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ABSTRACT

We study the bilateral trade problem where a seller owns a single

indivisible item, and a potential buyer seeks to purchase it. Previous

mechanisms for this problem only considered the case where the

values of the buyer and the seller are drawn from independent dis-

tributions. In contrast, this paper studies bilateral trade mechanisms

when the values are drawn from a joint distribution.

We prove that the buyer-o�ering mechanism guarantees an ap-

proximation ratio of 4
421 j 1.582 to the social welfare even if

the values are drawn from a joint distribution. The buyer-o�ering

mechanism is Bayesian incentive compatible, but the seller has

a dominant strategy. We prove the buyer-o�ering mechanism is

optimal in the sense that no Bayesian mechanism where one of the

players has a dominant strategy can obtain an approximation ratio

better than 4
421 . We also show that no mechanism in which both

sides have a dominant strategy can provide any constant approx-

imation to the social welfare when the values are drawn from a

joint distribution.

Finally, we prove some impossibility results on the power of gen-

eral Bayesian incentive compatible mechanisms. In particular, we

show that no deterministic Bayesian incentive-compatible mecha-

nism can provide an approximation ratio better than 1+ ln 2
2

j 1.346.

CCS CONCEPTS

• Theory of computation ³ Algorithmic game theory and

mechanism design.

KEYWORDS

bilateral trade, incentive compatibility.

ACM Reference Format:

Shahar Dobzinski and Ariel Shaulker. 2024. Bilateral Trade with Correlated

Values. In Proceedings of the 56th Annual ACM Symposium on Theory of

Computing (STOC ’24), June 24–28, 2024, Vancouver, BC, Canada. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3618260.3649659

1 INTRODUCTION

This paper focuses on the bilateral trade problem where a seller

owns a single indivisible item, and a potential buyer seeks to pur-

chase it. The seller has a value of B g 0 associated with retaining the
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item (and 0 otherwise), whereas the buyer’s value for obtaining it is

1 g 0 (if the buyer does not receive the item, then the buyer’s value

is 0). The values 1 and B are private, but the probability distributions

from which they were derived are known.

The two most common objectives in bilateral trade scenarios are

to maximize the social welfare and to maximize the gains from trade.

The former goal is aimed at maximizing the total value generated

by the transaction (that is, the social welfare is 1 in case of trade and

B otherwise), while the latter is focused on increasing the di�erence

between the buyer’s and the seller’s surplus (i.e., the gains from

trade is 1 2 B in case of trade, and 0 otherwise). Our interest in

this paper is in incentive-compatible mechanisms that are strongly

budget balanced. That is, the buyer’s payment is fully transferred

to the seller. See Section 2 for a precise statement of the problem.

The problem was extensively studied, and here, we only mention

some of the papers closest to our research. Myerson and Satterth-

waite [18] prove that under very mild conditions, no Bayesian

mechanism can exactly maximize the gains from trade or, equiva-

lently, the social welfare. Blumrosen and Dobzinski [3] show that

a �xed-price mechanism guarantees at least half of the optimal

social welfare (equivalently, provides a 2-approximation) for every

distribution. This approximation ratio was later improved to 1.99

[8], then to 4
421 [4], then to 4

421 20.0001 [11], and then to an almost

optimal ratio of approximately 1.38 [7, 12].

There has also been much work regarding approximating the

gains from trade. McAfee [15] shows that for some distributions of

the buyer and seller’s values, there exists a �xed price mechanism

that recovers half of the optimal gains-from-trade. However, for

every �xed fraction, there are distributions for which any �xed

price guarantees less than this fraction of the optimal gains-from-

trade [3]. To overcome this, Blumrosen and Mizrahi [5] propose the

seller-o�ering mechanism, in which the seller makes the buyer the

pro�t-maximizing take-it-or-leave-it o�er, given his value B . In the

seller-o�ering mechanism, only the buyer has a dominant strategy.

Still, they show that if the buyer’s value is drawn from a distribution

with a monotone hazard rate, then the seller-o�ering mechanism is

Bayesian incentive compatible and provides an 4 approximation to

the optimal gains-from-trade. Brustle et al. [6] show that the better

of the seller o�ering mechanism and the buyer o�ering mechanism

(in which the buyer makes the seller a pro�t-maximizing take-it-or-

leave-it-o�er) recovers at least half of the gains from trade of every

incentive-compatible mechanism. In a breakthrough result, Deng

et al. [9] show that the better of the o�ering mechanisms provides

8.23 approximation to the optimal gains-from-trade. This constant

was later improved to 3.15 by Fei [10]. We also know that the better

of the o�ering mechanisms sometimes recovers strictly less than

half of the optimal gains from trade [2].

Despite this extensive work, existing research on bilateral trade,

including the works cited above, largely assumes that the values

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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of the seller and the buyer are drawn independently1. This paper

investigates a more realistic and technically challenging scenario

in which the values are derived from a joint probability distribu-

tion. Remarkably, we demonstrate that despite the correlation, the

buyer-o�ering mechanism approximates the social welfare within

a constant factor. Furthermore, this factor is quite close to the best

approximation ratio possible for independent distributions.

Theorem: For every joint distribution of the seller and buyer’s

values, there is a mechanism that provides an 4
421 -approximation

to the optimal social welfare2.

Interestingly, whereas the power of the buyer-o�ering mechanism

is equal to the power of the seller-o�ering mechanism for gains-

from-trade approximation, the buyer-o�ering mechanism is much

more powerful than the seller-o�ering mechanism in our setting:

it is not hard to see that the seller-o�ering mechanism does not

guarantee any constant fraction of the optimal social welfare3.

The buyer-o�ering mechanism is natural and simple. It is also

appealing from a theoretical point of view: it is not only Bayesian

incentive compatible, but in fact, one player (the o�ered player)

has a dominant strategy as it can only accept or reject a take-it-or-

leave-it o�er. We call Bayesian incentive compatible mechanisms

in which one side has a dominant strategy one-sided dominant

strategy mechanisms. We prove that the buyer-o�ering mechanism

is optimal among all one-sided mechanisms:

Theorem: There exists a joint distribution of the seller and buyer’s

values such that the approximation ratio of every one-sided domi-

nant strategy mechanism is no better than 4
421 .

This theorem demonstrates, in particular, that even taking, e.g., the

better of the seller-o�ering and the buyer-o�ering mechanism, or

the better of the buyer-o�ering mechanism and some �xed price

mechanism, does not improve the approximation guarantee of the

buyer-o�ering mechanism.

Moreover, we show that mechanisms in which both sides have

a dominant strategy cannot guarantee any �xed fraction of the

optimal social welfare4.

Theorem: For every constant 2 > 1, there exists a joint distribution

of the seller and buyer’s values such that the approximation ratio

of every dominant strategy incentive compatible mechanism is at

least 2 .

1There are some exceptions. For example, McAfee and Reny [16] provide conditions
on the distribution in which the payment of the buyer equals his value if relaxing
the individual rationality condition is allowed. Equilibria in some related information
models are analyzed in [17]. Finally, Robust mechanisms for bilateral trade are studied
in [13].
2The buyer-o�ering mechanism achieves this approximation ratio for every distri-
bution for which it is de�ned. There are distributions for which the buyer-o�ering
mechanism is unde�ned (i.e., there is a series of o�ers that approach the maximum
pro�t but never attain it). For these distributions, we show that for every Y > 0, there
is a slight variation of the buyer-o�ering mechanism that guarantees an 4

421 + Y
approximation.
3Consider a seller with a �xed value B = 0 and a buyer that its value is distributed
by an equal revenue distribution in [1, : ]. The optimal welfare is ln: whereas the
welfare of the seller o�ering mechanism is only 1.
4A simple observation is that mechanisms in which both sides have a dominant strategy
are �xed price mechanisms [3].

Unlike the impossibility of one-sided mechanisms (which requires

careful analysis and subtle construction), the proof that dominant-

strategy mechanisms have no power is technically simpler. We then

continue analyzing the power of Bayesian incentive-compatible

mechanisms, now proving limits on their power:

Theorem: There exists a joint distribution of the seller and buyer’s

values such that no deterministic Bayesian incentive-compatible

mechanism provides a better than 1 + ln 2
2

j 1.346 approximation

to the optimal social welfare.

Previously, Blumrosen and Mizrahi [5] proved a bound of 1.07 on

the approximation ratio of Bayesian mechanisms for independent

distributions. Their proof relies on characterizing the second-best

mechanism of [18]. In our setting, proving impossibilities with this

approach is less promising: not only is the Myerson-Satterthwaite

characterization often hard to compute for independent distribu-

tions, but it also does not apply to joint distributions. Thus, we

present a new technique for proving impossibilities for Bayesian

incentive-compatible mechanisms. Our approach is based on in-

troducing and analyzing a certain family of “L-shaped” distribu-

tions, for which the second-best mechanism has a nicer structure.

A disadvantage of our approach is that our results only apply to

deterministic Bayesian mechanisms that are ex-post individually

rational, whereas the results of Blumrosen and Mizrahi apply to

randomized mechanisms that are interim individually rational ones.

We note that all major mechanisms considered in the literature (e.g.,

�xed price mechanisms, buyer and seller o�ering mechanisms)

are deterministic and ex-post individually rational5. Nevertheless,

our technique is robust enough that, as a by-product, we improve

the state-of-the-art impossibilities for both the social welfare and

gains-from-trade even with independent distributions:

Theorem:

" There exist independent distributions of the seller and buyer’s

values such that no deterministic Bayesian incentive-

compatible mechanism provides an approximation ratio bet-

ter than 2-approximation to the optimal gains from trade.

" There exist independent distributions of the seller and buyer’s

values such that no deterministic Bayesian incentive-

compatible mechanism provides an approximation ratio bet-

ter than 1.113-fraction to the optimal social welfare.

Open�estions and Future Directions. In this paper, we analyzed

the power of incentive-compatible mechanisms for bilateral trade.

We proved that the buyer-o�ering mechanism provides an approxi-

mation ratio of 4
421 j 1.582 even if the values are drawn from joint

distributions. We proved that this ratio is optimal for one-sided

mechanisms and that dominant strategy mechanisms cannot guar-

antee any �xed fraction of the welfare at all. However, there is a gap

between this ratio and our impossibility result of 1 + ln 2
2

j 1.3466.

5Our impossibilities also apply to mechanisms which are a probability distribution
over deterministic ex-post individually rational mechanisms, like the random o�erer
mechanism [9]. To see this, consider such amechanism�. A simple averaging argument
shows that in the support of� there must be a (deterministic and ex-post individually
rational) mechanism�2 that its approximation ratio is at least the approximation ratio
of�. Our impossibilities directly apply to�2 , and the approximation ratio of� is no
better than the approximation ratio of�2 .
6This impossibility result may be found in the full version of this paper.
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We leave closing this gap as an open question. It will also be inter-

esting to understand the power of Bayesian incentive compatible

mechanisms for independent distributions and determine whether

they are more powerful than deterministic mechanisms [7, 12].

Another question that remains open is to determine whether

Bayesian incentive-compatible mechanisms can give a constant

approximation to the gains-from-trade even when the values are

drawn from a joint distribution.

Lastly, all our impossibility results for Bayesian incentive-compatible

mechanisms hold only for deterministic Bayesian incentive-compatible

mechanisms. In the full version of this paper, we show that there ex-

ist distributions forwhich randomized Bayesian incentive-compatible

mechanisms outperform deterministic Bayesian incentive-compatible

mechanisms. An important future direction is understanding the

power of randomized Bayesian incentive-compatible mechanisms

in all models discussed in the paper.

Structure of the Paper. In Section 2 we give the necessary prelim-

inaries. In Section 3, we prove that the buyer-o�ering mechanism

provides an 4
421 -approximation, even for correlated distributions.

Section 4 shows that 4
421 is the best ratio achievable by one-sided

dominant strategymechanism. InAppendix A,we show that no two-

sided dominant strategy incentive compatible mechanism provides

a bounded approximation ratio. Our impossibilities for Bayesian

incentive-compatible mechanisms may be found in the full version

of this paper.

2 THE SETTING

In the bilateral trade problem, we have two agents: the seller and

the buyer. The seller owns an indivisible item and his value for it is

B . The buyer’s value for the item is 1. The values 1 and B are drawn

from a joint distribution F .

A (direct) deterministic mechanism " for the bilateral trade

problem consists of two functions " = (G, ?). For every tuple of

seller and buyer values (B, 1) in the support of F , G (B, 1) = 1 if a

trade occurs and G (B, 1) = 0 otherwise. If there is a trade, ? (B, 1)

speci�es the price that the buyer pays for the item and the payment

that the seller gets for it. We require that 1 g ? (B, 1) g B . These

restrictions on the payment are called ex-post individual rationality.

The optimal welfare of a joint distributionF is$%) F = E(B,1 )>F

[max{1, B}]. The welfare of a mechanism " = (G, ?) is "F =

E(B,1 )>F [(G (B, 1) · 1 + (1 2 G (B, 1)) · B].

For a joint distribution F , the approximation ratio of a mechanism

" = (G, ?) to the optimal welfare is
$%) F

"�
.

For a joint distribution F , we denote by FB |1 , the conditional

cumulative distribution function of the seller, given that the buyer’s

value is 1. Similarly, we denote by F1 |B , the conditional cumulative

distribution function of the buyer, given that the seller’s value is

B . We denote by 1� the indicator function for the event �. For

example, we will use 1[B>1 ] to denote the indicator function for

the event that the value of the seller B is larger than the value of

the buyer 1.

In this paper, we consider several notions of incentive compat-

ibility of a mechanism " = (G, ?). We start by de�ning incentive

compatibility for only one of the players:

" Seller Dominant Strategy Incentive Compatibility: for

every B, B2, 1:

G (B, 1)·? (B, 1)+(12G (B, 1))·B g G (B2, 1)·? (B2, 1)+(12G (B2, 1))·B .

" Seller Bayesian Incentive Compatibility: for every B, B2, 1:

E
1>F1 |B

[G (B, 1) · ? (B, 1) + (1 2 G (B, 1)) · B] g

E
1>F1 |B

[G (B2, 1) · ? (B2, 1) + (1 2 G (B2, 1)) · B] .

" Buyer Dominant Strategy Incentive Compatibility: for

every 1,12, B:

G (B, 1) · (1 2 ? (B, 1)) g G (B, 12) · (1 2 ? (B, 12)) .

" BuyerBayesian IncentiveCompatibility: for every1,12, B :

E
B>FB |1

[G (B, 1) · (1 2 ? (B, 1))] g E
B>FB |1

[G (B, 12) · (1 2 ? (B, 12))] .

We will say that a mechanism is Dominant Strategy (Bayesian)

Incentive Compatible if it is dominant strategy (Bayesian) incen-

tive compatible for both the buyer and the seller. A mechanism is

one-sided dominant strategy incentive compatible if it is dominant

strategy incentive compatible for at least one of the players and

Bayesian incentive compatible for the other.

A distribution F1 |B is equal revenue distribution for a seller with

value B , if, for every value of ? in the support of the buyer’s distri-

bution F1 |B , the expected payment to the seller from a take-it-or-

leave-it o�er of price ? to the buyer is the same.

For example, consider a seller with a value 0, and a buyer with

distribution F1 |0 (1):

F1 |0 (1) =

{
1 2 1

1
1 g 1;

0 1 < 1.

The expected payment to the seller from any take-it-or-leave-it

o�er of price 1 g ? to the buyer is 1.

The expected pro�t of a buyer with value 1, from a take-it-or-

leave-it o�er of price ? to the seller is FB |1 (?)) · (1 2 ?).

A distribution FB |1 is equal pro�t distribution for a buyer with

value 1, if, for every value of ? in the support of the seller’s distribu-

tion FB |1 , the expected pro�t of the buyer from a take-it-or-leave-it

o�er of price ? to the seller is the same. For example, consider a

buyer with value 1, and a seller with distribution FB |1 (B):

FB |1 (B) =

ùüüú
üüû

1
4 (12B )

0 f B f 1 2 1
4 ;

1 B > 1 2 1
4 .

The expected pro�t of the buyer from any take-it-or-leave-it o�er

of price ? * [0, 1 2 1
4 ] to the seller is 1

4 .

In the buyer-o�ering mechanism, a buyer with value 1 makes a

take-it-or-leave-it o�er of price ? to the seller, where the price ?

maximizes the buyer’s pro�t, i.e., maximizes (1 2 ?) · FB |1 (?).

3 AN 4
421

-APPROXIMATION FOR

CORRELATED VALUES

In this section, we prove that the buyer-o�ering mechanism pro-

vides an 4
421 j 1.58 approximation to the optimal welfare, even

if the values are drawn from a joint distribution. Recall that even

when the values are drawn from independent distributions, the
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best currently known approximation mechanisms achieve a close

approximation ratio of j 1.38 [7, 12]. Our approximation guarantee

holds for all distributions for which the buyer-o�ering mechanism

is well de�ned (i.e., there always exists an o�er that maximizes the

pro�t), but note that there are distributions for which the buyer-

o�ering mechanism is not well de�ned. For example, consider the

following joint distribution F Y for some small 0 < Y < 1. In F Y ,

the buyer has only one value 1, and the seller’s value is supported

on the interval (0, 42Y2142Y ], with marginal distribution function F Y
B :

F Y
B (B) =

ùüüú
üüû
1+Y (12B )
4 (12B )

B * (0, 42Y2142Y ];

1 B g 42Y21
42Y .

Let 5 (?) = (1 2 ?) · �YB (?) be a function that denotes the expected

pro�t of the buyer from a take-it-or-leave-it o�er of ? to the seller.

Then, 5 (0) = 0, and for every ? * (0, 42Y2142Y ], we get 5 (?) =

1+Y (12? )
4 . Observe that the derivative of 5 for values ? * (0, 42Y2142Y ]

is 2Y
4 , which is negative. Hence, the buyer’s expected pro�t from

a take-it-or-leave-it o�er of ? to the seller is a strictly decreasing

function in the interval ? * (0, 42Y2142Y ]. Since the interval is open at

0, the function does not have a maximum. Thus, the buyer-o�ering

mechanismis not de�ned for this distribution.

We prove that the buyer-o�ering mechanism provides an 4
421 -

approximation for all distributions for which it is de�ned. For the

remaining distributions, we show that a slight variant of the buyer-

o�ering mechanism provides a similar approximation ratio:

Theorem 3.1.

(1) For every joint distribution F of the values of the buyer and

seller, the buyer-o�ering mechanism provides an 4
421 approxi-

mation to the optimal welfare if the buyer-o�ering mechanism

is well-de�ned.

(2) For every joint distribution F of the values of the buyer and

seller and every Y > 0, there is a one-sided dominant strategy

mechanism that provides an 4
421 +$ (Y) approximation to the

optimal welfare.

We �rst prove the �rst part of the theorem. We then use the �rst

part to prove the second part. After establishing the theorem, we

discuss extending the result to double auctions (Subsection 3.4).

3.1 Proof of Theorem 3.1: Part I

Fix a value 1 of the buyer in the support of F . Denote by FB |1 the

distribution of the seller’s value given that the value of the buyer is1.

We will show that, for every 1, the approximation ratio of the buyer-

o�ering mechanism when the value of the buyer is always 1 and the

value of the seller is always FB |1 is 4
421 . This immediately implies

that the approximation ratio of the buyer-o�ering mechanismwhen

the values are drawn from F is 4
421 .

Let ?1 be the price that the buyer o�ers when his value is 1. Since

the value 1 is �xed, to simplify notation, we drop the subscripts

from ?1 and FB |1 , and simply write ? and F instead.

We now bound from above the approximation ratio of the buyer-

o�ering for the distribution F (i.e., the expected optimal welfare

divided by the expected welfare of the buyer-o�ering mechanism).

1 · F (1) + EB>F [1[B>1 ] · B]

1 · F (?) + EB>F [1[?<Bf1 ] · B] + EB>F [1[B>1 ] · B]]

f
1 · F (1)

1 · F (?) + EB>F [1[?<Bf1 ] · B]
.

(1)

Let @1 = F (?) and let @2 = F (1). We have that @1 f @2 (since

? f 1). Observe that if @2 = @1, the approximation ratio is 1, as

needed. Therefore, we assume that @1 < @2. Rewriting the RHS of

(1) we have:

1 · F (1)

1 · F (?) + EB>F [1[?<Bf1 ] · B]
=

1 · @2

1 · @1 + EB>F [B |? < B f 1] · (@2 2 @1)
.

For �xed@1, @2 and1, this expression ismaximizedwhenEB>F [B |? <

B f 1] · (@2 2 @1) is minimized. Therefore, in Lemma 3.2, we bound

from below the expression EB>F [B |? < B f 1] · (@2 2@1) to achieve

an upper bound on the approximation ratio.

Lemma 3.2. EB>F [B |? < B f 1] · (@2 2@1) g @1 · (1 2 ?) · ln
@1
@2

+

1 · (@2 2 @1) .

Proof. Recall that the price ? maximizes the buyer’s pro�t for

the distribution F . We use this to bound from above F (?2) for

? < ?2 < 1. Let D = @1 · (1 2 ?) be the expected pro�t of the buyer

when the price is ? . Then:

D g F (?2) (1 2 ?2) ñó F (?2) f
D

(1 2 ?2)
. (2)

For ?2 = 1 2 D
@2
, we get that the bound (2) is tight and equal to

@2
7. Let 5 be the seller’s probability density function given that the

buyer’s value is 1. We want to bound from below the expression:

EB>F [1[?<Bf1 ] · B] =

+ 1

?
B 5 (B) 3B =︸︷︷︸

integration by parts

BF (B)

�����
1

?

2

+ 1

?
F (B) 3B g 1 · @2 2 ? · @1 2

+ 1

?
F (B) 3B.

We use the following bounds on F (B): for ? f B f 1 2 D
@2

we have

F (B) f D
12B

(by Inequality (2)) and for 1 2 D
@2

f B f 1 we have

7Observe that 1 2 D
@2

g ? since 1 2
@1 (12? )

@2
g︸︷︷︸

@1f@2

? .
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F (B) f @2. Now,

EB>F [1[?<Bf1 ] · B]1 · @2 2 ? · @1 2

+ 12 D
@2

?

D

1 2 B
3B

2

+ 1

12 D
@2

@2 3B

= 1 · @2 2 ? · @1 2 D + D · ln (1 2 B)

�����
12 D

@2

?

= 1 · @2 2 ? · @1 2 D + D · ln

( D
@2

1 2 ?

)

= @1 (1 2 ?) ln

(
@1

@2

)
+ 1 · (@2 2 @1).

¥

Overall, we get that the approximation ratio is bounded from

above by

1 · @2

1 · @1 + @1 · (1 2 ?) · ln
@1
@2

+ 1 · (@2 2 @1)
f︸︷︷︸

?g0, ln
@1
@2

f0

1 · @2

1 · @1 · ln
@1
@2

+ 1 · @2
=

1
@1
@2

· ln
@1
@2

+ 1
f︸︷︷︸
8

4

4 2 1
.

3.2 Proof of Theorem 3.1: Part II

We consider a slight variant of the buyer-o�eringmechanism. Given

Y > 0, set X = Y · $%) , where $%) is the expected value of the

optimal social welfare. The Y-buyer o�ering mechanism makes a

pro�t-maximizing take-it-or-leave-it o�er ? for the seller, where

? belongs to the set of o�ers that are a multiple of X . I.e., ? = : · X

for some : * N. This mechanism is Bayesian incentive compatible

since the set of possible prices for a buyer with value 1 contains at

most +1
:
+ elements. Since this set is �nite for every value 1, it has

a maximum-pro�t element. In addition, the seller obviously has a

dominant strategy.

As in the �rst part, we prove the approximation guarantee for

every value 1 of the buyer. Let FB (B) be the marginal distribution

of the seller given 1. Obtain a “discretized” F 2
B (B) by “pushing” the

mass of FB (B) in all points that are not a multiple of X to the nearest

(from above) multiple of X . Note that the buyer o�ering mechanism

is now de�ned since the support of F 2
B (B) is �nite. Thus, there is an

o�er with a maximum pro�t since for every o�er that is not in the

support there is an o�er in the support with at least the same pro�t.

Furthermore, observe that for every 1, if the buyer o�ering mecha-

nism makes an o�er ? when the marginal distribution is F 2
B (B) then

? is also the o�er that Y-buyer o�ering mechanism makes when

the marginal distribution is FB (B). Observe that FB (B) and F 2
B (B)

are very close to each other, and thus the expected welfare that

the buyer o�ering mechanism provides for F 2
B (B) and the expected

welfare of the Y-buyer o�ering mechanism for FB (B) di�er only by

X . The second part of the theorem now follows since, by the �rst

8Recall that @1 f @2 , and so 0 f
@1
@2

f 1. Thus, the function 5 (G ) =
1

1+G lnG
is

maximized when G =
1
4 , and its maximal value is 4

421 .

part, the buyer-o�ering mechanism provides an 4
421 approximation

for F 2
B (B) and because the optimal welfare of F 2

B (B) and the optimal

welfare of FB (B) di�er only by X .

3.3 Tightness of Analysis

We now present an instance of a distribution F where the buyer-

o�ering mechanism yields an approximation ratio no better than
4

421 to the optimal welfare. Subsequently, in Subsection 4, we es-

tablish a more robust result that states that no one-sided dominant

strategy mechanism can o�er an approximation ratio better than
4

421 . Since the buyer-o�ering mechanism is a one-sided dominant

strategy mechanism, the result of Subsection 4 also implies that the

analysis of the buyer-o�ering mechanism is precise. Nevertheless,

we provide a direct analysis of the buyer-o�ering mechanism in

this section for simplicity.

Let F be a joint distribution over the buyer and seller values in

which the value of the buyer is always 1, and the value of the seller

is in [0, 4214 ]. The seller’s value is distributed as follows:

FB (B) =

ùüüú
üüû

1
4

12B B * [0, 4214 ];

1 B > 421
4 .

Note that the seller’s distribution is an equal pro�t distribution

for a buyer with value of 1. I.e., for the buyer, every price ? *

[0, 4214 ] yields the same expected pro�t. Thus, by tie-breaking,

we may assume that the buyer-o�ering mechanism uses price 0

(alternatively, to eliminate the use of tie-breaking, one can change

FB and slightly increase the probability that the seller’s value is 0 –

the analysis remains almost identical).

We now analyze the approximation ratio of the buyer-o�ering

mechanism for the distribution F :

$%) F

�!�F
=

1 · PrFB (B f ?) + 1 · PrFB (? < B f 1)

1 · PrFB (B f ?) + EB>FB [B |? < B f 1] · PrFB (? < B f 1)

=
1

1
4 + EB>FB [B |0 < B f 1] · (1 2 1

4 )

=
1

1
4 + 1

4 · ln 1
4 + 1 2 1

4

=
4

4 2 1
.

3.4 Double Auctions

In double auctions there are multiple buyers and sellers, each seller

8 owns a single item and his value for it is B8 , all items are identical,

and each buyer 9 wants one unit and his value for it is 1 9 . Similarly,

to bilateral trade, we wish to approximate the optimal welfare,

which in the double auction case with : sellers is equal to the sum

of the : largest values among the sellers and buyers.

Our positive result for bilateral trade also implies a positive result

for double auctions. Similarly to the work of Babaio� et al. [1], to

obtain a solution for the double auction case, we combine McAfee’s

trade reduction mechanism [14] with the mechanism we use for the

bilateral trade case (the buyer o�ering) in the following manner:

compute the maximal number of e�cient trades (where trade is

e�cient only if the value of the buyer is larger than the value of the

seller). Run the trade reduction mechanism if there are at least two

e�cient trades. If there is only one e�cient trade, run the buyer

o�ering mechanism for the bilateral trade problem with the buyer
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being the highest-value buyer and the seller being the lowest-value

seller. The distribution over the seller’s value is the conditional

distribution over the value of this seller given all values except

his own and that he is the lowest value seller and the additional

requirement that the price must be at least as large as the value of

the second highest buyer.

Similarly to [1], this mechanism is Bayesian incentive compatible

and ex-post individually rational. Observe that the approximation

ratio of this mechanism is at least 2. If there are at least two e�cient

trades, the approximation ratio of the trade reduction mechanism

is 1 2 1
:
where : is the number of e�cient trades, which gives us

a 2 approximation guarantee. If there is only one e�cient trade,

we get an approximation guarantee that is at least as good as the

approximation guarantee of the buyer-o�ering mechanism for the

bilateral trade case, which is 4
421 . Lastly, if the number of e�cient

trades is 0, we do nothing and get an optimal approximation.

4 THE LIMITS OF ONE-SIDED DOMINANT

STRATEGY MECHANISMS

We now prove that no one-sided dominant strategy mechanism

can provide an approximation ratio better than 4
421 . This shows,

in particular, the optimality of the buyer-o�ering mechanism as

its approximation ratio is 4
421 (Theorem 3.1). It also shows, for

example, that taking the better of the buyer-pricing mechanism

and a �xed price mechanism does not improve the approximation

ratio. In Subsection 4.1, we present a speci�c distribution for which

every one-sided dominant strategy mechanism does not provide

an approximation ratio better than 4
421 . We provide the formal

analysis of the impossibility in Subsection 4.2.

4.1 The Distribution F :,Y

For : * N, Y > 0, let F :,Y be a joint distribution over the buyer and

seller values in which the buyer receives values in [1, :] * {: + 1}

with probability density function of 1
(1+Y )2

for 1 f 1 f : and of
1

:+Y
+ Y

1+Y for 1 = : + 1. For every value 1 in [1, :] * {: + 1}, the

seller’s value is distributed according to an (almost) equal pro�t

distribution of the buyer. I.e., when the buyer’s value is 1, the

cumulative distribution function of the value of the seller is F :,Y
B |1

:

F
:,Y
B |1

(B) =

ùüüú
üüû

1
4

12B+Y
0 f B f 1 · 4214 + Y;

1 B > 1 · 4214 + Y.

Note that the buyer’s marginal distribution always sums up to 1:

F
:,Y
1

(: + 1) = Pr
1>F:,Y

1

(1 = : + 1) +

+ :

1

1

(1 + Y)2
31

=
1

: + Y
+

Y

1 + Y
+ 2

1

1 + Y

�����
:

1

=
1

: + Y
+

Y

1 + Y
2

1

: + Y
+

1

1 + Y
= 1.

Moreover, for every value in the buyer’s support, the conditional dis-

tribution of the seller sums up to 1:F :,Y
B |1

(1· 4214 +Y) =
1
4

12(1 · 4214 +Y )+Y
=

1.

This distribution has two useful properties. The �rst is that

when the seller’s value is 0, the buyer’s distribution is very close

to an equal revenue distribution (it is implied by the marginal

probability density function of the buyer that is close to 1
12
). The

second property is that for every value 1 in the buyer’s support,

the seller’s distribution is very close to an equal pro�t distribution.

Fix some mechanism" that is one-sided dominant strategy for

one of the players. If " is dominant strategy for the buyer, our

bound on the welfare is achieved by utilizing the �rst property. In

this case, only the seller’s value can a�ect the value of the o�er.

Given that the seller’s value is 0, the buyer’s distribution is very

close to an equal revenue distribution. We show that when the

seller’s value is 0, the seller will strictly prefer higher prices. Since

the mechanism is Bayesian incentive compatible for the seller, the

highest take-it-or-leave it o�er is when B = 0. Very roughly speak-

ing, this implies that the welfare of the mechanism is low: if the

highest o�er is low, then the contribution to the welfare of trades

when B = 0 is high, but no trade is done for larger values of the

seller, which happens with signi�cant probability. On the other

hand, if the value of the highest o�er ? is large, trade is less likely

in the B = 0 case.

If " is dominant strategy for the seller, we utilize the second

property. Now, only the buyer’s value can a�ect the o�er price.

However, the buyer strictly prefers lower o�ers as lower prices will

yield higher pro�t. Since the mechanism is incentive compatible for

the buyer, the o�er price is the same for every value 1 of the buyer

(otherwise, the buyer will prefer the lower o�er and deviate from

his equilibrium strategy). Then, every mechanism for F :,Y that

o�ers a take-it-or-leave-it-o�er ? to the seller (one-sided dominant

strategy for the buyer) is a �xed price mechanism. It only remains

to show that a �xed price mechanism has low welfare.

4.2 Analysis of One-Sided Mechanisms for the

Distribution F :,Y

Theorem 4.1. Let : g 2 and Y > 0. Every one-sided dominant

strategy mechanism for F :,Y provides an approximation ratio of at

least 4
421 as Y approaches 0 and : approaches>.

To prove this theorem we use the family of allocation rules

G? (De�nition 4.2). We show that the welfare of every one-sided

dominant strategy mechanism for the seller is at most the welfare

of G? , for some ? (Claim 4.4). Similarly, we show that the welfare of

every one-sided dominant strategy mechanism for the buyer is no

better than the welfare of G? , for some ? (Claim 4.3). We conclude

the proof of the theorem by bounding the approximation ratio of

every possible allocation rule G? (Lemma 4.5).

Definition 4.2. For every ? g 0, let G? be the following allocation

rule for the distribution F :,Y :

G? (1, B) =

ùüüüüüüüüüú
üüüüüüüüüû

1 1 = : + 1;

1 B = 0 and : g 1 g ?;

0 B = 0 and 1 < ? and 1 b : + 1;

1 B b 0 and B f ?;

0 otherwise.

Observe that for some values of ? , this allocation rule G? , is not

implementable. It is used simply to bound the welfare of every one-

sided dominant strategy mechanism. The next three claims su�ce
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to prove the theorem. Their proofs can be found in Subsections

4.2.1, 4.2.2, and 4.2.3.

Claim 4.3. Let : g 2 and Y > 0. Let " be a one-sided dominant

strategy mechanism for the buyer. There exists ? g 0, such that the

welfare of " is at most the welfare of G? , both with respect to the

distribution F :,Y .

Claim 4.4. Let : g 2 and Y > 0. Let " be a one-sided dominant

strategy mechanism " for the seller. There exists ? g 0, such that

the welfare of" is at most the welfare of G? , both with respect to the

distribution F :,Y .

Claim 4.5. Fix ? g 0. When Y approaches 0 and : approaches >,

the allocation rule G? provides an approximation ratio no better than
4

421 to the optimal welfare for the distribution F :,Y .

4.2.1 Mechanisms with Dominant Strategy for the Buyer (Proof

of Claim 4.3). Every one-sided dominant strategy mechanism for

the buyer is a take-it-or-leave-it o�er for the buyer, where the

price may only depend on the seller’s value. Fix such a mechanism

" = (G, ?) for the distribution F :,Y . For every value B in the seller’s

support, denote the take-it-or-leave-it o�er of the mechanism "

by ?B . Now, by Lemma 4.6, the price ?0 o�ered to the buyer when

the seller’s value is 0, should be no lower than any price in {?B |B *

[0, (: + 1) · 4214 + Y]}. This is true since if there is a price ?2B > ?0,

and the seller prefers higher prices for ?0 (Lemma 4.6), the seller

will play the strategy that sets the price to ?2B , in contradiction to

the incentive compatibility of the mechanism. Recall that the item

can be traded only if the seller’s value is at most the price. Thus, the

mechanism " can only trade when B < ?B f ?0. Now, let ? = ?0,

and consider the allocation rule G? (De�nition 4.2). Observe that the

allocation rule G? trades the item in every instance that" trades

the item and might trade the item when" does not. Therefore, the

welfare of G? is at least the welfare of" .

Lemma 4.6. For B = 0 and ? * [1, :], the expected pro�t of the

seller from a take-it-or-leave-it o�er with price ? to the buyer is higher

than a take-it-or-leave-it o�er with price ?2 < ? .

Proof of Lemma 4.6. Recall that the conditional cumulative dis-

tribution function of the buyer, given that the seller’s value is 0

is denoted by F
:,Y
1 |0

. The pro�t of the seller with value 0 from a

take-it-or-leave-it o�er of ? * [1, :] * {: + 1} is (1 2 F
:,Y
1 |0

(?)) · ? .

To analyze this expression, we �rst provide an explicit expression

for 1 2 F
:,Y
1 |0

(?), where ? * [1, :]. By de�nition, we have:

1 2 F
:,Y
1 |0

(?) =
©­«
+ :

?

5 :,Y (0, 1)

Pr
B>F:,Y

B
(B = 0)

31
ª®¬
+
PrF:,Y (0, : + 1)

Pr
B>F:,Y

B
(B = 0)

=
1

4 · Pr
B>F:,Y

B
(B = 0)

(
: + 1

: + 1 + Y

(
1

: + Y
+

Y

1 + Y

)

+

+ :

?

1

(1 + Y)3
31

)

=
1

4 · Pr
B>F:,Y

B
(B = 0)

©­­
«

: + 1

: + 1 + Y

(
1

: + Y
+

Y

1 + Y

)
+ 2

Y + 21

2(1 + Y)2

�����
:

?

ª®®
¬

=
1

4 · Pr
B>F:,Y

B
(B = 0)

·

(
: + 1

: + 1 + Y

(
1

: + Y
+

Y

1 + Y

)

+

(
2

Y + 2:

2(: + Y)2
+

Y + 2?

2(? + Y)2

)ª®¬
.

Let 6(?) = ?

(
:+1

:+1+Y

(
1

:+Y
+ Y

1+Y

)
+

(
2 Y+2:
2(:+Y )2

+
Y+2?

2(?+Y )2

))
. We now

prove that 6 is strictly increasing by showing that its derivative is

positive. We get that the pro�t of the seller with value 0 from a

take-it-or-leave-it o�er of ? * [1, :] is strictly increasing in ? , as

6(?) = ? · (1 2 F
:,Y
1 |B=0

(1)) · 4 · Pr
B>F:,Y

B
(B = 0).

62 (?) =
: + 1

: + 1 + Y

(
1

: + Y
+

Y

1 + Y

)
+

(
2

Y + 2:

2(: + Y)2
+

Y + 2?

2(? + Y)2

)

2 ?
?

(Y + ?)3

=
2:Y + Y 2 Y2

2(: + 1 + Y) (: + Y)2
+

Y (: + 1)

(1 + Y) (: + 1 + Y)
+

Y + 2?

2(? + Y)2

2
?2

(Y + ?)3

=
(2:Y + Y 2 Y2) (1 + Y) + 2Y (: + 1) (: + Y)2

2(: + 1 + Y) (: + Y)2 (1 + Y)
+

Y + 2?

2(? + Y)2

2
?2

(Y + ?)3

>

(1 + Y) (Y 2 Y2) + :Y (2 2 1 2 Y)

2(: + 1 + Y) (: + Y)2 (1 + Y)
+

Y + 2?

2(? + Y)2
2

?2

(Y + ?)3

>

Y + 2?

2(? + Y)2
2

?2

(Y + ?)3
.

Where in the last inequality we assume that Y 2 Y2 > 0, since

we can choose Y > 0 to be as small as we want. We show that
Y+2?

2(?+Y )2
2

?2

(Y+? )3
> 0, which implies that 62 (?) > 0 for every

? * [1, :]:
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Y + 2?

2(? + Y)2
>

?2

(Y + ?)3
ñó 2?2 + 3?Y + Y2 > 2?2

ñó 3?Y + Y2 > 0.

This proves that the expected pro�t of the seller with value 0 from

a take-it-or-leave-it o�er of ? * [1, :] is smaller than his expected

pro�t from an o�er of ?2 * [1, :] that is smaller than ? . Observe

that the expected pro�t of the seller with value 0 from a take-it-

or-leave-it o�er of ? < 1 is even smaller than his expected pro�t

from an o�er of price 1 (as reducing the o�er below 1, does not

increase the probability that the buyer will buy the item). The pro�t

of an o�er ? = : + 1 is even larger pro�t than an o�er of : , as the

probability 1 2 F
:,Y
1 |B=0

(: + 1) is 1 2 F
:,Y
1 |B=0

(:) but the price is larger

(: + 1 > :). This concludes the proof of the lemma. ¥

4.2.2 Mechanisms with Dominant Strategy for the Seller (Proof

of Claim 4.4). Every one-sided dominant strategy mechanism for

the seller is a take-it-or-leave-it o�er to the seller, where the o�er

depends only on the value of the buyer. Fix a mechanism " =

(G, ?) for the distribution F :,Y . For every 1 * [1, :] * {: + 1}, the

mechanism o�ers a price ?1 . By Lemma 4.7, the expected pro�t

of the buyer with value 1 * [1, :] * {: + 1} is higher when ?1
is smaller. Since the mechanism is Bayesian incentive compatible

for the buyer we claim that it must be a �xed price, i.e., ?1 is

equal for every 1 * [1, :] * {: + 1}. This is true since if there are

two di�erent values ?1 > ?12 and the buyer strictly prefers lower

prices (Lemma 4.7), the buyer will play the strategy that sets the

price to ?12 , in contradiction to the incentive compatibility of the

mechanism. Let ? be the �xed price and consider the allocation rule

G? (see De�nition 4.2). Recall that the item can be traded only if

the seller’s value is at most the price. Thus, the mechanism" only

trades the item when B f ? . Observe that the allocation rule G?
trades the item in every instance that" trades the item and might

trade the item when" does not. Thus, the welfare of G? is at least

the welfare of" .

Lemma 4.7. For 1 * [1, :] * {: + 1} and ? * [0, 1 · 421
4 + Y],

the expected pro�t of the buyer from a take-it-or-leave-it o�er with

price ? to the seller is higher than a take-it-or-leave-it o�er with price

?2 > ? .

Proof of Lemma 4.7. Let 1 * [1, :] * {: + 1}. The conditional

cumulative distribution of the seller’s value is F :,Y
B |1

. Now, for every

? * [0, 1 · 4214 + Y], the expected pro�t of the buyer from a take-

it-or-leave-it o�er of price ? to the seller is (1 2 ?) · 1
4 (12?+Y )

.

We de�ne the function 6(?) = (1 2 ?) · 1
4 (12?+Y )

for every ? *

[0, 1 · 4214 + Y], and show that it is a strictly decreasing function. By

de�nition, the function 6(?) is the expected pro�t of the buyer from

a take-it-or-leave-it o�er of price ? to the seller. Intuitively, if F :,Y
B |1

was exactly the equal pro�t distribution, i.e., F :,Y
B |1

(?) =
1

4 (12? )

for every ? * [0, 1 · 421
4 + Y], then 6 was a constant function

with value 1
4 . However, since F

:,Y
B |1

is a slightly skewed equal pro�t

distribution, lower prices yield strictly higher pro�ts, and so 6 is a

strictly decreasing function. Formally, 6(?) is a decreasing function

since its derivative is negative for every value ? in its range:

62 (?) =
1

4

©­«
2

(
1 2 ? + Y

)
2 2

(
1 2 ?

)
(
1 2 ? + Y

)2 ª®¬
=

21Y

4
(
1 2 ? + Y

)2 <︸︷︷︸
1>0

0.

¥

4.2.3 Bounding the Approximation Ratio (Proof of Claim 4.5). We

start with computing the optimal welfare of the distribution F :,Y .

Observe that in every instance in the distribution F :,Y , the buyer

has a higher value than the seller, thus trade occurs in the optimal

allocation rule. The optimal welfare is therefore:

(: + 1)

(
1

: + Y
+

Y

1 + Y

)
+

+ :

1

1

(1 + Y)2
· 1 31

= (: + 1)

(
1

: + Y
+

Y

1 + Y

)
+

Y

Y + 1
+ ln (1 + Y)

�����
:

1

= (: + 1)

(
1

: + Y
+

Y

1 + Y

)
+ Y

(
1

: + Y
2

1

1 + Y

)
+ ln

(
: + Y

1 + Y

)

=

(
: + 1 + Y

: + Y
+

:Y

1 + Y

)
+ ln

(
: + Y

1 + Y

)
.

This expression approaches ln: + 1 + 1
:
as Y approaches 0.

We consider the possible values of the buyer’s value and compute

the contribution of each value to the expected welfare when the

item is traded according to G? . When 1 = : + 1, G? always sells

the item (as does the optimal allocation rule). This contributes

(: + 1)
(

1
:+Y

+ Y
1+Y

)
to the expected welfare.

For every 1 * [1, :], with probability 1
4 (1+Y )

, the seller’s value

is 0. Then, according to G? , the item is traded only when 1 g ? .

These instances contribute
+ :

?
5 :,Y
1

(1) · 5 :,YB (0) ·1 31 to the expected

welfare. When 1 * [1, :], and the seller’s value is larger than 0, the

item is traded only when B f ? according to G? . These instances

contribute+ :

1
5 :,Y
1

(1) [(1 · (F
:,Y
B |1

(?) 2 F
:,Y
B |1

(0)) +
+ 1 · 4214
?

B · 5 :,Y
B |1

(B) 3B)] 31

to the expected welfare. Thus, the expected welfare is the sum of

these three expressions:

(: + 1)

(
1

: + Y
+

Y

1 + Y

)
(3)

+ :

?
5 :,Y
1

(1) · 5 :,YB (0) · 1 31 (4)

+ :

1

5 :,Y
1

(1) [(1 · (F
:,Y
B |1

(?) 2 F
:,Y
B |1

(0)) +

+ 1 · 4214

?
B · 5 :,Y

B |1
(B) 3B)] 31

(5)

Next, we consider each expression separately, bound it from

above, and take its limit as Y goes to 0. We start with the �rst

expression (3):

lim
Y³0+

(: + 1)

(
1

: + Y
+

Y

1 + Y

)
= 1 +

1

:
.
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We continue with the second expression (4). By the dominated

convergence theorem, we can swap the order of the integral and

the limit operator9.

lim
Y³0+

+ :

?
5 :,Y
1

(1) · 5 :,YB (0) · 1 31

= lim
Y³0+

+ :

?

1

(1 + Y)2
·

1

4 · (1 + Y)
· 1 31

= lim
Y³0+

+ :

?

12

4 · (1 + Y)3
31 =

+ :

?

12

413
31 =

1

4
ln

(
:

?

)
.

Finally, for the third expression (5), we �rst break it into three

expressions:+ :

1

5 :,Y
1

(1)

(
1 ·

(
F
:,Y
B |1

(?) 2 F
:,Y
B |1

(0)
)

+

+ 1 · 4214

?
B · 5 :,Y

B |1
(B) 3B

)
31 =

+ (?2Y) · 4
421

1

(
1 2

1

4 (1 + Y)

)
1

(1 + Y)2
31

+

+ :

(?2Y ) · 4
421

1

(1 + Y)2
1

(
1

4 (1 2 ? + Y)
2

1

4 (1 + Y)

)
31

+

+ :

(?2Y ) · 4
421

1

(1 + Y)2

+ 1 · 4214 +Y

?
B ·

1

4 (1 + Y 2 B)2
3B 31.

Then, we bound each expression and take its limit as Y ap-

proaches 0. Again, by the dominated convergence theorem, we

can swap the order of the integral and the limit operator9.

lim
Y³0+

+ (?2Y ) · 4
421

1

(1 2
1

4 (1 + Y)
)

1

(1 + Y)2
31 = (1 2

1

4
) ln

(
?4

4 2 1

)
.

lim
Y³0+

+ :

(?2Y ) · 4
421

1

(1 + Y)2
1 (

1

4 (1 2 ? + Y)
2

1

4 (1 + Y)
) 31

=

+ :

? · 4
421

1

12
1 (

1

4 (1 2 ?)
2

1

41
) 31

=
1

4

©­«
ln

(
: 2 ?

?
421

)
2 ln

(
:

? 4
421

)ª®¬
=

1

4

(
ln

(
: 2 ?

)
+ ln (4 2 1) 2 ln: + ln

(
4

4 2 1

))
.

lim
Y³0+

+ :

(?2Y ) · 4
421

1

(1 + Y)2

+ 1 · 4214 +Y

?
B ·

1

4 (1 + Y 2 B)2
3B 31

f lim
Y³0+

+ :

(?2Y ) · 4
421

1

(1 + Y)2

+ 1 · 4214 +Y

0

B ·
1

4 (1 + Y 2 B)2
3B 31

9All the expressions we consider are bounded (for example, by expected welfare of the

distribution, which is at most 2
:+2 + ln (: + 1)). In addition, the sequence of functions

5Y converges point-wise to the function 50 , for every 5 that we consider.

=

+ :

? · 4
421

1

12

+ 1 · 4214

0

B ·
1

4 (1 2 B)2
3B 31

=
1

4

+ :

? · 4
421

1

1

(
1

1 2 B
+ ln (1 2 B)

�����
)1 · 4214
0

=
1

4

+ :

? · 4
421

1

1

(
4 2 1 + ln

(
1

4

))
31 =

4 2 2

4
ln

(
:
?4
421

)
.

Now, by summing all the expressions together, we get that as Y

approaches 0, the welfare of G? approaches:

1 +
1

:
+
1

4
ln

(
:

?

)
+ (1 2

1

4
) ln

(
4?

4 2 1

)
+
1

4
(ln

(
: 2 ?

)
2 ln:

+ ln (4 2 1) + ln

(
4

4 2 1

)
) + (1 2

2

4
) (ln: 2 ln? 2 ln

(
4

4 2 1

)
)

= 1 +
1

:
+ ln: (1 2

2

4
) +

1

4
ln

(
: 2 ?

)
+ ln? (2

1

4
+ 1 2

1

4
2 1 +

2

4
)

+ ln

(
4

4 2 1

)
(1 2

1

4
+
1

4
2 1 +

2

4
) +

ln (4 2 1)

4

f︸︷︷︸
?g0

1 +
1

:
+ (1 2

1

4
) ln: +

2

4
ln

(
4

4 2 1

)
+
ln (4 2 1)

4

f 1 +
1

:
+ 0.6 + (1 2

1

4
) ln:.

Thus, as Y approaches 0, the approximation ratio approaches
ln:+1+ 1

:

(12 1
4 ) ln:+0.6+1+

1
:

. As: approaches>, the upper bound approaches

4
421 .

A THE LACK OF POWER OF

DOMINANT-STRATEGY MECHANISMS

Consider the discrete joint distribution F: . In F: , the set of possible

values of the buyer is {0, :, :2, . . . , :: } and the set of possible values

of the seller is {0, 1, . . . , ::21}. The probability that an instance

(B, 1) occurs is:

?: (B, 1) =

ùüüüüüüüüüüüüüüüüú
üüüüüüüüüüüüüüüüû

1
1

B = 1
:
' 1 * {:, :2, . . . , :: };

1 2
∑:
8=1

1
:8

2 Y 1 = 0 ' B = 0;

Y
: (:+1)

(1 * {0, :, :2, . . . , :: })'

(B * {0, 1, :, :2, . . . , ::21})'

(B b
1

:
* B b 0 * 1 b 0);

0 otherwise.

Where 0 < Y < 1

::
.

TheoremA.1. Every dominant strategy incentive compatiblemech-

anism for F: provides an approximation ratio of «(:) in F: .
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As discussed in the introduction, the impossibility immediately

implies to “universally truthful” mechanisms, i.e., probability distri-

butions over dominant-strategy incentive compatible mechanisms

(that is, a mechanism that chooses a �xed price at random, which

is that way that the state-of-the-art mechanisms for independent

values [7, 12] are stated).

Proof of Theorem A.1. We prove that for every large enough

: * N, every dominant strategy incentive compatible mechanism

for F: provides an approximation ratio that is no better than :
4
. Re-

call that every dominant strategy incentive compatible mechanism

is a �xed price mechanism [3]. Thus, we �x a mechanism" for the

distribution F: and denote its �xed price by ? .

Lemma A.2. There are at most two values of 1 * {:, :2, . . . , :: }

such that 1 g ? and 1
:
f ? .

Proof of Lemma A.2. Let 1? * {:, :2, . . . , :: } be the smallest

value that is at least ? . If no such value exists, then every value

1 * {:, :2, . . . , :: } is smaller than ? , and thus no such value 1

satis�es the condition in the statement (1 g ?), so we are done.

Notice that for any value of 1 satisfying the condition, it must

be that 1 g 1? . Therefore, we only consider such values of 1 from

now on. If
1?
:

> ? , then 1
:

> ? for all 1 g 1? , and the lemma

follows immediately. Hence, assume that
1?
:

f ? . For every value

of 1 g 1? · :2, we have 1
:
g 1? · : > ? , so at most two values of 1

(1? and 1? · :) can satisfy 1
:
f ? . ¥

Consider an instance ( 1
:
, 1) in the support of the distribution F: ,

with 1 * {:, :2, . . . , :: }, its probability is 1
1
. The contribution of

this instance to the expected welfare of a mechanism is 1
1
· 1 = 1 if

the item is traded in this instance, and 1
1
· 1
:
=

1
:
if the item is not

traded. The expected welfare of instance where B b
1
:
is at most

Y
: (:+1)

· :: <
1

: (:+1)
, and there are : (: + 1) such instances, so it

can only increase the expected welfare by 1. Therefore, the optimal

welfare of the distribution F: is at least : . By Lemma A.2, in the

mechanism" , there are at most two values of 1 in {:, :2, . . . , :: }

for which the item can be traded. Therefore the expected welfare

of" is at most: 2 + :22
:

+ 1 . When : g 3 the approximation ratio

of" is bounded from above by:

:

3 +
(:22)
:

=
:

4:22
:

=
:2

4: 2 2
>

:

4
.

¥
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