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Local Adaptation in Trait-Mediated Trophic Cascades
James J. Corbett and Geoffrey C. Trussell
Department of Marine and Environmental Sciences and Coastal Sustainability Institute,
Northeastern University, Nahant MA 01908
ABSTRACT
Predator induced changes in prey foraging can influence community dynamics by
increasing the abundance of basal resources via a trait-mediated trophic cascade. The strength of
these cascades may be altered by eco-evolutionary relationships between predators and prey, but
the role of basal resources has received limited attention. We hypothesized that trait-mediated
trophic cascade strength may be shaped by selection from trophic levels above and below prey.
Field and laboratory experiments utilized snails (Nucella lapillus) from two regions in the Gulf
of Maine (GoM) that vary in basal resource availability (e.g., mussels), seawater temperature,
and contact history with the invasive green crab, Carcinus maenas. In field and laboratory
experiments, Nucella from both regions foraged on mussels in the presence or absence of green
crab risk cues. In the field, Nucella from the northern GoM, where mussels are scarce, were less
responsive to risk cues and more responsive to seawater temperature than southern Nucella. In
the lab, however, northern Nucella foraged and grew more than southern snails in the presence of
risk, but foraging and growth were similar in the absence of risk. We suggest that adaptation to
basal resource availability may shape geographic variation in the strength of trait-mediated
trophic cascades.
INTRODUCTION
Ecologists have long appreciated the role of predators in shaping community structure and

dynamics [1,2]. For example, predators can indirectly benefit basal species through their direct



24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

consumption of species in middle trophic levels via a trophic cascade [2,3,4]. This classical
conceptual framework was expanded by studies showing that cascading interactions, and their
attendant effects on ecosystems, can also be triggered by predator induced changes in prey
behavior [5,6] that reduce their vulnerability to predation. Anti-predator behaviors, including
reduced foraging time and increased use of refuge habitats, can result in “trait-mediated cascades”
whose strength can rival that of trophic cascades produced by predator consumption of prey [7-
10].

Species residing in middle trophic levels must balance the need to feed with the need to
avoid being eaten. This classical “foraging-predation risk trade-off” suggests that ecological
processes emanating from the middle of food webs may be just as important as widely appreciated
“top-down” or “bottom-up” drivers [11]. Indeed, the effects of the “middle-out” can extend beyond
those for community structure and include the transfer of energy through food chains and
ecosystem nutrient dynamics [9,11-17]. Importantly, solutions to the foraging-predation risk trade-
off can vary among individuals and populations, particularly in cases where there is strong local
adaptation in the anti-predator defenses of prey. This variation can be shaped by natural selection
[18-20] and resulting eco-evolutionary dynamics can unfold across a variety of contexts including
the ecological contact history between prey and their predator [18-22].

Efforts to integrate evolutionary thinking into the foraging-predation risk trade-off concept
have primarily focused on local adaptation of prey residing in the middle of food chains to their
predators above them [18]. Yet, the influence of lower trophic levels (i.e., basal resources) on these
dynamics has not received much attention. This neglect may reflect the influence of the Life-
Dinner hypothesis, which posits that selection operates more strongly on antipredator traits of prey

than those related to prey foraging success: the risk of losing one’s life is more detrimental to
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fitness than losing one’s dinner [23]. Hence, selection imposed by predators on prey should be
stronger than selection imposed by resource effects on prey [23]. However, the role of resources
in selection dynamics can have major evolutionary implications, as illustrated by classic work on
the linkage between variation in the beak morphology of Galédpagos finches and starvation-induced
mortality [24,25]. Under benign climatic conditions, finches are able to feed on a variety of food
items but during intense drought large seeds quickly become the most available food source [26].
Because larger, tougher, seeds require bigger beaks to open, finch survivorship during drought is
positively correlated with beak size [26]. Hence, in the context of predator-prey interactions,
middle species may experience selection from the “top” and the “bottom”. Increased attention to
how selection from both the top and bottom interact to shape the foraging-predation risk trade-off
will become increasingly important under ongoing climate change that may alter the structure of
natural communities and increase the frequency of extreme weather events that exacerbate the
challenges of nutritional stress [27-30].

Predator-prey interactions in the Gulf of Maine (GoM) provide an excellent venue to
examine how prey in the middle of food chains solve the risk-foraging trade-off under different
selective regimes. The dogwhelk, Nucella lapillus (hereafter, Nucella) is common throughout the
GoM and can strongly influence the structure of rocky shore communities by feeding on mussels
(Mytlius edulis) and barnacles (Semibalanus balanoides) [31-33]. Spatially widespread
experiments conducted over the past twenty years have shown that both barnacle and mussel
recruitment is dramatically greater in the southern than in the northern GoM [33,34]. Because of
these geographic differences in the availability of basal resources, adult Nucella in the northern
GoM often consume alternative prey, such as limpets and littorinid snails, to compensate for the

relative scarcity of barnacles and mussels, but this behavior is rarely observed in the southern GoM
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[34]. Even after accounting for alternative species, overall basal resource availability is much
greater in the southern than northern GoM [33].

In addition to being important consumers on rocky shores, Nucella are also preyed upon
by the invasive green crab, Carcinus maenas [35,36]. Although the green crab has only recently
(last 20 years) become established in the northern GoM, it first invaded the southern GoM in the
early 1900’s and has been common in this region for at least 100 years [37,38]. Past work has
shown that exposure to water-borne risk cues from crabs can induce strong antipredator responses
(both behavioral and morphological) in Nucella [9,36,39]. For example, in the presence of green
crab risk cues, Nucella from the southern GoM exhibit reduced foraging, growth, and growth
efficiency compared to conspecifics raised in the absence of risk cues [9,36]. Given the latitudinal
invasion history (south to north) of green crabs in the GoM and associated variation in selection
pressure, the results of studies on southern GoM Nucella populations may not apply for
populations across their northwest Atlantic range. This discrepancy may be especially evident in
the northern GoM where Nucella have a shorter contact history with the green crab [38,40] and
inhabit a food-poor environment because of the relative scarcity of barnacles and mussels [33,34].
To explore these issues, we conducted a field experiment and a common garden laboratory
experiment to examine how Nucella populations from the northern and southern GoM vary in their
solutions to the foraging-predation risk trade-off.

MATERIALS and METHODS

Field Experiment: We conducted a field experiment in the northern and southern GoM
with four replicate populations within each region (Total N = 8 populations; electronic
supplementary material, Fig. S1, Table S1). Juvenile Nucella (10.5-13.5mm in length; mean =

12.08, SE £ 0.05) were collected from each population, individually labeled with bee tags, and
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measured for shell length with digital calipers. Shell and tissue mass were also measured using a
non-destructive weighing technique [41]. Four Nucella (hereafter response Nucella) were then
placed in replicate (N = 8 per treatment) plastic “response” chambers (10 x 10 x 7cm, L x W X H)
with 120 juvenile mussels (Mytilus edulis) to serve as food. “Stimulus” chambers (10 x 10 x 7cm,
L x W x H) were used to expose Nucella to either the presence (Crab) or absence (No Crab) of
predation risk (N = 4 replicates for each risk treatment x population combination). Chambers for
the Crab treatment received a mature male green crab and four adult Nucella to serve as food
whereas those for the No Crab treatment (control) received just four Nucella. Nucella serving as
food in the chambers for both treatments were replaced weekly. Pairs of response-stimulus
chambers for each population were housed in a larger (14 x 14 x 16 cm, L x W x H) container. In
early-June 2020, replicate containers for each risk treatment x population combination were placed
underneath the fucoid (Ascophyllum nodosum) canopy at their native sites. Temperature was
monitored every 5 minutes with Tidbit loggers (Onset Computer Corp.) that were placed within 2
replicate units at each site. Replicates remained in the field for 28 days afterwhich the number of
mussels consumed in each chamber were counted. All snails were measured for final trait values
including shell length, shell mass, and tissue mass. Growth was calculated by subtracting initial
from final trait values.

Statistical analyses - Growth and foraging data were analyzed using a two-factor analysis of
variance (ANOVA) that considered Region and Risk Treatment as fixed effects and Population as
a random effect nested within Region. For growth analyses, replicate containers were a random
effect nested within each Risk x Population within Region combination; this was not necessary
for the per capita analysis of mussel consumption. Replicates where more than two snails had died

were excluded (N = 4) from the analyses. Regional comparisons of seawater temperatures during
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the experiment were analyzed with a two-factor ANOVA that considered Region as a fixed effect
and Site as a random effect nested within Region. We could not perform an ANCOVA with Region
as a categorical factor and seawater temperature as the covariate because seawater temperatures in
the northern and southern Gulf were so divergent that they did not overlap, thus violating a key
assumption of ANCOVA. Hence, to further explore how predation risk may interact with seawater
temperature to influence snail foraging and growth for populations within each region, we
conducted analyses of covariance (ANCOVA) that considered Risk Treatment as a fixed effect
and mean seawater temperature for each population during the experiment as the covariate. In
addition, for each Risk Treatment we used simple linear regressions to characterize the
relationships between snail foraging and growth as a function of mean seawater temperature for
each population during the experiment.

Laboratory Experiment: For the laboratory experiment, we collected juvenile Nucella
(11-13mm in length; mean = 12.02, SE + 0.03) from three populations in the northern and
southern GoM (electronic supplementary material Fig. S1, Table S1). Nucella were tagged and
measured as described above and then placed in mesocosms under ambient seawater conditions
at the Northeastern University Marine Science Center, Nahant MA in mid-August 2019. Each
mesocosm (27 X 15 x 5 cm, L x W x H) had two chambers separated by a perforated divider.
The “response chamber” (16 X 15 x 5 cm, L X W x H) housed four response Nucella and a tile
that had been seeded with 120 mussels to serve as a food for foraging Nucella. This chamber had
a plastic mesh (3.75 x 2.90 mm) roof to permit water flow and four PVC spacers (1 cm high) that
raised the tile above the floor of each mesocosm. By elevating the tiles, Nucella had the option to
either forage in the “risky” environment on top of the tile or take refuge below the tile [9]. The

other chamber (11 x 15 x 5 cm, L X W x H) served as the “stimulus chamber” and contained
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either an adult, male green crab and four adult stimulus Nucella to serve as food (Crab) or simply
four adult Nucella (No Crab). Stimulus Nucella were sourced from the same population as the
response snails in each mesocosm and were replaced every three days. Plastic tubing delivered
ambient seawater into the stimulus chamber that then flowed through the perforated barrier into
the response chamber. This design prevented physical contact between crabs and snails but
allowed for delivery of crab risk cues to response snails housed in the downstream response
chamber. Each mesocosm was placed in a larger plastic container (35 x 15 x 15 cm, L X W x H)
to prevent water exchange among replicates. At the start of the experiment all response Nucella
were placed on the top side of the tile and thereafter habitat use (risky vs. refuge) was recorded
every three days for each snail. The average proportion of snails in each response chamber was
calculated for each week [42]. Every six days, consumed mussels were removed from each
mesocosm and placed in labeled plastic bags. The experiment ran for 36 days, after which
mussels consumed in each replicate were counted and response Nucella were measured for final
trait values. Mussel consumption and growth were calculated as described for the field
experiment.

Statistical analyses - Growth and foraging data were analyzed using a two-factor analysis of
variance (ANOVA) that considered Region and Risk Treatment as fixed effects and Population as
a random effect nested within Region. For growth analyses, replicate chambers were a random
effect nested within each Risk x Population within Region combination; this was not necessary
for the per capita analysis of mussel consumption. Replicates where more than two snails had died
(N =1) were excluded from analyses. The proportion of snails in refuge habitat was analyzed using

a mixed effect model (ANOVA) that considered Region, Risk Treatment, and Week as fixed
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effects, Population as a random effect nested within Region, and Replicate chamber as a random

effect nested within each Week x Risk Treatment x Population within Region combination.

RESULTS

Field Experiment: Per capita mussel consumption varied substantially between regions,
with southern Nucella consuming significantly more mussels than northern Nucella (Region: Fi ¢
= 17.7, P = 0.0055; Fig. la). Surprisingly, we were unable to detect risk effects on mussel
consumption (Risk: Fi 6= 2.38, P = 0.174; Fig. 1a; electronic supplementary material, Table S3).
On average, southern Nucella also exhibited more tissue growth than northern Nucella (ANOVA,
Region: Fi16=16.2, P = 0.0068; Fig. 1b). Exposure to green crab risk cues reduced tissue growth
(ANOVA, Risk: Fi6=10.9, P = 0.0153) but this effect was stronger for southern (— 43.1%) vs
northern (— 16.4%) Nucella (ANOVA, Risk x Region: Fi 6= 8.58, P = 0.0248; Fig. 1b; electronic
supplementary material, Table S3). Exposure to green crab risk cues also reduced shell length
growth (ANOVA, Risk: Fi16=10.7, P =0.0165; Fig. 1c¢) and there was a trend suggesting that the
strength of this effect was stronger for southern (— 32.1%) than northern (— 11.8%) Nucella
(ANOVA, Risk x Region: Fi=5.38, P =0.0584; Fig. 1c). Overall, in the field southern Nucella
grew more in terms of shell length than northern Nucella (ANOVA, Region: Fis= 6.07, P =
0.0488; Fig. lc; electronic supplementary material, Table S3). On average, shell mass growth did
not vary by region (ANOVA, Region: F1s=3.45, P =0.113; Fig. 1d). Although exposure to risk
cues significantly reduced shell mass growth overall (ANOVA, Risk: F1 6= 8.55, P =0.0252; Fig.
1d), we were unable to detect a significant interaction with region (ANOVA, Risk x Region: Fi

=4.31, P=0.0812; Fig. 1d; electronic supplementary material, Table S3).
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The southern GoM averaged 6.62 “C warmer than the northern GoM during the experiment
(ANOVA, Region: Fis = 31.74, P = 0.0013). For northern populations, per capita mussel
consumption (ANCOVA, Temperature: Fi27=16.9, P = 0.0003; Fig. 2a), and growth in terms of
tissue mass (ANCOVA, Temperature: F1,7=27.7, P <0.0001; Fig. 2¢), shell length (ANCOVA,
Temperature: Fios=44.1, P <0.0001) and shell mass (ANCOVA, Temperature: Fi27=29.0, P <
0.0001) all increased linearly with temperature (electronic supplementary material, Table S4). For
all metrics, we did not detect a significant Risk Treatment effect or Risk Treatment x Temperature
interaction (all P > 0.40; electronic supplementary material, Table S4). Hence, the positive effects
of seawater temperature on mussel consumption and tissue growth were similar in the presence
(Mussel Consumption — Crab: Y = 0.437X — 1.22, R? = 0.32, F114= 6.51, P = 0.0230; Fig. 2a;
Tissue Growth — Crab: Y =4.60X —41.3, R2=0.42, F114= 10.1, P = 0.0068; Fig. 2¢) and absence
(Mussel consumption — No Crab: Y = 0.456X — 1.51, R? = 0.49, F113= 12.6, P = 0.004; Fig. 2a;
Tissue Growth — No Crab: Y = 6.12X — 56.8, R = 0.61, Fi,13=20.0, P = 0.001; Fig. 2¢) of risk.
By contrast, for southern populations, we were unable to detect a relationship between temperature
and per capita mussel consumption (ANCOVA, Temperature: Fis= 0.0118, P = 0.914; Fig. 2b)
in either risk treatment (Crab: Y = 1.25X — 15.2, R2 = 0.24, F1.12=3.71, P = 0.0780; No Crab: Y
=1.09X +27.6,R2=0.06, Fi,13=0.798, P = 0.388; Fig. 2b). There was a trend indicating positive
effects of temperature on tissue growth (ANCOVA, Temperature: Fi25=2.98, P = 0.097; Fig. 2d)
but this was only evident in the presence (Crab: Y = 26.8X —431.9, R? = 0.51, F112=12.5,P =
0.0041; Fig. 2d) but not absence of risk (No Crab: Y = 0.767X + 56.4, R = 0.0002, F;,13= 0.0029,
P =0.958; Fig. 2d). We were unable to detect a relationship between temperature and growth in
terms of shell length (ANCOVA, Temperature: Fi25=1.97, P =0.173) and shell mass (ANCOVA,

Temperature: Fi25= 1.80, P = 0.191; electronic supplementary material, Table S4). There was a
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trend suggesting that exposure to risk reduced per capita mussel consumption (ANCOVA, Risk:
Fi.25=3.86, P = 0.0608) and exposure to risk reduced growth in terms of tissue mass (ANCOVA,
Risk: Fi25=9.93, P = 0.0042), shell length (ANCOVA, Risk: Fi25= 8.55, P = 0.007), and shell
mass (ANCOVA, Risk: F125=4.32, P =0.0480; electronic supplementary material, Table S4). For
all metrics, we did not detect a significant Risk effect or Risk x Temperature interaction (all P >
0.11; electronic supplementary material, Table S4).

Laboratory Experiment: Nucella exposed to green crab risk cues utilized refuge habitat
more frequently than controls (Risk: Fi4=45.29, P =0.0026 ; Fig. 3). Accordingly, exposure to
risk cues in the laboratory dramatically reduced per capita mussel consumption (ANOVA, Risk:
Fi1,4=365.2, P <0.0001; Fig. 4a) but this effect was stronger for southern (— 61%) than northern
(= 41%) Nucella (Risk x Region: Fi4=14.65, P = 0.0178; Fig. 4a; electronic supplementary
material, Table S5). Consistent with the results of our field experiment, Nucella exposed to risk
cues exhibited large reductions in tissue growth (ANOVA, Risk: Fi 4= 88.3, P = 0.0007; Fig. 4b,
Table S5), and the strength of this effect varied by region (ANOVA, Risk x Region: Fi 4= 8.59,
P =0.0430; Fig. 4b; electronic supplementary material, Table S5) with southern Nucella (-
84.3%) displaying greater reductions in tissue growth than northern Nucella (— 62.6%). Unlike
the field experiment, we were unable to detect regional differences in tissue growth (ANOVA,
Region: F14=0.618, P = 0.476; Fig. 4b) and shell length growth (ANOVA, Region: F; 4= 5.85,
P =0.4747; Fig. 4c). However, exposure to risk cues significantly reduced shell length growth
(ANOVA, Risk: F14=320.5, P <0.0001; Fig. 4c), and the strength of this effect was stronger for
southern (— 82.7%) than northern (— 50.3%) Nucella (ANOVA, Risk x Region: F14=22.2, P =
0.0086; Fig. 4c; electronic supplementary material, Table S5). Shell mass growth was

substantially different across regions, with northern Nucella exhibiting greater shell mass growth
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than southern Nucella (ANOVA, Region: Fi4=28.3, P =0.0059; Fig. 4d). Shell mass growth
also decreased with exposure to risk cues (ANOVA, Risk: F14=157.2, P = 0.0002; Fig. 4d) and
Nucella from both regions responded similarly (ANOVA, Risk x Region: Fi4=2.05, P =0.23;
Fig. 4d; electronic supplementary material, Table S5).

DISCUSSION

It is increasingly clear that community dynamics can be influenced by how species
residing in the middle of food chains solve the foraging-predation risk trade-off [11]. Yet,
differing eco-evolutionary histories between prey populations and a given predator can yield
different solutions to this trade-off, potentially resulting in geographic variation in community
dynamics [43]. Recognition that local adaptation to predators can alter how individuals solve the
foraging-predation risk trade-off has facilitated conceptual links between evolutionary and
community ecology [18], but this perspective has not adequately considered the role of local
adaptation to basal resources.

Because of selection imposed by their resource-poor environment, we expected northern
snails to display a dampened response to risk cues, but their utter lack of a response in the field
experiment was surprising. These results were even more striking when juxtaposed with the risk-
induced reductions in growth (tissue mass and shell length, Fig. 1b,c) exhibited by southern
snails, which have a much longer contact history with green crabs. These findings contrast with
theory predicting that selection favors less plastic, and thus more fixed, phenotypes as the
duration of contact history between prey and invasive predators increases [44]. For example, in
the late 1990s when the green crab was not well-established in the northern GoM, smooth
periwinkles (Littorina obtusata) from the northern GoM exhibited greater antipredator plasticity

(increased shell thickening) in response to green crab risk cues than southern conspecifics [40].
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Similarly, tadpole populations having no or limited contact history with the invasive red-swamp
crayfish exhibited greater antipredator behavior in response to crayfish cues than tadpoles
sourced from populations having consistent historical exposure to this predator [45]. These
contrasting results therefore suggest that selection imposed by other factors, such as resource
availability, may shape the respective responses of northern and southern Nucella to green crab
risk cues.

Although risk cues strongly affected the growth of southern Nucella, we did not detect an
effect of risk on foraging rates in the field (Fig. 1a). The similar levels of mussel consumption
exhibited by risk and control snails may reflect the absence of refuge habitat in the response
chambers we deployed in the field [46,47]. Under natural conditions in the field, snails typically
seek food-poor refugia, such as cracks and crevices, when confronted with predation risk [48-
51]. Such refugia were absent in our response chambers and thus may have weakened the
foraging-predation risk trade-off. Hence, when given no other option, southern snails foraged at
similar rates in the presence and absence of risk cues, but their substantially reduced growth rates
in the presence of risk (Fig. 1b,c,d) suggest that southern snails experienced considerable stress
[sensu 9].

We addressed the issue of refuge limitation in the laboratory experiment by incorporating
refuge habitat into the stimulus chambers. In the laboratory, both southern and northern Nucella
used refuge habitat more often when exposed to risk cues (Fig. 3). As a result, exposure to risk
cues significantly reduced mussel consumption in both northern and southern populations (Fig.
4a). Although we did not observe regional differences in behavioral responses (refuge use) to
risk cues, the effect of risk cues on Nucella tissue and shell length growth and foraging rates

differed across the two regions (Fig. 4a,b,c). Consistent with the results of the field experiment,
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the adverse effects of risk cues on growth were stronger for southern than northern snails (Fig.
4b,c). Although we observed similar trends across field and laboratory, there were notable
differences with respect to foraging rates and growth between the two experiments (Fig. 1, Fig.
4). These differences were primarily due to regional effects that manifested in the field
experiment (Fig. 1a,b,c). Snails in the southern GoM exhibited significantly greater foraging and
growth rates than snails in northern GoM. Additionally, water temperatures experienced by
southern snails during the field experiment were much warmer than those experienced by
northern snails. Because temperature can strongly influence foraging behavior, metabolic rate,
and growth efficiency, it is likely that these differences were shaped by regional thermal regimes
[52-54]. Indeed, the positive effects of increased seawater temperature on foraging rates and
tissue growth were particularly evident for northern snails regardless of risk treatment (Figs.
2a,c).

In addition to temperature, biotic stressors such as predation risk can have similar effects
on organismal physiology by causing increased metabolic rates and reduced foraging and
growth efficiency in prey [9,54-57]. Because temperature and predation risk influence
performance in similar ways, these two stressors can have interactive effects on a variety of traits
[58-60]. For example, plasticity in response to risk cues from predatory dragonfly larvae can
strongly interact with temperature to shape life history traits in Daphnia magna populations
[58,60]. Our field experiment revealed strong temperature effects on the foraging and tissue
growth of northern snails that were similar across both risk treatments (Fig. 2a,b). By contrast,
we did not detect temperature effects on these traits for southern snails in the absence of risk, but
in the presence of risk there was a trend for increased foraging and clear increases in tissue

growth with increasing temperature. These results suggest that for southern snails there may be a
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threshold temperature above which additional incremental increases in temperature do not matter
in the absence of risk, whereas the stress imposed by predation risk favors enhanced leveraging
of the postitive effects of increased temperature on foraging and growth.

Although our field experiment revealed regional variation in how prey residing in the
middle trophic level respond to predation risk in their native environments, it cannot provide
robust insight into the mechanisms driving this variation because northern and southern snails
experienced different thermal regimes. Hence, we could not fully parse the effects of risk cues
and water temperature in the field. Our lab experiment allowed us to explore this issue further,
because northern and southern snails were exposed to the presence and absence of risk cues
under the same thermal regime (i.e., the warmer water temperatures typical of the southern
GoM). Interestingly, the results of the lab experiment supported the general trend observed in the
field: under common thermal conditions, southern snails still displayed a stronger response to
risk cues than northern snails (Fig. 4a,b,c).

Because northern snails experienced warmer water temperatures in the laboratory than
they typically encounter in their native environment, their growth and foraging rates may have
been influenced by countergradient variation [61]. Countergradient variation can become evident
when organisms perform better in other environments relative to their native site [44,62]. Hence,
northern Nucella may have experienced enhanced growth when maintained under seawater
temperatures typical of the southern GoM. If our results were shaped solely by countergradient
variation, then we would expect to see its effects in both risk and control treatments [62].
Instead, in the absence of risk we found that mussel consumption was similar for northern and
southern Nucella, but in the presence of risk northern snails consumed more mussels than

southern snails (Fig. 4a). These patterns suggest that selection has favored less risk averse
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behavior among northern snails perhaps because of the scarcity of preferred food (i.e., barnacles
and mussels) in their native environment [33,34]. By contrast, southern snails may be able to
engage in more risk averse foraging behavior in their native environment because barnacle and
mussel recruitment and availability is dramatically higher in the southern versus northern GoM
[33].

One might suggest that the lack of a response to risk by northern Nucella during the field
experiment reflects either a general naiveté to green crabs as predators or an inability to detect
green crab risk cues (Fig. 1, Fig. 2a,c). This is clearly not the case because northern Nucella
responded strongly to green crab risk cues in the laboratory (Fig. 4). It is also possible that
ambient background crab cue may have influenced the results of our field experiment, but
previous work [40,51] suggests that these effects are relatively minor because the influence of
risk cues was detected even in areas where ambient crab density was high. Indeed, in the current
study we again detected a strong response to crab risk cues in the southern GoM (Fig. 1b,c,d).
Although green crabs have recently become abundant in the northern GoM, they have been
established in the southern GoM for a much longer period of time [37,38]. Given their respective
contact histories with the green crab, previous studies imply that northern snails should display a
relatively greater response to risk cues even when ambient background cues may be present
[40,44,51]. In any case, we suggest that the relatively weak response to risk among northern
Nucella may reflect selection imposed by the lack of food availability in this region. If persistent
low recruitment of barnacles and mussels creates an environment where starvation is a common
form of snail mortality, particularly among juveniles who may be too small to consume

alternative prey items such as thick-shelled mobile invertebrates (e.g., other mollusks including

15



343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

limpets and littorinid snails), then selection driven by starvation may diminish the influence of
risk on solutions to the risk-foraging trade-off in the northern GoM.

We argue that the differences in risk sensitivity among northern and southern populations
may reflect selection imposed by geographic differences in food availability but plasticity (both
within and across generations via transgenerational plasticity) in response to water temperature
may interact with the effects of predation risk to influence foraging and growth. Such positive
temperature effects on foraging and tissue growth operated for northern snails in both the
presence and absence of risk, but for southern snails we were only able to detect temperature
effects on tissue growth in the presence of risk. Hence, northern and southern snails clearly differ
in their responses to the interactive effects of risk and temperature and this may reflect
geographic differences in the relative contributions of genetic adaptation and plasticity. Future
research that leverages common garden experiments to minimize the effects of environmental
history (including maternal effects) will allow a more robust test of this hypothesis.

Geographic variation in the responses of northern and southern snails to predation risk
will likely have community-level implications. Trait-mediated trophic cascades, where the non-
consumptive effects of predators on prey residing in middle trophic levels can indirectly benefit
basal trophic levels, are one of the more notable ways that variable responses to predation risk
can affect community structure and dynamics [8,10,19,20,36]. Hence, differences in how
Nucella from different regions respond to predation risk may influence the relative strength of
trait-mediated trophic cascades in the GoM. Seawater temperatures in the laboratory experiment
were generally representative of potential future ocean temperature scenarios [63] for the
northern GoM, and under these conditions northern snails consumed more mussels than southern

snails (Fig. 4a). Hence, the strength of trait-mediated trophic casades in the northern GoM may
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remain weak relative to the southern GoM with ongoing increases in ocean temperatures under
climate change [64]. Because basal resources are scarce in the northern GoM, we suspect that the
foraging and growth trends observed in the laboratory under abundant food would not manifest
in the field. Such resource scarcity coupled with heightened metabolic demands associated with
warmer temperatures may further enhance selection pressure for less risk-averse behavior [52].
This scenario suggests that the non-consumptive effects of green crabs may further diminish in
the northern GoM, but more work is needed to fully explore how community dynamics in this
system may change under future climate scenarios.

Our field and lab experiments suggest that prey residing in the middle of food chains
from distinct geographic regions solved the foraging-predation risk trade-off differently. In the
northern GoM, selection shaped by basal resource availability is likely operating because the risk
of starvation may have superseded the mortality risk caused by green crabs. In the southern
GoM, abundant food allows snails to forgo foraging under periods of heightened predation risk
thereby promoting selection for more risk-averse behavior. More broadly, because food web
diversity is dominated by middle trophic levels (60% of total species, [65]), we suggest that the
“middle-out” perspective [11] will be highly applicable in numerous systems. Moreover,
inclusion of eco-evolutionary links with basal trophic levels will enhance our understanding of
the processes shaping community structure and dynamics especially as the effects of climate
change on individual foraging decisions [60], basal resource availability [66], and predator

invasions [67] continue to unfold.
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FIGURE LEGENDS

Figure 1: Mean (+ SE) (a) mussel consumption, and growth in terms of (b) tissue mass, (c) shell

length, and (d) shell mass for snails (Nucella lapillus) from the northern and southern Gulf of

Maine after 28 days of exposure to the presence (Crab) and absence (No Crab) of green crab

(Carcinus maenas) risk cues in the field.
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Figure 2: Linear regressions of per capita mussel consumption (a, b) and tissue growth (c, d) as
a function of mean seawater temperature after 28 days of exposure to the presence (Crab) or
absence (No Crab) of green crab risk cues in the field. For northern snails, both mussel
consumption and tissue growth increased with temperature in the presence and absence of risk
cues. For southern snails, we were unable to detect a relationship between mussel consumption
and temperature in either risk treatment. Tissue growth in southern snails increased with

temperature in the presence of risk. See Results for further details.

Figure 3: Mean (+ SE) proportion of time spent in refuge habitat by snails from the northern and
southern Gulf of Maine over 28 days of exposure to the presence (Crab) and absence (No Crab)

of green crab risk cues in the laboratory.

Figure 4: Mean (+ SE) (a) mussel consumption (a), and growth in terms of (b) tissue mass, (c)
shell length, and (d) shell mass for snails from the northern and southern Gulf of Maine after 36
days of exposure to the presence (Crab) and absence (No Crab) of green crab risk cues in the

laboratory.
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