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Nonparametric two-sample tests of high dimensional mean vectors via random

integration

Abstract

Testing the equality of the means in two samples is a fundamental statistical in-

ferential problem. Most of the existing methods are based on the sum-of-squares or

supremum statistics. They are possibly powerful in some situations, but not in others,

and they do not work in a unified way. Using random integration of the difference, we

develop a framework that includes and extends many existing methods, especially in

high-dimensional settings, without restricting the same covariance matrices or sparsity.

Under a general multivariate model, we can derive the asymptotic properties of the

proposed test statistic without specifying a relationship between the data dimension

and sample size explicitly. Specifically, the new framework allows us to better under-

stand the test’s properties and select a powerful procedure accordingly. For example,

we prove that our proposed test can achieve the power of 1 when nonzero signals in

the true mean differences are weakly dense with nearly the same sign. In addition,

we delineate the conditions under which the asymptotic relative Pitman efficiency of

our proposed test to its competitor is greater than or equal to 1. Extensive numerical

studies and a real data example demonstrate the potential of our proposed test.

Keywords: Nonparametric two-sample test; High-dimensional mean; Random integration

of the difference
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1. INTRODUCTION

In many applications, high-dimensional data, whose dimension is much larger than the sam-

ple size, are commonly available. Examples include diffusion tensor imaging (Le Bihan et al.,

2001), finance (Lam and Yao, 2012), gene expression (Pan et al., 2018), and risk management

(Bollerslev et al., 2019). Testing the equality of two high-dimensional mean vectors is a basic

problem. For example, Chen and Qin (2010) and Zhang et al. (2020) studied differential

gene expression in various molecules and tissues. Ayyala et al. (2015) detected differentially

methylated regions based on MethylCap-seq data.

We deal with the two-sample test for equality of high-dimensional mean vectors. Given

{X1, · · · ,Xm} and {Y1, · · · ,Yn} are independent identically distributed random samples

drawn from p-dimensional random variables X and Y having p× 1 mean vectors µ1 and µ2,

respectively, we want to test:

H0 : µ1 = µ2 vs H1 : µ1 6= µ2, (1.1)

where their covariance matrices Σ1 and Σ2 are unknown.

For testing (1.1), some existing methods assume that Σ1 = Σ2 (Bai and Saranadasa, 1996;

Wu et al., 2006; Srivastava and Du, 2008; Li et al., 2020). This assumption is complicated

to be validated for high-dimensional data. Motivated by the idea from Bai and Saranadasa

(1996), Chen and Qin (2010) introduced a test statistic by removing the cross-product terms

in ||X̄−Ȳ||22, and showed that their proposed test can work with unequal covariance matrices.

Also, Srivastava et al. (2013) extended the results of Srivastava and Du (2008) to unequal

covariance matrices by replacing the sample covariance with the diagonal matrix of the

sample covariance. Gregory et al. (2015) proposed using an average of the squared univariate

two-sample t-statistics over p components as the test statistic. Wang and Xu (2022) proposed

an approximate randomization test procedure based on the test statistic of Chen and Qin

(2010). These test statistics use weighted L2-norm between µ1 and µ2, which are called

as the sum-of-squares type statistics. It is known that sum-of-squares-based tests can have
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good power against the “dense” alternatives, but otherwise, they may suffer from power loss

(Cai et al., 2014; Xu et al., 2016).

Many methods deal with the sparsity for µ1 − µ2 under the alternative hypothesis. Cai

et al. (2014) used extreme value theory, which was heavily reliant on the dependence structure

among various components of the p-dimensional random vectors. If there is a high degree

of dependence, such as genetic data, their method based on extreme value theory fails,

and the associated empirical size is distorted. Chang et al. (2017) calculated the critical

value using the Gaussian approximation technique, which allowed for arbitrary dependency

among different components of the p-dimensional random vectors. Besides, Chang et al.

(2017) proposed a screening-based procedure for improving the supremum-type statistic’s

power. Cai et al. (2014) concluded that the supremum-based tests were powerful when the

true mean differences were sparse in the sense that there were only a few but significant

nonzero componentwise differences. However, such tests may not work well under a non-

sparse alternative (Xu et al., 2016).

In practice, the true alternative hypothesis is unknown, so it can not help us choose

a powerful test. Fortunately, powerful methods exist for both “dense” alternatives and

sparse alternatives in the high-dimensional setting. Xu et al. (2016) proposed an adaptive

testing procedure by combining information across a class of sum-of-powers tests. Chen

et al. (2019) introduced an L2-type test by either thresholding, which removed the non-signal

bearing dimensions or transforming the data via the precision matrix for signal enhancement.

Zhang et al. (2020) proposed an L2-norm-based test through the Welch-Satterthwaite χ2-

approximation to deal with the non-normality of the null distribution. However, their test

again assumes an equal covariance matrix between the two populations. In contrast, Xue

and Yao (2020) proposed a distribution and correlation free two-sample mean test. Yu et al.

(2022) proposed a power-enhanced high-dimensional mean test.

We categorize the methods mentioned above in Table 1 according to a) whether a test

needs distribution assumptions; b) whether a test needs assumptions on the common covari-
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ance matrix; c) whether a test needs a sparsity assumption under the alternative hypothesis;

and d) whether a test requires clear conditions in the relationship between the data dimen-

sion p and the sample size n. Note that most of the methods are either sum-of-squares or

supremum-based. Xu et al. (2016) pointed out that such tests were not powerful if nonzero

signals in the true mean differences were weakly dense with nearly the same sign or there

were more dense or only weakly dense nonzero signals, but did not offer a solution.

This paper establishes a unified framework by using random integration (Jiang et al.,

2022) of the difference (RID) technique for two-sample tests of high-dimensional mean vec-

tors. This technique uses the difference in the p-dimensional independent density-weighted

function with the finite mean and variance. Many existing tests, such as the weighted L2-

norm-based test, the supremum-type tests, and a burden test through
∑p

i=1(X̄
(i)−Ȳ (i)) (Pan

and Shen, 2011; Lee et al., 2012), are special cases of our unified framework. Furthermore,

our framework (RID) has the following advantages:

� It is nonparametric and can operate without assuming Σ1 = Σ2.

� It does not require a direct relationship between the data dimension and sample size,

and nor the sparsity assumption under the alternative hypothesis.

� The asymptotic relative Pitman efficiency of our proposed RID test compared to the

test (CQ) proposed by Chen and Qin (2010) is greater than or equal to 1 under some

conditions.

� It leads to a distinctly powerful test when nonzero signals are weakly dense with nearly

the same sign or when nonzero signals are “dense” under the alternative hypothesis.

Hence, we solve the problem raised by Xu et al. (2016).

The rest of the paper is organized as follows. Section 2 introduces our test statistic via

the random integration of the difference technique and establishes the asymptotic properties.

In Section 3, simulation studies are conducted to evaluate the finite sample performance of
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Table 1: The comparison of two-sample tests of high-dimensional mean vectors.
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the proposed test. In Section 4, a real dataset is analyzed to compare the proposed test with

some existing methods. We conclude with some remarks in Section 5. All technical details

and some additional simulation results are provided as supplementary materials.

2. METHODOLOGY AND MAIN RESULTS

Note that

µ1 = µ2 ⇔ EX = EY⇔ δ>EX = δ>EY, for any δ ∈ Rp

⇔ E
[
δ>(X−Y)

]
= 0, for any δ ∈ Rp.

Therefore, testing whether µ1 and µ2 amounts to testing whether

RIDw(X,Y) ,
∫
E2
[
δ>(X−Y)

]
w(δ)dδ = 0, (2.1)

where w(δ) is any positive weight.

It is important to clarify that for convenience, we use RIDw(X,Y) to indicate its depen-

dence on the distributions of X and Y, not the random variables X and Y per se. We obtain

that µ1 = µ2 if and only if RIDw(X,Y) = 0 by equation (2.1). Theorem 1 is a critical result

that provides an explicit derivation for evaluating RIDw(X,Y) with a suitable w.

Theorem 1 If w(δ) =
∏p

i=1wi(δi) and wi(·) is a density function with a mean αi and

variance β2
i for i = 1, · · · , p, then

RIDθ(X,Y) , RIDw(X,Y) (2.2)

= (µ1 − µ2)
>B(µ1 − µ2) +

[
(µ1 − µ2)

>a
]2
,

and RIDθ(X,Y) ≥ 0 with the equality holds if and only if µ1 = µ2, where θ = (α1, · · · , αp, β1, · · · , βp)>,

a = (α1, α2, · · · , αp)>, and

B =


β2
1 0 · · · 0

0 β2
2 · · · 0

...
...

. . .
...

0 0 · · · β2
p

 .
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Remark 1 Using Theorem 1, we can derive an explicit form of RIDw(X,Y), such as when

δ follows a density function with independent components. With different choices of the

parameters {αi, i = 1, · · · , p} and {βi, i = 1, · · · , p}, RIDθ(X,Y) can give rise to existing

tests. Thus, RIDθ(X,Y) provides a unified framework.

1. When αi = 0 and βi 6= 0 for all i, RIDθ(X,Y) yields a weighted L2-norm-based test

that is designed to be powerful for the “dense” alternatives (Chen and Qin, 2010).

2. When α1 = · · · = αp 6= 0 and βi = 0 for all i, RIDθ(X,Y) results in a burden test,

which is widely used in genome wide association study of rare variants (Pan and Shen,

2011; Lee et al., 2012).

3. When αi = 0 for all i, βj 6= 0 for j = j0, and otherwise βj = 0, where j0 =

arg max1≤j≤p(µj1 − µj2)2, RIDθ(X,Y) can lead to the supremum-type tests using the

L∞-norm of the mean differences. In practice, j0 is not known a priori and can be

estimated by ĵ0 = arg max1≤j≤p

(
X̄

(j) − Ȳ
(j)
)2

, where X̄
(j)

and Ȳ
(j)

are the j-th com-

ponent of sample mean vectors X̄ and Ȳ for µ1 and µ2, respectively. These tests are

powerful against the “sparse” alternatives (Cai et al., 2014).

4. When α1 = · · · = αp 6= 0 and βi 6= 0 for all i, RIDθ(X,Y) produces a hybrid of a

weighted L2-norm-based test and a burden test, and may retain the strengths of both

tests with proper weights so that it is powerful whether there is a large proportion of

small to moderate componentwise differences or nonzero signals are weakly dense with

nearly the same sign (Chen and Qin, 2010; Xu et al., 2016).

5. When βj 6= 0 for all j, αi > 0 if µi1 − µi2 > 0, and αi < 0 otherwise, RIDθ(X,Y)

induces a hybrid of a weighted L2-norm-based test and a weighted L1-norm-based test,

which should be powerful for dense or only weakly dense nonzero signals (Chen and

Qin, 2010; Xu et al., 2016).

Denote Wθ = B + aa>. Then, we have

RIDθ(X,Y) = ||W 1/2
θ (µ1 − µ2)||22.
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With observed samples {X1, · · · ,Xm} and {Y1, · · · ,Yn}, we define the test statistic as

RIDθ,m,n = RID1
θ,m + RID2

θ,n − 2RID3
θ,m,n,

where

RID1
θ,m =

1

C2
m

∑
1≤i<j≤m

X>iWθXj,

RID2
θ,n =

1

C2
n

∑
1≤i<j≤n

Y>iWθYj,

RID3
θ,m,n =

1

C1
mC

1
n

m∑
i=1

n∑
j=1

X>iWθYj.

Obviously, RIDθ,m,n is an unbiased estimator of RIDθ(X,Y).

2.1 Asymptotic properties

To establish the limiting distribution of RIDθ,m,n, we assume the following four conditions:

E1. There exist a p×k1 matrix Γ1, a p×k2 matrix Γ2, k1-dimensional random vectors {Z1i}mi=1,

and k2-dimensional random vectors {Z2j}nj=1, such that Xi = µ1 + Γ1Z1i for i = 1, · · · ,m,

and Yj = µ2 + Γ2Z2j for j = 1, · · · , n. And Γ1, Γ2, {Z1i}mi=1, and {Z2j}nj=1 satisfy:

1 Γ1Γ
>
1 = Σ1, and Γ2Γ

>
2 = Σ2 with min{k1, k2} ≥ p.

2 {Z1i}mi=1 and {Z2j}nj=1 are i.i.d., respectively, with EZ1i = 00, Var(Z1i) = Ik1 , and

EZ2j = 00, Var(Z2j) = Ik2 , where Ik1 and Ik2 are the k1 × k1 and k2 × k2 identity

matrices, respectively.

3 E(Z4
1jl) = 3 + ∆1 and E(Z4

2jl) = 3 + ∆2 for some constants ∆1 and ∆2, where Zιjl is

the l-th component of Zιj with ι = 1 or 2. Also, for a positive integer q and ςl such

that
∑q

l=1 ςl ≤ 8,

E(Zς1
ijl1
· · ·Zςq

ijlq
) = E(Zς1

ijl1
) · · ·E(Z

ςq
ijlq

) (2.3)

whenever l1, l2, · · · , lq are distinct indices.
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E2. m/(m+ n)→ τ ∈ (0, 1) as m,n→∞.

E3. (µ1 − µ2)
>WθΣiWθ(µ1 − µ2) = o[(m+ n)−1tr{(WθΣ1 +WθΣ2)

2}] for i = 1 or 2.

E4. As p→∞, and for s1, s2, s3, s4 ∈ {1, 2},

tr(WθΣs1WθΣs2WθΣs3WθΣs4) = o[tr2{(WθΣ1 +WθΣ2)
2}]. (2.4)

Remark 2 Condition E1 gives a general multivariate model for high-dimensional data anal-

ysis, which includes the Gaussian family and members of the elliptically contoured distribu-

tions among many others (Bai and Saranadasa, 1996; Chen and Qin, 2010; Zhang et al.,

2020). As said in Chen and Qin (2010), min{k1, k2} ≥ p indicates that the rank and eigen-

values of Σ1 or Σ2 are not affected by the transformation. Condition (2.3) means that each

Zij has a kind of pseudo-independence, which is a relaxed independence relation that allows

some margin over probabilities (Kim and Lesser, 2008). Clearly, if Zij has independent

components, then (2.3) is true.

Condition E2 is a standard regularity assumption in two-sample problems, which guar-

antees that m and n go to infinity proportionally.

Condition E3 is satisfied under H0, and enables the variance of RIDθ,m,n to be asymp-

totically characterized by σ2
m,n given in the following Theorem 2. Similar to Chen and Qin

(2010), if all of the eigenvalues of Wθ, Σ1 and Σ2 are bounded above from infinity and below

away from zero and µ1 − µ2 = (ω, · · · , ω)>, then condition E3 implies ω = o((n + m)−1/2),

which is also studied in Xu et al. (2016), and is a smaller order than the local alternative

hypotheses with the form µ1 − µ2 = ν(n + m)−1/2 for a nonzero constant vector ν and the

fixed p setting. Therefore, condition E3 can be viewed as a high-dimensional version of the

local alternative hypotheses.

Condition E4 is typical to obtain a normal limit for the leading terms using the martin-

gale central limit theorem (Hall, 1984), and similar conditions can be found in Chen et al.

(2010) and Li and Chen (2012) for proving the asymptotic distribution in high-dimensional

hypothesis-testing problems. In addition, condition E4 is also useful for our proposed test

in the high-dimensional case, although an explicit relationship between p and m,n is not
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required. Furthermore, if Σ1 and Σ2 are close to identity matrix, then one must rule out the

case that βj = 0 for all j; otherwise condition E4 is violated. Therefore, other tests would

be preferrable in this case. To gain insight into condition E4, let us assume Σ1 = Σ2 = Σ,

α1 = · · · = αp = α 6= 0, β1 = · · · = βp = β 6= 0, r = α/β, and λ1 ≤ λ2 · · · ≤ λp and

γ1 ≤ γ2 ≤ · · · ≤ γp are eigenvalues of Wθ and Σ, respectively. Then, (2.4) becomes

tr{(WθΣ)4} = o[tr2{(WθΣ)2}]. (2.5)

By some algebraic calculations, we have λ1 = · · · = λp−1 = β2, and λp = β2 + pα2, and

tr{(WθΣ)4} ≤
p∑
i=1

(λiγi)
4 = λ41tr(Σ

4) + (λ4p − λ41)γ4p ,

tr{(WθΣ)2} ≥
p∑
i=1

(λiγp−i+1)
2 ≥ λ21tr(Σ

2).

Therefore,

tr{(WθΣ)4}
tr2{(WθΣ)2}

≤
λ41tr(Σ

4) + (λ4p − λ41)γ4p
λ41tr

2(Σ2)
=

tr(Σ4)

tr2(Σ2)
+

[(1 + pr2)4 − 1]γ4p
tr2(Σ2)

.

Thus, if tr(Σ4) = o(tr2(Σ2)), pr2 = O(p1/4), and p1/2γ2p = o(tr(Σ2)), then (2.5) is true.

In fact, tr(Σ4) = o(tr2(Σ2)) is used in Chen et al. (2010) and Li and Chen (2012). If

all the eigenvalues of Σ are bounded away from zero and infinity, tr(Σ4) = o(tr2(Σ2)) is

trivially true. Meanwhile, some of the commonly encountered covariance structures satisfy

tr(Σ4) = o(tr2(Σ2)), see Chen et al. (2010). In addition, p1/2γ2p = o(tr(Σ2)) is also assumed

in the literature, e.g., Wang et al. (2015).

Theorem 2 Under Conditions E1-E4, as p,m, n→∞, we have

RIDθ,m,n − RIDθ(X,Y)

σm,n

D−→ N (0, 1),

where

σ2
m,n =

tr{(WθΣ1)
2}

C2
m

+
tr{(WθΣ2)

2}
C2
n

+
4tr(WθΣ1WθΣ2)

C1
mC

1
n

.

Under H0, we can obtain RIDθ(X,Y) = 0. Therefore, we have the following Corollary 1.
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Corollary 1 Under Conditions E1-E4 and H0 : µ1 = µ2, as p,m, n→∞, we have

RIDθ,m,n/σm,n
D−→ N (0, 1).

To formulate a test procedure, we need to estimate σm,n. Similar to Chen and Qin (2010),

we propose the following estimators of tr{(WθΣ1)
2}, tr{(WθΣ2)

2}, and tr(WθΣ1WθΣ2).

Denote

̂tr{(WθΣ1)2} =
1

2C2
m

tr

{∑
i6=j

W
1/2
θ (Xi − X̄(i,j))X

>
iWθ(Xj − X̄(i,j))X

>
jW

1/2
θ

}
,

̂tr{(WθΣ2)2} =
1

2C2
n

tr

{∑
i6=j

W
1/2
θ (Yi − Ȳ(i,j))Y

>
iWθ(Yj − Ȳ(i,j))Y

>
jW

1/2
θ

}
,

̂tr(WθΣ1WθΣ2) =
1

C1
mC

1
n

tr

{
m∑
i=1

n∑
j=1

W
1/2
θ (Xi − X̄(i))X

>
iWθ(Yj − Ȳ(j))Y

>
jW

1/2
θ

}
,

where X̄(i,j) and Ȳ(i,j) are the sample mean after excluding Xi,Xj and Yi,Yj, respectively,

and X̄(i) and Ȳ(j) are the sample mean after excluding Xi and Yj, respectively. Therefore,

we can obtain an estimator of σ2
m,n.

σ̂2
m,n =

̂tr{(WθΣ1)2}
C2
m

+
̂tr{(WθΣ2)2}
C2
n

+
4 ̂tr(WθΣ1WθΣ2)

C1
mC

1
n

.

Furthermore, we can obtain the following Theorem 3.

Theorem 3 Under Conditions E1-E4 and H0 : µ1 = µ2, as p,m, n→∞, we have

RIDθ,m,n/σ̂m,n
D−→ N (0, 1).

According to Theorem 3, the proposed test with a nominal ϑ level of significance rejects

H0 if RIDθ,m,n ≥ σ̂m,nzϑ, where zϑ is the upper-ϑ quantile of N (0, 1).

2.2 Power of the proposed RID test

In this subsection, we investigate the power of the proposed RID test. Denote

Pθ(µ1 − µ2,Σ1,Σ2) =
(µ1 − µ2)

>Wθ(µ1 − µ2)√
2tr(Σ2

θ(τ))
,

11



where Σθ(τ) = Wθ{(1− τ)Σ1 + τΣ2}. Then, we can obtain the following Theorem 4.

Theorem 4 Under Conditions E1-E4, and H1 : µ1 6= µ2, the power of our proposed RID

test is given by

lim
m,n,p→∞

P (RIDθ,m,n ≥ σ̂m,nzϑ)

= lim
m,n,p→∞

Φ {−zϑ + (m+ n)τ(1− τ)Pθ(µ1 − µ2,Σ1,Σ2)} ,

where Φ(·) is the cumulative distribution function of the standard normal random variable.

Theorem 4 provides a general result on the power of the proposed RID test statistic. It reveals

that as long as (m+ n)Pθ(µ1 −µ2,Σ1,Σ2) diverges to the infinity, the power will converge

to 1. Next, we investigate the power of the following two special cases for heterogeneous

αi and βi. Let λ1 ≤ λ2 · · · ≤ λp and λ∗1 ≤ λ∗2 · · · ≤ λ∗p be eigenvalues of Wθ and Σ̃(τ),

respectively, where Σ̃(τ) = (1 − τ)Σ1 + τΣ2. For the sake of simplicity, let us assume that

α1 = · · · = αp = α and β1 ≤ · · · ≤ βp. In this setting, we have λ1 = β2
1 , · · · , λp−1 = β2

p−1,

and λp = β2
p + α2ζp, where

ζp =
β2
p

β2
1

+
β2
p

β2
2

+ · · ·+
β2
p

β2
p

.

Case I: µ1 − µ2 = (ω, · · · , ω)> for ω ≥ 0. Then, we have

Pθ(µ1 − µ2,Σ1,Σ2) ≥
α2p2ω2 + ω2

∑p
i=1 β

2
i√

2(λ∗p)
2
(∑p

i=1 β
4
i + 2β2

pα
2ζp + α4ζ2p

) .
Therefore, we have

lim
m,n,p→∞

P (RIDθ,m,n ≥ σ̂m,nzϑ)

≥ lim
m,n,p→∞

Φ

−zϑ +
(m+ n)τ(1− τ)(α2p2ω2 + ω2

∑p
i=1 β

2
i )√

2(λ∗p)
2
(∑p

i=1 β
4
i + 2β2

pα
2ζp + α4ζ2p

)
 .

By the above inequality, we can obtain the following Corollary 2.

12



Corollary 2 Assume Conditions E1-E4, α1 = · · · = αp = α, β1 ≤ · · · ≤ βp, α
2 = O(p−3/4),

0 < min1≤i≤p{βi} ≤ max1≤i≤p{βi} < ∞, and λ∗p = o
(
(n+m)ω2p1/8

)
. Under H1 : µ1 6= µ2,

we have

lim
m,n,p→∞

P (RIDθ,m,n ≥ σ̂m,nzϑ) = 1.

Corollary 2 demonstrates that our proposed RID test is powerful when nonzero signals

in the true mean differences are weakly dense with nearly the same sign. By contrast, (3.11)

in Chen and Qin (2010) and (27) in Zhang et al. (2020) indicate that their tests have low

power under H1.

Case II: µ1−µ2 = (

p1︷ ︸︸ ︷
$, · · · , $,

p−p1︷ ︸︸ ︷
0, · · · , 0)>. Using a similar discussion to that of Corollary 2,

we can obtain Corollary 3.

Corollary 3 Assume Conditions E1-E4, α1 = · · · = αp = α, β1 ≤ · · · ≤ βp, α
2 =

O(p−3/4), 0 < min1≤i≤p{βi} ≤ max1≤i≤p{βi} < ∞, p1 = pe with 0 ≤ e ≤ 1, and λ∗p =

o
(

(m+ n)ω2p
3e
2
− 7

8

)
. Under H1 : µ1 6= µ2, we have

lim
m,n,p→∞

P (RIDθ,m,n ≥ σ̂m,nzϑ) = 1.

Corollary 3 indicates that if all the eigenvalues of Σ̃(τ) are bounded away from 0 and ω2 =

O((m+n)−1), then e > 7/12. Therefore, the proposed RID test cannot cope with extremely

sparse signals as did in Cai et al. (2014) and Chang et al. (2017) unless the sparse nonzero

signals are extremely strong.

It follows from (2.2) that the first term in RIDθ(X,Y) is a weighted L2-norm between

µ1 and µ2. Therefore, we will compare the asymptotic power of the our proposed RID test

with the CQ test of Chen and Qin (2010). According to Theorem 4, and equation (3.11) in

Chen and Qin (2010), the asymptotic power functions for the proposed RID test and CQ

13



test are defined as follows

βRID , Φ {−zϑ + (m+ n)τ(1− τ)Pθ(µ1 − µ2,Σ1,Σ2)} ,

βCQ , Φ

−zϑ +
(m+ n)τ(1− τ)||µ1 − µ2||2√

2tr{Σ̃(τ)2}

 .

Then, the asymptotic relative Pitman efficiency of the proposed RID test versus the CQ test

is given by

ARE(βRID, βCQ) ,
(µ1 − µ2)

>Wθ(µ1 − µ2)

√
tr{Σ̃(τ)2}

||µ1 − µ2||2
√
tr(Σ2

θ(τ))
.

Furthermore, we can obtain the following Theorem 5.

Theorem 5 Assume Conditions E1-E4, α1 = · · · = αp = α, β1 = · · · = βp = β, r = α/β,

and max
{
pr2(λ∗p)

2, p2r4(λ∗p)
2
}

= o(tr{Σ̃(τ)2}). Under H1 : µ1 6= µ2, we have

lim
m,n,p→∞

ARE(βRID, βCQ) ≥ 1.

Remark 3 If pr2 = O(p1/4) and p2r4(λ∗p)
2 = o(tr{Σ̃(τ)2}), we have

max
{
pr2(λ∗p)

2, p2r4(λ∗p)
2
}

= o(tr{Σ̃(τ)2}).

The conditions, pr2 = O(p1/4) and p2r4(λ∗p)
2 = o(tr{Σ̃(τ)2}), are implied by p1/2(λ∗p)

2 =

o(tr{Σ̃(τ)2}). The latter condition is used in the literature (e.g., Remark 3 in Wang et al.

(2015)) and stronger than ours.

3. SIMULATION STUDIES

Example 1. In this example, we investigate the numerical performance of the proposed

method using Monte Carlo simulations in the presence of weak signals. We compare the RID

with the adaptive sum-of-powers test proposed by Xu et al. (2016) (aSPU), the CQ test (Chen

and Qin, 2010), the method without transformation proposed by Cai et al. (2014) (Cai), the

non-studentized test with screening (Ψf
ns,ϑ) (Chang et al., 2017), the multilevel thresholding

14



test without the data transformation proposed by Chen et al. (2019) (Mult1), an L2-norm-

based test proposed by Zhang et al. (2020) (L2), and the distribution and correlation free

(DCF) two-sample mean test proposed by Xue and Yao (2020). The aSPU is implemented

by the function apval aSPU in the R package highmean. As suggested in Xu et al. (2016), to

obtain aSPU, γ takes seven values, i.e., γ ∈ {1, 2, 3, 4, 5, 6,∞}, and p-value is given by (1)

in Xu et al. (2016).

For RID, according to Corollary 2, Corollary 3, and Theorem 5, we set α1 = · · · = αp =

2p−3/8 and βi =
√

2(p + i)/p, i = 1, · · · , p for convenience. In this simulation, the nominal

significance level is set to ϑ = 0.05. For each setting, 1000 replications are simulated to

calculate all empirical p-values and power levels.

The two random samples were generated according to the following model

Xi = µ1 + Σ
1/2
1 Zi for i = 1, · · · ,m,

Yj = µ2 + Σ
1/2
2 Zm+j for j = 1, · · · , n,

where {Zi : i = 1, · · · ,m + n} are independent p-dimensional random variables with i.i.d.

coordinate Zik, k = 1, · · · , p. We consider the following four distributions for Zik:

1. The standard normal N (0, 1);

2. The standardized t-distribution with degrees of freedom 5, i.e., (5/3)−1/2t(5);

3. The standardized chi-squared distribution with degrees of freedom 4, i.e., 8−1/2{χ2(4)−

4};

4. The standardized Gamma distribution with a = 4, b = 0.5, i.e., Γ(4, 0.5)− 2.

We assigned µ1 = µ2 = 00 under H0 and under H1, µ1 = 00, and µ2 had [p1−ρ] non-zero

entries of equal value that were uniformly allocated among {1, · · · , p}, where [a] denotes

the integer part of a. The values of the nonzero entries were
√

2r(1/m+ 1/n) log p, where

15



r > 0, and ρ ∈ [0, 1] controls the signal sparsity. For the covariance matrix, we consider the

following two scenarios:

Scenario 1: Unequal covariance matrices, Σ1 =
(
0.4|i−j|

)
and Σ2 = 2Σ1 for 1 ≤ i, j ≤ p.

Scenario 2: Common covariance matrices, Σ1 = Σ2 = Σ, where Σ =
(
0.9|i−j|

)
for

1 ≤ i, j ≤ p.

In this simulation, we set the sample sizes to (m,n) = (60, 80) and (90, 120), respectively,

and the dimension p to 200, 600, 1000. We take ρ = {0.1, 0.2, 0.3, 0.4}, covering highly dense

signals for an alternative hypothesis at ρ = 0.1, to moderately dense signals at ρ = 0.2 or

ρ = 0.3, and finally to moderately sparse at ρ = 0.4. Meanwhile, we set the signal strength

r = {0.02, 0.04, 0.06, 0.08} which covers the same range as in Xu et al. (2016).

The empirical p-values are shown in Tables 2-3. From Tables 2-3, we find that the

empirical p-values of all methods are controlled fairly well around 0.05 for all cases.

The power of RID is similar under the four different distributions, so we report the

empirical power under only N (0, 1) in Figures 1-4. For the other three distributions, the

results are presented in the supplementary material. From Figures 1-4, we have the following

findings:

1. The proposed RID test has the greatest power when ρ = 0.1 or ρ = 0.2. This result

is consistent with Corollary 2. Thus, the RID is powerful when nonzero signals of the

difference between two mean vectors are weakly dense with nearly the same sign.

2. The empirical power of RID increases as the signal strength r increases.

3. RID’s empirical power diminishes as ρ increases.
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Table 2: Empirical sizes for Scenario 1

p (m,n) aSPU CQ Cai Mult1 L2 DCF Ψf
ns,ϑ RID

N (0, 1)

200 (60,80) 0.033 0.061 0.049 0.036 0.049 0.039 0.054 0.051

(90,120) 0.035 0.049 0.054 0.026 0.040 0.038 0.058 0.052

600 (60,80) 0.047 0.056 0.072 0.026 0.038 0.048 0.056 0.049

(90,120) 0.036 0.048 0.052 0.028 0.035 0.039 0.063 0.044

1000 (60,80) 0.044 0.045 0.064 0.021 0.017 0.032 0.047 0.055

(90,120) 0.042 0.054 0.061 0.033 0.028 0.038 0.058 0.054

(5/3)−1/2t(5)

200 (60,80) 0.033 0.060 0.037 0.030 0.042 0.022 0.043 0.045

(90,120) 0.041 0.064 0.057 0.045 0.050 0.035 0.039 0.052

600 (60,80) 0.028 0.075 0.048 0.034 0.036 0.022 0.027 0.055

(90,120) 0.035 0.049 0.054 0.029 0.030 0.030 0.032 0.052

1000 (60,80) 0.034 0.056 0.055 0.024 0.028 0.017 0.035 0.056

(90,120) 0.031 0.044 0.043 0.016 0.025 0.023 0.035 0.053

8−1/2{χ2(4)− 4}

200 (60,80) 0.034 0.061 0.053 0.038 0.051 0.032 0.051 0.058

(90,120) 0.033 0.055 0.046 0.031 0.043 0.036 0.050 0.051

600 (60,80) 0.038 0.050 0.060 0.022 0.027 0.030 0.042 0.054

(90,120) 0.046 0.043 0.072 0.033 0.030 0.052 0.049 0.049

1000 (60,80) 0.030 0.054 0.077 0.020 0.020 0.024 0.043 0.057

(90,120) 0.039 0.056 0.066 0.032 0.033 0.028 0.040 0.056

Γ(4, 0.5)− 2

200 (60,80) 0.042 0.050 0.053 0.032 0.033 0.037 0.061 0.052

(90,120) 0.033 0.065 0.044 0.041 0.049 0.036 0.046 0.057

600 (60,80) 0.046 0.041 0.076 0.030 0.023 0.034 0.048 0.049

(90,120) 0.051 0.053 0.061 0.034 0.039 0.033 0.043 0.048

1000 (60,80) 0.050 0.048 0.073 0.030 0.030 0.027 0.031 0.050

(90,120) 0.033 0.065 0.068 0.037 0.041 0.036 0.045 0.047
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Table 3: Empirical sizes for Scenario 2

p (m,n) aSPU CQ Cai Mult1 L2 DCF Ψf
ns,ϑ RID

N (0, 1)

200 (60,80) 0.049 0.078 0.034 0.046 0.063 0.051 0.058 0.048

(90,120) 0.049 0.062 0.029 0.043 0.051 0.039 0.046 0.055

600 (60,80) 0.051 0.063 0.047 0.046 0.052 0.038 0.047 0.057

(90,120) 0.055 0.057 0.032 0.041 0.051 0.042 0.051 0.047

1000 (60,80) 0.036 0.061 0.042 0.041 0.052 0.040 0.050 0.057

(90,120) 0.042 0.053 0.044 0.037 0.046 0.038 0.051 0.055

(5/3)−1/2t(5)

200 (60,80) 0.038 0.059 0.030 0.040 0.044 0.038 0.042 0.057

(90,120) 0.042 0.060 0.025 0.044 0.048 0.045 0.052 0.059

600 (60,80) 0.033 0.051 0.029 0.033 0.039 0.032 0.039 0.055

(90,120) 0.059 0.071 0.033 0.051 0.061 0.040 0.047 0.052

1000 (60,80) 0.034 0.051 0.035 0.036 0.046 0.023 0.028 0.049

(90,120) 0.045 0.068 0.042 0.054 0.060 0.050 0.059 0.054

8−1/2{χ2(4)− 4}

200 (60,80) 0.049 0.079 0.043 0.052 0.063 0.057 0.062 0.055

(90,120) 0.062 0.086 0.030 0.058 0.065 0.047 0.050 0.056

600 (60,80) 0.040 0.065 0.038 0.036 0.055 0.037 0.040 0.056

(90,120) 0.039 0.055 0.037 0.032 0.046 0.041 0.044 0.055

1000 (60,80) 0.045 0.069 0.059 0.044 0.056 0.053 0.063 0.054

(90,120) 0.042 0.060 0.047 0.040 0.050 0.048 0.055 0.054

Γ(4, 0.5)− 2

200 (60,80) 0.051 0.064 0.040 0.040 0.052 0.049 0.059 0.052

(90,120) 0.048 0.066 0.024 0.040 0.056 0.045 0.051 0.057

600 (60,80) 0.054 0.065 0.042 0.037 0.051 0.046 0.055 0.050

(90,120) 0.047 0.060 0.039 0.046 0.052 0.049 0.055 0.056

1000 (60,80) 0.036 0.065 0.044 0.040 0.051 0.044 0.055 0.049

(90,120) 0.045 0.055 0.033 0.035 0.045 0.032 0.040 0.047
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Figure 1: Empirical power when Zij follows N (0, 1) and m = 60, n = 80 for Scenario 1

under different signal levels of r and sparsity levels of ρ in Example 1.

19



• • •

• • •

• • •

• • •

• •

Figure 2: Empirical power when Zij follows N (0, 1) and m = 60, n = 80 for Scenario 2

under different signal levels of r and sparsity levels of ρ in Example 1.
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Figure 3: Empirical power when Zij follows N (0, 1) and m = 90, n = 120 for Scenario 1

under different signal levels of r and sparsity levels of ρ in Example 1.
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Figure 4: Empirical power when Zij follows N (0, 1) and m = 90, n = 120 for Scenario 2

under different signal levels of r and sparsity levels of ρ in Example 1.
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Figure 5: Empirical power when Zij follows N (0, 1), (m,n) = (60, 80), p = 200 under

different signal levels of r in Example 2.

Example 2. In this example, we evaluate the power performance of our proposed RID test

for the weakly dense signals with varying signs. We use the same setup in Example 1,

except that ρ = 0, Σ1 =
(
0.4|i−j|) and Σ2 = 2Σ1 for 1 ≤ i, j ≤ p, (m,n) = (60, 80), and

p = 200. The values of the nonzero entries in μ2 were uniformly drawn at random from the

interval
[
−√

2r(1/m+ 1/n) log p,
√
2r(1/m+ 1/n) log p

]
with r = {0.02, 0.04, 0.06, 0.08}.

Due to the similar power performance of the proposed RID test under the four different

distributions, we present only the empirical power under N (0, 1) in Figure 5. The results for

the remaining three distributions are included in the supplementary material. As illustrated

in Figure 5, the CQ test has the best performance, followed by our proposed RID test.

Meanwhile, all tests have poor power when r = 0.02.

Example 3. In this example, we carry out numerical simulations to illustrate the power

performance of our proposed method for the sparse setting. We use the same setup in
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Figure 6: Empirical power when Zij follows N (0, 1), (m,n) = (60, 80) and (m,n) = (90, 120)

under different signal levels of r in Example 3.

Example 1, except that we now use r = {0.6, 0.8, 1.0, 1.2}, which are considered in Chen

et al. (2019), 
0.05p� elements in μ2 are set to nonzero values, which is a sparse setting

and is studied in Cai et al. (2014), and Σ1 = Σ2 = Σ, where Σ = D1/2RD1/2, R = (rij)p×p

with rij = 1Ii=j + 0.5|i − j|−5Ii �=j for 1 ≤ i, j ≤ p, and D = diag(d11, · · · , dpp) with dii ∼
U(1, 3) independently. The covariance matrice Σ structure is studied in Cai et al. (2014).

Since the proposed RID test has the similar power performance under the four different

distributions, we only display the empirical power under N (0, 1) in Figure 6. For the other

three distributions, the results are shown in the supplementary material. From Figure 6, we

find that the power of the aSPU is the highest among all tests. Cai test, Mult1 test, and

the proposed RID test have similar power when p = 200. Furthermore, all tests have power

close to 1 when p ≥ 600 and r ≥ 0.8 except the DCF and Ψf
ns,ϑ.
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4. REAL DATA ANALYSIS

In this section, we evaluate the finite sample performance of various tests in the analysis of a

breast cancer dataset from a genome-wide association study (Gravier et al., 2010), which can

be downloaded from https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/geo/query/

acc.cgi?acc=GSE19159. The dataset contains 168 pT1T2pN0 invasive ductal carcinoma

patients with either good (no event five years after diagnosis: 111 patients) or poor (57

patients with early-onset metastasis) outcomes (Qiu et al., 2021). There are 2,905 genome

tiling array type variables for each subject, representing the normalized log2 ratio of the Cy5

and Cy3 signals.

It has been reported that breast cancer is the most frequent malignancy in women and

has been a significant source of cancer-related morbidity and mortality in women worldwide

(Harbeck et al., 2019; Hendrick et al., 2019). Therefore, it is essential to identify significant

genetic variants with breast cancer, and this will be helpful for the diagnosis, prevention, and

treatment of breast cancer. Traditional multiple testing methods need multiple comparisons,

making the genome-wide association study computationally intensive and might lead to mis-

leading findings. Furthermore, it has been shown that there is strong evidence of polygenic

effects for breast cancer (Shiovitz and Korde, 2015). Therefore, we apply various tests to

analyze the genome tiling data in each of the 22 autosomes separately to better demonstrate

the possible power differences between the tests. The familywise nominal significance level

is set at 0.05, and we set 0.05/22 = 0.0023 for each chromosome to consider the Bonferroni

adjustment.

All of the compared methods have moment-based assumptions and according to Wang

et al. (2015), they are sensitive to outliers. We refer to Wang et al. (2015); Feng et al. (2016)

for specific examples demonstrating the sensitivity of such tests to the outliers. In addition,

we plot the histograms of the marginal kurtosises for chromosomes 3, 6, and 7 in Figure 7,

which clearly demonstrate that some gene expression levels have heavy tails due to their

kurtosises being much larger than 3. Therefore, prior to performing any test, we use an

25
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Figure 7: (a) Histogram of marginal kurtosises of X,Y for 2,905 genes in chromosome 3; (b)

Histogram of marginal kurtosises of X,Y for 2,905 genes in chromosome 6; (c) Histogram of

marginal kurtosises of X,Y for 2,905 genes in chromosome 7.

outlier detection method proposed by Ro et al. (2015) to eliminate outliers. The number

of samples after the outlier removal and the number of genes after the pre-processing as in

Gravier et al. (2010) are listed in Table 4.

To be concise, Table 5 presents some representative results. We also plot the differences

of sample means between two groups for the selected chromosomes in Figure 8. It can be

seen that for chromosome 3, all methods yield p-values less than 0.05/22 = 0.0023. For

chromosome 6, RID is the only test indicating a significant signal (p-value=3.22×10−5). For

chromosome 7, all methods except Cai and DCF lead to significant p-values, supporting the

possible lower power of Cai and DCF tests.

Having observed the significant differences, we further explore different signal structures.

From Figure 8, we can see that the number of negative mean differences is comparable

with those of positive mean differences on chromosome 3 while most signals are relatively

strong. These signals are easily detected by most methods. In contrast, chromosome 6

has a dense-but-weak signal structure and has a large proportion of the negative mean

differences (81.34%). As expected from our theoretical and simulation results, such signals
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Table 4: After removing the outlier samples, the total number of samples and the number

of genes after pre-processing on each Chromosome (Chr). p denotes the dimension and m,

n denote the sample sizes after eliminating outliers.

Chr p m n Chr p m n Chr p m n Chr p m n

1 374 82 42 7 105 68 37 13 84 66 34 19 43 81 32

2 233 69 35 8 112 57 37 14 73 70 39 20 88 67 30

3 166 64 39 9 112 67 38 15 77 67 30 21 43 69 36

4 139 74 38 10 132 66 35 16 76 72 35 22 68 77 41

5 185 67 34 11 133 65 32 17 156 71 33

6 134 61 34 12 191 69 37 18 73 66 43

are challenging to the existing methods. This application confirms that RID is particularly

useful when nonzero signals are extremely dense with nearly the same sign. Also importantly,

our result is consistent with the literature supporting the role of the genes on chromosome

6 in breast cancer (Noviello et al., 1996; Tao et al., 1999).

Comparing the signal structures between chromosome 6 and chromosome 7, we can see

that although both have dense signals, the signal magnitude on chromosome 7 is much

stronger. This indicates that the power of RID is stable when the signal is relatively weak,

whereas the other methods lose power in detecting weak signals. Thus, our data analysis

demonstrates that our proposed RID fills a gap in the existing methodology by introducing

a test that is powerful in a setting when the existing methods are not powerful, i.e., when

nonzero signals of the difference between two mean vectors are weakly dense with nearly the

same sign.
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Figure 8: Differences in gene expression levels between the two groups for chromosomes

3, 6, 7. The X-axis represents the position (Mb) of the clones along the corresponding

chromosome.
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5. DISCUSSION

A variety of methods have been developed for testing the equality of mean vectors in two

samples. As summarized in Table 1, this problem remains to be an active research topic in

statistics (Chen et al., 2019; Xue and Yao, 2020; Zhang et al., 2020). Despite meaningful

progress, further research is warranted. For example, there is no powerful test when nonzero

signals are weakly dense with nearly the same sign or when there are more dense or only

weakly dense nonzero signals (Xu et al., 2016). The first contribution of this work is to fill

in this gap by developing a powerful test to detect such signals. We provide theoretical and

numerical results that convincingly demonstrate that this goal is achieved. While searching

for this solution, we use the random integration of the difference technique, enabling us to

unify many existing methods. This is the second significant contribution of this work because

this unified framework helps us understand when and why a test is powerful. By re-analysis

a real dataset, we illustrate how our proposed test may discover insightful information.

It is noteworthy that there are further issues to investigate for our proposed method.

Firstly, in our simulation studies and real data analysis, we use the p-dimensional indepen-

dent density function with α1 = · · · = αp = 2p−3/8 and βi =
√

2(p+ i)/p, i = 1, · · · , p as the

weight function. As a result, RID combines a weighted L2-norm-based test and a burden

test. Our empirical results support these choices in their effectiveness for constructing a

powerful RID test. The test is still reliable when there are many small to moderate com-

ponentwise differences or when nonzero signals are weakly dense with nearly the same sign.

Nonetheless, there are other choices for the weight function. An interesting future topic is to

consider a p-dimensional independent density function with an adaptive choice αi, βi or other

choices of weight function. Secondly, a weight function is given by a density function with

independent components in this paper. We will consider a different measure with dependent

components as further work. Finally, we investigate the fourth setting in Remark 1 in order

to increase the power for extremely dense nonzero weak signals of nearly identical sign. We

will consider the other settings in Remark 1 in greater detail to ensure that they meet the
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requirements of practical applications.

SUPPLEMENTARY MATERIALS

We defer the technical proofs and details to the Supplementary Materials. Additional sim-

ulation results and analysis of the real dataset are also presented in the Supplementary

Materials.
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