in
447 a predator-prey system with the Allee effect." *Journal of Theoretical Biology* 238: 18-35.

448 Murren, C.J., J.R. Auld, H. Callahan, C.K. Ghalambor, C.A. Handelsman, M.A. Heskel, J.G.
449 Kingsolver, H.J. Maclean, J. Masel, H. Maughan, and D.W. Pfennig. 2015. "Constraints on
450 the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity." *Heredity*
451 115: 293-301.

452 Nunes, A.L., G. Orizaola, A. Laurila, and R. Rebelo. 2014. "Rapid evolution of constitutive and
453 inducible defenses against an invasive predator." *Ecology* 95: 1520-1530.

454 Palmer, A.R. 1981. "Do carbonate skeletons limit the rate of body growth?" *Nature* 292: 150-
455 152.

456 Palmer, A.R. 1982. "Growth in marine gastropods. A non-destructive technique for
457 independently measuring shell and body weight." *Malacologia* 23: 63-74.

458 Palmer, A.R. 1992. "Calcification in marine molluscs: how costly is it?" *Proceedings of the
459 National Academy of Sciences USA* 89: 1379-1382.

460 Peckarsky, B.L., P.A. Abrams, D.I. Bolnick, L.M. Dill, J.H. Grabowski, B. Luttbeg, J.L. Orrock,
461 S.D. Peacor, E.L. Preisser, O.J. Schmitz, and G.C. Trussell. 2008. "Revisiting the classics:
462 considering nonconsumptive effects in textbook examples of predator-prey interactions."
463 *Ecology* 89: 2416-2425.

464 Pershing, A.J., M.A. Alexander, D.C. Brady, D. Brickman, E.N. Curchitser, A.W. Diamond, L.
465 McClenachan, K.E. Mills, O.C. Nichols, D.E. Pendleton, N.R. Record, J.D. Scott, M.D.
466 Staudinger, and Y. Wang. 2021. "Climate impacts on the Gulf of Maine ecosystem: A review
467 of observed and expected changes in 2050 from rising temperatures." *Elementa Science of
468 the Anthropocene* 9, doi:<https://doi.org/10.1525/elementa.2020.00076>.

469 Petrovskii, S., A. Morozov, and B.L. Li. 2005. "Regimes of biological invasion in a predator-
470 prey system with the Allee effect." *Bulletin of Mathematical Biology* 67: 637-661.

471 Relyea, R.A. and J.T. Hoverman. 2003. "The impact of larval predators and competitors on the
472 morphology and fitness of juvenile treefrogs." *Oecologia* 134: 596-604.

473 Reznick, D., and J.A. Endler. 1982. "The impact of predation on life history evolution in
474 Trinidadian guppies (*Poecilia reticulata*)."*Evolution* 36: 160-177.

475 Ruiz, G.M., J.T. Carlton, E.D. Grosholz, and A.H. Hines. 1997. "Global invasions of marine and
476 estuarine habitats by non-indigenous species: mechanisms, extent, and consequences".
477 *American Zoologist* 37:621-632.

478 SAS Institute. 2019. JMP Pro, v15.0.0. SAS Institute, Cary, North Carolina, USA.

479 Sax, D.F., J.J. Stachowicz, J.H. Brown, J.F. Bruno, M.N. Dawson, S.D. Gaines, R.K. Grosberg,
480 A. Hastings, R.D. Holt, M.M. Mayfield, and M.I. O'Connor. 2007. "Ecological and
481 evolutionary insights from species invasions." *Trends in Ecology & Evolution* 22: 465-471.

482 Say, T. 1817. "An account of the Crustacea of the United States." *Journal of the Academy of*
483 *Natural Sciences Philadelphia* 1: 56-57.

484 Schlichting, C.D., and M. Pigliucci. 1998. Phenotypic evolution: a reaction norm perspective.
485 *Sinauer Associates*, Sunderland, MA.

486 Schmitz, O.J. and G.C. Trussell. 2016. "Multiple stressors, state-dependence and predation risk-
487 foraging trade-offs: toward a modern concept of trait-mediated indirect effects in
488 communities and ecosystems." *Current Opinion in Behavioral Sciences* 12: 6-11.

489 Scoville, A.G., and M.E. Pfrender. 2010. "Phenotypic plasticity facilitates recurrent rapid
490 adaptation to introduced predators". *Proceedings of the National Academy of Sciences USA*
491 107: 4260-4263.

492 Sih, A., D.I. Bolnick, B. Luttbeg, J.L. Orrock, S.D. Peacor, L.M. Pintor, E. Preisser, J.S. Rehage,
493 and J.R. Vonesh. 2010. "Predator-prey naïveté, antipredator behavior, and the ecology of
494 predator invasions." *Oikos* 119: 610-621.

495 Simberloff, D. and B. Von Holle. 1999. "Positive interactions of nonindigenous species:
496 invasional meltdown?" *Biological Invasions* 1: 21-32.

497 Smee, D.L., and M.J Weissburg. 2006. "Clamming up: environmental forces diminish the
498 perceptive ability of bivalve prey". *Ecology* 87: 1587-1598.

499 Spight, T.M., and J. Emlen. 1976. "Clutch sizes of two marine snails with a changing food
500 supply." *Ecology* 57: 1162-1178.

501 Strauss, S.Y., J.A. Lau, and S.P. Carroll. 2006. "Evolutionary responses of natives to introduced
502 species: what do introductions tell us about natural communities?" *Ecology letters* 9: 357-
503 374.

504 Stuart, Y.E., T.S. Campbell, P.A. Hohenlohe, R.G. Reynolds, L.J. Revell, and J.B. Losos. 2014.
505 "Rapid evolution of a native species following invasion by a congener." *Science* 346: 463-
506 466.

507 Tollrian, R.I., and C.D. Harvell. 1999. The Ecology and Evolution of Inducible Defenses.
508 *Princeton University Press*, Princeton, NJ.

509 Trussell, G. C., Corbett, J. J. 2023a. *Littorina obtusata* shell length, shell thickness, and tissue
510 mass measured during a field experiment conducted at 12 sites in the Gulf of Maine from April
511 to August 2021. Biological and Chemical Oceanography Data Management Office (BCO-
512 DMO). (Version 1) Version Date 2023-10-11. doi:10.26008/1912/bco-dmo.911221.1

513 Trussell, G. C., Corbett, J. J. 2023b. Green crab (*Carcinus maenas*) density at rocky intertidal sites
514 determined at 8 sites in the Gulf of Maine from April 2019 to December 2021. Biological and
515 Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date
516 2023-10-12. doi:10.26008/1912/bco-dmo.911365.1

517 Trussell, G. C., Corbett, J. J. 2023c. Seawater temperatures at high tide at study sites in the Gulf
518 of Maine prior to, during, and after an outplant experiment that was conducted from April to

519 August 2021. Biological and Chemical Oceanography Data Management Office (BCO-DMO).
520 (Version 1) Version Date 2023-10-12. doi:10.26008/1912/bco-dmo.911390.1

521 Trussell, G. C., Corbett, J. J. 2023d. Seawater temperatures at study sites in the Gulf of Maine
522 prior to and during an outplant experiment that was conducted from April to August 2021.
523 Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1)
524 Version Date 2023-10-12. doi:10.26008/1912/bco-dmo.911409.1

525 Trussell, G.C., 2000. "Phenotypic clines, plasticity, and morphological trade-offs in an intertidal
526 snail." *Evolution* 54: 151-166.

527 Trussell, G.C. 1996. "Phenotypic plasticity in an intertidal snail: the role of a common crab
528 predator." *Evolution* 50: 448-454.

529 Trussell, G.C., and O.J. Schmitz. 2012. Species functional traits, trophic control and the ecosystem
530 consequences of adaptive foraging in the middle of food chains. Pages 324-338 in Ohgushi,
531 T., O.J. Schmitz, and R.D. Holt, editors. *Trait-mediated Indirect Interactions*. Cambridge
532 University Press, Cambridge U.K.

533 Trussell, G.C., and M.O. Nicklin. 2002. "Cue sensitivity, inducible defense, and trade-offs in a
534 marine snail." *Ecology* 83: 1635-1647.

535 Trussell, G.C., P.J. Ewanchuk, and M.D. Bertness. 2002. "Field evidence of trait-mediated
536 indirect interactions in a rocky intertidal food web." *Ecology Letters* 5: 241-245.

537 Trussell, G.C., and L.D. Smith. 2000. "Induced defenses in response to an invading crab
538 predator: an explanation of historical and geographic phenotypic change." *Proceedings of the
539 National Academy of Sciences USA* 97: 2123-2127.

540

541 Van Tienderen, P.H. 1991. "Evolution of generalists and specialists in spatially heterogeneous
542 environments." *Evolution* 45: 1317-1331.

543 Vermeij, G.J. 1978. Biogeography and Adaptation: Patterns of Marine Life. *Harvard University*
544 *Press*, Cambridge, MA.

545 Welch, W.R. 1968. "Changes in abundance of the green crab *Carcinus maenas* in relation to
546 recent temperature changes." *Fishery Bulletin* 67: 337-345.

547 West-Eberhard, M.J. 2003. Developmental plasticity and evolution. *Oxford University Press*,
548 Oxford, U.K.

549 Werner, E.E., and S.D. Peacor. 2003. "A review of trait-mediated indirect interactions in
550 ecological communities." *Ecology* 84: 1083-1100.

551 Windig, J.J., C.G.F. de Kovel, and G. de Jong. 2004. Genetics and Mechanisms of Plasticity. Pages
552 31-49 in T. J. DeWitt and S. M. Scheiner, editors. *Phenotypic plasticity*. Oxford University
553 Press, Oxford, U.K.

554

555

556

557

558

559

560

561

562

563

564

Figure Legends

565 **Figure 1:** Map of study sites in the northern and southern Gulf of Maine. Southern Sites
566 (Massachusetts): Nahant (1), Doliber Cove (2), Lobster Cove (3), Stage Fort Park (4), Loblolly
567 Cove (5), Hodgkins Cove (6); Northern Sites (Maine): Jasper Beach (7), Cutler (8), Moose Cove
568 (9), Hamilton Cove (10), Carrying Place Cove (11), West Quoddy (12). Asterisks denote sites
569 where crab surveys were conducted and pre-experiment seawater temperatures were recorded.
570 See Appendix S1: Table S1 for more details on site locations and their role in the study.

571

572 **Figure 2:** Mean (\pm SE) crab (*Carcinus maenas*) density on sheltered shores (N = 4 per region per
573 year) in the northern and southern Gulf of Maine in 2019, 2020, and 2021. See Appendix S1:
574 Table S1 for sites used for crab surveys.

575

576 **Figure 3:** Mean (\pm SE) seawater temperatures on sheltered shores in the northern and southern
577 Gulf of Maine prior to and during the experiment in 2021. See Appendix S1: Table S1 for sites
578 used for temperature monitoring.

579

580 **Figure 4:** The relationship between (a) shell thickness of juvenile snails (*Littorina obtusata*) and
581 seawater temperature prior to beginning the experiment, and the relationship between final shell
582 thickness of snails and seawater temperature after the 90 day field experiment for (b) northern
583 and (c) southern populations. Note that for the southern population (c) there was a positive trend
584 between shell thickness and seawater temperature ($P = 0.0604$, see Results for more details).

585

586 **Figure 5:** Mean (\pm SE) (a) shell thickness and (b) tissue mass of juvenile snails (*Littorina*
587 *obtusata*) from sheltered shores in the northern and southern Gulf of Maine prior to the
588 experiment. Large symbols denote regional means (\pm SE).

589

590 **Figure 6:** Mean (\pm SE) (a) shell thickness and (b) tissue mass of snails (*Littorina obtusata*) from
591 sheltered shores in the northern and southern Gulf of Maine after 90 days of exposure to the
592 presence (+C) and absence (-C) of green crab (*Carcinus maenas*) risk cues. Large symbols
593 denote regional means (\pm SE) for each risk treatment.

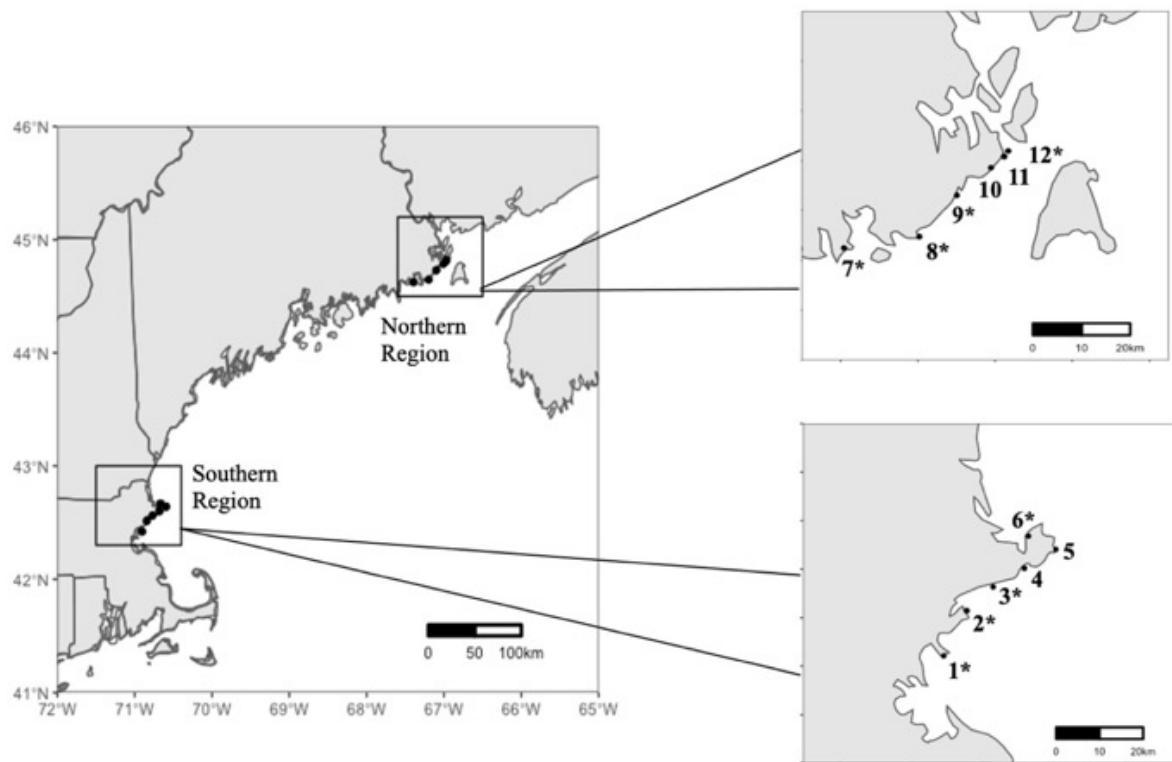
594

595

596

597

598


599

600

601 Figure 1.

602

603

604

605

606

607

608

609

610

611

612

613

614 Figure 2.

615

616

617

618

619

620

621

622

623

624

625

626

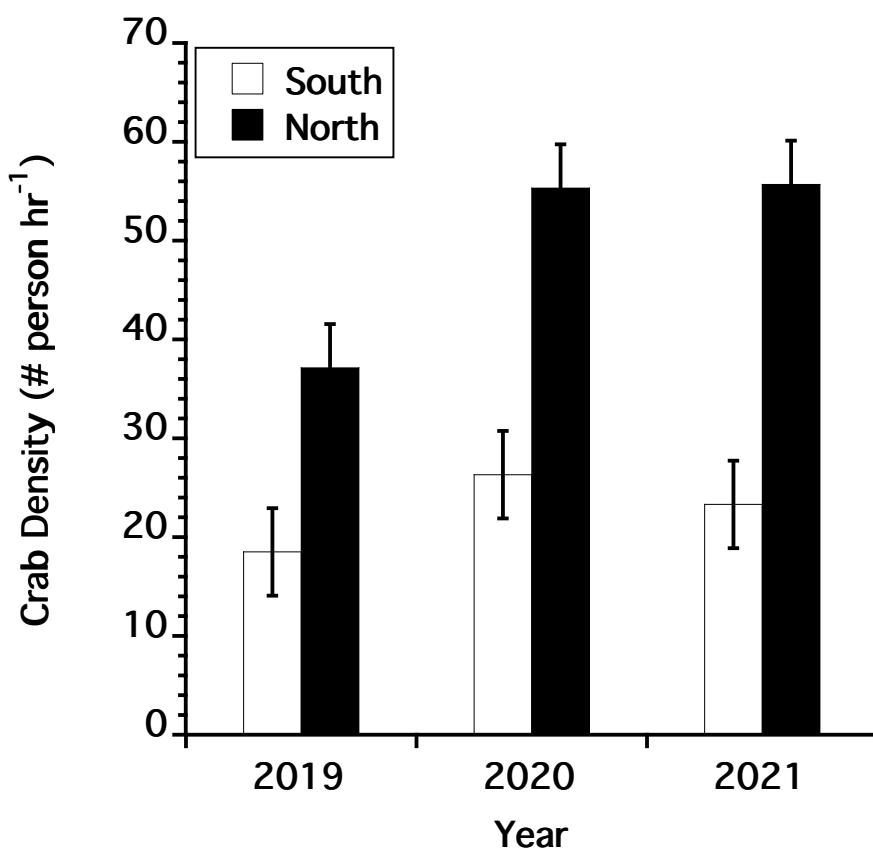
627

628

629

630

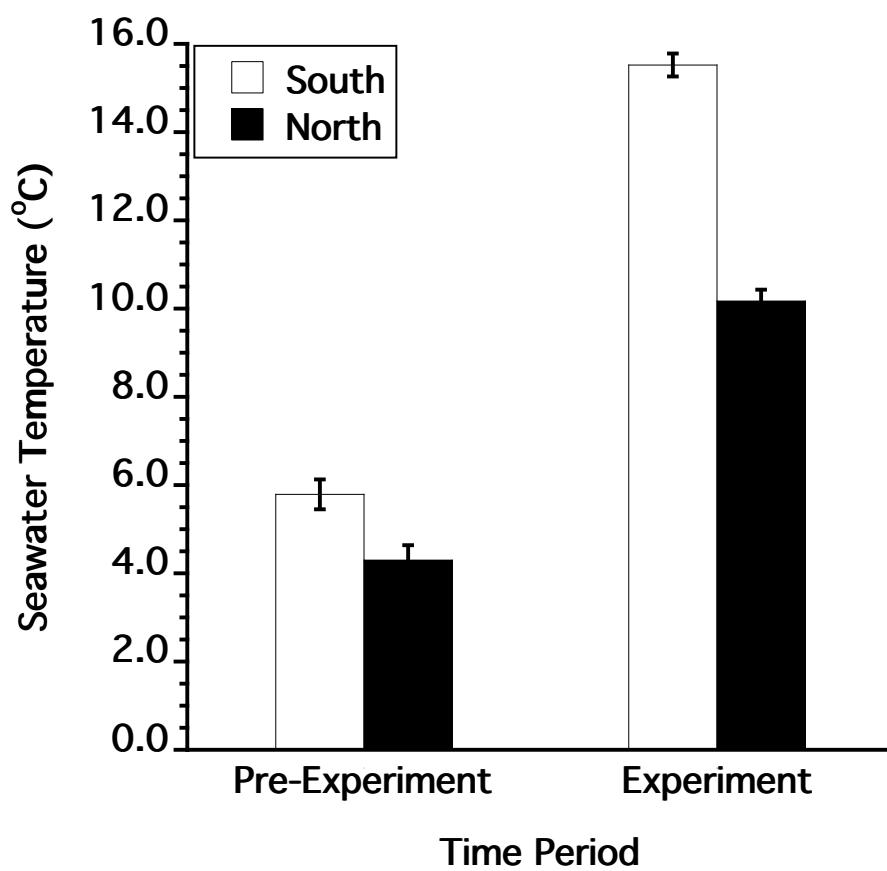
631


632

633

634

635


636

637 Figure 3.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

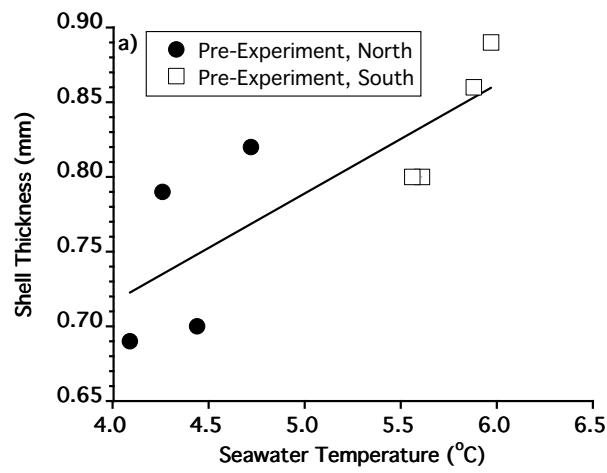
659

660 Figure 4.

661

662

663


664

665

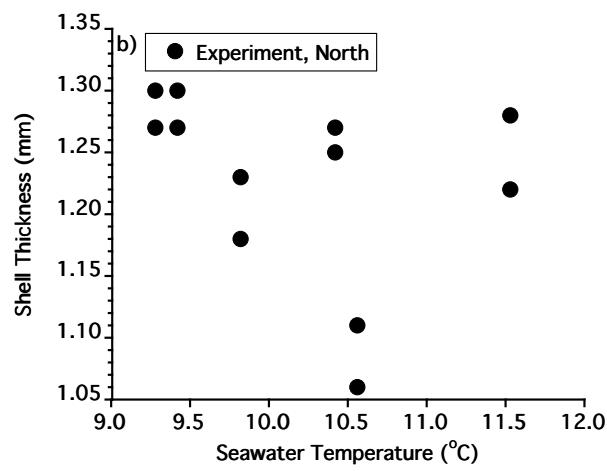
666

667

668

669

670


671

672

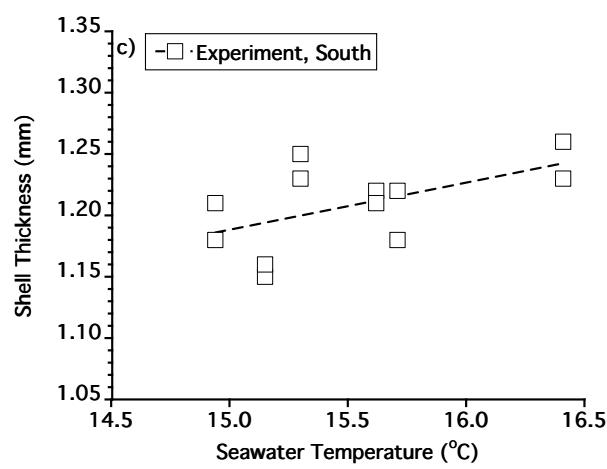
673

674

675

676

677


678

679

680

681

682

683 Figure 5.

684

685

686

687

688

689

690

691

692

693

694

695

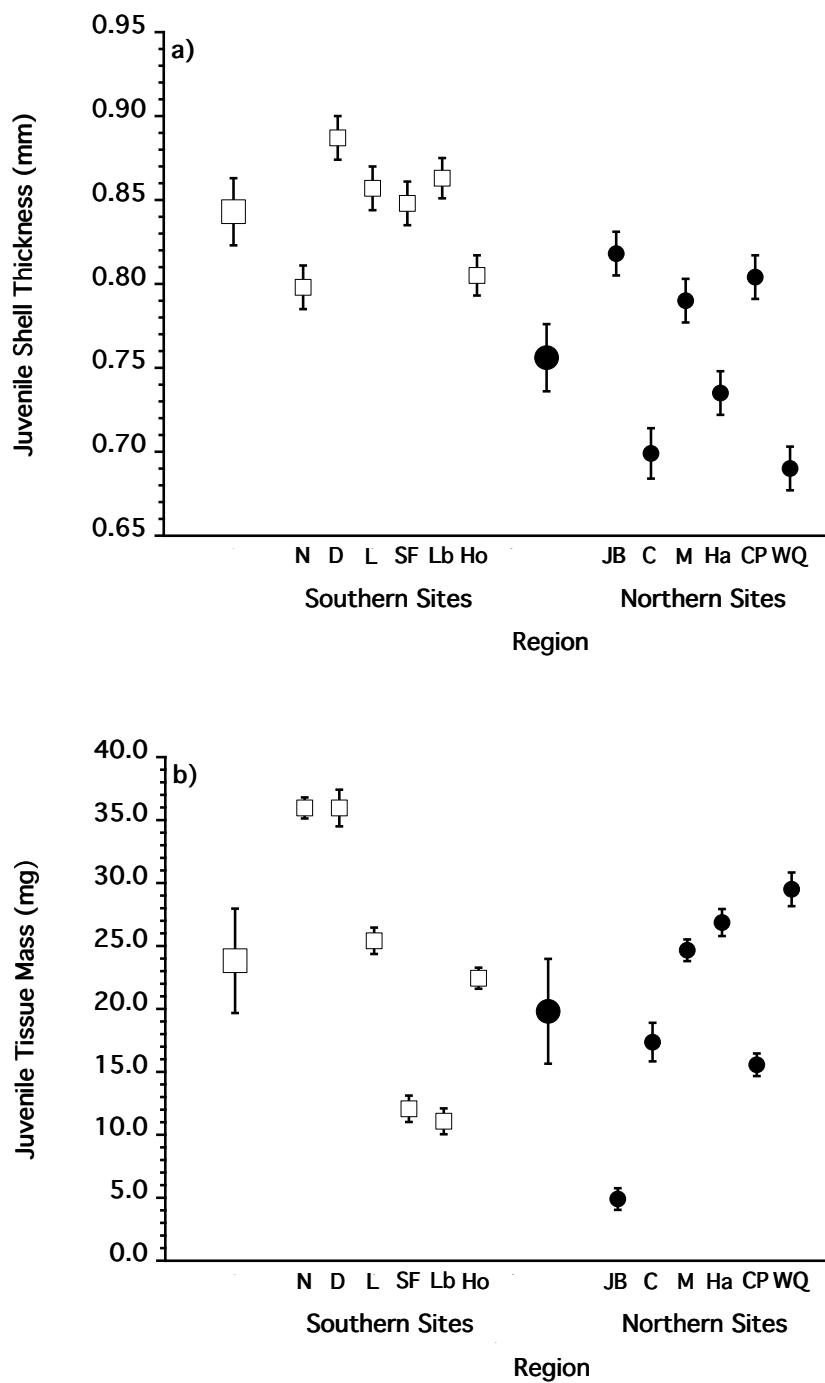
696

697

698

699

700


701

702

703

704

705

706 Figure 6.

707

708

709

710

711

712

713

714

715

716

717

718

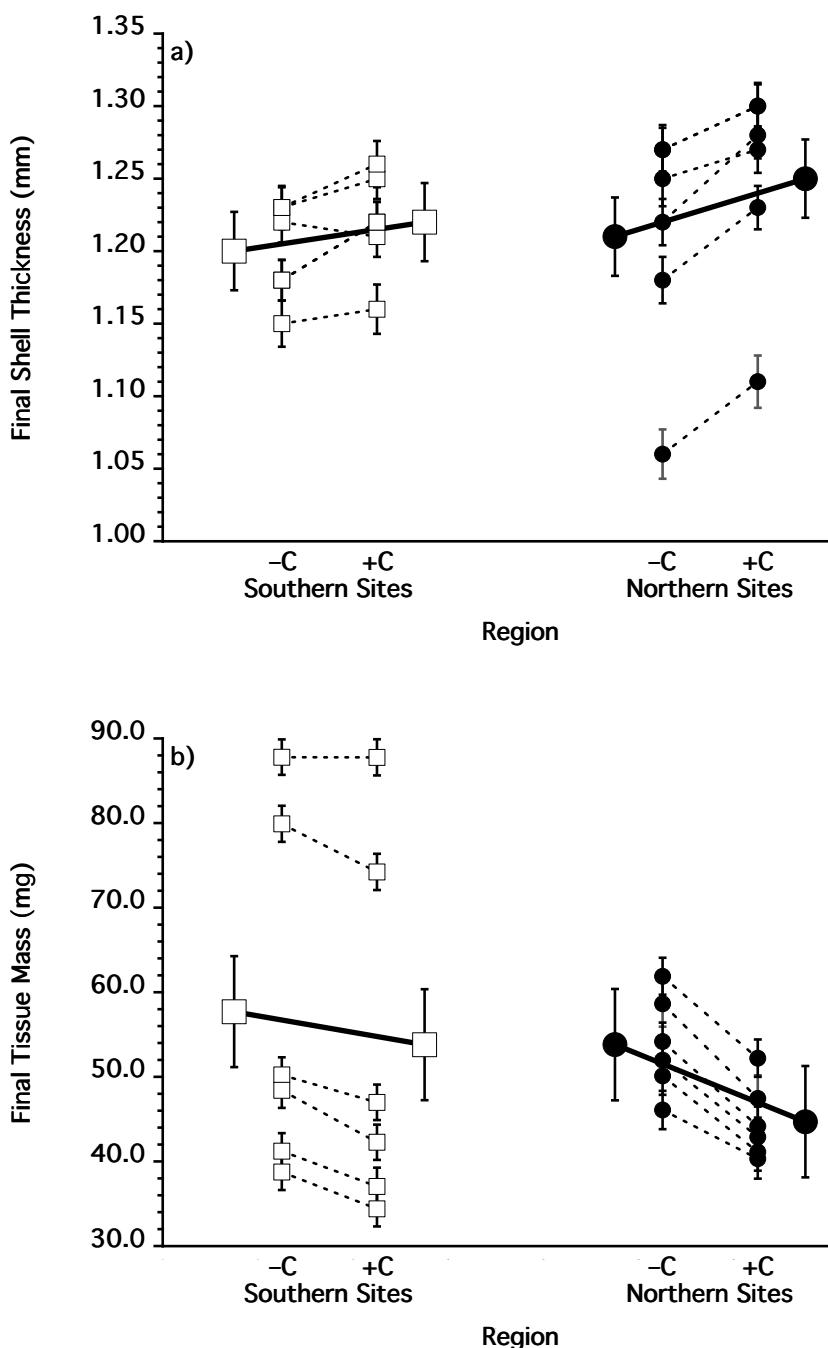
719

720

721

722

723


724

725

726

727

728

