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We study incentive-compatible mechanisms that maximize the Nash Social Welfare. Since traditional incentive-
compatible mechanisms cannot maximize the Nash Social Welfare even approximately, we propose changing
the traditional model. Inspired by a widely used charging method (e.g., royalties, a lawyer that charges some
percentage of possible future compensation), we suggest charging the players some percentage of their value of
the outcome. We call this model the percentage fee model.

We show that there is a mechanism that maximizes exactly the Nash Social Welfare in every setting with
non-negative valuations. Moreover, we prove an analog of Roberts theorem that essentially says that if the
valuations are non-negative, then the only implementable social choice functions are those that maximize
weighted variants of the Nash Social Welfare. We develop polynomial time incentive compatible approximation
algorithms for the Nash Social Welfare with subadditive valuations and prove some hardness results.
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1 INTRODUCTION

The field of Mechanism Design aims to develop and analyze algorithms for strategic players. In a
typical scenario, we have a planner interested in implementing some social goal. The challenge is to
design incentive-compatible mechanisms that achieve this social goal, despite the players behaving
in a strategic way that might be misaligned with the desired social goal.

In this paper, we are interested in mechanisms that are dominant strategy incentive compatible
when the values of the players are private information. As for the social goals — many different ones
are studied in the literature. However, largely speaking, it is fair to say that (with some very notable
exceptions) the two most common and well-studied objectives are social welfare maximization
[Vickrey, 1961, Clarke, 1971, Groves, 1973] and revenue maximization [Myerson, 1981]. These
two social goals are very different: social welfare maximization (i.e., outputting an outcome that
maximizes the sum of values of the players) is an objective that is defined for each instance,
independently of the assumptions on the strategic behavior of the players. In contrast, revenue
maximization is relative — the quality of a mechanism is measured with respect to its closeness to the
revenue of some “ideal” mechanism.
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Taking a bird’s-eye view, most will agree that welfare maximization is by far the most successful
“benchmark-free” objective in the mechanism design literature and that good mechanisms for other
“benchmark-free” objectives usually exist only for quite restricted settings (e.g., makespan minimiza-
tion in the so-called “single parameter” settings). This grim situation is, of course, not due to the
incapability of mechanism designers: it is possible to prove that incentive-compatible mechanisms
can only achieve few objectives. In fact, Roberts theorem [Roberts, 1979] tells us that social welfare
maximization is unique in that in some settings, the set of implementable objective functions includes
only slight variants of social welfare maximization.

Indeed, we have a good understanding of which social goals can and cannot be achieved by
incentive-compatible mechanisms in many settings of interest. Obviously, being able to mathemati-
cally prove that incentive-compatible mechanisms are not powerful enough in some settings is of
significant academic interest. Still, it is disappointing news from a practical perspective. Fairness is a
case in point. In recent years we have seen a surge of interest in fairness. Notions such as EF1 ([Bud-
ish, 2011] envy freeness up to one good), EFX ([Caragiannis et al., 2019] envy freeness up to any
good), and the Nash Social Welfare (the product of the values of the players) have been extensively
studied. Much of the work focused on existence and “algorithmic” issues: does a “fair”” outcome exist
in every instance? Can we find this outcome efficiently? Yet, even for the most extensively-studied
fairness notions, we have no good mechanisms that implement them if the agents are strategic, except
perhaps for relatively simple settings (e.g., [Babaioff et al., 2021, Cohen et al., 2011, Cole et al.,
20131

This paper attempts to bridge the chasm between incentives and fairness. We aim to design
incentive-compatible mechanisms for one of the most prominent fairness promoting objectives, the
Nash Social Welfare. Unfortunately, it is not hard to see that dominant strategy mechanisms cannot
always output the allocation with the highest Nash Social Welfare, nor can they always output an
allocation that provides a reasonable approximation to it?.

In this paper we suggest to reconsider the traditional payment model. The taxation principle tells
us that in the traditional model of mechanism design, each player is (essentially) facing a menu that
sets a price for each possible alternative. This corresponds to a common real-life fee type known
as a “fixed fee”. However, another common fee type is the “percentage fee”. Percentage fees might
be used, e.g., by a lawyer who may charge the client a portion of the future compensation or in a
lease agreement of a retail store that commits to paying a percentage of its sales as rent. Royalties
are another example for percentage fees.

This paper’s take-home message is that percentage fees are an efficient way of constructing fair
incentive-compatible mechanisms. We view our results as a way of escaping the dead end that the
traditional mechanism design model leads us to as far as implementing fairness notions is concerned.

! An interesting singular exception is running the VCG mechanism when all players are unit demand: VCG outputs not only
the welfare maximizing solution but also one that is envy-free [Leonard, 1983].

2To see this, consider a dominant strategy algorithm for two players, Alice and Bob, and two items, a and b. The valuation of
both players is additive. Consider an instance where Alice’s valuation is 1 for item a and x for item b, and Bob’s value is x
for a and x3 for item b. Suppose that x >> 1. The only allocation that reasonably approximates the Nash social welfare is to
give a to Alice and b to Bob. Now consider an instance where Alice’s values are the same, but Bob’s values are ¢ for item a
and t + x3 for item b, ¢ >> x. By weak monotonicity, Bob is always allocated item b, and possibly also item a. However,
Bob cannot be allocated both items because then the Nash social welfare of the outcome will be 0. Thus, the mechanism
must output the allocation that gives Alice item a and Bob item b. Note that the Nash social welfare of the allocation that
gives Alice item b and Bob item a is bigger by a factor of x. Thus no dominant strategy mechanism can obtain a reasonable
approximation to the Nash social welfare.
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Our Model. This work primarily studies fair dominant-strategy mechanisms in a combinatorial
auction setup. However, the model is defined for the most general mechanism design setting, and
some of our results also apply to this general model.

In the most general setup, we have a set N of players and a set A of alternatives. Each player i has
a valuation function v; : A — R. The set of all possible valuation functions of player i is denoted V;.
A (direct) mechanism is composed of a social choice function f : V; -- -V, — A and a payment
functionp : V; -- -V, - R"™.

Much of the mechanism design literature assumes that the profit of player i in the instance
T = (v1,...,0n) is v;( f(v (@)) pl(_) and looks for dominant strategy mechanism given this
definition of proﬁt. Le., for each player i, valuations v;, v; € V; and valuations of the other players
v_; it holds that

vi(f(vi, v-1)) = pi(vi, v-i) > vi(f (v, v-1)) = pi (v}, v-i)
We refer to this model as the traditional model.

In contrast, in the percentage fee model each player i is charged a fraction of his value: pi@) ) -
vi(f(?)). Thus, the profit of player i in the instance T = (vy,...,v,) is vi(f(?)) - (1 - pi(?})).
We are also interested in dominant strategy mechanisms in this model, but note that the definition
of dominant strategy now considers the new profit model. That is, for each player i, valuations
v;,v; € V; and valuations of the other players v_; it holds that

(1= pi(vi,v-)) - vi(f (Vi v-1)) = (1= pi(v], v-1)) - vi(f (v], v-4))
We will mainly be interested in individually rational mechanisms with no positive transfers. That is,
for every i, p;(-) takes values in [0, 1) only>. We stress that the players are still quasilinear as before.
I.e., they want to maximize their value for the selected alternative minus the payment. We call this
model the percentage fee model.

Our main focus in this paper is maximizing the Nash Social Welfare in combinatorial auctions by
dominant strategy mechanisms in the percentage fee model. In a combinatorial auction, we have a set
N of players (|[N| = n) and a set M of heterogeneous items (|M| = m). Each player i has a valuation
function v; : 2M — R that gives a value for each possible subset of the items. We assume that each
valuation function v is non-decreasing and v(@) = 0. One common goal is to maximize the social
welfare: 3;v;(S;). In this paper, our primary focus is to maximize the Nash Social Welfare (NSW),
where the NSW of an allocation Sy, . . ., S, is the geometric mean of the valuations (7, v;(S; Nn,

We consider several standard classes of valuations in this paper. A valuation v is called additive
if for every bundle S, v(S) = Zjcsv({j}). v is subadditive if for every S, T, v(S) + v(T) > v(SUT).
v is XOS if there exists additive functions ay, ..., a; such that for every bundle S, it holds that
v(S) = max; <j<¢ a;(S).

Applicability of Mechanisms with Percentage Fees. Mechanisms with percentage fees are
applicable whenever the auctioneer can learn how much a player values the selected outcome. We
stress that the auctioneer does not necessarily learn the values of other unrealized outcomes. For
example, one can auction a license for the right to use some asset in exchange for a fraction of the
future revenue, where the latter can be verified, e.g., by official tax returns. Our mechanisms are
particularly attractive when the auction goal is to maximize fairness. One extreme example would
be land reforms, where (typically) agricultural land is redistributed by the government to maximize
both efficiency and equality. Land reforms also take a less radical form: In some countries, e.g.,

3We do not allow pi(+) = 1to rule out trivial implementations that make little economic sense, like setting p; (J) = 1 for
every player i in instance @. In this implementation the profit of all players is always 0 (since if alternative a is chosen the
mechanism charges each player i its full value v;(a)), so pairing this payment function with any allocation function will give
an incentive compatible mechanism.
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Israel, it is not uncommon to repartition land rights and move land from a “strong” municipality
to a neighboring, economically weaker one. Even in the US, resources are sometimes distributed
to promote equality, e.g., gaming rights for native American tribes. Similarly, our mechanisms are
applicable when resources are allocated internally within a large organization or corporation, where
the management can evaluate the value of the allocated resources for the winning units.

Our Results I: Incentive Compatible Mechanisms that Maximize the NSW. The Nash Social
Welfare has been heavily studied recently in Algorithmic Game Theory. Its game theoretic properties
have been analyzed (e.g., [Caragiannis et al., 2019]) and the possible approximation ratios achievable
in different settings have been studied (e.g., [Cole and Gkatzelis, 2015, Anari et al., 2017, Barman
et al., 2018, Li and Vondrik, 2022]). Unfortunately, as discussed earlier, no dominant strategy
mechanisms can maximize the NSW in the traditional model. In the percentage fee model, we
observe the following in Subsection 2.1:

Theorem: In the percentage fee model, the social choice function that selects an alternative that
maximizes the Nash Social Welfare is implementable as long as all valuations are positive or all
valuations are non-negative and there is a “null” alternative with value 0 for all players.

We have that just as the VCG mechanism is always applicable in the traditional model, maximizing
the NSW is possible in the percentage fee model. Recall that in the traditional model, the VCG
mechanism is unique as Roberts theorem tells us that if the valuations are unrestricted, then the only
implementable social choice functions are weighted variations of maximizing the social welfare. In
Subsection 2.2 we prove that in the percentage fee model, only Nash Social Welfare maximization
variants are implementable.

Theorem: Let M be an incentive compatible mechanism in the percentage fee model when the
valuations are positive but otherwise unrestricted. Suppose that the size of the image of the allocation
function of M is at least 3. Then, there exist constants «, (for each a € A) and f; (for each player
i) such that in every instance (v, ..., v,) the allocation function of M outputs an alternative that
belongs to arg max,eq g - [1; vi(a)Pi.

We do not prove this theorem directly but instead present a reduction from Roberts theorem. The
reduction relies on a simple yet powerful observation. Given a positive valuation v, let the valuation
logv : 2M — R be defined as logv(S) = log v(S). Now, let V be a class of non-negative valuations
and let logV denote the class of valuations: logV = {logv : v € V}. We show a one-to-one
and onto correspondence between mechanisms in the traditional model when each valuation is in
logV and mechanisms in the percentage fee model when each valuation is in V. Note that if V
is the set of unrestricted positive valuations, then logV is the set of unrestricted valuations. Thus,
Roberts theorem applies to the set of implementable social choice functions in the traditional model
when each valuation is in logV. We use this to characterize the set of implementable social choice
functions when the valuations are in ‘V in the percentage fee model.

We also study the set of implementable functions in the single parameter setting. We focus on
binary single parameter domains where for each player i, the set of alternatives A is divided into
“winning” alternatives ‘W; and “losing” alternatives £;. For every player i and valuation v; € V;
there is a value h,, such that v;(a) = h,,, for all a € ‘W;. For every player i, there exists a value [; > 0
such that for every valuation v; € V; and alternative a € £;, v;(a) = I;. Unlike implementability in
rich domains, in single-parameter settings we get that the set of implementable allocation functions
is identical in the percentage fee model and in the traditional model (Subsection 2.3):
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Theorem: Let f be an allocation function when the domains of all players are binary single
parameter. Then, f is implementable in the percentage fee model if and only if f is monotone* for
each player i.

Our Results II: Computationally Efficient Approximation Mechanisms. We have seen that
maximizing the Nash Social Welfare is possible with percentage fees. However, maximizing the
Nash Social Welfare is NP-hard even in very simple settings, e.g., when the valuations are additive.
Thus, much work has focused on developing approximation algorithms for the NSW, e.g., a constant
approximation for combinatorial auctions with submodular valuations [Li and Vondrak, 2022, Garg
etal., 2023].

One could hope that the correspondence that is used to obtain the analog of Roberts theorem would
enable the “automatic conversion” of every computationally efficient approximation mechanism in
the traditional model to an approximation mechanism in the percentage fee model with a compa-
rable approximation ratio. Unfortunately, the correspondence does not preserve the approximation
ratio. We thus must develop new computationally efficient and incentive-compatible approximation
mechanisms for the percentage fee model.

One obstacle in constructing good incentive compatible mechanisms is that simple mechanisms
for maximizing the social welfare do not provide any reasonable approximation ratio for the Nash
Social Welfare. For example, both the mechanism that allocates the grand bundle to the player that
values it the most and the mechanism that randomly allocate the items provide an n approximation to
the social welfare, but the first mechanism provides no approximation to the NSW and a random
allocation might output an instance with non-zero NSW with exponentially small probability>. To
overcome this obstacle, we “derandomize” this random allocation mechanism and get a deterministic
mechanism that runs in polynomial time when the number of players n is constant (Subsection 3.1):

Theorem: Consider a combinatorial auction with m items and n players with XOS valuations. There
is a deterministic mechanism in the percentage fee model that guarantees an approximation ratio
of (1 + €)n, for any constant € > 0. If the valuations are subadditive, then the approximation ratio
is O(nlog m). The running time of the mechanism is O(m™) (i.e., poly(m) for a constant number of
players).

The mechanism enumerates over the support of an n-wise independent distribution, where at least
one of them provides a good approximation to the NSW. We develop the percentage fee analog of
(traditional) maximal-in-range mechanisms to prove incentive compatibility.

Maximal-in-range mechanisms were heavily studied in the traditional model as a way of obtaining
computationally efficient dominant strategy mechanisms [Dobzinski and Nisan, 2007, 2010, Buch-
fuhrer et al., 2010, Daniely et al., 2015]. In a maximal-in-range mechanism, there is a fixed set of
allocations (independent of the input) and the mechanism finds the welfare-maximizing allocation in
the range. If the welfare-maximizing allocation in the range always guarantees a good approximation
ratio and can be efficiently found, then applying the VCG mechanism (with respect to the restricted
range) ensures incentive compatibility. Similarly, for maximizing the NSW in the percentage fee
model, we identify a restricted range in which the best allocation in the range always has a high
NSW. The range structure will be simple enough so that the best allocation can be efficiently found.
Incentive compatibility of maximal-in-range mechanisms in the percentage fee model is proved
similarly to proving the incentive compatibility of maximizing the NSW that was discussed above.

4Recall that f is monotone for player i if for each v;, v_; for which i wins in the instance (v;, v_;), i also wins in the
instance (v}, v_;) when v} > v;.

5Suppose we have n players and n items. Each player is interested only in one unique item for a value of 1 and the rest for a
value of 0. The only allocation that gives a positive NSW is the one that gives each player his unique item.
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Theorem: Consider a combinatorial auction with m items and n players with subadditive valua-
tions. There is an incentive compatible O(min(n?, =) = O(m% )-approximation mechanism in the
percentage fee model. The mechanism makes poly(m, n) value queries and runs in poly(m, n) time.

This mechanism can be found in Subsection 3.2. Note that in this setting, the best known approxima-
tion algorithm (which is not incentive compatible) is that of [Barman et al., 2021] which provides an
approximation ratio of nsi, but this algorithm uses demand queries. Using value queries, there was a
known O(n)-approximation [Garg et al., 2020, Barman et al., 2020], and in terms of the number of
items the best approximation ratio that one can hope for algorithms for subadditive valuations that
use polynomially many value queries, even ignoring incentives, is O(y/m) [Dobzinski et al., 20101°.
In Subsection 3.3 we match this approximation ratio with incentive-compatible mechanism with
polynomially many value queries but with an exponential running time:

Theorem: Consider a combinatorial auction with m items and n players with subadditive valuations.
There is an incentive compatible maximal-in-range mechanism in the percentage fee model that
guarantees an approximation ratio of O(min(n, =) = é(m% ). The mechanism uses poly(m, n) value
queries and 2"poly(m) running time.

Our last result (Subsection 3.4) shows that even for a constant number of players n, no polynomial
time maximal-in-range mechanism can guarantee an approximation ratio better than n. This is
tight, considering the maximal-in-range mechanisms discussed above. We also note that without
incentive-compatibility, a constant factor of 1 — 1/e — e can be achieved for NSW with any constant
number of players with submodular valuations [Garg et al., 2020].

Theorem: Let M be a maximal-in-range mechanism for n players with valuations from a class that
includes additive and valuations. Suppose that M guarantees an approximation ratio of 1/n + ¢, for
some constant ¢ > 0. Then, M does not run in polynomial time, unless NP C P/poly.

2 IMPLEMENTABILITY IN THE PERCENTAGE FEE MODEL

In this section we will see that maximizing the Nash Social Welfare is possible with percentage fees.
We will then prove an analog of Roberts theorem by showing that if the valuations are positive but
unrestricted, the only set of implementable social choice functions in the percentage fee model are
those that maximize weighted versions of the Nash Social Welfare. Finally, we study single-parameter
mechanisms in the percentage fee model.

2.1 Maximizing the Nash Social Welfare

THEOREM 2.1 (NASH SOCIAL WELFARE MAXIMIZATION). Consider a domain V where all
valuations are positive or all valuations are non-negative and there is an alternative null such that
vi(null) = 0 for every player i. Let f be a social choice function defined on V" that selects an
alternative that maximizes the Nash Social Welfare. Suppose that when the optimal Nash Social
Welfare is 0, f selects the alternative null. Then, f is implementable in the percentage fee model.

Note that the theorem holds in particular for combinatorial auctions, where all valuations are
non-negative and the allocation that does not allocate any items has value 0 for all players. In fact,
the use of this condition is a technicality and the function that maximizes the Nash Social Welfare

6Formally, the result of [Dobzinski et al., 2010] applies to maximizing the social welfare, not the NSW. However, if in a lower
bound proof for the social welfare, the optimal welfare maximizing solution gives all players approximately the same value,
then the arithmetic/geometric mean inequality suffices to claim the same bound for NSW. This is the case for this particular
lower bound proof, and in fact all lower bounds for the social welfare in all oracle models that we are aware of have this
property.
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can be implemented in any domain if we do allow p;(vy,...,v,) = 1, but it suffices to allow that
only if the Nash Social Welfare in the instance (vy,...,v;,) is 0.

PROOF. Let p; be the following function:

_ [z v;(f (015, 0n)) : . .
pi(v1,...,0p) = L el o@ 1 MaXaeea [1;05(a) > 0
0 if maxgeq [1;vj(a) = 0.
Observe first that the mechanism (f, p) is well defined, as for every player i and vy, .. ., v, we have

that 0 < p;(v1,...,vn) < 1.

To see that this payment function is incentive compatible, start by fixing v_;. We first han-
dle the case in which maxgen [];vj(a) > 0. We have that (1 — p;(vi,v-;)) - vi(f(vi,v-;)) =
(T1 21 v(0))-vi(0)

maxgen |12 vj(a)’

pi(v},vy)) - vi(f(v],vy)) = (e 25(w) wi(w) for w = f(v],v_;). Incentive compatibility follows

maxaea [ 12 vj(a) >
by (H#,— vj(o)) -v;(0) > (Hjﬂ vj(w)> - v;(w) since o maximizes the NSW.
Now, consider the case in which max,e# [];vj(a) = 0. Recall that in this case the mechanism
outputs the null alternative which all players value at 0. Observe that for every v it is either the
case that f(v],v_;) = null or that f(v],v_;) = w # null and v;(w) = 0. In either case we have that

0i(f (v, v-)) - (1 = p(vi, v-i)) = vi(f(v], 0-4)) - (1 = p(v], v-p)) = 0.

for o = f(vi,v-;) € argmax, [];v;(a). For any other v;, we have that (1 —

]

2.2 Characterizations: An Analog of Roberts Theorem

We now prove an analog of Roberts theorem: we show that if the valuations are unrestricted the
only set of social choice functions that are implementable in the percentage fee model are those that
maximize weighted versions of the Nash Social Welfare.

Instead of proving this result directly, we prove a meta theorem that provides a one to one and
onto correspondence between mechanisms in the percentage fee model and mechanisms in the
traditional model. This correspondence will allow us to prove the characterization. However, it
does not preserve the approximation ratio. Thus, in Section 3 we devise computationally efficient
approximation mechanisms in the percentage fee model.

DEFINITION 2.2. Let v be a positive valuation. Define loguv to be the valuation such that for
every bundle S, logu(S) = logv(S). Given a class of positive valuations V, let 1ogV denote the
class of valuations

logV = {logv :v € V}

THEOREM 2.3. Let M be an n-player mechanism in the percentage fee model that is composed
of an allocation function f : V* — A and a payment function p, where ‘V is a class of positive
valuations. Let M’ be an n-player mechanism in the traditional model with an allocation function
[’ logV" — A and payment function p’. Suppose that for every instance (vs, ..., vn) and player
i, f(vi,...,05) = f’(loguy,. .., loguy) and pj(loguy, .. ., logu,) = log m

Then, M is incentive compatible in the percentage fee model if and only if M’ is incentive
compatible in the traditional model.

Note that M and M’ are both well defined since p;(v1, . ..,v,) # 1.

PROOF. For simplicity of presentation we prove incentive compatibility for player 1 only. The
proof for the other players is identical. Fix the valuations of all players except player i. It suffices to
prove that if there exists a profitable deviation in one model than there exists a profitable deviation in
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the other model as well. Below we use the standard notation (u, v_1) = (u,va,. .., v,). We will also
use the notation (u, logv_;) = (u, loguvs, ..., loguy,).
01(f(v1,v-1)) - (1= pi(v1,0-1)) 2 v1(f(v],0-1)) - (1= pi(vy,v-1))

—

log v (f (v1,v-1)) +log(1 = p;i(v1,v-1)) = logvi(f(v],v-1)) +log(1 = pi(v],v-1))
—

log v1(f (v1,v-1)) — log(—————) > logv1(f(v1, v-1)) — log(—————

go1(f(v1,v-1)) g(l—Pi(Ul,U—l)) gu1(f(vg,v-1)) g(l—Pi(Ul,v—1)
—

logv; (f'(logus, logu-_1)) — p;(loguy, logu_1) = logu;(f'(loguy, logu_1)) — pi(logo], logu_y)

]

We say that M and M’ from the statement of the lemma are twin mechanisms. Although technically
simple, the connection is quite powerful and allows us to easily adapt known results in the traditional
model to the percentage fee model:

THEOREM 2.4 (AN ANALOG OF ROBERTS’ THEOREM). Let M be an n-player incentive compat-
ible mechanism in the percentage fee model for an unrestricted domain of positive valuations V™.
Let A be the set of alternatives and suppose that the size of the image of the allocation function of M
is at least 3. Then, there exist constants a, (for each a € A) and P; (for each player i) such that the
allocation function of M in every instance (v, . . .,vy,) selects an alternative in A that maximizes
aq - [1; vi(a)ﬂi-

PROOF. Let M’ be the twin mechanism of M. Since V" is an unrestricted domain of positive
valuations, log?V is an unrestricted domain (with no positivity condition). By Roberts’ theorem, M
must be an affine maximizer, i.e. it maximizes a, + .1, fiw;(a) for some parameters ,, f5;. This
also defines the allocation function of the mechanism M to be as in the statement of the theorem. O

2.3 Single Parameter Domains

We now study single parameter domains in the percentage fee model. We focus on binary single
parameter domains where for each player i, the set of alternatives (A is divided to “winning” alterna-
tives W; and “losing” alternatives £;. For every player i and valuation v; € V; there is a value hy,
such that v;(a) = h,,, for all a € W;. There is also some value’ I; > 0 such that for every valuation
v; € V; and alternative a € L;, vi(a) = I;.

Recall that a social choice function f is monotone for player i if, for every v,u for which
hy, < hy and v_; it holds that if f(v,v_;) € W; then f(u,v_;) € ‘W;. Recall that in the traditional
model monotonicity characterizes implementability. Unlike implementability in rich domains where
different functions can be implemented in the traditional model and in the percentage fee model, for
single parameter domains we get that the set of implementable social choice functions is identical in
the percentage fee model and in the traditional model:

THEOREM 2.5. Let f be a social choice function when the domains of all players are single
parameter. Then, f is implementable in the percentage fee model if and only if { is monotone for
each player i.

"Note that we assume that I; > 0 since if I; = 0 only trivial functions can be implemented: fixing v_;, player i will get
an alternative in £; only if for all u it holds that f;(u, v_;) € L;, as if there is some u for which fj(u, v_;) € W;, then
vi(f(u, ..., o)A = pi(v1, - - .5 vn) > Oi(f(Vi, - - ., vR)) (L = pi(v1, - . ., OR).
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PROOF. Let M be a mechanism that implements f with a payment function p. To show that f
is monotone is will be easier to work with a “normalized” mechanism in which the payment for
winning player is always 0. We define M’ to be a mechanism with a social choice function f and
payment function p’ that is defined as follows:

0 f(’Ul,...,’Un) E(Wi;
’ 1=p; (01, -, On
pi(n. . vp) =31 - ﬁp(:zlw,v_zj) : f(v,...,0y) € L;and Iw s.t. f(w,v_;) € Wy
pi(vi, ..., vp) otherwise.

Note that M’ may not be formally a mechanism since it might be that p;(-) ¢ [0,1). However, it
is still incentive compatible: for every v;, u;, v_; such that f(v;,v_;) € W; and f(u;,v_;) € L;, it
holds that:

vi(f(vi,v-)) - (1 = pivi,v-3)) 2 0 (f (i, v-y)) - (1= pius, vy))

—

(1= pi(us,v-y))

vi(f (1, v-1)) = vi(f (Ui, v-7)) - A= pi(or,00)
—

vi(f(vi,v-)) - (1= pi(vi,v4)) = vi(f(ui,v-)) - (1 = pi(ui,v_y))

We can similarly show that for every v;, u;, v_; such that f(v;, v_;), f (u;, v-;) € L;

vi(f(vi,v-1)) - (1 = pi(vi, v-i)) = vi(f (ui,v-1)) - (1 — pi(ui, v-;))
=
0i(f(vi,v-1)) - (1= pj(vi,v-1)) = vi(f (ui, v-1)) - (1 = pj(ui, v-y))
As for v;, u;, v_; such that f(v;, v_;), f(u;, v-;) € W;, we get that v;(f(vi, v_;)) - (1 = pi(vi,v_4)) =
Ui (f (ui, v-1)) - (1 = pi(ui, v—y)).

We prove that f is monotone for each player i by using the fact that M’ implements it. Fix
some v_; and let v; be some valuation such that f(v;,v_;) € W; and u; be some valuation such that
f(u;,v_;) € L; (if there is no such v; or no such u; then the function is trivially monotone with respect
to player i and this v_;). We have that v; (f (v;, v—;)) - (1 =p}(vi, v—;)) = vi(f(u, v-;)) - (1=pi(u,v_;))
if and only if some alternative in ‘W; is selected. Recalling that p;(v;,v_;) = 0 we get that h,,, >
Ii - (1 = p{(u,v_;)) if and only if some alternative in “W; is selected. That is, for each valuation v; for
which h, > hy,, an alternative from W; is selected, as needed. O

3 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

This section studies the power of polynomial-time incentive-compatible algorithms. The primary tool
that we use is maximal-in-range mechanisms. In the percentage fee model, these are mechanisms that
find an allocation that maximizes the Nash Social Welfare over some predefined set of allocations.
The incentive compatibility of maximal-in-range mechanisms with suitable payments follows from
Theorem 2.1.

First, we develop polynomial-time incentive-compatible mechanisms for a constant number of
players n with XOS or subadditive valuations (Subsection 3.1). The approximation ratio of the
mechanisms is n for XOS valuations and n - log m for subadditive valuations. Note that achieving an
n-approximation via an incentive-compatible mechanism is easy in the traditional model of social
welfare: either conduct a second-price auction on the grand bundle or allocate all items randomly.
However, these mechanisms do not approximate the NSW well (a second price auction on the grand
bundle provides an approximation ratio of 0, and a random allocation may provide a reasonable
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approximation with an exponentially small probability). We develop a new method that provides an
n-approximation by utilizing n-wise independent distributions.

When n is not necessarily a constant, we develop two randomized maximal-in-range algorithms.
The first one (Subsection 3.2), provides a ratio of O(m%) in polynomial time with poly(n, m) value
queries. The second one (Subsection 3.3) provides a better ratio of O(m%) with poly(n, m) value
queries. However, although the number of queries of the latter algorithm is polynomial, its running
time is exponential.

Finally, in Subsection 3.4, we show that maximal-in-range mechanisms cannot do much better in
polynomial time: for any constant number of players n > 1, there is no maximal-in-range algorithm
that provides an approximation ratio better than n, unless NP C P/poly.

3.1 Approximations for a Constant Number of XOS / Subadditive Players

THEOREM 3.1. For m items and n players with XOS valuations, there is a deterministic mechanism
in the percentage fee model that guarantees an (1 + €)n-approximation to the Nash Social Welfare
(for any constant € > 0). If the valuations are subadditive, then the approximation ratio is O(nlog m).
The running time of the mechanism is O(m™), hence polynomial for a constant number of agents n.

We remark that a trivial mechanism maximizing over all possible allocations would have a running
time of O(n™). This is exponential even for a constant number of agents n. (We may assume that
m > n, otherwise in every allocation there is one player that is not allocated any item, thus the NSW
is always 0.)

PROOF. Our mechanism is a maximal-in-range mechanism with the following range: Given a
set of items M and a set of agents N, consider an n-wise independent distribution over N M je. a
distribution D such that for any ji, jo, . . ., jn € M, D projected on NUt---+j»} is a uniform product
distribution. Such distributions are known with support of size O(m"), with exact uniformity for m, n
powers of a prime p, and with some small deviation from uniformity for general m, n.8 The deviation
from uniformity is the reason for (1 + ¢)n in the statement, otherwise we get a factor of n. In the
following, we ignore this issue and assume that we have a uniform n-wise distribution D.

Given valuations vy, . . ., v, the mechanism maximizes [, v;(S;) over all allocations (Sy, . . ., Sp)
in the support of D, which takes takes O(m") running time (by simple exhaustive search). The re-
maining claim is that this mechanism provides an n-approximation to the optimal Nash Social
Welfare. We prove that

n

= 1
Egs,,...s)~D [H vi(Si)| 2 pr l_[ v;(0;) (D
i=1 i=1
where (04, ..., 0,) is an optimal allocation. Hence, the best allocation in the support of D provides

S . 1/ 1/
an n-approximation in terms of the Nash social welfare, ( 1 Vi (Sl-)) S % ( - v,-(Oi)) "o

The proof of (1) is as follows: consider an optimal allocation (O, . .., O,) and for each agent, an
additive valuation in their XOS representation that attains the value of O;: v;(0;) = X jc0, wij. We

8 Assuming m > n are powers of the same prime p, and F,, is a field with m elements, we consider a polynomial
p(x) = Zz;é arx® where ay, ay, . . ., an_1 are uniformly random in F,,,. Agent i receives item j if and only if p(j) =i
(mod n). The random variables p(j) are n-wise independent, and uniformly distributed in F,,,. The size of the probability
space is O(m™), corresponding to the choices of n coefficients in F,. For general values of m, n, we can choose a prime
power g > m, g = O(m) and embed our construction in Fg, with some small non-uniformity in our distribution (due to g not
being divisible by n).

9Note a subtle point here: We cannot claim that a randomized mechanism which samples a random allocation from 9 provides

an n-approximation in expectation, because E[(H;l:l vi(Si))l/n] could be substantially smaller than (E[]‘[;’:1 vi(Si)])l/".)
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also have v;(S) > ;e wij for every bundle S, by the definition of XOS valuations. Hence,

n [ n
EGs,...50~0 nvi(si)] > Egs,...s.0~0 1_[ Z Wij
i=1 | i=1 jes;
[ n
> Egso-o|[ | D) wi
_izl JjE€SiNO;
[ n
= Esespon| 2, o ) ]
[/1€SIN01  jn€SN0,, i=1
n
= Z Z Pr[jleSl,...,jneSn]l—[w,-ji.
Jj1€04 Jn€0n i=1
Now by the property of uniform n-wise independent distributions, we have Pr[j; € Sy,...,j, € Sy] =

", Prji € S;] = 2. So we can write

E(Sl,.“,sn)"z) ﬁ Ui(si):l > Z oo Z nin ﬁ Wiji
i=1 j1€01  jn€Oy i=1
1 1 &
= n_nl_lzwijzn_nnvi(oi)
i=1 jeO; i=1

which is the desired inequality (1).

Finally, for subadditive valuations, we recall that for every subadditive valuation v there is an XOS
valuation v’ that approximates it within an O(log m) factor: for every S, v’(S) < v(S) < v’(S) - logm
[Dobzinski, 2007]. As a corollary, the same analysis gives a factor of O(nlog m) for subadditive
valuations. O

3.2 A Polynomial Time O(mg)-Approximation Mechanism

We now provide a randomized maximal-in-range mechanism that provides an approximation ratio of
O(m%) for subadditive valuations. The mechanism combines two maximal-in-range algorithms. The
first mechanism finds an allocation that maximizes the NSW among all allocations that allocate one
item to each player. This mechanism provides an approximation ratio of “*. Note that this mechanism
can be implemented by running a bipartite matching algorithm on the graph that contains players on
one side and items on the other. The graph has an edge between player i and item j if v; ({j}) > 0 and
in this case its weight is log v; ({j}) .

The second mechanism partitions the set of items to n® bundles Sy, ..., Sy, by allocating each item
to one of the bundles independently at random and finding the allocation that maximizes the NSW
among all allocations in which each player gets one such bundle. This allocation can be found by
running a bipartite matching algorithm, similarly to before. We show that this mechanism provides
an approximation ratio of O(n?). Intuitively, the idea of the algorithm is as follows. Consider some
player i and the bundle O; that he gets in the optimal solution. For each player i there is at least one
bundle S; that is valuable enough for her, since by subadditivity there is at least one bundle S; such
that v;(S; N O;) > % We say that player i is interested in the bundle S;. A simple application
of the birthday paradox shows that since the bundle S; that player i is interested in is distributed
uniformly and independently, the probability that no two players are interested in the same bundle
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S; is at most % Thus we can allocate each player i the bundle S; that she is interested in and get an
approximation ratio of #

The Algorithm.

e Randomly partition the items into n? bundles, Sy, ...,S,:. Each item j is assigned to a set
uniformly and independently of the other items.
o Choose the allocation that maximizes the Nash Social Welfare from the union of the following
sets of allocations:
(1) The set of allocations which consists of all allocations in which each player gets one item.
(2) The set of allocations which consists of all allocations in which each player gets one of the
bundles Sy, ..., S,:.

THEOREM 3.2. There are payments that make the mechanism above incentive compatible in
the percentage fee model. The mechanism guarantees an approximation ratio of min(7', n?) = ms
with probability at least % whenever the valuations of the players are subadditive. There is an
implementation of the mechanism that uses polynomially many value queries and runs in polynomial
time.

It is easy to implement the mechanism with polynomially many value queries: query each player i
for her value v; ({j}), for every item j, and for her value for the bundles Sy, . . ., S,:. The total number
of queries is at most n - (m + n?). Note that given these queries we can find the allocation that
maximizes the NSW in polynomial time, by running a bipartite matching twice, once for each set of
allocations. Incentive compatibility also follows since the mechanism is maximal-in-range (in the
percentage fee model).

As stated above, the mechanism is randomized and succeeds with probability % Thus, we can run
the mechanism ¢ times and the success probability increases to 1 — (%)t . That is, the failure probability
is 1/exp(m, n) when ¢ is large enough but still polynomial. In general, incentive compatibility is
not preserved when repeating an incentive compatible mechanism several times and choosing the
best outcome. However, the incentive compatibility of maximal-in-range mechanisms (and hence
also of this specific mechanism) is preserved: randomization is used only to define the range of the
mechanism. When payments are computed with respect to the union of the ranges produced by the
different coin flips, the composed mechanism is incentive compatible.

It remains to prove that the mechanism provides the required approximation ratio. This will be
proved by the following two lemmas by noting that min(2, n*) < m3 for all possible values of m, n.

LEMMA 3.3. With probability 1, the mechanism returns a solution of NSW at least ;. OPT.

PROOF. We will show that this approximation ratio is guaranteed even if we consider only the
first set of allocations, where each player gets at most one item.

Let (Oy,...,0) denote an allocation that maximizes the NSW. For each O;, let 0; denote an item
in O; with the largest value as a singleton, i.e., 0; € argmax;co, vi({j}). Let ({a1}, ..., {an}) denote
the allocation that maximizes the NSW in the first set of allocations. We have that:

n n

n 1 n n n
nvi({ai}) > nvi({oi}) > || ol 0;(0;) 2 (Z) l_lvi(oi)

i=1 i=1

where the second inequality is due to subadditivity and the last inequality follows from X;|0;| < m
and the AM-GM inequality. )

LEMMA 3.4. With probability at least % the mechanism returns a solution of NSW at least
1
—OPT.
nZ
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PROOF. We will show that this approximation ratio is guaranteed with the specified probability
even if we consider only the second set of allocations.

Let (Oy,...,0y,) denote an allocation that maximizes the NSW. By subadditivity, we are guaran-
teed that for each player i there exists at least one index j; € [n%] such that v;(0; N S},) > % af
there are several such j;’s, choose one uniformly at random). Note that since each item is assigned
to one of Sy, ..., S,z independently, the j;’s are independent and uniform in {1, 2, ..., n?}. The rest
of the proof follows from the following claim, which is essentially the (flip side of the) birthday
paradox:

CLAIM 3.5. With probability at least L, there are no two players i,i’ such that j; = jy.

PROOF. Fix two players, i,i’. Since j;, j» are chosen independently and uniformly from a range of
n? values, the probability that j; = j is # The number of pairs is (;’) so by the union bound, the
probability that there exists a pair of players i # i’ such that j; = j is at most % < % O

Let ALG denote the NSW of the best allocation in the range. This is at least as good as the
allocation that gives each player i the bundle S;,, which provides an approximation ratio of n?:

n 1/n n 0 1/n
ALG > (ﬂ vi(sj,.)) > (]_[ viiz i)> > %OPT.

i=1 i=1

3.3 An O(m%)-Approximation Mechanism using O(n + m) Value Queries

We now show how to improve the approximation ratio of the algorithm provided in Subsection 3.2.
However, while the number of queries the algorithm of this subsection makes is still polynomial, the
running time is not polynomial.

We again combine two maximal-in-range algorithms. The first one finds an optimal matching
and provides an approximation ratio of 7 exactly as before. In the second mechanism, we partition
the items uniformly and independently into t = 2n bundles, Si,...,S;. Our range consists of
allocations where each player gets either one of the bundles S; or a singleton item. We show that the
approximation factor of this mechanism is O(n) w.h.p.

Consider an optimal allocation (Oy, . . ., O,). We show that if player i does not have an item j € O;
that contributes Q(%vi(Oi)), then E[v;(S; N O;)] = f)(%vi(Oi)) with high probability. So if a typical
bundle S; is not valuable for player i with high probability, then there is a “significant item” which
is valuable for player i (if there are several such item, arbitrarily choose one item the “significant
item” of player i). Thus, the following allocation gives a good approximation with high probability:
if player i has a significant item, allocate this item to the player. For the remaining players, allocate
them an arbitrary bundle that does not contain items that are significant for some player. Note that
since there are at most n players and thus n item that are significant for some player, there are at
most n bundles that contain items that are significant for some player. Hence, at most n out of the 2n
bundles can be invalidated in this way, and so at least n bundles still remain available to be allocated
to players that do not have significant items.

We note that the first type of allocation (one item for each player) is actually a special case of the
second type, so we state only the second type in our algorithm.

The Algorithm.

e Randomly partition the items into ¢ = 2n bundles, Sy, ..., S;. Each item j is assigned to S; for
arandom i € [¢] uniformly and independently of the other items.
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e Choose an allocation that maximizes the Nash Social Welfare over the following set of
allocations: All allocations in which each player i either gets some bundle S;, or a single item
outside of the bundles allocated to other players.

THEOREM 3.6. The mechanism above with suitable payments is incentive-compatible in the
percentage fee model, and guarantees an approximation ratio of min(=+, O(n - log? m)) = O(m'/? -
log m) with probability at least 1 — 1/m whenever the valuations of the players are subadditive. There
is an implementation of the mechanism that uses O(m + n) value queries, and the running time is
29 poly(m).

It is easy to implement the mechanism with O(m + n) value queries: Given the random partition
(S15---,Sn), query each player i for her value v;({j}) for every item j, and her value v(S;) for every
bundle S;, 1 < i < t. The total number of such queries is m + 2n. To find the best allocation in the
range, we enumerate over all subsets A of players who should get a full bundle, and over all subsets
B of |A| bundles to be allocated as a full bundle: these are 2°( configurations to consider. For each
configuration, we find the best assignment B to A by solving a max-weight matching problem with
weights log v; (S;) (if v;(S;) > 0), and also the best assignment of singletons outside of | J;cpg S; to the
players outside of A, by solving another matching problem with weights logv; ({j}) Gf v;({j}) > 0).
This takes poly(m, n) time for each configuration. So the total running time is 20 poly(m).

It remains to prove that the mechanism provides the required approximation ratio. We will use the
following lemma:

LEMMA 3.7. For some constant ¢ > 0, the following holds. Let v : 25 — R, be subadditive
and let S” be a random subset of S that is obtained by including each item of S independently with

probability %,for some t > 1. Suppose that for every j € S, v({j}) < —2)_ Then,

c-tlog?m

v(S)

p §y> ———— - —.
ol )_c-t-logm m?

PROOF. We use the following claim from [Dobzinski, 2007], which is essentially a result on
approximation of subadditive functions by XOS ones.

CLAIM 3.8 ([DOBZINSKI, 2007]). There exists a constant ¢’ > 0 such that for every subadditive
function v : 25 — R, there exist prices (pj : j €S) such that

(S)
(1) Yjespj = #gm

(2)VS' €S, Yies pj < 0(S).

We choose the ¢ in the lemma as ¢ = 6¢’. Given S, consider the prices p; given by the claim. We will
give a lower bound on the expected value of v(S’), where each element of S appears independently
with probability 1/¢t. We will use the following Chernoff bound:

Pr[X < (1-¢)p] < e € K2

where X = Zjes a;jX;, 0 < aj < 1, {X; : j € S} are independent random values in {0, 1}, and
u=E[X].

-t 2
In our setting, X; is the indicator variable of the event j € S, and we set a; = = tvl?f) = p;. Thus, by
: t-log? . 6¢’ log?
assumption we have a; < < v?;g) Zo((j) < Lp=E[X] =130 = Cv?sg) = Yjespj = 6logm

and hence by the Chernoff bound with € = 5/6,

1
Pr[X < logm] < Pr[X < p/6] < e G/O°/2 < gm#/3 < —.
m
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Consequently, with probability more than 1 — 1/m?, X > log m, and

U(S')zzp:LZ%: o) o u)

2 2 ot ’
ey c-t-log”m (= c-t-logm c-t-logm

The approximation ratio can now be proved by combining the following two lemmas.
LEMMA 3.9. With probability 1, the mechanism outputs an allocation of value at least ;- OPT.

The proof of this Lemma is identical to the proof of Lemma 3.3, using the fact that allocations of 1
item to each player are included in our range: We select a set of players A who obtain a full bundle
S;, and the other agents obtain a singleton item. As a special case, we consider A = 0, in which case
the allocation is simply a matching.

LEMMA 3.10. With probability 1 — 1/m, the mechanism outputs an allocation of value at least
1
OPT.

2cnlog® m

PROOF. Let (Oy,...,0y) denote an allocation that maximizes the NSW. We call player i focused
if there exists some item s; € O; such that v;({s;}) > C:fl(TZg)m. In this case, we call s; the significant
item of player i (if there are several such items, we choose one arbitrarily). If the significant item s;
of a focused player i is assigned to a set S;, we say that player i is interested in the set S;.

Let’s call a bundle available if it doesn’t contain any significant item. Observe that at most n of
the bundles Sy, ..., S; can contain a significant item of some player, and hence at least n bundles
are available (recall that t = 2n). Let us allocate some available bundle S, ;) to each player i who
is not focused; we can do this uniformly at random, given the set of available bundles. Since items
are assigned to bundles S; independently, the choice of o (i) is independent of how O; is partitioned
among the bundles. Hence, from the point of view of an unfocused player i (assuming that she cares
only about the items in O;), the choice of ¢ (i) is uniformly random, and the set O; N S, (;) can be
viewed as sampling elements of O; with probability 1/t. Hence, we can apply Lemma 3.7.

CLAIM 3.11. Assuming OPT > 0, with probability at least 1 — #, for each player i that is not

focused it holds that v;(Ss(;)) > —(On)

c-tlogm*
PROOF. For each player i that is not focused, the value of every singleton is bounded by

ui({j)) < %. As discussed above, O; N Sy(;) is a random subset of O; where each item
vi(0;)

appears independently with probability 1/¢. By Lemma 3.7, Pr[v;(0; N S5(;)) < = t»logm] < # By
the union bound, since there are at most n players that are not focused, the statement of the lemma
holds with probability at least 1 — -2 > 1 — % (where in the last inequality we use n < m otherwise
in any allocation at least one player gets no items and OPT = 0). O

We can now finish the proof of the lemma by considering the following allocation: Each player i
that is focused receives its significant item s;. Each player i that is not focused receives the bundle

Sc(i)- By construction, these are disjoint sets and hence this is a valid allocation. With probability
vi(0;)
c-tlog?m
significant item. Hence, the allocation provides an approximation factor of

, either from their bundle or their

1
2c-nlog?m”

at least 1 — 1/m, every player i receives value at least
O

To conclude, we note that the mechanism achieves simultaneously an approximation factor of 7

and —2——. Hence, we have a factor at least max{ %, —5—} > for all possible values of
2cnlog® m m’ nlog®m

m, n (the worst case being n =

1
ml/2logm
ml/2
logm)'
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3.4 An Impossibility Result for MIR Mechanisms with Additive Valuations

We now prove that the Nash Social Welfare cannot be maximized to within a factor better than 1/n by
a maximal-in-range mechanism in polynomial time. The proof is composed of two steps. In the first
step we show that if the range of some mechanism contains many allocations then there is a relatively
large subset of the items S and a set of players T such that projecting the set of all allocations of
the mechanism on the subset S, we get all possible allocations of the items in S to the players in
T. The proof relies on similar lemmas that were obtained to prove the limits of polynomial time
maximal-in-range mechanisms for maximizing the social welfare. We then use these sets S, T to
show that the maximal-in-range mechanism must solve exactly the problem of maximizing the NSW
for two players with additive valuations, which is NP-hard.

THEOREM 3.12. Fix a constant ¢ > 0 and n > 2. There is no polynomial-time maximal-in-range
mechanism for n players with additive valuations that provides a (% + €)-approximation to the Nash
social welfare, unless NP C P/poly.

DEFINITION 3.13. Let R be a set of allocations. We say that R contains an (S, T)-shattering if
the range R restricted to the set of items S, contains T, i.e. all possible allocations of items in S to
playersinT.

The next lemma follows from a similar lemma in [Buchfuhrer et al., 2010].

LEMMA 3.14. Suppose that |M| = m, [N| = n, ¢ € (0, i), m > %nlog(Zn). Then there exists

8 = 8(n, €) > 0 such that if M is a maximal-in-range mechanism with range R € NM that provides
a (% + ¢)-approximation in terms of Nash social welfare for additive valuations, then there exists a
subset of items S C M, |S| > dm, and a subset of the players T C N, |T| = 2, such that R contains
an (S, T)-shattering.

PROOF. Consider a uniformly random function f : M — N. We interpret f as an instance of Nash
Social Welfare, where f~1(i) is the set of items in which player i is interested, and her (additive)
valuation is v;(S) = |S N f~1(i)|. We assume that M provides a c-approximation, hence there must
be an allocation in the range (Sy,...,S,) € R such that

n 1/n n 1/n n 1/n
(]_[ v,»<sl->) = (ﬂ S, ﬂf‘l(i)l) > (2 +e)-0PT = (-4 -(]‘[ |f—1<i>|) @)
i=1 i=1 n n i=1
This holds for every instance f, but we are particularly interested in those instances where the sets
£71(i) are “e-balanced”: |f~1(i)| = (1 — e)*} for every i. By Chernoff bounds, this happens for a
uniformly random f with probability at least 1/2: For each i, | f1(i)| is a summation of independent
0/1 random variables with expectation y = m/n, and by the Chernoff bound, Pr[|f~(i)| < (1—¢)u] <
e €1/ < gmlogn) = 1/(2p) by the assumptions of the lemma.
Assuming that f is e-balanced, (2) implies the following: By the AM-GM inequality,

n n 1/n n 1/n
%Z 150 f 0] = (]_[ S; ﬂf‘l(i)l) > (% +e)- (]‘[ If‘l(i)l)
i=1 i=1 i=1

2(1+£)(1—£)m>(1+£)m. 3)
n n n 2/ n

Let us define a function g : M — N U {x} encoding (Si, ...,S,): g(j) = iif j € S; and g(j) = = if
Jj is not contained | J_, S;. Equation (3) can be interpreted as saying that f and g agree on at least
(% + g) m coordinates, i.e. the Hamming distance between f and g is at most (1 — = — £)m. Now

we refer to Lemma 4.4 in [Buchfuhrer et al., 2010], withU = M,V = N,y = 1/2, q = 2: The lemma
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concludes that for some §(n, €) > 0 there is a set of items S € M and a set of players T € N such
that |S| > §|M], |T| > 2, and R contains an (S, T)-shattering. ]

LEMMA 3.15. Let M be a maximal-in-range mechanism for n players, for some constant n > 2.
Suppose for some fixed & > 0 and every m, the range of M contains an (S, T) shattering, for |S| > Sm
and |T| > 2. Then, M does not run in polynomial time, unless NP C P/poly.

PROOF. We use M to exactly solve the problem of maximizing the NSW with a set of 2 additive
players and m’ items. Recall that this problem is NP-hard (by a simple reduction from the NP-
complete Subset Sum problem). Let (v], v;) be such an instance on m’ items.

Given m’, we consider instances of NSW with n players and m = [m’/d] items. Our assumed MIR
mechanism with these parameters contains an (S, T)-shattering where |S| > dm > m’ and |T| > 2.
We can actually assume that |T| = 2, which is implied by any shattering with a larger T. Let us also
assume for convenience that S = [m’] = {1,2,...,m’}and T = {1, 2}.

Given the valuations v;, v, on [m’], we define additive valuations vy, v, on [m] as follows: v;(j) =
v;(j), for 1 < j < m’, and v;(j) = 0 otherwise. To extend this to an instance with n players, we need
to define the valuations of players 3,.. ., n. For each such player i, we will have a set of (1 — &)m
permissible valuations v/: For every m’ < j < m, we set v/ ({j}) = 1 and v ({j’}) = 0, if j # j.

Note that the set of permissible valuations for each extra player is of size (1 — £)m and thus there
are ((1 — £€)m)™2 instances that may be obtained by each extra player having one valuation from its
permissible set. We run M on all such instances and choose an allocation that maximizes the NSW.
Thus, the total running time of the reduction is O(m™2) times the running time of the mechanism
M, which is polynomial assuming that n is constant and the running time of M is polynomial as
well. The correctness of the reduction follows from the following claim.

CLAIM 3.16. In all iterations of the reduction, the optimal NSW of the constructed instance is at
most the optimal NSW of the original instance. Further, there exists an iteration of the reduction in
which the optimal NSW equals the optimal NSW in the original instance.

Consider some iteration of the reduction, where the choice of the valuation of each player i,
n>i>2,1is v{ Consider some allocations of the items (Sy, ..., S,). Note that [T, v{(Si) € {0, 1},
by construction. Also note that [17_, v;(S;) = [T2_, vi(S; N [m’]) = [T2_; v/(S; N [m’]). We thus have
that [T, v:(S:) < [15, v;(S; N [m']). Note that (S; N [m'],...,S, N [m’]) is an allocation of the
items in [m’]. Hence, the first part of the claim follows.

We now prove the second part of the claim. Let (O;, O;) be an optimal allocation of items in [m’] to
players in T = {1, 2}. Note that there since the range has an (S, T)-shattering with S = [m'], T = {1, 2},
there is an allocation (Sy, ..., S,) such that H?:l vi(S;N[m']) = le v;(0;). We can assume that
for each i > 2, S; # 0, otherwise the NSW of (Si,...,S,) is always 0 and thus we can assume that
this allocation is not in the range of the algorithm in the first place. Consider the iteration where the
valuation of each player i > 2 is v{ , for some j € S;. We have that []}_, v{ (S;) = 1. In total we get

that [1%, v:(S:) = [1%, v7(0;), as needed. O

To summarize, the maximum NSW over all allocations in the range would be one whose value is
exactly v{(O1) - v5(03) and we could also find Oy, O; (or another allocation of equal NSW value) by
restricting the output of our mechanism to the first two players. Hence, we would be able to solve
an NP-hard problem for every given input size (possibly non-uniformly, hence the conclusion is
NP c P/poly).
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CONCLUSION AND FUTURE DIRECTIONS

In this work we design incentive compatible mechanisms that maximize the Nash Social Welfare
by considering a novel percentage fee model. Our work leaves a number of open questions. At
the most immediate level, can we obtain an approximation ratio of m? not just with a polynomial
number of value queries but also in polynomial time? In addition, our hardness result applies only to
maximal-in-range mechanisms; is it possible to prove that obtaining an approximation ratio better
than m? for any incentive-compatible mechanism in our model is computationally hard, or requires an
exponential number of queries? Such impossibilities are known in the traditional model [Dobzinski,
2011, Dughmi and Vondrak, 2011, Dobzinski and Vondrak, 2012] but we do not know how to obtain
analogous results for approximating the NSW in the percentage fee model.

In addition, all of our bounds use simple value queries. We do not know whether more complicated
queries, e.g., demand queries, can help obtain better approximation ratios.

Finally, in this paper we have demonstrated how different payment schemes enable the implemen-
tation of useful social choice functions. Is it always possible to characterize the set of implementable
social choice functions as a function of the payment method? Specifically, what can be implemented
if the designer is allowed to offer, for each alternative, either a fixed fee or a percentage fee? It will
also be very interesting to understand whether there are other natural payment schemes that enable
the incentive-compatible implementation of different fairness notions.

REFERENCES

Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. 2017. Nash Social Welfare, Matrix Permanent, and
Stable Polynomials. In 8tk Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017,
Berkeley, CA, USA (LIPIcs, Vol. 67), Christos H. Papadimitriou (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
36:1-36:12. https://doi.org/10.4230/LIPIcs.ITCS.2017.36

Moshe Babaioff, Tomer Ezra, and Uriel Feige. 2021. Fair and Truthful Mechanisms for Dichotomous Valuations. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021. AAAI Press, 5119-5126. https://ojs.aaai.org/index.php/AAAl/article/view/16647

Siddharth Barman, Umang Bhaskar, Anand Krishna, and Ranjani G. Sundaram. 2020. Tight Approximation Algorithms for
p-Mean Welfare Under Subadditive Valuations. In 28th Annual European Symposium on Algorithms, ESA 2020, September
7-9, 2020, Pisa, Italy (Virtual Conference) (LIPIcs, Vol. 173), Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 11:1-11:17.

Siddharth Barman, Anand Krishna, Pooja Kulkarni, and Shivika Narang. 2021. Sublinear Approximation Algorithm for Nash
Social Welfare with XOS Valuations. CoRR abs/2110.00767 (2021). arXiv:2110.00767 https://arxiv.org/abs/2110.00767

Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Finding fair and efficient allocations. In Proceedings
of the 2018 ACM Conference on Economics and Computation. 557-574.

Dave Buchfuhrer, Shaddin Dughmi, Hu Fu, Robert Kleinberg, Elchanan Mossel, Christos Papadimitriou, Michael Schapira,
Yaron Singer, and Chris Umans. 2010. Inapproximability for VCG-Based Combinatorial Auctions. In ACM-SIAM SODA.
518-536.

Eric Budish. 2011. The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes.
Journal of Political Economy 119, 6 (2011), 1061-1103.

Toannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah, and Junxing Wang. 2019. The
unreasonable fairness of maximum Nash welfare. ACM Transactions on Economics and Computation (TEAC) 7, 3 (2019),
1-32.

E. H. Clarke. 1971. Multipart Pricing of Public Goods. Public Choice (1971), 17-33.

Edith Cohen, Michal Feldman, Amos Fiat, Haim Kaplan, and Svetlana Olonetsky. 2011. Truth, Envy, and Truthful Market
Clearing Bundle Pricing. In Internet and Network Economics - 7th International Workshop, WINE 2011, Singapore,
December 11-14, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 7090), Ning Chen, Edith Elkind, and Elias
Koutsoupias (Eds.). Springer, 97-108. https://doi.org/10.1007/978-3-642-25510-6_9

Richard Cole and Vasilis Gkatzelis. 2015. Approximating the Nash social welfare with indivisible items. In Proceedings of
the forty-seventh annual ACM symposium on Theory of computing. 371-380.

Richard Cole, Vasilis Gkatzelis, and Gagan Goel. 2013. Mechanism design for fair division: allocating divisible items without
payments. In Proceedings of the fourteenth ACM conference on Electronic commerce. 251-268.

534



Fairness and Incentive Compatibility via Percentage Fees EC 23, July 9-12, 2023, London, United Kingdom

Amit Daniely, Michael Schapira, and Gal Shahaf. 2015. Inapproximability of truthful mechanisms via generalizations of the
VC dimension. In Proceedings of the forty-seventh annual ACM symposium on Theory of Computing. 401-408.

Shahar Dobzinski. 2007. Two Randomized Mechanisms for Combinatorial Auctions. In APPROX. 89-103.

Shahar Dobzinski. 2011. An Impossibility Result for Truthful Combinatorial Auctions with Submodular Valuations. In STOC.
139-148.

Shahar Dobzinski and Noam Nisan. 2007. Limitations of VCG-Based Mechanisms. In STOC. 338-344.

Shahar Dobzinski and Noam Nisan. 2010. Mechanisms for multi-unit auctions. Journal of Artificial Intelligence Research 37
(2010), 85-98.

Shahar Dobzinski, Noam Nisan, and Michael Schapira. 2010. Approximation Algorithms for Combinatorial Auctions with
Complement-Free Bidders. Math. Oper. Res. 35, 1 (2010), 1-13.

Shahar Dobzinski and Jan Vondrdk. 2012. The computational complexity of truthfulness in combinatorial auctions. In EC.
405-422.

Shaddin Dughmi and Jan Vondrdk. 2011. Limitations of randomized mechanisms for combinatorial auctions. In FOCS.
502-511.

Jugal Garg, Edin Husic, Wenzheng Li, Laszlé A. Végh, and Jan Vondrak. 2023. Approximating Nash Social Welfare by
Matching and Local Search. STOC (2023).

Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. 2020. Approximating Nash social welfare under submodular valuations
through (un) matchings. In Proceedings of the fourteenth annual ACM-SIAM symposium on discrete algorithms. SIAM,
2673-2687.

T. Groves. 1973. Incentives in teams. Econometrica (1973), 617-631.

Herman B Leonard. 1983. Elicitation of honest preferences for the assignment of individuals to positions. Journal of political
Economy 91, 3 (1983), 461-479.

Wenzheng Li and Jan Vondrdk. 2022. A constant-factor approximation algorithm for Nash social welfare with submodular
valuations. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 25-36.

R. B. Myerson. 1981. Optimal auction design. Mathematics of Operations Research 6, 1 (1981), 58-73.

Kevin Roberts. 1979. The characterization of implementable choice rules. In Aggregation and Revelation of Preferences.
Papers presented at the first European Summer Workshop of the Economic Society, Jean-Jacques Laffont (Ed.). North-
Holland, 321-349.

W. Vickrey. 1961. Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of Finance (1961), 8-37.

535



	Abstract
	1 Introduction
	2 Implementability in the Percentage Fee Model
	2.1 Maximizing the Nash Social Welfare
	2.2 Characterizations: An Analog of Roberts Theorem
	2.3 Single Parameter Domains

	3 Computationally Efficient Approximation Mechanisms
	3.1 Approximations for a Constant Number of XOS / Subadditive Players
	3.2 A Polynomial Time O(m23)-Approximation Mechanism
	3.3 An (m12)-Approximation Mechanism using O(n+m) Value Queries
	3.4 An Impossibility Result for MIR Mechanisms with Additive Valuations

	References

