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Abstract.—Phylogenetic trees establish a historical context for the study of organismal form and function. Most phyloge-
netic trees are estimated using a model of evolution. For molecular data, modeling evolution is often based on biochemical
observations about changes between character states. For example, there are 4 nucleotides, and we can make assumptions
about the probability of transitions between them. By contrast, for morphological characters, we may not know a priori how
many characters states there are per character, as both extant sampling and the fossil record may be highly incomplete,
which leads to an observer bias. For a given character, the state space may be larger than what has been observed in the
sample of taxa collected by the researcher. In this case, how many evolutionary rates are needed to even describe transi-
tions between morphological character states may not be clear, potentially leading to model misspecification. To explore
the impact of this model misspecification, we simulated character data with varying numbers of character states per char-
acter. We then used the data to estimate phylogenetic trees using models of evolution with the correct number of character
states and an incorrect number of character states. The results of this study indicate that this observer bias may lead to
phylogenetic error, particularly in the branch lengths of trees. If the state space is wrongly assumed to be too large, then
we underestimate the branch lengths, and the opposite occurs when the state space is wrongly assumed to be too small.

[Bayesian phylogenetics; character states; morphological data; observer bias; phylogenetic methods; RevBayes.]

Molecular phylogenetics relies on known state spaces
(DNA [ACGT], RNA [ACGU], or amino acids). In this
case, the researcher knows all molecular character states
that are possible at a character. As we will discuss be-
low, the ability to know the number of character states
per character enables researchers to make a variety of
assumptions about how these states relate to each other,
character change rates, and character change probabili-
ties. Morphological data cannot necessarily rely on this
knowledge (Brazeau, 2011). Much data are recovered
from fossils, where the density of our sampling affects
our ability to correctly identify how many states are
present for a character. For example, we simply may not
observe certain character states if we have few complete
samples recovered from the fossil’s range. Or, perhaps
a character state occurs in a clade that has not been
sampled, or sampled from “complete enough” speci-
mens to find the character (Fig. 1). This can lead to
misleading estimates of phylogeny and diversification
metrics from trees in the fossil record (Wagner, 2000;
Ciampaglio et al., 2001; Flannery Sutherland et al., 2019).
Additionally, observer bias, a phenomenon when the
limitations or prior expectations of the observer (i.e.,

an individual coding morphological characters) colors
the observations produced, may obscure the correct
number of character states. This may occur, for ex-
ample, if a character is somewhat cryptic to human
eyes, such as infrared coloration in butterflies (Stavenga
and Arikawa, 2006), resulting in under-reporting of
variation. Alternatively, over-splitting of variation that
is more recognizable to us as human observers has
also been documented (Keating, 1985). In this study,
we aim to understand the effects of incomplete sam-
pling of character state spaces on phylogenetic inference
and demonstrate that making appropriate assumptions
about the range of possible character states is crucial for
constructing accurate trees.

While much has been written about the role of the
model of character evolution in morphological phylo-
genetics (Wright and Hillis, 2014; Wright et al., 2016;
Bapst et al., 2018; Klopfstein et al., 2019; Mulvey et al.,
2024), character coding plays a role in which character
models are plausible for a dataset. The number of possi-
ble state transitions a character can make is determined
by how many states are present for that character. For
example, a change from a “0” state for a character to a
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Ficure 1. This figure displays a fundamental difficulty with characterizing a morphological state space. Unsampled lineages are indicated
with dotted edges. In this case, there is a single character with 3 states (triangle, circles, and squares). As the lineage containing squares is
unsampled, one may assume that the state space only includes 2 states, and thus any Q-matrix generated by a researcher from the sampled

data will not appropriately represent the character state space.

“2" state is simply impossible if the “2” character state
does not exist (Fig. 2). In a likelihood-based model, pos-
sible changes between character states will be codified
in the Q-matrix, which encodes the rates of different
character-to-character changes (Fig. 2). The size of the
Q-matrix corresponds to the number of states. It is as-
sumed in most models that the number of states (of-
ten called k) is known without error. This has been
explored in non-model based approaches by Cuthill
(2015), where the author demonstrated that character
incompatibility and inferred homoplasy can increase
when the state space is larger, even if homoplasy actu-
ally declined.

Assumptions about character states determine whe-
ther the transition rates between the character states are
similar or different, whether different rates of evolu-
tion are required for different characters, and whether
a character state is conserved or not. For example, if a
character state is lost on a branch, then observed in the
descendants of that branch and coded as the same char-
acter state, it will be assumed to be a reversal or regain
of that character state (Cuthill, 2015). If the researcher
codes the reversal as a new state, as one might do for
a Dollo process, this is no longer a regain of the char-
acter state, but the innovation of a new character state
(Gould, 1970; Goldberg and Igi¢, 2008). In this case, the
state space of the phylogenetic model must be larger,
implying a model with more possible changes between

characters (Fig. 2). In this way, choices made about the
homology statements of a character implicitly make a
statement about the process of evolution. How charac-
ters are coded changes the models that may be consid-
ered for the data, even before a model of evolution is
chosen in an analysis.

As an example of this, imagine a character, such as
egg-laying in reptiles. This character is often coded
as a 2-state character (oviparity and viviparity), with
the root of the tree generally assumed to be oviparous
(Wright et al., 2015). Therefore, any regain of oviparity
in a clade that is viviparous is considered a re-evolution
of the oviparity character state, rather than a poten-
tially new character state. In this case, the number of
transitions possible will be that of a binary character,
as opposed to a multistate character. However, if the
researcher has chosen to code the character as a mul-
tistate, polar character (Stevens, 1980), in which states
are expected to be ordered, or a Dollo character, which
is expected not to reverse, then a simple binary model
of substitution is no longer adequate. In these cases, the
reappearance of oviparity in a viviparous clade must
be coded as a new character state, necessitating a Q-
matrix with a larger state space. This can be visualized
in Figure 2. As shown in Figure 3, misspecification of the
state space can lead to mis-estimation of branch lengths.

Models of evolution then make further assumptions
about character evolution. In most modern molecular
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Ficure 2. At left is a multistate character for which only 2 character states are included in the model. This is how we would construct a Q-
matrix for the trait in Figure 1. In the case of an unordered model, it is assumed that backwards and forwards transitions are allowed between
all states. In the case where one state is not observed, in this case state 3, transitions to and from that character are not considered under the
model. In this case, over half of the possible character state changes are removed by failing to sample the third state. In the case of the 4-state
character, when a state is missing, only 50% of the possible transitions are removed.
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Ficure 3. Likelihoods of branch lengths given a number of mismatches between the state space and the Q-matrix. We assumed that in all
experiments the ancestral states are “0.” In graphic a), there are 75 characters for which there are no observed transition (observed state being
“0”) and 25 for which there is an observed transition (observed state being “1”), thus at least one actual transition. In graphic b), there are 50
characters for which there are no observed transitions (i.e., state “0” is observed) and 50 characters for which there is an observed transition (i.e.,
state “1” is observed). We computed the (normalized) likelihood for the length of this branch under an Mk model with k = 2, k = 5, k = 10,
and k = 20. If we assume a too large state space (true k = 2 but assumed k < 2), then the branch lengths are underestimated. Reversely, if we
assume a too small state space (true k = 5 but assumed k = 2), then the branch lengths are overestimated.

and morphological analyses, a transition rate matrix—
also called Q-matrix—is set up to model changes be-
tween the different character states (Felsenstein, 1981;
Lewis, 2001). This Q-matrix, at minimum, specifies
the exchangeability rates between character states. A

Q-matrix can range from making very simple assump-
tions about the process of evolution, such as assuming
equal rates of change between all states, to incorporat-
ing complex models that account for variable rates of
change and unequal base frequencies (Felsenstein, 1981;
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Hasegawa et al., 1985). For example, the Jukes—Cantor
(JC) model of sequence evolution (Jukes and Cantor,
1969) is the simplest model assuming equal rates of tran-
sitions between any character state, and is used for both
molecular sequence data and morphological data. Let
us focus on molecular data first. In a nucleotide dataset,
the JC model assumes that all the bases (A, T, G, C)
have the same frequency and the rates for their tran-
sition is the same. That is, there are the same number
of each base type, and each base is equally likely to
change to any other base type. When this was applied
to morphological data (Lewis, 2001), these assumptions
were retained: that the equilibrium frequencies of all
characters are the same, and that all changes between
character states are equally likely. More complex mod-
els, such as the Felsenstein 81 model (Felsenstein, 1981),
have been applied to morphological data (Nylander
et al.,, 2004, Wright et al., 2016), and assume charac-
ters may have differential transition rates as a func-
tion of their frequencies. Models such as the General
Time Reversible model (Tavaré, 1986), which is among
the more complex models, have not been applied to
morphological data. This is because coding by human
interpretation of state is inherently arbitrary, and likeli-
hoods of the morphology models must be invariant to
how the states are coded (i.e., which state is denoted
as “0” and which as “1”; Lewis, 2001). Note that the in-
variance principle is also violated for the Felsenstein 81
model, and special extensions such as symmetric mix-
ture models are needed (Nylander et al., 2004; Wright
et al., 2016).

The Q-matrix is a core component of the phyloge-
netic model, specifying the transition rates of different
types of evolutionary changes in the observed dataset.
Therefore, we might expect that error in correctly siz-
ing the Q-matrix could lead to problems in estimating
the phylogeny correctly. There are several ways this er-
ror could arise. As covered above, sampling error could
lead to misunderstanding of the state space. Addition-
ally, for molecular data, the state space can be assumed
to be constant across sites. It is generally assumed that
any specific nucleotide can occur at any site, whether
or not it is observed to do so. For amino acids, mixture
models such as the CAT model (Lartillot and Philippe,
2004) can be used to virtually reduce the state space for
sites if certain amino acids are not present/permitted at
particular sites. This is not the case in morphological
data, where different characters, by their nature, will
have different numbers of states. Some may be pres-
ence/absence, others may be multistate. Therefore, the
Q-matrix cannot be treated as invariant across charac-
ters, and the dataset may need to be split up according
to the state space of the character. Without doing so, this
may lead to characters being modeled under incorrect
Q-matrices.

In this study, we used simulations to assess 2 is-
sues: The first simulation assuming an inappropriately
small Q-matrix. This simulates the effect in Figure 1,
observer bias in the number of character states. The

second simulation is failing to account for Q-matrix
heterogeneity by not breaking up data matrices by char-
acter state space. This will lead to the assumption that
all characters evolved using the largest state space (see
Fig. 3). For many characters, this will mean the state
space is overly large. For example, if a character is bi-
nary, but the largest number of character states in the
matrixis “7,” the model will assume there are additional
5 character states for the binary characters that simply
have not been observed. This would imply far more
evolutionary transitions are possible than truly are. On
the other hand, if we have a too-small state space, we
can end up underestimating the number of evolution-
ary transitions. We might expect to see this affect branch
lengths or topology. Finally, we looked at a set of sim-
ulations under conditions consistent with long-branch
attraction (LBA; Felsenstein, 1978). In this manuscript,
we have highlighted the consequences of the observer
bias in phylogenetic tree inference.

METHODS
State Space Partitioning

As mentioned in the previous section, the number of
states can vary between characters in a morphological
matrix that can lead to difficulties modeling the evolu-
tion of morphological characters. We approached this
issue in 2 ways in our inferences. In the first approach,
we treated all the characters as evolving under the same
model. In this case, we specified the dimension of the Q-
matrix to be equal to the maximum state observed in the
data matrix. For example, if a data matrix contained 3-
state, 4-state and 5-state characters, the Q-matrix dimen-
sion was set up to be 5. The 3-state and 4-state characters
in this approach would also be modeled with a Q-matrix
with state space 5. In the second approach, we sepa-
rated the characters based on the maximum number of
states and apply a Q-matrix sized by the maximum state
value to the set of characters with the same maximum
state. Under this approach, the data simulated under a
Q-matrix with a state space 4 would be partitioned to
3 state spaces. This is because while simulating under
state space 4, it would be possible to have 2-state, 3-state,
and 4-state characters. We refer to the first approach as
“Unpartitioned model” and the second approach as the
“Partitioning by state model.”

In previous generation software, such as MrBayes
(Ronquist and Huelsenbeck, 2003; Ronquist et al., 2012),
character matrices are automatically split up by user-
reported character state number. Even though this was
done, its effectiveness in representing the true model
was never tested. Here, we use the software RevBayes
(Hohna et al.,, 2014; Hohna et al., 2016) where the
researcher has more control in designing the model.
To automate the splitting up of a phylogenetic data
matrix by maximum state number, we have imple-
mented a method in RevBayes, setNumStatesPartition().
This implementation helps reduce researcher burden by
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automatically setting up the partitions according to the
state space.

An example with these approaches can be found in
the Supplementary material.

Simulations

We simulated datasets with different numbers of
character states possible per character. The datasets
were simulated using an empirical tree. This tree comes
from a paleontological dataset of 41 taxa and 42 charac-
ters (Barden and Grimaldi, 2016). We chose this dataset
because small dataset sizes are fairly standard for
morphological character matrices (Wright et al., 2016;
Barido-Sottani et al., 2019). We simulated the characters
under the Mk model of morphological evolution (Lewis,
2001) using the software RevBayes (Hohna et al., 2016).
We did not condition on variability; therefore, these
datasets can contain invariable and parsimony-non-
informative characters. We simulated 2 dataset sizes,
42 characters (the size of the true Barden and Grimaldi
dataset), and 100 characters.

To examine the effect of the base Q-matrix size, we
simulated data under Q-matrices with either 2, 3, 4, or 5
states, in varying proportions as described in the follow-
ing sections. We simulated 1000 datasets for each dataset
and Q-matrix size. An overview of the simulations per-
formed in this study can be seen in Table 1.

Unpartitioned simulations.—Under the unpartitioned
simulation scheme, we simulated characters given a
specific Q-matrix sized by the maximum character
states. We set the maximum character state to 2, 3, 4, or
5 to observe the effect of varying data sizes. We did not
partition the dataset and they were simulated using the
same maximum character state. For a dataset with a Q-
matrix state space 4, it would then be possible to have a
2-state, 3-state, and 4-state characters. We then analyzed
the resulting datasets under an unpartitioned model
and an automatic partitioning by maximum state. For
the unpartitioned model analyses, we specified the state
space to be equal to the largest state observed in the data
matrix. This would mean that, in this model, the number
of transitions among the character state would be mod-
eled appropriately. For the partitioning by state analy-
ses, we split the data matrix according to the maximum

character state and specified the Q-matrix according to
the state space number. This will specify too few possi-
ble transitions for some of the characters in the matrix,
though the exact proportion of characters with a lower
number of transitions will vary among the simulations.

In order to examine the effect of unsampled charac-
ter states, we ran a set of missing data simulations in
which we replaced the largest character state with miss-
ing data (“?”). For example, if the largest state in the
matrix was “4,” all “4”s were replaced with missing data
(“?”). This simulated the effect shown in Figure 1, in
which one character is unsampled in the focal clade,
and, therefore, unrepresented in the analysis. In this
case, the researcher is unaware of all the possible char-
acter states for a character and cannot specify the Q-
matrix correctly. For example, if a character had 3 pos-
sible state, but only 2 have been sampled, the researcher
will think that a binary model describes the trait best.
For these datasets as well, we performed analyses using
the unpartitioned and automatic partitioning by state
models. The partitioning by state model is the same as
above where the character states are split up and the Q-
matrix is specified according to the character state value.
For the unpartitioned model, the size of the Q-matrix is
decremented by one (i.e., reflecting only the observed
state space). Thus, none of the 2 inference models cor-
responds to the true model under which the data were
simulated.

Partitioned simulations.—Under the partitioned simula-

tion scheme, we specified the state space for certain
proportion of the data during the simulation. For each

dataset, either 50% or 75% of the dataset was binary.

The remaining proportion of the data consisted of with
3, 4, or 5 character states. Note that in this simulation

scheme, it is possible to have characters with states 3 or
4 when the matrix is specified to be 5.
In order to ensure that all the characters have maxi-

mal state we also implemented a rejection sampling in

the partitioned simulations. We did rejection sampling
because when simulating under a Q-matrix with size 4,
it is also possible to simulate a 3-state character. Under
this simulation scheme, we would remove this charac-

ter and re-simulate in order to maintain the inclusion of

maximal state character.

TasLE 1. A short overview of the different simulation schemes presented in this study.

Simulation scenarios

Correct model

Unpartitioned simulations (correct maximum state)

Unpartitioned simulations & replacing max state with “?” (Missing
maximum state)

Partitioned simulations with 75% binary

Partitioned simulations with 50% binary

Rejection sampling with 75% binary

Rejection sampling with 50% binary

LBA with unpartitioned model

Un-partitioned model
None available

Partitioned model

Partitioned model

Partitioned with additional ascertainment bias correction (not imple-
mented)

Partitioned with additional ascertainment bias correction (not imple-
mented)

Un-partitioned model
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We then analyzed the datasets obtained under this
simulation scheme under 3 different models—the un-
partitioned model, the automatic state space partition-
ing model, and the pre-specified partitioning model. In
the unpartitioned model analyses, we would then have
a mix of binary and other states analyzed under the
larger state space implying a greater number of transi-
tions for the binary characters as well. This model mis-
specification would vary in different datasets but we are
guaranteed to have some proportion of the dataset with
a misspecified model. For datasets with binary and tri-
nary characters, this misspecification may be small. But
for datasets split between binary and five-state charac-
ters, it will be larger. In the automatic state space par-
titioning, we split the data matrix into separate subsets
based on the character state and specified the Q-matrix
with the state space equal to the value of the maximum
character state. In principle, the automatic partitioned
scheme should obtain a close match to the true data par-
titioning; however, it is possible that some characters
will be assigned to a subset with a too small Q-matrix.
In addition to these inference models, we also specified
the model that we simulated under for the analyses, that
is, specifying the correct partitions and Q-matrices. This
would help us compare the effectiveness of partitioning
by state.

LBA simulations. —We also produced a set of simulations
that approximate LBA. In this set of simulations, we
tested partitioning by state under varying long branch
conditions.

In these simulations, we used a 4-taxon tree in which
the branches leading to tips B and C are long compared
to the branches leading to A and D. We specified the
internal branch length to be 0.07 because this value rep-
resents a fairly strong LBA. For the long branches (i.e.,
branches leading to B and C), we specified branch length
values of 0.5 and 1 to check for different strength of
LBA. The 2 shorter branches were set to be 0.15, approxi-
mately 3 times shorter than the smaller value of the long
branches. This would give us a chance to explore the
effectiveness of partitioning by state in different LBA
conditions compared to the unpartitioned analyses.

As described in Unpartitioned simulations, we simu-
lated 1000 datasets for different values of maximum
state. We simulated datasets using maximum state of 2,
3,4, and 5 as in the previous simulations.

Phylogenetic Estimation

Estimations were performed in RevBayes (Hohna
et al.,, 2016), under a standard phylogenetic inference
model, except for the Q-matrix as described above. The
prior for the branch length was set to an exponential
distribution with a hyperparameter from a hyper-prior
with a log-uniform distribution between 0.001 and 1000.
We also explored additional branch length priors, in-
cluding exponential prior and hyper-prior distributions
with various means. We ran 2 replicate Markov chain

Monte Carlo simulations for each dataset for up to
100,000 generations and assessed for convergence using
the R package Convenience (Fabreti and Hohna, 2022),
which checks for convergence based on split frequen-
cies. This is an objective, automatic, and reproducible
convergence assessment diagnostic. The simulations
were performed on the Louisiana Optical Network Ini-
tiative (LONI) High Performance Computing managed
by Louisiana State University at Baton Rouge, LA, and
our own in-house palmuc HPC from LMU Munich.

Phylogeny Processing

We used the symmetric difference (Robinson and
Foulds, 1979, 1981) and tree length measures to com-
pare the empirical tree (tree under which the data were
simulated) with the trees estimated from this study. For
the tree length measure, we used the median of the pos-
terior distribution of the tree length from each analy-
ses, and to obtain the symmetric difference measure, we
used the R packages ape (Paradis and Schliep, 2019) and
phangorn (Schliep, 2011). The symmetric difference com-
pares the tree in topology, providing a whole-number
measure of the number of differences between two or
more trees under comparison. We summarized the pos-
terior distribution of trees from our analyses into a max-
imum a posteriori (MAP) tree (Cranston and Rannala,
2007) and used the MAP tree to calculate the symmetric
difference. We use this number, divided by the number
of tips in the tree to get a 0 (no error) to 1 (tree com-
pletely different) measure of error. Finally, tree length
is the sum of branch lengths on a tree, providing a mea-
sure of total number of expected substitutions across the
tree. Results were visualized with the ggplot2 (Wickham,
2011) and ggridges (Wilke, 2022) R packages.

ResuLTs

Unpartitioned Simulations

For datasets simulated under unpartitioned model,
there was not a strong signal of topological difference
between partitioning by state and unpartitioned mod-
els (Supplementary Fig. S7) for both complete character
sampling and missing maximum state. In these datasets,
the symmetric difference scores are distributed roughly
the same for both the unpartitioned and partitioned
models. Branch lengths for the trees analyzed under un-
partitioned and partitioning by state models also have a
similar distribution (Fig. 4). Nevertheless, partitioning
by state has a small impact on branch length estimates
and are generally estimated to be longer (see also Fig. 3).
Note that both models seem to be influenced by the prior
distribution in branch lengths as the branch lengths are
slightly overestimated (see Brown et al. (2010), Rannala
etal. (2012), and Fabreti and Hohna (2023) for the effects
of choice of priors for branch length).

For the datasets with missing data, it seems that if
the largest possible character state is incorrect, this can
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Unpartitioned Simulations - Tree Lengths (Large dataset)
Complete Character Sampling

Three States
'

Unpartitioned Unpartitioned

Partitioned Partitioned

Frequency

Unpartitioned Unpartitioned

Partitioned Partitioned

Missing Maximum State

Four States
'

Five States
'

Unpartitioned

Partitioned

Unpartitioned

Partitioned

Tree Length

Ficure 4. This figure shows the distribution of tree-lengths for each set of simulation conditions for the large dataset. In the complete char-
acter sampling simulations, all character states are sampled. In the missing maximum state simulations, the maximum state is replaced with
missing data (“?”) in the data matrix; analogous to the right-hand panel in Figure 2). The true tree length (6.21) is indicated by the dashed line.
The dotted line indicates the prior mean for the tree length. See Supplementary Fig. S4 for the results from small dataset.

lead to trees that are much shorter than the true tree,
regardless of whether or not the remaining characters
are correctly partitioned. As shown in Figure 2, elimi-
nating one character state greatly reduces the number
of possible transitions for a data with 3 character states
as per the Q-matrix. This can lead to a greater under-
estimate of the total number of expected changes per
site. On the other hand, for data with 4 or 5 charac-
ter states, eliminating one character state reduces the
number of possible transitions relatively less than in
the case for 3 character. This can be seen in Figure 2
as well as our results from Unpartitioned simulations
(Fig. 4).

Furthermore, we performed simulations to examine
the effect of a larger number of states missing from the
morphological matrix, that is, more extreme cases of ob-
server bias. First, we simulated datasets under 10 state
Q-matrix and replaced either 5 states or 8 states with
a “?” indicating missing data. Under these conditions,
where a large number of states are missing, the branch
lengths are underestimated as the number of missing
character states increase (Supplementary Fig. S2). Sec-
ond, we rendered characters with many states to be bi-
nary (simulating the effects of large variation being dis-
cretized). In these simulations, we simulated characters
under the unpartitioned model with 4, 10, and 20 states.
We then rendered the characters binary by changing
half of the character states to 0 and the other half to
1. Changing the character matrices to binary led the

branch lengths to be underestimated as the original state
space increased. When 4-state matrices are changed to
binary, the effect of underestimating the branch lengths
is less than when 20-state matrices are changed to binary
(Supplementary Fig. S3).

Partitioned Simulations

The effect of partitioning by state during analyses can
be more strongly seen in the datasets that are simulated
under a partitioned model (Fig. 5 and Supplementary
Fig. S5). As can be seen in Figure 5, if 75% of the dataset
contained binary characters and the remaining 25% con-
tained 3, 4, or 5 states, analyzing the dataset using the
state space of the maximal state value led to more phy-
logenetic error. Meeting our expectation, this effect is
lessened in the datasets with 50% binary and the re-
maining 50% being 3, 4, or 5 state. Rejection sampling
allowed us to confirm that we had characters with a
maximal state value in our dataset, and these datasets
also show that partitioning by state is useful in con-
ditions where different characters have different state
spaces.

As can be seen in Figure 5, the tree length distri-
bution obtained under the partitioning by state model
is similar to the distribution obtained under the pre-
specified partition. Thus, our automatic partitioning
most likely constructed data partitions that resembled
the pre-specified partitions as almost all characters
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Partitioned Simulations with rejection — Tree Lengths

Three-Two Four-Two

75% Binary

Pre-specified partitions Pre-specified partitions

Partitioned by State

Partitioned by State

Unpartitioned Unpartitioned

Frequency

50% Binary

Pre-specified partitions
Pre-specified partitions P P

Partitioned by State Partitioned by State

Unpartitioned Unpartitioned

Five-Two

Pre-specified partitions

Partitioned by State

Unpartitioned

Pre-specified partitions

Partitioned by State

Unpartitioned

Tree Length

FIGURe 5. On the top panel of this figure is shown simulations in which 25% of characters come from a state space larger than binary, and
75% come from a binary matrix. The dashed line indicates the tree length of the true tree and the dotted line is the prior mean for the tree length.
Across the top the state spaces are labeled —Three-Two, for example, corresponds to 25% or 50% of characters having 3 states. In this case, not
partitioning means most characters are being analyzed under a misspecified model. On the bottom row are datasets in which 50% of characters

will have a misspecified model.

included the maximum state. Here, partitioning by
states helps alleviate the issues of model misspecifica-
tion due to an unknown state space.

LBA Simulations

For the simulations in LBA conditions, an effect of
partitioning by state can be seen in Figure 6. During
long branch attraction conditions, the number of true
trees recovered among the replicates increased as the
number of states in the data increased, both for un-
partitioned analyses and partitioning by states analy-
ses. In the first scenario, when the long branch was
specified to be 0.5, there was a higher percentage of
true tree recovered than in the second scenario, when
the long branch was 1. In both cases, there is a higher
number of true trees recovered with the unpartitioned
analysis than with the partitioning by state analyses,
which is expected as the data were simulated under the
unpartitioned model.

During phylogenetic inconsistencies such as LBA,
it appears that using a larger state space is useful
in obtaining more accurate trees. Also, the effect of
having more data is reflected in our results, having
more number of states gradually yielded more correct
trees than lesser number of states in both LBA condi-
tions.

Discussion
General Issue of Coding in Morphological Characters

Morphological characters have always been an im-
portant means of estimating phylogenetic trees. This has
historically been accomplished via parsimony, and as
such many fundamental questions remain about how
to model morphological characters appropriately. Since
the inception of including morphological characters in
Maximum Likelihood and Bayesian analyses (Lewis,
2001), much work has been contributed on modeling
among-character rate variation (Wagner, 2012; Harrison
and Larsson, 2015; Mulvey et al., 2024), about exchange-
abilities and character frequencies (Nylander et al., 2004;
Wright et al., 2016; Klopfstein et al., 2019), and how to
partition a data matrix (Clarke and Middleton, 2008;
Tarasov and Genier, 2015; Gavryushkina et al., 2017;
Rosa et al., 2019; Gongalves et al., 2022; Mulvey et al,,
2024). All these questions rely on knowledge of the
phylogenetic characters being modeled.

At a more fundamental level, all of the above appli-
cations rely on having a matrix that describes the rate
of changes between sites, a Q-matrix. A Q-matrix must
be specified at a given size, and that size is determined
by the researcher. However, the true number of states
at a character may be obscured from the researcher. For
example, as shown in Figure 1, patchy sampling in the
fossil record may lead to some character states not be-
ing observed, either because the organisms expressing
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FIGURE 6. Percentage of true tree recovered (RF = 0) among the 1000 replicates. Dashed line indicates unpartitioned analyses and the solid

line indicates analyses using partitioning by maximum state.

that character state are never sampled, or the fossils
themselves are incomplete and lack the character (and
therefore state). Additionally, while coding for both ex-
tant and extinct taxa, some character states may not
be observable by a human observer, or observer bias
or error may lead to incorrect coding of states. While
nucleotide polymorphisms and sequencing error are a
problem for molecular data, the Q-matrix always re-
mains the same size: 4, the number of nucleotides. Mor-
phologists cannot rely on this default assumption. The
knowledge of state space has been shown to be conse-
quential for parsimony analyses as well (Brazeau, 2011;
Cuthill, 2015).

In our set of experiments, we examined 2 sources of
Q-matrix error: one in which the correct number of char-
acter states cannot be known due to missing data, and
the Q-matrix is, therefore, too small for some characters.
The other treatment is declining to partition by charac-
ter state space, in effect using a Q-matrix that is too large
for most characters. In our theoretical exploration on a
single branch, the first treatment led to overestimation
of the branch length while the second treatment led to
underestimation of the branch length (Fig. 3). Both of
these treatments introduced phylogenetic error, though
not always enough to mislead a conclusion from the
analysis. In the unpartitioned simulations, there is little
effect on topology from over-sizing the Q-matrix. This
could be due to the simulated data almost always dis-
playing the maximum character state, and, therefore,
no difference between automatic partitioned and unpar-
titioned analyses. However, in the partitioned simula-
tions, when all the larger state space characters have

exactly the same state space, and are inappropriately
parameterized in the exact same way, we observe a
stronger signal of phylogenetic error (Fig. 5), which
would be expected given the bias in branch lengths
under theoretical model misspecification conditions in
Figure 3. Thus, we may conclude that the magnitude
of the misspecification error matters greatly to the final
conclusions. When the underlying tree has LBA, we ad-
ditionally find the tree search being highly influenced
by appropriate model specification (Fig. 6). Under LBA
conditions, there is a clear tendency for partitioned anal-
yses to estimate more nodes of the tree incorrectly. This
implies that for difficult problems, such as LBA, it is
more important to parameterize models appropriately.

The effect of model misspecification on branch
lengths has been known since the first inclusion of mor-
phology with likelihood and Bayesian models (Lewis,
2001). When describing the Mk model, Lewis noted that
failing to account for the fact that morphologists typi-
cally do not collect invariant characters would lead to
an inflation of branch lengths. Further, morphologists
often do not collect characters that differ at a single
taxon in the focal clade. This leads to a further reduc-
tion in the number of low evolutionary rate characters,
causing more inflation of branch lengths. As seen in
Figure 4, tree lengths of simulation replicates analyzed
under the correctly specified model of evolution typi-
cally center on the true tree length. When there is an in-
correct maximum state (too-small Q-matrix), this means
that, in the model, there are fewer possible transitions
that a character can make than in reality (Fig. 2), then in-
ferred trees are too short. With too few changes possible,
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fewer changes are inferred. Therefore, the underestima-
tion in this set of simulations is expected (Fig. 3). In un-
partitioned models, in which the Q-matrix is too large
for some characters, we also observe this effect. This is
due to a larger proportion of characters not displaying
changes into larger character state spaces, lowering the
overall rate of changes observed across the tree. In ef-
fect, the model conflates the lack of transitions to the 4
and 5 character states in binary and trinary characters
to a low rate of evolution, and this is consistent with the
relatively short branch lengths.

On the LBA trees, the tree topology itself tends to
be misled. As seen in Figure 6, the partitioned by state
model recovered lesser number of true trees than the
unpartitioned model especially when there was lesser
number of states in the dataset. For difficult problems,
such as LBA, it appears to be very important to use an
appropriate model of evolution to ensure correctness in
topology. But the effect of branch lengths cannot be ig-
nored: while likelihood-based models are less prone to
LBA artifact (Felsenstein, 1978), the likelihood of a tree
is still dependent on the likelihood of the topology and
the branch lengths. Strong LBA can still pose problems
for Bayesian analyses.

In this study, we have examined how partitioning
by character state space impacts phylogenetic estima-
tion. As interest in genuine inclusion of morphological
data continues to grow, spurred by methods such as
the Fossilized Birth-Death process (Heath et al., 2014)
and growing acknowledgment that fossils are crucial for
comparative methods, we must ask fundamental ques-
tions about morphological character coding. We have
demonstrated a consistent effect of incorrect character
state partitioning on phylogenetic estimation. In par-
ticular, as the topological question becomes more dif-
ficult, such as when LBA conditions persist, the effect
of choosing a correctly partitioned model is more im-
portant. However, this study is not the end. Many more
questions about how morphological data are modeled
in a phylogenetic context and the general applicabil-
ity of molecular methods for estimation remain, and
we encourage researchers to think carefully and thor-
oughly about the choices they make when modeling
morphological characters.
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