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The many-body decay of extended collections of two-level systems remains an open problem. Here, we
investigate whether an array of emitters coupled to a one-dimensional bath undergoes Dicke superradiance.
This is a process whereby a completely inverted system becomes correlated via dissipation, leading to the
release of all the energy in the form of a rapid photon burst. We derive the minimal conditions for the burst
to happen as a function of the number of emitters, the chirality of the waveguide, and the single-emitter
optical depth, both for ordered and disordered ensembles. Many-body superradiance occurs because the
initial fluctuation that triggers the emission is amplified throughout the decay process. In one-dimensional
baths, this avalanchelike behavior leads to a spontaneous mirror symmetry breaking, with large shot-to-shot
fluctuations in the number of photons emitted to the left and right. Superradiant bursts may thus be a
smoking gun for the generation of correlated photon states of exotic quantum statistics.
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The decay rate of a single emitter is dictated by its
radiative environment [1-3]. This realization contributed to
the development of cavity quantum electrodynamics
(QED). Here, highly reflecting mirrors isolate a single
optical mode, yielding a localized (or zero-dimensional)
reservoir for the emitter, which enhances its decay into the
cavity. One-dimensional (1D) baths pertain to “waveguide
QED,” where an atom is interfaced with a propagating
optical mode. Recent years have seen tremendous exper-
imental progress in the field, with platforms including cold
atoms coupled to optical nanofibers [4-8], cold atoms
[9-11] and quantum dots [12,13] coupled to photonic
crystal waveguides, and superconducting qubits coupled
to microwave transmission lines [14—16]. Besides altering
decay, interfacing several emitters with 1D propagating
modes allows engineering of long-range atom-atom inter-
actions [17-20].

The environment also determines the many-body decay
of a multiply excited ensemble. A paradigmatic example of
many-body decay is Dicke superradiance: a collection of
fully inverted emitters phase locks as they decay, emitting a
short bright pulse of photons [21,22]. Despite its many-
body nature, this problem is solvable in a cavity due to the
permutational symmetry that restricts the dynamics to a
small subset of states of the (otherwise exponentially large)
Hilbert space. In extended systems, atom-atom interactions
depend on their positions and many-body decay gene-
rates complex dynamics [23-33] that remains to be fully
understood.

In free space, superradiance can generate highly direc-
tional emission due to the sample geometry [22,34-36].
Symmetry in emission direction can also be broken
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spontaneously, as atom-atom correlations lead to “memory
effects”: detecting a photon in one specific direction
increases the likelihood for that detector to record sub-
sequent photons. As the direction of emission of the first
photon is random, and due to the avalanchelike nature of
the process, Dicke superradiance has been predicted to give
rise to large shot-to-shot fluctuations in the angular dis-
tribution of the far field intensity, both for atomic ensem-
bles [21,37-39] and Bose-Einstein condensates [40].
However, the many optical field modes make the theoreti-
cal analysis of this phenomenon challenging.

Here, we investigate the decay of a fully inverted array of
emitters into a 1D bath. Leveraging previous work [30] to
bypass the exponential growth of the Hilbert space by
studying early dynamics, we set constraints on the number
of emitters needed to observe superradiance. We investigate
chiral and bidirectional waveguides interfaced with ordered
and disordered ensembles. In one dimension, due to the
confined nature of the optical fields, the buildup of direc-
tional correlations translates into spontaneous breaking of
mirror symmetry, giving rise to an emergent chirality. We
compute the probability distribution of directional emis-
sion, which is very broad due to large shot-to-shot
fluctuations. The distribution is shown to evolve with time,
as Hamiltonian evolution scrambles the correlations
imprinted by the dissipative process, thus washing away
the memory of the system.

We consider N emitters of resonance frequency @, cou-
pled to a 1D photonic channel, as shown in Fig. 1(a). The
waveguide mode mediates interactions between emitters.
Tracing out the photonic degrees of freedom under a
Born-Markov approximation, the evolution of the emitters’

© 2023 American Physical Society
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density matrix in the rotating frame is described by the
master equation [41,42]
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Here, the Hamiltonians H; (z) allow for distinct coupling to
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left- and right-propagating waveguide modes (at rates I'; (g,
for a single emitter), and read [43]
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where 6!, = |g;)(e;| is the coherence operator between the
ground and excited states of emitter i at position z;, kp is
the photon wave vector, and H.c. stands for Hermitian
conjugate. The total decay rate of a single emitter into the
waveguide is I'yp =17 +T',. The Lindblad operators
L,[p] and L, [p] describe the decay of emitters to guided
and nonguided modes, respectively, and read
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where T, = I, etkin(zj=2) 4 [pe~ikin(z=2) and ) =15,
We consider that nonguided decay is not collective, either
because it represents local parasitic decay or because
emitters are far separated and interactions via nonguided
modes are negligible.

Emission of photons into the waveguide is correlated due
to the shared bath. This is captured by collective jump
operators found by diagonalizing the N X N Hermitian
matrix [ of elements F‘?j [35,37]. Photons can only be
emitted into the left- or right-propagating modes, and thus
[ has only two nonzero eigenvalues and we can write

L= Y 00,0 -p0l0, - 010,0). (4)
v=+,—

where @, are collective jump operators and I, are
collective decay rates, found as the eigenvectors and
eigenvalues of [, respectively. The {+, —} notation indicates
that O (~) generates a photon in a symmetric (antisymmetric)
superposition of left- and right-propagating modes.

A fully inverted initial state, |y (z = 0)) = |e)®", will
decay due to vacuum fluctuations, leading to emission of
photons into the waveguide at a (normalized) rate
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FIG. 1. Many-body superradiance from emitters coupled to a

waveguide. (a) Schematic: N emitters of lattice constant d interact
via a 1D bath, which supports propagation of photons of wave
vector £kp. Single-emitter decay rates into left- and right-
propagating modes of the waveguide are I'; /z, respectively, and
any other parasitic decay is denoted by I". (b) Emission rate into
the waveguide for an array of N = 16 emitters coupled to a
bidirectional (solid lines) and a chiral (dotted) waveguide with
I'p =3I, and " =0. Dashed line shows the bidirectional
waveguide calculation without Hamiltonian contribution, which
is significant at late times (inset).

For large enough N and I = 0, a superradiant burst occurs
for any lattice constant, as shown in Fig. 1(b) for ordered
arrays. Calculations are performed using quantum trajec-
tories [44-46]. Maximal superradiance occurs in a bidi-
rectional waveguide (i.e., I'y =17), at the so-called
“mirror configuration” (k;pd = nzx with n € N [51-53]),
as this situation corresponds to that studied by Dicke.

Dissipative dynamics are the main driving mechanism
for the burst. The coherent (i.e., Hamiltonian) interactions
contribute significantly only well beyond the time of
maximum emission. At later times the Hamiltonian plays
an important role, leading to oscillations in emission as it
cycles the atoms between dark and bright states [see inset to
Fig. 1(b)].

As we postulated in prior work [30], the minimal
condition for a burst is that the first photon enhances the
emission of the second. The same insight can be used to
derive a condition for a superradiant burst into one
particular channel, even if emitters can decay to more than
one reservoir (as happens in the presence of finite I'). To do
so, we adapt the calculation from Ref. [28] of “directional
superradiance” and define a second-order correlation func-
tion conditioned on measurement only of the waveguide
modes
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FIG. 2. Predictions of superradiance for ordered and disordered ensembles. (a) Collective decay rates into a bidirectional (solid lines)
and a chiral (dotted) waveguide for N = 8. Single-emitter decay rates for the chiral waveguide are I’ = 3I";. (b) Crossover between
burst (dark blue) and no-burst (pale blue) regions in ordered arrays coupled to a bidirectional waveguide. (c) Probability of having a burst
in a bidirectional waveguide for spatially disordered ensembles of emitters randomly placed over a section of length kypL > 27 [46].
In (b),(c) the red line shows the emitter number that guarantees a burst regardless of separation, as given by Eq. (10).

Here, sums over £ account for waveguide emission, while
sums in i account for local decay. The minimal condition
for superradiant emission of photons into the waveguide is
found by imposing 3 (0) > 1. Importantly, this condition
selects the processes in which the photon emission rate is
enhanced into the waveguide only.

For an ensemble of initially inverted emitters this
condition becomes [see Supplemental Material [46]]

Var(@) S (7)
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where Var(-) is the variance. This expression is universal; it
applies to systems with any number of emitters, in
disordered or ordered spatial configurations, and coupled
to waveguides with any degree of chirality. A burst occurs if
there are only a few dominant decay channels (maximizing
the variance), and if collective decay overcomes local loss.
As emission is constrained to one dimension, there are at
most two bright channels, while N — 2 are dark (i.e., of zero
decay rate). Therefore, the conditions for a burst are more
easily satisfied than for arrays in free space [30,31,54].
Restriction of emission into a 1D bath eliminates most of
the competition between different imprinted phase patterns,
enabling a more robust phase locking than in free space,
where photons can be emitted in all directions.

For ordered arrays of lattice constant d, the two collec-
tive decay rates admit the analytical form

L \/NZ(FL “Lif | siVkipd

(8)
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The two decay rates are generally distinct and finite, as
shown in Fig. 2(a), leading to competition between the +
channels. Different lattice constants give rise to situations
ranging from the Dicke model with a single nonzero
collective decay rate to maximum competition, where
the decay rates are degenerate due to an emergent

translational symmetry [46]. For chiral waveguides there
is no degeneracy, as any level of chirality breaks translation
symmetry. In this case, rates are almost independent of the
lattice constant, as interference effects are suppressed.
The minimal burst condition for ordered arrays reads

N(T +T%)
i

I Tk sin’ Nk pd r
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Large parasitic decay quenches the superradiant burst for
small N, as shown in Fig. 2(b). However (and regardless of
the level of independent decay), a burst is always recovered
if the number of emitters is increased beyond a certain
threshold.

For disordered systems we obtain the minimal burst
condition in terms of single-emitter decay rates by placing a
lower bound on the trace of T2, as the eigenvalues do
not admit an analytical form. As demonstrated in the
Supplemental Material [46], Tr[l[?] > N>(T% +17), and
the burst is guaranteed to happen for

(10)

Disordered systems saturate this bound [see Fig. 2(c)],
while ordered systems may display a burst for lower N due
to constructive interference effects [see Eq. (9) and
Fig. 2(b)].

Generically, correlations imparted by the jump operators
not only produce an accelerated emission of the second
photon, but also of subsequent ones. This avalanchelike
nature of photon emission implies that an initial fluctuation
is amplified throughout the decay process. Shot-to-shot
fluctuations in directionality have been predicted in free
space [37,40]. In a 1D bath, however, these fluctuations are
more striking as there are only two directions, and the
fluctuations break mirror symmetry. For instance, if the first
photon is measured by a detector to the right, it is very
likely that subsequent photons are also detected to the right.
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FIG. 3. Emergence of chirality via many-body decay. (a) Superradiant decay leads to directionality that can be investigated by

detectors which count the number of right- and left-propagating photons. (b)—(d) Directional photon imbalance for 16 emitters radiating
into a symmetric (top) and asymmetric (bottom) waveguide, with I = 0. For the latter, I'; = 3T, . The lattice constant is (b) k;pd = &

and (¢),(d) k\pd = =/ V3. In (c),(d), we investigate short and long times respectively. Only trajectories that reach |g)®" before time ¢ are
accounted for, with F denoting the fraction of finished trajectories.

This process gives rise to an emergent chirality even in the
case of a bidirectional waveguide. To explore this physics,
we unravel £ [p] in terms of a different pair of operators,

+ikypdj

R 1Y N A
OL(R):\/—NZeH gz]eo(\/f;‘0+(i>)l\/r_o_, (11)
=1

which describe the emission of photons to left- and right-
propagating modes with rates I'; ().

The direction of the first photon is stochastic due to the
uncorrelated initial state, with probability depending
only on the relative decay rate of each operator, i.e.,
Prr) = U'r)/Tip- Emergent chirality is already evident
at the level of two emissions. If all the photons are emitted
into the waveguide (i.e., I" = 0), the detection probabilities
for the second photon to be the same as or different to the
first one are

2
~(2
G70)=2-2,

N (12a)

)
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where 515}(0) = (O10}0,0,)/ ((0.0.)(0;0y)).

For large N, the second photon is twice as likely to
follow the direction of the first. Subsequent jumps further
enhance the chirality [46] (except in the mirror configu-
ration where @L(R) are identical). One can attribute this
enhanced chirality to the correlations produced by atom-
atom interactions or to the photon detection (far-field
measurement is unable to distinguish which atom emitted
the photon thus preparing a superposition state [33,39,55]).

For bidirectional waveguides, this emergent chirality is
akin to a process of spontaneous symmetry breaking,

where mirror symmetry is broken dynamically. A large
superradiant burst implies that, for a single realization, most
photons are emitted in one direction. Of course, the
symmetry is recovered when averaged over realizations,
as the first photon is randomly emitted into either direction.

We characterize this behavior by counting the photons
emitted in both directions and computing the “photon
imbalance,” as shown in Fig. 3(a). For a single quantum
trajectory—in which atoms evolve from |e)®" to |g)® via
coherent evolution with a non-Hermitian Hamiltonian and
decay by the action of jump operators—we define the
photon imbalance as the difference in the number of times
that the two jump operators act. This corresponds to
counting the final number of photons emitted to the right
(Ng) and left (N ;) with imbalance I = Ny — N; . The set of
possible photon imbalances I has a probability distribution,
P(I). The imbalance distribution depends on the lattice
constant and the degree of single-emitter chirality of the
waveguide.

In the mirror configuration, as the left and right operators
are identical, the normalized probability of emitting a photon
in each direction reduces to approximately p; g atany stage
of the decay. Hence, the photon imbalance roughly follows a
binomial distribution, as shown in Fig. 3(b). For the
symmetric case, the peak at I = 0 reflects the large number
of possible emission records that lead to zero imbalance.
Minor discrepancies from the binomial originate from the
action of the Hamiltonian in between jumps (only for a chiral
waveguide) and noise from the finite number of trajectories.

Away from the mirror configuration, the repeated action
of a jump operator enhances its probability of acting again,
thus amplifying the initial fluctuation and either breaking
mirror symmetry (for a bidirectional waveguide) or col-
lectively enhancing chirality (for a chiral one). Repeated
action leads to emission that finishes at early times because
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it produces strongly enhanced photon emission, so the time
between jumps is small and Hamiltonian evolution is
negligible. This is shown in Fig. 3(c). For a bidirectional
waveguide, almost all photons are emitted in one direction.
A mildly chiral waveguide becomes almost perfectly chiral.

Hamiltonian evolution becomes relevant for the imbal-
ance statistics at later times [56] by scrambling the states
and reducing enhancement (yet still giving rise to a
distribution with a very large variance). For a bidirectional
waveguide, the competition between enhancement and
large number of pathways that yield / = 0 produce an
almost flat imbalance distribution, as shown in Fig. 3(d).
For the chiral waveguide, the chirality enhancement is
reduced. Nonetheless, the probability of detecting all
photons in a single direction is much greater than the
probability predicted by the binomial distribution for
independent emission. This resembles a recent prediction
for multilevel atoms in a cavity, where there is a higher
probability of large imbalances between ground state
populations compared to single-atom predictions [57].

In conclusion, we have established a condition for
enhanced emission into a preferential channel when emit-
ters decay to multiple reservoirs. We have found the
minimal conditions for the emission of a superradiant burst
into a 1D bath and determined that the burst should be
observable in different experimental setups, such as super-
conducting qubits coupled to transmission lines and atoms
coupled to nanofibers. Many-body superradiance gives rise
to an emergent chirality in the system, with large amounts
of photons being emitted in one direction. As shown in the
Supplemental Material [46], large photon imbalances dis-
appear with increased I”. Nevertheless, pronounced
imbalances should be observable in state-of-the-art exper-
imental setups with superconducting qubits, where I" ~
0.01T";p [15], and quantum dots, where I ~ 0.1, [13].

Giant atoms (emitters coupled to the waveguide at
multiple points [58—63]) also exhibit superradiance when
the parasitic decay is smaller than the individual decay into
the waveguide [46]. The interference of each emitter with
itself modifies the individual decay rate, and certain
configurations result in a decoherence-free system with
non-zero coherent interactions [59]. Atoms near these
configurations can exhibit monotonic decay. Interestingly,
the additional tunability of the coherent interactions may be
a resource to compensate the scrambling produced by the
“bare” Hamiltonian, thus ensuring a more dissipative
dynamics and a larger burst.

An interesting avenue for future research is to investigate
the quantum state of photons produced via many-body
decay. The mirror configuration produces multiphoton
states with similar metrological properties to Fock states
[64-68]. However, in this configuration, photons need to be
recombined into a single pulse, as they are emitted in both
directions. This issue should be partially overcome at
different lattice constants or in chiral waveguides.

However, in these cases, dynamics may populate dark
states, which are prevalent at low excitation densities
[7,20,69,70], trapping the last few photons in the pulse.
Moreover, the direction of emission is initially random,
though this may be overcome by stimulated emission
[71,72]. Other promising lines of inquiry include the
possibility of using measurement and feedback control
on the output light to access entangled dark states and the
investigation of non-Markovian effects in many-body
decay [61,73-75].
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