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Introduction

One of the most important, and challenging, questions in string theory is the existence and

stability of vacua that may describe semi-realistic physics in four dimensions. The choice

of internal manifold in string theory compactifications dictates many aspects of the four

dimensional physics. In the case of the heterotic string, it was shown in [3] that under such

reasonable assumptions that

a) the vacuum be of the form My x M where M, is a maximally symmetric four di-

mensional spacetime manifold and M is a compact six-dimensional internal manifold,

and

b) there be unbroken N = 1 supersymmetry in four dimensions,



M is forced to be a Calabi-Yau three-fold, M, is forced to be Minkowski, and the NS
flux is not allowed to have a vacuum expectation value (vev). It also became immediately
clear that there is no unique choice of such a vacuum configuration — the moduli fields
describing deformations of the internal manifold could not be given a set of unique val-
ues. Soon after the discovery of D-branes [4], new supersymmetric vacua of type II string
theories were found in [5], with non-zero vev for the RR fluxes. Fluxes turn out to be
good for multiple purposes. Naively, a Calabi-Yau compactification of the kind described
above preserves N = 2 supersymmetry in four dimensions. Incorporating fluxes provides
a way [6] to partially break supersymmetry from N = 2 to N = 1. It also generates a
classical superpotential [6, 7] for moduli, raising the possibility of stabilizing some (or all)
of them at a stable minimum of the potential. It was claimed to be possible to stabilize
all complex structure moduli of Calabi-Yau manifolds in flux compactifications of type II1B
or F-theory [7-11]. However, it was conjectured recently in [12, 13] that, in models with
a large number of complex structure moduli, the contribution of the flux to the D3-brane
tadpole grows linearly with the number of stabilized moduli, a statement known as the
tadpole conjecture. In such scenarios the price to pay for full moduli stabilization may be
a violation of the tadpole cancellation condition.

We will study in this paper some aspects of these compactification-related issues in
type 1IB string theory. Specifically, we will focus on a non-geometric compactification
using an orientifold of the 1° Landau-Ginzburg (henceforth LG) model orbifolded by a Z3
symmetry. The 1° LG model is a tensor product of nine N = 2 minimal models, each with
level k; = 1, making a total central charge of ¢ = 3. It has world-sheet superpotential

w=> " a. (1.1)

In geometric compactifications, there is at least one Kéhler modulus — the overall size of
the internal manifold. In general, therefore, one must be concerned with stabilizing both
complex structure moduli and Kéhler moduli. The fluxes generate a superpotential for the
complex structure moduli, but the potential for the Kéhler moduli is typically generated
through non-perturbative effects. In order to avoid Kédhler moduli altogether, and (try
to) stabilize complex structure moduli by fluxes alone, we can look for compactifications
with internal manifolds having h''! = 0. String theory provides such examples where the
internal manifolds are mirror duals to rigid! Calabi-Yau manifolds. Since mirror symmetry
interchanges complex and Kéhler structures, these manifolds do not have Kéhler moduli,
and cannot be given a geometric interpretation. Nevertheless, they have a field theory
description in terms of LG models. In a nutshell, this is the motivation to study such
non-geometric compactifications. This idea was first pursued in [1] where supersymmetric
flux backgrounds were found in the 1° and 2% LG models, leading to four dimensional
Minkowski and Anti-de-Sitter spacetimes. Fluxes are described in these models using a
combination of techniques from the world-sheet theory and the effective 4D theory. It was

! Calabi-Yau manifolds whose complex structure cannot be deformed.



also argued in [1] that the flux superpotential is given by the standard GVW [19] formula,

W:/MG/\Q, (1.2)

and that it receives no perturbative or non-perturbative correction thanks to a theorem
concerning non-renormalization of the BPS tension of a D5-brane domain wall. It was
then claimed in [1] that all complex structure moduli are stabilized via this flux-induced
superpotential. A recent investigation of this claim in [2] revealed (also see [14]) that not
all moduli fields get a mass in the solutions presented in [1]. This does not rule out the
possibility that some of the massless moduli are stable. The dependence of W on moduli
is given by (1.2) through how the holomorphic three-form €2 depends on them. One can
compute an order-by-order expansion of W (see section 3, eq. (3.10)) in the moduli defor-
mation parameters, and some or all the massless moduli may be stabilized by terms at order
higher than two. Thus, a systematic analysis of the supersymmetric vacua is necessary —
computing the number of massive moduli in each, and also the number of massless moduli
stabilized at higher order — to definitively understand the issue of moduli stabilization in
these models. In the course of this exercise, the tadpole conjecture of [12] can also be tested
explicitly for these non-geometric compactification models. With this broad goal in mind,
we launch a systematic search for Minkowski solutions in the 19/Z3 model in this work.

Another interesting aspect is the recent classification [15, 16] of compactifications of
type IIA /B supergravities down to 4D Minkowski, de Sitter, and anti-de Sitter spacetimes
where the internal space is a 6D group manifold. The authors of these papers classify
previously known solutions based on the O,/D,, sources present, and guided by this classi-
fication find new solutions in previously unexplored classes. Based on observation of a large
number of solutions they propose some interesting conjectures, one of which is the Massless
Minkowski conjecture stating that all Minkowski solutions of this kind must have at least
one massless scalar field. Even though we study Minkowski solutions in a non-geometric
compactification of type IIB string theory, we find that all solutions found in this model
so far have massless fields.

We begin by providing in section 2 the basic tools needed to compute all relevant
quantities in the 19 /Z3 model. Conditions for type IIB compactifications to 4D Minkowski
N = 1 supersymmetric vacua are stated in the geometric setting, and then translated into
the LG language. Then in section 3 we present a large set of solutions satisfying these
conditions. Using an exhaustive search algorithm described in section 4, we find that there
are no solutions in this model with flux tadpole < 7. We also present in section 3 a large
set of 8-flux-solutions which have flux tadpole 8. For all the aforementioned solutions,
we also present the rank of the Hessian of the superpotential which equals the number of
massive moduli. We do not analyze stabilization of massless fields at higher order presently,
but show a convenient way of calculating derivatives of W that will enable a computer to
compute these corrections quite fast.



2 Basics

The conditions for type IIB string theory compactified to 4D with unbroken N = 1 super-
symmetry in the presence of background flux have been described in the literature many
times. We begin by stating these conditions, formulated for compactifications on a geomet-
ric space M, maybe an orientifold of a Calabi-Yau three-fold. However, in this paper we
are interested in backgrounds not described in terms of geometry but in terms of conformal
field theory, in particular the LG model 1?/Z3. The aforementioned conditions will then
have to be translated into LG language, which we do in the subsections that follow.

There is a flux-induced superpotential in compactifications of type 1IB. It is given as
usual by [1, 19, 20]

W:/MG/\Q (2.1)

where Q is the holomorphic (3,0)-form, G is the complex three-form flux obtained by
combining the three-forms in the R-R and NS-NS sectors of type IIB string theory:

G = Hgr — THns, (2.2)

and 7 is the axio-dilaton:

T=Co+ie?. (2.3)

Unbroken supersymmetry demands that
G = Hgpr — 7Hyg € H®Y(M) o HO® (). (2.4)

In this paper we will focus on Minkowski solutions for which the superpotential W vanishes,
further constraining G:

Guink € H®D(M). (2.5)

Secondly, the tadpole cancellation condition requires
/M Hpp A Hys + Nps = Q3(O-planc), (2.6)

where Q3(O-plane) is the D3-brane charge of the orientifold planes, and Np3 is the number
of D3-branes in the geometry. Third, the fluxes have to obey the Dirac quantization
conditions

/G:N—TM, where N, M € Z, (2.7)
r

for any three-cycle I' € H3(M, Z).

We will now write down analogues of conditions (2.5), (2.6), (2.7) in the LG language.
Our aim is to be self-contained with regard to all necessary tools for computations. Detailed
derivations can be found in [1, 2] and references therein.



2.1 Cohomology

The harmonic three-forms in the 1° LG model are labelled by nine integers, which we
assemble into a vector £ = (¢1,...,£9), such that
. 9 .
Qe HPD(M) with p+q=3, =12, > =0 mod 3. (2.8)
i=1

These arise from tensoring RR sector ground states [22] in the building block minimal
model, denoted |¢), £ = 1,2. The harmonic three-forms are classified into the four types of
(p, q)-forms, p + q = 3, as follows:

A 9 12 15 18 (2.9)
gwa) | gGo) | g1 | g2 | g03) )
Therefore, condition (2.5) in the LG language becomes
G €span {Q;: ' € {1,2} and Y (' =12}, (2.10)

which means that the vectors ¢ are composed of exactly three 2’s and six 1’s. We will con-
sider the orientifold that combines worldsheet parity with the operator denoted by ¢ in [1]:

g1 (x1,1'2,$3,...,x9) — —(:Eg,xl,...,xg). (2.11)

What this means for the flux G = _ZZBZQZ is that it should be symmetric upon inter-
changing the first two entries of all £ labels. This constrains ;5 ) and 5 ) to either
be turned on with equal relative strength or be simultaneously turned off.2 For ease of ref-
erence, we will say that these are fluxes in the orientifold directions. The fluxes of the kinds
Q11,.) and Q5 ) are then referred to as fluzes in the non-orientifold directions. This
orientifolding makes the span in (2.10) have 63 independent fluxes. To save ink while de-

scribing solutions in section 3, we index the labels as specified in appendix A. For example,
Qaii1,1,1,222 = . (2.12)

This notation is particularly useful for orientifold directions. For example,
Q(1,2,1,1,1,1,1,2,2) + Q(2,1,1,1,1,1,1,2,2) = Q3. (2.13)

2.2 Tadpole cancellation

The Bianchi identity for the RR 5-form is
dFs = HrRr N Hys + p, (2.14)

and in a space-time described by geometry it can be integrated over the internal space M
to give the tadpole cancellation condition (2.6), which we restate:

/ HRR A\ HNS + NDS = Q3(O—plane), (215)
M

2The entries in the “...” of the two ©’s in this sentence are identical of course.



The topological nature of this condition allows us to formulate its analogue in the LG
language by considering models that can be connected with some geometry by continuously
varying moduli. For the orientifold we are considering, one gets [1]

Q@3(O-plane) =12, (2.16)

and the tadpole cancellation condition takes the form

1 _
/HRR/\HNS: _/G/\G:12—ND3. (2.17)
M T—=TJM
Here, G is obtained from G = 2By Q7 by?
G= ZB;;. Q7 (2.18)

I
The left hand side of eq. (2.17) is the contribution of the flux to the tadpole,

1

T—T

Npux =

/ GANG, (2.19)
M

and is seen to be bounded above by 12 for physical solutions. It (and the superpotential W
in eq. (2.1)) can be computed using the Riemann bilinear identity. We will show some of
these computations explicitly after introducing a basis of three-cycles in the LG language.

2.3 Homology and flux quantization

The 1° LG model is a tensor product of nine copies of a minimal model with worldsheet

3

superpotential W = x°. The A-type D-branes in this building block minimal model are

described in the W-plane by the positive real axis,
ImW=0, (2.20)

or, equivalently, in the xz-plane as the contours Vp, Vi, and Vs that look like the edges of
three “pieces of cake” (figure 1). Clearly, they satisfy

Vot+Vi+Va=0. (2.21)

A set of integral three-cycles for the 19 /Z3 model is built (see [1]) by tensoring nine V},’s,
and then Zs-completing them. Explicitly, these branes are

1 1
Pn=—r (Vi + Vi1 + Viys) = 75 @V + OV + 8V (2.22)
ﬁ:(nl,...,ng), ni:0,1,2.

Z3 acts on ®;V,,, as a tensor product on each of the factors. On a factor V,,, it acts as
Vio = Vint1) mod 3- The set of cycles {I'z} defined by (2.22) is linearly dependent. It
turns out that one can constrain n; to n; = 0,1, and further restrict 7’s to be the binary

SNotaion: 1= (1,1,1,1,1,1,1,1,1), 2=(2,2,2,2,2,2,2,2,2), 3= (3,3,3,3,3, 3,3, 3, 3) etc.



Vo

V2

Figure 1. The “pieces of cake”™ A-type D-branes in the LG model z3.

representations? of the first 170 non-negative integers to obtain an integral basis of three-
cycles in the 19/Z3 orbifold. Integrals of the fluxes through the three-cycles (see [1] for
justification) are prescribed, with a normalization chosen for convenience, as follows. The
pairing in the building block minimal model between the cycles V,, and the RR sector
ground states |¢), { = 1,2, is given by

where w = e 3 is a cube root of unity. We are making the correspondence

Vi) =

10) (l?fﬁ@ 2 (2.24)

In the tensor product, this translates to

Qe |10) = [ . - (2.25)

and

- xfiil ) A
Lol e

We are now ready to impose the flux quantization condition on the basis of three-cycles
{I'7}, namely

G= Nﬁ - TMﬁ (227)
s
where N and M are integers. This ensures flux quantization for any I' € H3(M,Z). The
result .
-l
. Q=3 w" (2.28)

can be obtained by explicit computation and is very useful.

4Written with nine binary digits, padding with zeroes on the left when necessary.



2.4 The homogenous basis of cycles

At this point we would like to set up notation for a different basis of three-cycles, called
the homogeneous basis, introduced in [1]. We will give its description in a pedestrian
way, avoiding derivations, but highlighting how it makes certain computations convenient,
resulting in simpler formulas. For the building block minimal model, let us define the cycles

Wo = Vo +wVi +w?Vs (2.29a)
Wi = Vo +w?Vi +whs. (2.29b)

Their intersections are
Won Wiy =0=W; NWy, WiNnWy =3(1 —w), WoﬂW1:3(1—w2). (2.30)

They have the following nice property:

1
/ R O(n mod 3)1 (=1 + WwhHr <n i > (2.31a)
Wo ’ 3
1
/ $”e_x3dl» - 6(71 mod 3),0 (_1 + w)r (n—; ) ) (231b)
Wy

resulting in the fact that each three-form flux €2; integrates to zero on all but one three-
cycle obtained by tensoring nine W,,’s. Explicitly, let us denote by C the cycles:

Cri=W;y_ ;=@ Wy_pi. (2.32)
The cycles C’g» are given by
Cr =Wy =& Wy (2.33)

For demonstration, 1 = (1,1,1,1,1,1,2,2,2) = Cz = W 11111000 = Wi @ W,
and CZ = W(O,O,O,O,O,U,l,l,l) = Wa®6 ® Wl®3 We then have

9
/ Q=3 5 (2.34)
o
For each ¢ such that Qre HED (M), we have

CrNC:=3"(1-w’)’(1-w)’ =—i 3" V3. (2.35)

Computing the integrals to evaluate the superpotential (2.1), or the flux tadpole (2.19)
is much simpler if one employs the Riemann bilinear identity with a basis made of the C'
cycles. For instance,

|
W:/G/\Q: 7/61 QO 9.36
M EC:CQC* c Cc+ ( )

and, for each summand B; (2; in G = } ;B (), only one cycle, namely C}, contributes
a non-zero value in the first integral on the right hand side of (2.36).



3 A large class of solutions

In this section we will present a large class of backgrounds and describe their properties.
We will categorize solutions in terms of the number of €2’s turned on. We do so because
of the following reason. It turns out that each non-zero component contributes at least
1 to the tadpole, implying that a lower bound for the flux tadpole® of a flux background
with n independent (27 components turned on is n. Since one of the search criteria for flux
backgrounds is the value of the flux tadpole, it makes sense to organize solutions in terms
of its lower bound. For the cases when 1, 2, 3, or 4 components are turned on, we find that
this lower bound is not saturated. We present for these cases the saturated lower bound
of the flux tadpole, and all flux backgrounds that attain it.

As mentioned in (2.10), the 63 independent harmonic (2, 1)-form fluxes are labeled by
vectors £ composed of three 2’s and six 1’s. For convenience, we index them in this section
(also see appendix A) as follows: I = (o, A), with a € {1,...,35} U{57,...,63} labeling
s whose first two entries are identical, and A € {36,...,56} labeling the ones of the form
(1,2,...). We do not introduce an index for the s of the form (2,1,...) since, as a result
of orientifolding, turning on the flux {2(; 5 ) would automatically turn on the flux Q51 )
with the same relative strength where the distribution of 1’s and 2’s in the two sets of “...”
above are identical. The generic flux background is a linear combination

63
G=)> By (3.1)
I=1
where the G-flux is as in (2.2). Here we have further simplified notation: Q; = Q;. The
coefficients By are complex, so 126 real numbers label each flux configuration.
How shall we proceed?” We will be interested in solutions with 7 = w. First, the flux
quantization

G = Nj —wMj (3.2)
IR

holds for any cycle in the basis {I'z} of 170 cycles. There are 170 N’s and 170 M'’s, i.e.
in total 340 flux quantum numbers, which together with the real and imaginary parts of
B make a total of 466 real parameters. These parameters satisfy a total of 170 x 2 = 340
conditions which are the real and imaginary parts of eq. (3.2). We will then view 126 of the
N’s and M’s as “independent flux numbers” and label them by y;, i = 1,...,126, and solve
for By in terms of the y;. Collecting all real and imaginary parts of By in a 126-dimensional
real vector (b;) = (ReBq,ImB4y,...,ReBgs, ImBgs), this relationship reads b; = Cj;y;. The
details of the matrix C' are not important in this section, but we bear in mind that flux
quantization has been imposed in this way.

3.1 Flux tadpole and massive moduli

The two main properties of the solutions we will focus on are the flux tadpole Ny (defined
in (2.19)), and the number of massive moduli fields.

5The orientifold we will consider has a tadpole value of 12. Thus, the flux contribution to the tadpole
can be maximally 12. Therefore we need only turn on up to 12 fluxes.



3.1.1 Flux tadpole

The tadpole cancellation condition (2.17), when 7 is taken to be equal to w, becomes®
Npux = 81 Z |B;|* = Z Qijyiyj = 12 — Npg3, (3.3)
I i,

where Q is the symmetrized coefficient matrix of the homogeneous quadratic polynomial of
{yi 11 =1(1)126} obtained by substituting b; = Cj;y; on the left hand side of (3.3). There-
fore, we should look for flux backgrounds with Np.x < 12. By employing an exhaustive
search algorithm, we verified that, in the orientifold of 19/Z3 studied in this paper,

Niux > 8. (3.4)

Details of this result and the algorithm can be found in section 4. Thus, physical solutions
in this model obey

8 < Npyx < 12 (3.5)

One finds a large set of solutions in [1, 2], some within this bound and some outside. We
extend those results in this section in the following way. We first categorize solutions with
respect to number of Qs turned on, find what the lowest value of Ny can be for each
category, and present all solutions attaining this greatest lower bound. We do this for up
to 4-2 solutions in subsection 3.2.

3.1.2 Rank of the mass matrix

Given a flux vacuum, an immediate question is whether this sits at a point in moduli space
where all moduli are stabilized. If all scalar fields corresponding to deformations of the
moduli around this point are massive, then no continuous deformation exists with zero
energy cost, implying full moduli stabilization. However, all scalar fields being massive
isn’t a necessary condition. It is possible to have massless fields that are stabilized through
interactions at higher order in deformation parameters. Here we focus on how many scalar
fields are massive (and hence are stabilized at order two), and postpone the analysis of
higher order deformations to future work.

The mass matrix of scalar fields in Minkowski solutions is given by a combination of
the Hessian of the superpotential, and the inverse of the Kéhler metric. It was shown”
in [2] that, even though corrections to the Kéhler potential are not under control, the rank
of the physical mass matrix is the same as the rank of the Hessian of the superpotential
W. Since the rank of the mass matrix is equal to the number of massive fields, and our
goal is to count how many moduli are massive in a flux background, we will focus attention
on computing the Hessian of W. Formulas for calculating the matrix elements of 00W are
given in [2] where the authors employ the Riemann bilinear identity using the basis {I';}
of cycles. We observe that using the homogeneous basis yields relatively simpler formulas,

5By computing Naux (2.19) by using the Riemann bilinear identity.
"We also mention in passing that the mass matrix is positive semidefinite, ruling out tachyonic
instabilities.

,10,



and significantly speeds up computations on a computer. This is especially useful for us
since we analyze a large set of solutions.

The flux superpotential is given as usual by (2.1):
W= / GAQ (3.6)
M

in which the dependence of W on all moduli comes from the holomorphic three-form €2 not
to be confused with 2. We use (2.36), which we quote again for convenience:

1
W:/G/\Q: /G Q. 3.7
M ;CQC* c o+ (3.7)

with the cycles chosen from the homogeneous basis. The second integral on the right hand
side of eq. (3.7) encodes the full functional dependence of the superpotenial on deforma-
tions® of the moduli via the worldsheet superpotential

9 —
Wty =3 ad =S ¢al T (3.8)
=1 I

For a generic flux background as in (3.1), the superpotential evaluates to

(3.9)

(—z’34\/§>W:ZBa/C*Q—I—ZBA USH Q

«
« A CA CA

Here, we note that a flux 24 corresponding to the index A is of the form Q15 ) + Q21..),
which yields non-zero integrals on two distinct C-cycles instead of one — the first summand
is non-zero when integrated over C4 as defined in (2.32), while the second summand gives
non-zero integral over a C'-cycle obtained from C4 by interchanging its first two W-factors.
It is this cycle which has been labeled temporarily as C’; in (3.9). Now it remains to
evaluate the integrals over C*’s. We have, for an arbitrary cycle I,

9 9 9
/ 0= / d’z exp [— fo + Zto‘ (H xfz‘l) + ZtA(xl + z2) (H fo_1>1 (3.10)
r r i=1 @ i=1 A i=3

To compute Kéhler covariant derivatives, we need the Kéhler potential K. However, for
Minkowski solutions, the following second Kéhler covariant derivatives evaluated at the
vacua are equal to the corresponding partial derivatives: D D,sW|i—g = 00,0 W =0,
D;DyuWli—g = 0,0, Wli—o , where D,W = 9,W+(9, K)W,y = (t!,7), and D, D, W |;—¢ =
0. Combining all the ingredients provided above, it is straightforward to compute these

8We parameterize the deformations by local coordinates {t[,[ € {Z_}}} For convenience, let us write
th= ¢t

— 11 —



second derivatives [0,10,0 W] |t=0. We simply quote the results below:

82 2 0 0 %
kataﬁtﬁwh 0= %:Ba 1:[ Ol + L, + £3,4) (3.11a)
kg V=0 = > Ba- 20(65, 1)5(¢5,1) . T o(65 + €4 + 65, 4) (3.11b)
A i=3
9? S
koiag WV lt=0 = ZB~ 26(05,1)8(65,1) . TTo(05 + €4 + 05, 4) (3.11c)
=3
where )
k= G- (3.12)

3
1 2
@] [r3)]
Furthermore, the second derivatives of W involving one or two derivatives with respect to
the axio-dilaton are:

k’wWh:o =0 (3.13a)
P = - /éAa Q- ‘p (3.13b)
drope " —7 Ju NV '
02 1 _ 2
E————Wli—g = — GAN0OaQ) = —=B% 3.13
aTatA ‘tfo r—7Ju 1A \/g A ( C)
where
, 1
K = ;. (3.14)

This gives all matrix elements of the Hessian of the superpotential. Similar formulas can
be derived for higher order derivatives to analyze stabilization of massless moduli at higher
order.

3.2 Solutions in terms of the number of Q2’s

3.2.1 1,2,3-2 solutions

As a warm up let’s discuss the simplest solutions, namely those in which only one, two, or
three ) components appear. These will not satisfy the tadpole cancellation condition. In
what follows, we will sometimes refer to the flux tadpole Ng,ux as the tadpole for brevity.

1-Q solutions. First we consider the case where only one component in the non-
orientifold direction is turned on, i.e.

G = AQ,. (3.15)

There is an S7; symmetry which acts by interchanging the last 7 factors in the tensor
product LG model. There is no S9 symmetry since the first two factors are singled out by

— 12 —



the action of the orientifold. Using this Sy symmetry, we can take o = 1 or a« = 57. The
quantization condition in the first case becomes

/ G:A/ Oy = Aw™\/3 = Ny — wMj. (3.16)
7 'z

For this to hold for all T'; in the integral basis, A must be an integer multiple of % The
same argument applies to a = 57. We find that the flux configuration that is properly
quantized and attains the minimum value of tadpole is

1
G=—=Q., a=1 or «a=>57, 3.17
V3 (3.17)

and the minimal tadpole is 27. The quantization condition requires
wmte = Ny — wMj . (3.18)

Taking into account 1 + w + w? = 0 it is not difficult to see that it is always possible to
choose flux numbers such that the above equation is satisfied for any 7. There are 16
massive scalars if & = 1, and 22 massive scalars if « = 57. Because of the S7; symmetry,
any solution with 7= E_;, 1 =1,...,35 has tadpole 27 and lead to 16 massive scalars, and
any solution with 7= lz-, 1 =57,...,63 has tadpole 27 and leads to 22 massive scalars.

In case a flux in an orientifold direction is involved, we find that the minimal tadpole

value is attained by
1

V3

where again the normalization is required by flux quantization. The minimal tadpole

G Qa6 , (3.19)

is twice the minimal tadpole of non-orientifold directions, 54, and there are 22 massive
scalars. The S7 symmetry then implies that the same results hold for any flux 4, with
A =36,...,56.

2-Q2 solutions. The smallest tadpole in this case is 18. The flux allowing this tadpole is
of the form

G=1(0 ), (3.20)

1
3
with a = 2,...,35,57,...,63, and a minimal tadpole of 18. The number of massive fields
again depends on «. For o = 2,...,35, the number of massive fields can be 16, 24 or 26,
while if o = 57,...,63, it can be 28 or 32. In this case, we have used the S; symmetry in
taking the first term to be €.

Then there is the case in which we can take the first entry to be Q57:
1
G= 3 (7 — Q0) , (3.21)

and without loss of generality® we can take a = 58, ...63. The number of massive fields is
22 for all « in this range. As in the 1-€) case, the smallest tadpole is only achievable using
non-orientifold directions.

9The choices a = 1,...,35 are covered in (3.20).
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We also note that any 2-() solution of the form

G:%(Qal — Q). an,az€{l,...,35  U{57,...,63}, (3.22)

is part of a more general set of solutions given by
G = i%w” (R — wi0,) (3.23)

where p,q = 0, 1,2 and the overall sign of G and values of p, ¢ can be chosen independently
for a total of 18 solutions for each choice of {1, as}. It is easy to see that if the flux (3.22)
is properly quantized so is (3.23). Obviously this family of solutions has tadpole 18. The
reason eq. (3.23) is properly quantized is the elementary fact that there always exist integers
N and M for which .

% (wa — wb> =N —whM, (3.24)

given any a,b € Z.

3-2 solutions. The smallest tadpole for a flux involving 3-€2’s is 27 and it is engendered
by fluxes of the form

G = % (Q + Q0 + Q) . (3.25)
where «, 8 can take any values o, 8 = 2,...,35,57,...,63 or
G= % (Qs7 + Qo + Q5) (3.26)
with «, 5 =58, ...,63.
The number of massive fields does depend on «,p. If o =
2,...,35 the number of massive fields takes one of the wvalues in the set

{16, 20, 24, 28, 22, 34, 29, 32, 30, 38,42, 36,40,46}.  Again, also in this case there is a
related set of properly quantized fluxes given by

G = :I:%wp (D57 + Wiy + W' Q) (3.27)

for p,q,r € Z. Evidently all of these solutions have tadpole 27. Also in this case quantiza-
tion is due to an elementary but not immediately obvious fact. Namely, there always exist
integers N and M such that

(w“ +wb + wc) =N —wM, (3.28)

8-

for any a, b, c € Z.

3.2.2 4-( solutions
This is the first case in which the physical tadpole of 12 can be achieved with

1
G=—F—(—N+Q+ Q5 —Q), 3.29
3\/§( 1 fe! B 7) ( )

where the values for (a, 3,7) can be found in the table below
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(2,6,8) (2,7,9) | (2,12,14) | (2,13,15) | (2,19,20) | (2,22,24) | (2,23,25)
(2,29,30) | (2,33,34) | (2,59,60) | (3,5,8) (3,7,10) | (3,11,14) | (3,13,16)
(3,18,20) | (3,21,24) | (3,23,26) | (3,28,30) | (3,32,34) | (3,58,60) | (4,5,9)
(4,6,10) | (4,11,15) | (4,12,16) | (4,17,20) | (4,21,25) | (4,22,26) | (4,27,30)
(4,31,34) | (4,57,60) | (5,12,17) | (5,13,18) | (5,16,20) | (5,22,27) | (5,23,28)
(5,26,30) | (5,33,35) | (5,59,61) | (6,11,17) | (6,13,19) | (6,15,20) | (6,21,27)
(6,23,29) | (6,25,30) | (6,32,35) | (6,58,61) | (7,11,18) | (7,12,19) | (7,14,20)
(7,21,28) | (7,22,29) | (7,24,30) | (7,31,35) | (7.57,61) | (8,13,20) | (8,23,30)
(9,12,20) | (9,22,30) | (10,11,20) | (10,21,30) | (11,22,31) | (11,23,32) | (11,26,34)

(11,29,35) | (11,59,62) | (12,21,31) | (12,23,33) | (12,25,34) | (12,28,35) | (12,58,62)
(13,21,32) | (13,22,33) | (13,24,34) | (13,27,35) | (13,57,62) | (14,23,34) | (15,22,34)
(16,21,34) | (17,23,35) | (18,22,35) | (19,21,35) | (21,59,63) | (22,58,63) | (23,57,63)

We note that also in this case there is a related family of fluxes with the same tadpole, i.e.
tadpole 12 and are explicitly given by

1

G =W ——= (= +wPQy +w?TPQg —wi),), 3.30
3\/3( 1 o B ’Y) ( )
where 7, p, g are integers. It is easy to verify that if (3.29) is properly quantized so is
eq. (3.30). To do this it is useful to take (3.24) and (3.28) into account. Consequently
for each flux in (3.29) there are 54 fluxes given by including different phases and overall
signs. The total number of 4-Q fluxes with tadpole 12 is therefore 84 x 54 = 4536. These

background fluxes stabilize 16, 22 or 26 moduli fields.

That these 4-) solutions are properly quantized can also be understood from the
following simple fact. Given any 4 integers, a,b,c,d € Z there exist integers N,M € Z
such that 1

g(—w“ +WFw—wl)=N-wM, (3.31)
if and only if
(—ra—d+b+c) mod3=0. (3.32)
In particular, applied to the 4-Q fluxes'® this means that any combination
1
G = ﬁ(—Q[a + Q[b + QZC — Qé‘*d), (3.33)

will be properly quantized as long as
i (—ly+ Ly + 0. — g) mod 3=0,  Vi. (3.34)

A 9 component vector ), satisfying the condition 77 - @ mod 3 = 0 for all 77, is a vector w
whose entries are multiples of 3. It is not difficult to see that it is not possible to get any
non-zero multiples of 3 given any combination —E_; + 5_2, + Zc — Zd since the components of
the £’s are 1 or 2. The only solution is

—ly 4y + 0, — Oy = 0. (3.35)

0Note: we return to our previous index notation, £ = (¢*,...,¢%), introduced in section 2.
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Taking a =1

~b A+ by + 6, — Ly = 0. (3.36)
The solutions are exactly those quoted in the previous table.
3.2.3 8-(2 solutions
In this case the smallest tadpole is 8 and the corresponding fluxes take the form
1
G = 5(—91 + QZ% — QZas =+ QZa4 — QZ% =+ QZaG — QZW + QZ&S). (3.37)
As in the 4-Q case a necessary condition for the fluxes to be properly quantized is
(_Zl +€:l2 - Zas + 614 - Zzs + Zles - EL? +Za8) mod 3 = 0, (3'38)

but contrary to the 4-{) case this condition is not sufficient. Aided by the computer it is
possible to find those fluxes that turn out to be properly quantized. The table below gives

the list of linearly independent solutions of this type by specifying (ag,...,as).

(2,8,6,15,13,19,20)

(2,9,7,14,12,19,20)
(3,10,7,14,11,18,20)
(4,15,11,26,22,31,34)

(3,8,5,16,13,18,20)
(4,9,5,16,12,17,20)
(3,10,7,24,21,28,30)
(5,17,12,28,23,33,35)

(2,8,6,25,23,29,30)
(2,9,7,24,22,29,30)
(2,14,12,25,23,33,34)

(3,8,5,26,23,28,30)
(4,9,5,26,22,27,30)
(3,14,11,26,23,32,34)

All these flux backgrounds have 14 massive fields.

4 The shortest vector

The shortest vector problem (SVP) looks for a non-zero vector with the smallest length in
a lattice. The norm most commonly used to frame the question is the Euclidean norm, but
the problem can be defined in a lattice with any norm. The quantity Ngyuy, contribution
of the fluxes to the tadpole, defines a norm in the lattice of quantized flux configurations,
so finding a flux background with the minimum value of Nguy is an instance of the SVP.
Algorithms to find the exact solution of SVP in an n-dimensional lattice are known, and
follow one of three approaches: Lattice enumeration [27], Vornoi cell computation [28],
and Sieving [29]. All of these approaches have exponential or worse running time. There
also exist polynomial time algorithms (based on basis reduction techniques) to solve the
approximate version of SVP. Complexity-wise, it is known [30] that the SVP in Lo norm is
NP-hard under randomized reductions. As far as we are aware, proving a similar hardness
result under deterministic reductions is still an open problem. The approximate algorithms
run faster, but only address the approximate version of SVP. We would like to ask the exact
question instead: what is the smallest non-zero value of Np.x for flux vacua?

We adopt an exhaustive search algorithm combining sieving and enumeration to look
for lattice vectors that are shorter than a fixed value. We describe this algorithm below,
with the mathematica code implementing it available at [31]. The main result of this
section is the following: there is no flux vacuum with Ngu < 7. The minimum non-zero
value of Ngyuy is 8, and is attained by a family of flux configurations.
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Given a flux G = Z?‘il By (3.1), its contribution to Ngux in the Minkowski case
s (2.19)

81\f
Nﬂux = Z ‘BIP == 81 Z |B]|2 (41)

This is positive semidefinite, and zero if and only if By = 0 VI. It is most convenient to
implement flux quantization (2.27) on the integral basis of cycles I'; as described in [1].
For convenience, it reads frﬁ G = Nj — TM5. We separate the real and imaginary parts,
b= (ReB1,ImBy, ..., ReBgs, ImBgs), and recast the flux quantization conditions in the

form!!

bi = Cijyj s i,j = 1(1)126, (4.2)

where y; are some arrangement of the flux quantum numbers Nz, Mz, ie. y; € Z, i =
1(1)126. This is a linearly independent system of equations.

We observe two key facts. First, for each I € {1,...,63}, 81|B;|? is a homogeneous
quadratic in the y;’s with coefficients in Z. Therefore, Nguy is non-negative integer-valued,
and turning on Q; must contribute at least'?> 1 to Nguc. This means that, if we want
to find flux configurations with Ngu < T, it suffices to consider G = Z?il B with
{I € {1,...,63}: By # 0}| < T. Second, for each I, 81|B;|? is a homogeneous quadratic
polynomial in y;’s with the symmetrized coefficient matrix positive definite. This latter
fact plays a key role in sieving off lattice points in the second half of our method.

The first step in our algorithm is to turn off all but 7" out of 63 possible B;’s. There
are ((31,‘?) ways'? of doing it. For each choice {B;,,..., Bi,}, setting the remaining B’s to
zero amounts to solving, over integers, a subsystem of 126 — 27" linear equations pulled
from (4.2). Having solved this under-determined system, {B;,, ..., B;,} are obtained as
linear combinations of 27" arbitrary integers, say ¢;,7 = 1,...,2T, in terms of which Ngyux
is expressed as

NS = Niux| Byos1e{in,...in} = QijCic;j - (4.3)

The superscript “red” stands for reduced, denoting the fact that we have reduced the
number of independent integers. Clearly, the coefficients in Ny red are also in Z, and Nﬁeuf( >
0, with “ =" iff ¢; = 0 Vi.

The second part of our algorithm is to check whether Nﬁe(}( attains non-zero values
smaller or equal to 1" for some choice of integers ¢;, i.e. we want to see if the level set
Ly = {(c1,...,cor) : Ni4(@) = T} < R?T has any integer points in it or in its interior.
The level set is an ellipsoid since the symmetrized coefficient matrix @ in (4.3) is positive
definite.!* Let the eigenvalues of @ be {\1,...,Aor}, 0 < A1 < Ay < ... < Ag7, and the

corresponding normalized eigenvectors be {07,...,vUor}. The intersection points of axis

"The precise equations are supplied in [31]. The description of the algorithm only requires the form of
the equation (4.2).

12This is the crudest lower bound for {81|B;|? : Br # 0}.

13We can improve this by using the S7 symmetry in the last seven factor CFT’s in the model.

171t follows from the positive-definiteness of the coefficient matrices for each |B;|?.
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(axes)!® along @; corresponding to the lowest eigenvalue(s) with the ellipsoid are (among
the) points on the ellipsoid that are farthest (in Euclidean norm) from the origin. Let
us define the hypercube € := {7 € R?T : |z;| < \//\Il,i = 1(1)2T}. At all integer points
outside €, i.e. at points in Z?T N &°, Njed > T. So it is sufficient to evaluate N34 at all
points in Z?T N €. Moreover, any point p in this set is in the exterior of Ly if at least one

5.5 > ,/%, i =1(1)2T. (4.4)

Using these criteria we sieve off points where evaluation of Né‘fg{ is not necessary. At all

of the following is satisfied:

remaining points in Z?7 N €, we can evaluate Nfﬁ‘fg{ to check if values smaller or equal to
2T are attained. We call this algorithm the Eigensieve algorithm. Already in [1] solutions
were known with fluxes contributing a value of 8 to the tadpole. We set T = 7 in our
algorithm above to explicitly check that there exists no solution with Néi‘}( <7, making 8
the lowest value of Neux in the 19/Z3 model.

In summary, the Eigensieve algorithm rules out Ng,x < 7 as follows. First, it uses
the observation that each non-zero flux contributes at least 1 to Ngu, thus dividing the

problem into two sub-problems:
a) considering all possible ways of turning off all but 7 fluxes;
b) for each of the above, check whether N34 < 7 is possible.

For the second part, a finite region in the lattice using the lowest eigenvalue A\; of Q, the

: : red
coefficient matrix of NgT5,

to sieve off more lattice points where evaluation is not necessary. The sieving conditions

are (4.4). Then an explicit evaluation of N4

is carved out. Then the rest of the eigenvalues of ) are used

is done in the remaining lattice points.

5 Conclusion

The program of using Landau-Ginzburg models to describe flux vacua of type IIB com-
pactifications was initiated in [1] with the goal that these would provide string vacua with
all moduli fields stabilized. The underlying compactification manifolds before turning on
fluxes are non-geometric since they are mirror duals to rigid Calabi-Yau manifolds, and
therefore have no Kahler moduli. However, their world-sheet description is well understood
in terms of Landau-Ginzburg models which at particular points in moduli space are equiv-
alent to some Gepner models. Descriptions of geometric notions of forms, cycles, D-branes,
orientifolds etc. in these models were developed from the world-sheet in [21, 23-26]. Ref-
erence [1] showed how to describe fluxes in this setting and presented explicit examples of
flux vacua solutions that putatively stabilize all moduli.

15There may be multiple if the lowest eigenvalue is degenerate. In case of degeneracies in any eigenvalue,
the choices of the ¥;’s become ambiguous. Such a scenario hasn’t occurred in practice, and is unimportant
for the rest of the discussion.
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More recently in [2] it was shown that all Minkowski vacua presented in [1] have a
number of massless fields. A larger class of vacua was presented in the same paper, all of
which have a large number of massless fields. Expanding the superpotential to higher-order
terms may stabilize more (or all) moduli. To the best of our knowledge such a scenario
has not been realized in any concrete example thus far. This prompts the need for a
systematic search for solutions and investigation of their properties such as the number of
massive fields, stabilization of massless fields by higher order terms in the superpotential,
etc. In this paper we have taken a first step in this direction.

The key results of this work are as follows:

a) A systematic search of solutions with the lowest value of Ngyuy, organized by number
of non-zero components, has been launched. We present all solutions up to four com-
ponents turned on, and a large set of solutions with eight components that saturate
the minimum value of flux tadpole.

b) The shortest vector problem for the 19/Zs model has been solved using an exact
algorithm we call Eigensieve.

c) We observe that the homogeneous basis of cycles can be used to simplify the formulas
of derivatives of the superpotential with respect to moduli. We present these formulas
for the second derivatives, which compute mass matrix elements. They increase
computation speed significantly.

We are working on extending these results in a number of obvious ways:

a) The systematic search for solutions can be extended by increasing the number of
non-zero components. The flux configurations known to satisfy Ny, = 8 are all 8-)
solutions. We have presented a large class of these in section 3. The upper bound
of Npy in the 19 /Z3 model, dictated by the tadpole cancellation condition, is 12. A
classification of all solutions characterized by 8 < Ngux < 12, along with the ranks of
their mass matrices, will give a starting point for studying higher order corrections
systematically. Some flux vacua with Ngu = 12 are known, but we do not yet have
an exhaustive set of solutions with Ngu. = 9,10, 11,12.

b) Systematically computing mass matrices and their ranks to solutions with 8 < Nguy <
12 is computationally very expensive for Mathematica, even with the aid of paral-
lel computations on a cluster. We think that it would be necessary to move away
from symbolic computation in Mathematica to be able to achieve this task. Work
is ongoing to make this process entirely numerical, and maybe use a lower level lan-
guage/GPU’s to speed up computations.

¢) We have not analyzed higher order terms in the superpotential in this work, leaving
it to a forthcoming publication. We just mention that expanding the superpotential
to higher orders is also made convenient by using the homogeneous basis.

d) Finally, we aim to extend all our analyses to other Gepner models.
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A A convenient indexing of the fluxes ;

For convenience we index in the following way the (2, 1)-form fluxes of the 1°/Z3 model in-
variant under the orientifold action which exchanges the first two entries of the labels 7. We
split them in three sets: non-orientifold fluxes labelled by 7~ (1,1,...), orientifold fluxes,
and non-orientifold fluxes labelled by 0~ (2,2,...). Dropping commas for compactness,
and denoting the index of a flux as a subscript,
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B A basis of short fluxes

In this appendix we present a basis of quantized fluxes that have small values of Nguy. Let
us first define the sets:

B = %U{ (Q12 — Q13 — Q17+ Qis — Qoo + Doz + Qo7 — Qag) ,
(6 — Q7 — Q17+ Q1g — Qoo + Qa3 + Q31 — Q32),
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(11— Q13 — Q17+ Q1o — Qo1 + Qa3 + Qo7 — Qa9) ,
(5 — Q7 — Q7 4+ Q1o — Qo1 + Qa3 + Q31 — Na3)
(12— Q13 — Q1a+ Q15 — Qoo + Qaz + Nog — Nas)
(Q6 — Q7 — Qs+ Qg — Qoo + Qo3 + N2y — Na2s) ,

(11— Q13 — Qua+ Qi — Q21 + Qag + Q2a — No26)
(5 — Q7 — Qs+ Q10 — Qa1 + Qaz + Nog — Nag) ,

(Q3— Qs — Qs+ Q15 — Qoo + Qa3 + Q31 — Q32),
(
(
(
(
(

2

Q
Q
Qo — Qu— Q14+ Q16 — Q21 + Qag + Q31 — Q33),
Q11— Q15 — Qi7 4+ Q20 — Qo1 + Qa5 + Qa7 — Q30)
Q5 — Qg — Q17+ Q20 — Q21+ Q25 + Q31 — Qa4)
Q2 — Qo — Q14+ Q20 — Q21 + Qag + Q31 — N35)
Q1 — Qs — Q2+ Q16 — Qo1 + Qo5 + Q31 — Q34) },

1
B = 9{ 1(21 — Qu— Q21 — Qoo+ Qas + Qas + 51 — Vsa — V57 + Qo0

—i(Q1— Qs — Q11— Q12+ Q15+ Q16 + Qus — Qa9 — Vs7 + Qe0)
—i(Q1 = Qs — Q5 — Qs+ Qo+ Q10+ Qa2 — Qus — Q57+ Qeo)

— (21 — Q3 — Qa1 — Qag + Qaa + Qag + sz — Qsa — Vss + Qeo) s
—i(Q1— Q3 — Q11— Qs+ Q1a+ Q16 + Qa7 — Qag — Vss + Qeo)
—i(Q1—Q3— Q5 — Q7+ Qs+ Q10+ Qug — Qa5 — Lss + Qe0)

Q1 — Qo — Qoo — Qag + Qo + Nas + sz — Qsa — Qsg + Qeo) s
Q11— Qo — Q12 — Qg+ Q1a+ Q15 + Qus — Quo — QLs9 + Qeo)

Q
Q
Q
Q
—1 Q
Q
Q1 — Qo — Q6 — Q7 + Qg + Qo+ Qaa — Qus — Qso +Qeo)
Q
Q
Q
Q
Q
Q

—1
—i
— i (21— Q7 — Qa1 — Qoo + Qag + Qag + Q51 — Q55 — Q57+ Qe1)
Q1 — Q7 — Q11 — Qa2+ Qis + Q19 + Qas — Ls0 — sz + Qe61)
13— Q21 — Qa2 + Q32+ Qaz + Q51 — Qse — Q57+ Qe2)
11— Q12 — Q23 + Q32 + Q33 + Qus — Nss — 57+ Qe3)
—i (21— Q5 — Q6 — Q3+ Qs + Q19+ Qa2 — Q50 — Q57+ Qe2)
—i(Q1—Q2— Q3 — Q7+ Qo+ Q10+ Q39 — Qa5 — Q57+ Qe1)
—i (1 — Q2 — Qs — Qs+ Qs+ Q10 + Qo — Qs — Usg +Qe1)
—i (21— Q23— — Qs + Qs + Qo+ Qa1 — Qs — Q5o +Q61)
(21— Q24+ Q3 — Q7+ Qo — Q1o — Q37 + Qua + Q57 — Q61 ),

(2 — Q24+ — Qs+ Q8 — Q1o — N3+ Qaa + Nsg — Qe1)
(214 Q2 — Q3 — Q7 — Qo+ Q10— Q36 + Nuz + Q57 — Q1) },

—1
ZQlf

(
(
(
(
(
(
(
(
(
(
(
(
—i(Q —

(

(

(

= 5{ W — w5 — w6 + w54 — w60 — 13 + 32 + N3z — Vs + Ne2)

(
(W — w5 —wWis +wag —wso — Q23 + Q32+ Qaz — Qse + Q63 |
(W —wQg — w10 + w5 — wWe0 — Q23 + Nog + N2g — Q55+ Q63)
(W3 —w2s —wa6 + W54 —wWs0 — Q12 + Q31 + N3z — Qs + Nes2)
(W3 —wg — w6+ Wiy —wso — N2z + Q31+ Qaz — Qs + Qe3) |
(w3 —wg — w10 + w5 — weo — Q22 + Qa7 + Q2g — Q55+ Q63)
(W2 —w2s — w5 + W54 —ws0 — Q11+ Q31+ Q32 — Vs + Ne2)
(W2 —wg — w5+ w9 —wso — Q21 + Q31 + Qa2 — Qs +Qe3) |
(w2 — wg — W + w45 — wWeo — Q21 + Qa7 + Nag — Q55+ Qe3)
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(W7 —wQg — w0 +wlas — w1 — Q23 + Qo5 + Qo — Vsa +Q63),
(wQe —wg — w10 + w5 — we1 — Q22 + Qog + Q2g — V54 +Q63)
(w5 —wg —wg + w5 — w1 — Q21 + Qog + Qo5 — Q54+ Q63)
(Wy —wag — w6 + w53 — W59 — Q15+ Q32+ Qas — Qs + Qe2) |
(W — w13 — wis +wag — w59 — Qa5 + Q32 + Qga — Qs+ Qe3)
(W — w7 — w10 +waa — w59 — Qa5 + Qas + Q3o — Ls5 + Q63)
(w7 — w23 — w9 + w53 — W59 — N1 + Q32 + Q35 — s + Qe2)
(W7 —wig — w9 +wag — w59 — Qag + Q32 + Q35 — s+ Qe3)
(W3 —waz — w33 +wWs3 — w59 — Qs + Nog + Q35 — Qa5 + Q1)
— (w7 —wQo + w10 — waa + ws1 — Nag + Qa5 — Qo+ N5z — Q63 ) ,
— (w7 +wQy — w10 —waz +we1 — N2z — Qa5 + Qag + N2 — Qe3) ,
— (w6 +ws — w1 — W2 + wWe1 — V2o — Noa + Qo+ 51 — Q63 ) T,
Bs= —Tzw{ (2921 —2Q2 + Q12 — Q14+ Qo3 — Qa5 — Q33+ Q34)

(2921 —2Q3 4+ Q11 — Q14+ Qo3 — Q26 — Q32+ Q34)

(2921 —2Q4 + Q11 — Q15+ Q22 — Q2g — Q31+ N34)

(2Q1 —2Q5 + Q12 — Q17+ D2z — Qog — N33+ Q35)

(2921 + Q6 —2Q11 — Q17+ Qa3 — Q29 — Q32+ Q35)

(291 + Q6 + Q13 — Q19 — 2021 — Qo7 — Q32+ Q35) },

)

Bs—{—3(91—957)}7

Bs = { — % (W1 4 2wQ3 — w7 + w10 + (34 2w) 21 — wWaa +wWag —wl30) } )

where we have taken the liberty to use the notation that a numerical “overall factor”
multiplies all elements of a set. One finds that

B= (u?lei) U (U?leBi)

is a basis of flux vectors in this model. Any quantized flux is an integer linear combination
of the fluxes in B. All fluxes in B; (and hence obviously in wl;) have flux tadpole values
of 8,12,12,14,18,17 for = 1,2, 3,4, 5, 6 respectively.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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