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We study incentive-compatible mechanisms that maximize the Nash Social Welfare. Since traditional incentive-

compatible mechanisms cannot maximize the Nash Social Welfare even approximately, we propose changing

the traditional model. Inspired by a widely used charging method (e.g., royalties, a lawyer that charges some

percentage of possible future compensation), we suggest charging the players some percentage of their value of

the outcome. We call this model the percentage fee model.

We show that there is a mechanism that maximizes exactly the Nash Social Welfare in every setting with

non-negative valuations. Moreover, we prove an analog of Roberts theorem that essentially says that if the

valuations are non-negative, then the only implementable social choice functions are those that maximize

weighted variants of the Nash Social Welfare. We develop polynomial time incentive compatible approximation

algorithms for the Nash Social Welfare with subadditive valuations and prove some hardness results.
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1 INTRODUCTION

The field of Mechanism Design aims to develop and analyze algorithms for strategic players. In a

typical scenario, we have a planner interested in implementing some social goal. The challenge is to

design incentive-compatible mechanisms that achieve this social goal, despite the players behaving

in a strategic way that might be misaligned with the desired social goal.

In this paper, we are interested in mechanisms that are dominant strategy incentive compatible

when the values of the players are private information. As for the social goals – many different ones

are studied in the literature. However, largely speaking, it is fair to say that (with some very notable

exceptions) the two most common and well-studied objectives are social welfare maximization

[Vickrey, 1961, Clarke, 1971, Groves, 1973] and revenue maximization [Myerson, 1981]. These

two social goals are very different: social welfare maximization (i.e., outputting an outcome that

maximizes the sum of values of the players) is an objective that is defined for each instance,

independently of the assumptions on the strategic behavior of the players. In contrast, revenue

maximization is relative – the quality of a mechanism is measured with respect to its closeness to the

revenue of some “ideal” mechanism.
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Taking a bird’s-eye view, most will agree that welfare maximization is by far the most successful

“benchmark-free” objective in the mechanism design literature and that good mechanisms for other

“benchmark-free” objectives usually exist only for quite restricted settings (e.g., makespan minimiza-

tion in the so-called “single parameter” settings). This grim situation is, of course, not due to the

incapability of mechanism designers: it is possible to prove that incentive-compatible mechanisms

can only achieve few objectives. In fact, Roberts theorem [Roberts, 1979] tells us that social welfare

maximization is unique in that in some settings, the set of implementable objective functions includes

only slight variants of social welfare maximization.

Indeed, we have a good understanding of which social goals can and cannot be achieved by

incentive-compatible mechanisms in many settings of interest. Obviously, being able to mathemati-

cally prove that incentive-compatible mechanisms are not powerful enough in some settings is of

significant academic interest. Still, it is disappointing news from a practical perspective. Fairness is a

case in point. In recent years we have seen a surge of interest in fairness. Notions such as EF1 ([Bud-

ish, 2011] envy freeness up to one good), EFX ([Caragiannis et al., 2019] envy freeness up to any

good), and the Nash Social Welfare (the product of the values of the players) have been extensively

studied. Much of the work focused on existence and “algorithmic” issues: does a “fair” outcome exist

in every instance? Can we find this outcome efficiently? Yet, even for the most extensively-studied

fairness notions, we have no good mechanisms that implement them if the agents are strategic, except

perhaps for relatively simple settings (e.g., [Babaioff et al., 2021, Cohen et al., 2011, Cole et al.,

2013])1.

This paper attempts to bridge the chasm between incentives and fairness. We aim to design

incentive-compatible mechanisms for one of the most prominent fairness promoting objectives, the

Nash Social Welfare. Unfortunately, it is not hard to see that dominant strategy mechanisms cannot

always output the allocation with the highest Nash Social Welfare, nor can they always output an

allocation that provides a reasonable approximation to it2.

In this paper we suggest to reconsider the traditional payment model. The taxation principle tells

us that in the traditional model of mechanism design, each player is (essentially) facing a menu that

sets a price for each possible alternative. This corresponds to a common real-life fee type known

as a “fixed fee”. However, another common fee type is the “percentage fee”. Percentage fees might

be used, e.g., by a lawyer who may charge the client a portion of the future compensation or in a

lease agreement of a retail store that commits to paying a percentage of its sales as rent. Royalties

are another example for percentage fees.

This paper’s take-home message is that percentage fees are an efficient way of constructing fair

incentive-compatible mechanisms. We view our results as a way of escaping the dead end that the

traditional mechanism design model leads us to as far as implementing fairness notions is concerned.

1An interesting singular exception is running the VCG mechanism when all players are unit demand: VCG outputs not only

the welfare maximizing solution but also one that is envy-free [Leonard, 1983].
2To see this, consider a dominant strategy algorithm for two players, Alice and Bob, and two items, a and b . The valuation of

both players is additive. Consider an instance where Alice’s valuation is 1 for item a and x for item b , and Bob’s value is x

for a and x 3 for item b . Suppose that x >> 1. The only allocation that reasonably approximates the Nash social welfare is to

give a to Alice and b to Bob. Now consider an instance where Alice’s values are the same, but Bob’s values are t for item a

and t + x 3 for item b , t >> x . By weak monotonicity, Bob is always allocated item b , and possibly also item a. However,

Bob cannot be allocated both items because then the Nash social welfare of the outcome will be 0. Thus, the mechanism

must output the allocation that gives Alice item a and Bob item b . Note that the Nash social welfare of the allocation that

gives Alice item b and Bob item a is bigger by a factor of x . Thus no dominant strategy mechanism can obtain a reasonable

approximation to the Nash social welfare.
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Our Model. This work primarily studies fair dominant-strategy mechanisms in a combinatorial

auction setup. However, the model is defined for the most general mechanism design setting, and

some of our results also apply to this general model.

In the most general setup, we have a set N of players and a setA of alternatives. Each player i has

a valuation function vi : A → R. The set of all possible valuation functions of player i is denotedVi .

A (direct) mechanism is composed of a social choice function f : V1 · · · Vn → A and a payment

function p : V1 · · · Vn → Rn .

Much of the mechanism design literature assumes that the profit of player i in the instance
−→v = (v1, . . . ,vn ) is vi ( f (

−→v )) − pi (
−→v ) and looks for dominant strategy mechanism given this

definition of profit. I.e., for each player i, valuations vi ,v
′
i ∈ Vi and valuations of the other players

v−i it holds that

vi ( f (vi ,v−i )) − pi (vi ,v−i ) g vi ( f (v
′
i ,v−i )) − pi (v ′i ,v−i )

We refer to this model as the traditional model.

In contrast, in the percentage fee model each player i is charged a fraction of his value: pi (
−→v ) ·

vi ( f (
−→v )). Thus, the profit of player i in the instance −→v = (v1, . . . ,vn ) is vi ( f (

−→v )) · (1 − pi (−→v )).

We are also interested in dominant strategy mechanisms in this model, but note that the definition

of dominant strategy now considers the new profit model. That is, for each player i, valuations

vi ,v
′
i ∈ Vi and valuations of the other players v−i it holds that

(1 − pi (vi ,v−i )) · vi ( f (vi ,v−i )) g (1 − pi (v ′i ,v−i )) · vi ( f (v ′i ,v−i ))
We will mainly be interested in individually rational mechanisms with no positive transfers. That is,

for every i, pi (·) takes values in [0, 1) only3. We stress that the players are still quasilinear as before.

I.e., they want to maximize their value for the selected alternative minus the payment. We call this

model the percentage fee model.

Our main focus in this paper is maximizing the Nash Social Welfare in combinatorial auctions by

dominant strategy mechanisms in the percentage fee model. In a combinatorial auction, we have a set

N of players (|N | = n) and a set M of heterogeneous items (|M | =m). Each player i has a valuation

function vi : 2
M → R that gives a value for each possible subset of the items. We assume that each

valuation function v is non-decreasing and v (∅) = 0. One common goal is to maximize the social

welfare: Σivi (Si ). In this paper, our primary focus is to maximize the Nash Social Welfare (NSW),

where the NSW of an allocation S1, . . . , Sn is the geometric mean of the valuations (
∏n

i=1vi (Si ))
1/n .

We consider several standard classes of valuations in this paper. A valuation v is called additive

if for every bundle S , v (S ) = Σj ∈Sv ({j}). v is subadditive if for every S,T , v (S ) +v (T ) g v (S ∪T ).
v is XOS if there exists additive functions a1, . . . ,at such that for every bundle S , it holds that

v (S ) = max1fjft aj (S ).

Applicability of Mechanisms with Percentage Fees. Mechanisms with percentage fees are

applicable whenever the auctioneer can learn how much a player values the selected outcome. We

stress that the auctioneer does not necessarily learn the values of other unrealized outcomes. For

example, one can auction a license for the right to use some asset in exchange for a fraction of the

future revenue, where the latter can be verified, e.g., by official tax returns. Our mechanisms are

particularly attractive when the auction goal is to maximize fairness. One extreme example would

be land reforms, where (typically) agricultural land is redistributed by the government to maximize

both efficiency and equality. Land reforms also take a less radical form: In some countries, e.g.,

3We do not allow pi ( ·) = 1 to rule out trivial implementations that make little economic sense, like setting pi (v⃗ ) = 1 for

every player i in instance v⃗ . In this implementation the profit of all players is always 0 (since if alternative a is chosen the

mechanism charges each player i its full value vi (a)), so pairing this payment function with any allocation function will give

an incentive compatible mechanism.
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Israel, it is not uncommon to repartition land rights and move land from a “strong” municipality

to a neighboring, economically weaker one. Even in the US, resources are sometimes distributed

to promote equality, e.g., gaming rights for native American tribes. Similarly, our mechanisms are

applicable when resources are allocated internally within a large organization or corporation, where

the management can evaluate the value of the allocated resources for the winning units.

Our Results I: Incentive Compatible Mechanisms that Maximize the NSW. The Nash Social

Welfare has been heavily studied recently in Algorithmic Game Theory. Its game theoretic properties

have been analyzed (e.g., [Caragiannis et al., 2019]) and the possible approximation ratios achievable

in different settings have been studied (e.g., [Cole and Gkatzelis, 2015, Anari et al., 2017, Barman

et al., 2018, Li and Vondrák, 2022]). Unfortunately, as discussed earlier, no dominant strategy

mechanisms can maximize the NSW in the traditional model. In the percentage fee model, we

observe the following in Subsection 2.1:

Theorem: In the percentage fee model, the social choice function that selects an alternative that

maximizes the Nash Social Welfare is implementable as long as all valuations are positive or all

valuations are non-negative and there is a “null” alternative with value 0 for all players.

We have that just as the VCG mechanism is always applicable in the traditional model, maximizing

the NSW is possible in the percentage fee model. Recall that in the traditional model, the VCG

mechanism is unique as Roberts theorem tells us that if the valuations are unrestricted, then the only

implementable social choice functions are weighted variations of maximizing the social welfare. In

Subsection 2.2 we prove that in the percentage fee model, only Nash Social Welfare maximization

variants are implementable.

Theorem: LetM be an incentive compatible mechanism in the percentage fee model when the

valuations are positive but otherwise unrestricted. Suppose that the size of the image of the allocation

function ofM is at least 3. Then, there exist constants ³a (for each a ∈ A) and ´i (for each player

i) such that in every instance (v1, . . . ,vn ) the allocation function ofM outputs an alternative that

belongs to argmaxa∈A ³a ·
∏

i vi (a)
´i .

We do not prove this theorem directly but instead present a reduction from Roberts theorem. The

reduction relies on a simple yet powerful observation. Given a positive valuation v, let the valuation

logv : 2M → R be defined as logv (S ) = logv (S ). Now, letV be a class of non-negative valuations

and let logV denote the class of valuations: logV = {logv : v ∈ V}. We show a one-to-one

and onto correspondence between mechanisms in the traditional model when each valuation is in

logV and mechanisms in the percentage fee model when each valuation is in V . Note that if V
is the set of unrestricted positive valuations, then logV is the set of unrestricted valuations. Thus,

Roberts theorem applies to the set of implementable social choice functions in the traditional model

when each valuation is in logV . We use this to characterize the set of implementable social choice

functions when the valuations are inV in the percentage fee model.

We also study the set of implementable functions in the single parameter setting. We focus on

binary single parameter domains where for each player i, the set of alternatives A is divided into

“winning” alternativesWi and “losing” alternatives Li . For every player i and valuation vi ∈ Vi

there is a value hvi such thatvi (a) = hvi , for all a ∈ Wi . For every player i, there exists a value li > 0

such that for every valuation vi ∈ Vi and alternative a ∈ Li , vi (a) = li . Unlike implementability in

rich domains, in single-parameter settings we get that the set of implementable allocation functions

is identical in the percentage fee model and in the traditional model (Subsection 2.3):
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Theorem: Let f be an allocation function when the domains of all players are binary single

parameter. Then, f is implementable in the percentage fee model if and only if f is monotone4 for

each player i.

Our Results II: Computationally Efficient Approximation Mechanisms. We have seen that

maximizing the Nash Social Welfare is possible with percentage fees. However, maximizing the

Nash Social Welfare is NP-hard even in very simple settings, e.g., when the valuations are additive.

Thus, much work has focused on developing approximation algorithms for the NSW, e.g., a constant

approximation for combinatorial auctions with submodular valuations [Li and Vondrák, 2022, Garg

et al., 2023].

One could hope that the correspondence that is used to obtain the analog of Roberts theorem would

enable the “automatic conversion” of every computationally efficient approximation mechanism in

the traditional model to an approximation mechanism in the percentage fee model with a compa-

rable approximation ratio. Unfortunately, the correspondence does not preserve the approximation

ratio. We thus must develop new computationally efficient and incentive-compatible approximation

mechanisms for the percentage fee model.

One obstacle in constructing good incentive compatible mechanisms is that simple mechanisms

for maximizing the social welfare do not provide any reasonable approximation ratio for the Nash

Social Welfare. For example, both the mechanism that allocates the grand bundle to the player that

values it the most and the mechanism that randomly allocate the items provide an n approximation to

the social welfare, but the first mechanism provides no approximation to the NSW and a random

allocation might output an instance with non-zero NSW with exponentially small probability5. To

overcome this obstacle, we “derandomize” this random allocation mechanism and get a deterministic

mechanism that runs in polynomial time when the number of players n is constant (Subsection 3.1):

Theorem: Consider a combinatorial auction withm items and n players with XOS valuations. There

is a deterministic mechanism in the percentage fee model that guarantees an approximation ratio

of (1 + ϵ )n, for any constant ϵ > 0. If the valuations are subadditive, then the approximation ratio

is O (n logm). The running time of the mechanism is O (mn ) (i.e., poly(m) for a constant number of

players).

The mechanism enumerates over the support of an n-wise independent distribution, where at least

one of them provides a good approximation to the NSW. We develop the percentage fee analog of

(traditional) maximal-in-range mechanisms to prove incentive compatibility.

Maximal-in-range mechanisms were heavily studied in the traditional model as a way of obtaining

computationally efficient dominant strategy mechanisms [Dobzinski and Nisan, 2007, 2010, Buch-

fuhrer et al., 2010, Daniely et al., 2015]. In a maximal-in-range mechanism, there is a fixed set of

allocations (independent of the input) and the mechanism finds the welfare-maximizing allocation in

the range. If the welfare-maximizing allocation in the range always guarantees a good approximation

ratio and can be efficiently found, then applying the VCG mechanism (with respect to the restricted

range) ensures incentive compatibility. Similarly, for maximizing the NSW in the percentage fee

model, we identify a restricted range in which the best allocation in the range always has a high

NSW. The range structure will be simple enough so that the best allocation can be efficiently found.

Incentive compatibility of maximal-in-range mechanisms in the percentage fee model is proved

similarly to proving the incentive compatibility of maximizing the NSW that was discussed above.

4Recall that f is monotone for player i if for each vi , v−i for which i wins in the instance (vi , v−i ), i also wins in the

instance (v ′i , v−i ) when v ′i > vi .
5Suppose we have n players and n items. Each player is interested only in one unique item for a value of 1 and the rest for a

value of 0. The only allocation that gives a positive NSW is the one that gives each player his unique item.
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Theorem: Consider a combinatorial auction with m items and n players with subadditive valua-

tions. There is an incentive compatible O (min(n2, m
n
)) = O (m

2
3 )-approximation mechanism in the

percentage fee model. The mechanism makes poly(m,n) value queries and runs in poly(m,n) time.

This mechanism can be found in Subsection 3.2. Note that in this setting, the best known approxima-

tion algorithm (which is not incentive compatible) is that of [Barman et al., 2021] which provides an

approximation ratio of n
53
54 , but this algorithm uses demand queries. Using value queries, there was a

known O (n)-approximation [Garg et al., 2020, Barman et al., 2020], and in terms of the number of

items the best approximation ratio that one can hope for algorithms for subadditive valuations that

use polynomially many value queries, even ignoring incentives, is O (
√
m) [Dobzinski et al., 2010]6.

In Subsection 3.3 we match this approximation ratio with incentive-compatible mechanism with

polynomially many value queries but with an exponential running time:

Theorem: Consider a combinatorial auction withm items and n players with subadditive valuations.

There is an incentive compatible maximal-in-range mechanism in the percentage fee model that

guarantees an approximation ratio of Õ (min(n, m
n
)) = Õ (m

1
2 ). The mechanism uses poly(m,n) value

queries and 2npoly(m) running time.

Our last result (Subsection 3.4) shows that even for a constant number of players n, no polynomial

time maximal-in-range mechanism can guarantee an approximation ratio better than n. This is

tight, considering the maximal-in-range mechanisms discussed above. We also note that without

incentive-compatibility, a constant factor of 1 − 1/e − ϵ can be achieved for NSW with any constant

number of players with submodular valuations [Garg et al., 2020].

Theorem: LetM be a maximal-in-range mechanism for n players with valuations from a class that

includes additive and valuations. Suppose thatM guarantees an approximation ratio of 1/n + ε, for

some constant ε > 0. Then,M does not run in polynomial time, unless NP ¦ P/poly.

2 IMPLEMENTABILITY IN THE PERCENTAGE FEE MODEL

In this section we will see that maximizing the Nash Social Welfare is possible with percentage fees.

We will then prove an analog of Roberts theorem by showing that if the valuations are positive but

unrestricted, the only set of implementable social choice functions in the percentage fee model are

those that maximize weighted versions of the Nash Social Welfare. Finally, we study single-parameter

mechanisms in the percentage fee model.

2.1 Maximizing the Nash Social Welfare

THEOREM 2.1 (NASH SOCIAL WELFARE MAXIMIZATION). Consider a domainV where all

valuations are positive or all valuations are non-negative and there is an alternative null such that

vi (null ) = 0 for every player i. Let f be a social choice function defined on Vn that selects an

alternative that maximizes the Nash Social Welfare. Suppose that when the optimal Nash Social

Welfare is 0, f selects the alternative null . Then, f is implementable in the percentage fee model.

Note that the theorem holds in particular for combinatorial auctions, where all valuations are

non-negative and the allocation that does not allocate any items has value 0 for all players. In fact,

the use of this condition is a technicality and the function that maximizes the Nash Social Welfare

6Formally, the result of [Dobzinski et al., 2010] applies to maximizing the social welfare, not the NSW. However, if in a lower

bound proof for the social welfare, the optimal welfare maximizing solution gives all players approximately the same value,

then the arithmetic/geometric mean inequality suffices to claim the same bound for NSW. This is the case for this particular

lower bound proof, and in fact all lower bounds for the social welfare in all oracle models that we are aware of have this

property.
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can be implemented in any domain if we do allow pi (v1, . . . ,vn ) = 1, but it suffices to allow that

only if the Nash Social Welfare in the instance (v1, . . . ,vn ) is 0.

PROOF. Let pi be the following function:

pi (v1, . . . ,vn ) =

1 −

∏

j,i vj (f (v1, ...,vn ))

maxa∈A
∏

j,i vj (a)
if maxa∈A

∏

j vj (a) > 0;

0 if maxa∈A
∏

j vj (a) = 0.

Observe first that the mechanism ( f ,p) is well defined, as for every player i and v1, . . . ,vn we have

that 0 f pi (v1, . . . ,vn ) < 1.

To see that this payment function is incentive compatible, start by fixing v−i . We first han-

dle the case in which maxa∈A
∏

j vj (a) > 0. We have that (1 − pi (vi ,v−i )) · vi ( f (vi ,v−i )) =
(
∏

j,i vj (o)) ·vi (o)
maxa∈A

∏

j,i vj (a)
, for o = f (vi ,v−i ) ∈ argmaxa

∏

j vj (a). For any other v ′i , we have that (1 −

pi (v
′
i ,v−i )) · vi ( f (v ′i ,v−i )) =

(
∏

j,i vj (w )) ·vi (w )

maxa∈A
∏

j,i vj (a)
, for w = f (v ′i ,v−i ). Incentive compatibility follows

by
(

∏

j,i vj (o)
)

· vi (o) g
(

∏

j,i vj (w )
)

· vi (w ) since o maximizes the NSW.

Now, consider the case in which maxa∈A
∏

j vj (a) = 0. Recall that in this case the mechanism

outputs the null alternative which all players value at 0. Observe that for every v ′i it is either the

case that f (v ′i ,v−i ) = null or that f (v ′i ,v−i ) = w , null and vi (w ) = 0. In either case we have that

vi ( f (vi ,v−i )) · (1 − p (vi ,v−i )) = vi ( f (v ′i ,v−i )) · (1 − p (v ′i ,v−i )) = 0.

□

2.2 Characterizations: An Analog of Roberts Theorem

We now prove an analog of Roberts theorem: we show that if the valuations are unrestricted the

only set of social choice functions that are implementable in the percentage fee model are those that

maximize weighted versions of the Nash Social Welfare.

Instead of proving this result directly, we prove a meta theorem that provides a one to one and

onto correspondence between mechanisms in the percentage fee model and mechanisms in the

traditional model. This correspondence will allow us to prove the characterization. However, it

does not preserve the approximation ratio. Thus, in Section 3 we devise computationally efficient

approximation mechanisms in the percentage fee model.

DEFINITION 2.2. Let v be a positive valuation. Define logv to be the valuation such that for

every bundle S , logv (S ) = logv (S ). Given a class of positive valuations V , let logV denote the

class of valuations

logV = {logv : v ∈ V}

THEOREM 2.3. LetM be an n-player mechanism in the percentage fee model that is composed

of an allocation function f : Vn → A and a payment function p, where V is a class of positive

valuations. LetM ′ be an n-player mechanism in the traditional model with an allocation function

f ′ : logVn → A and payment function p ′. Suppose that for every instance (v1, . . . ,vn ) and player

i, f (v1, . . . ,vn ) = f ′(logv1, . . . , logvn ) and p ′i (logv1, . . . , logvn ) = log 1
(1−pi (v1, ...,vn ))

.

Then, M is incentive compatible in the percentage fee model if and only if M ′ is incentive

compatible in the traditional model.

Note thatM andM ′ are both well defined since pi (v1, . . . ,vn ) , 1.

PROOF. For simplicity of presentation we prove incentive compatibility for player 1 only. The

proof for the other players is identical. Fix the valuations of all players except player i. It suffices to

prove that if there exists a profitable deviation in one model than there exists a profitable deviation in
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the other model as well. Below we use the standard notation (u,v−1) = (u,v2, . . . ,vn ). We will also

use the notation (u, logv−1) = (u, logv2, . . . , logvn ).

v1 ( f (v1,v−1)) · (1 − pi (v1,v−1)) g v1 ( f (v
′
1,v−1)) · (1 − pi (v ′1,v−1))

⇐⇒
logv1 ( f (v1,v−1)) + log(1 − pi (v1,v−1)) g logv1 ( f (v

′
1,v−1)) + log(1 − pi (v ′1,v−1))

⇐⇒

logv1 ( f (v1,v−1)) − log(
1

1 − pi (v1,v−1)
) g logv1 ( f (v

′
1,v−1)) − log(

1

1 − pi (v ′1,v−1)
)

⇐⇒
logv1 ( f

′(logv1, logv−1)) − p ′i (logv1, logv−1) g logv1 ( f
′(logv ′1, logv−1)) − p ′i (logv ′1, logv−1)

□

We say thatM andM ′ from the statement of the lemma are twin mechanisms. Although technically

simple, the connection is quite powerful and allows us to easily adapt known results in the traditional

model to the percentage fee model:

THEOREM 2.4 (AN ANALOG OF ROBERTS’ THEOREM). LetM be an n-player incentive compat-

ible mechanism in the percentage fee model for an unrestricted domain of positive valuationsVn .

LetA be the set of alternatives and suppose that the size of the image of the allocation function ofM
is at least 3. Then, there exist constants ³a (for each a ∈ A) and ´i (for each player i) such that the

allocation function ofM in every instance (v1, . . . ,vn ) selects an alternative in A that maximizes

³a ·
∏

i vi (a)
´i .

PROOF. LetM ′ be the twin mechanism ofM. Since Vn is an unrestricted domain of positive

valuations, logV is an unrestricted domain (with no positivity condition). By Roberts’ theorem,M
must be an affine maximizer, i.e. it maximizes ³a +

∑n
i=1 ´iwi (a) for some parameters ³a , ´i . This

also defines the allocation function of the mechanismM to be as in the statement of the theorem. □

2.3 Single Parameter Domains

We now study single parameter domains in the percentage fee model. We focus on binary single

parameter domains where for each player i, the set of alternatives A is divided to “winning” alterna-

tivesWi and “losing” alternatives Li . For every player i and valuation vi ∈ Vi there is a value hvi
such that vi (a) = hvi , for all a ∈ Wi . There is also some value7 li > 0 such that for every valuation

vi ∈ Vi and alternative a ∈ Li , vi (a) = li .

Recall that a social choice function f is monotone for player i if, for every v,u for which

hv < hu and v−i it holds that if f (v,v−i ) ∈ Wi then f (u,v−i ) ∈ Wi . Recall that in the traditional

model monotonicity characterizes implementability. Unlike implementability in rich domains where

different functions can be implemented in the traditional model and in the percentage fee model, for

single parameter domains we get that the set of implementable social choice functions is identical in

the percentage fee model and in the traditional model:

THEOREM 2.5. Let f be a social choice function when the domains of all players are single

parameter. Then, f is implementable in the percentage fee model if and only if f is monotone for

each player i.

7Note that we assume that li > 0 since if li = 0 only trivial functions can be implemented: fixing v−i , player i will get

an alternative in Li only if for all u it holds that fi (u, v−i ) ∈ Li , as if there is some u for which fi (u, v−i ) ∈ Wi , then

vi (f (u, . . . , vn )) (1 − pi (v1, . . . , vn ) > vi (f (vi , . . . , vn )) (1 − pi (v1, . . . , vn ).
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PROOF. LetM be a mechanism that implements f with a payment function p. To show that f

is monotone is will be easier to work with a “normalized” mechanism in which the payment for

winning player is always 0. We defineM ′ to be a mechanism with a social choice function f and

payment function p ′ that is defined as follows:

p ′i (v1, . . . ,vn ) =


0 f (v1, . . . ,vn ) ∈ Wi ;

1 − 1−pi (v1, ...,vn )

1−pi (w,v−i )
f (v1, . . . ,vn ) ∈ Li and ∃w s.t. f (w,v−i ) ∈ Wi ;

pi (v1, . . . ,vn ) otherwise.

Note thatM ′ may not be formally a mechanism since it might be that p ′i (·) < [0, 1). However, it

is still incentive compatible: for every vi ,ui ,v−i such that f (vi ,v−i ) ∈ Wi and f (ui ,v−i ) ∈ Li , it

holds that:

vi ( f (vi ,v−i )) · (1 − pi (vi ,v−i )) g vi ( f (ui ,v−i )) · (1 − pi (ui ,v−i ))
⇐⇒

vi ( f (vi ,v−i )) g vi ( f (ui ,v−i )) ·
(1 − pi (ui ,v−i ))
(1 − pi (vi ,v−i ))

⇐⇒
vi ( f (vi ,v−i )) · (1 − p ′i (vi ,v−i )) g vi ( f (ui ,v−i )) · (1 − p ′i (ui ,v−i ))

We can similarly show that for every vi ,ui ,v−i such that f (vi ,v−i ), f (ui ,v−i ) ∈ Li

vi ( f (vi ,v−i )) · (1 − pi (vi ,v−i )) g vi ( f (ui ,v−i )) · (1 − pi (ui ,v−i ))
⇐⇒

vi ( f (vi ,v−i )) · (1 − p ′i (vi ,v−i )) g vi ( f (ui ,v−i )) · (1 − p ′i (ui ,v−i ))
As for vi ,ui ,v−i such that f (vi ,v−i ), f (ui ,v−i ) ∈ Wi , we get that vi ( f (vi ,v−i )) · (1−p ′i (vi ,v−i )) =
vi ( f (ui ,v−i )) · (1 − p ′i (ui ,v−i )).

We prove that f is monotone for each player i by using the fact that M ′ implements it. Fix

some v−i and let vi be some valuation such that f (vi ,v−i ) ∈ Wi and ui be some valuation such that

f (ui ,v−i ) ∈ Li (if there is no suchvi or no suchui then the function is trivially monotone with respect

to player i and thisv−i ). We have thatvi ( f (vi ,v−i )) · (1−p ′i (vi ,v−i )) g vi ( f (u,v−i )) · (1−p ′i (u,v−i ))
if and only if some alternative inWi is selected. Recalling that p ′i (vi ,v−i ) = 0 we get that hvi g
li · (1 − p ′i (u,v−i )) if and only if some alternative inWi is selected. That is, for each valuation v ′i for

which hv ′i > hvi , an alternative fromWi is selected, as needed. □

3 COMPUTATIONALLY EFFICIENT APPROXIMATION MECHANISMS

This section studies the power of polynomial-time incentive-compatible algorithms. The primary tool

that we use is maximal-in-range mechanisms. In the percentage fee model, these are mechanisms that

find an allocation that maximizes the Nash Social Welfare over some predefined set of allocations.

The incentive compatibility of maximal-in-range mechanisms with suitable payments follows from

Theorem 2.1.

First, we develop polynomial-time incentive-compatible mechanisms for a constant number of

players n with XOS or subadditive valuations (Subsection 3.1). The approximation ratio of the

mechanisms is n for XOS valuations and n · logm for subadditive valuations. Note that achieving an

n-approximation via an incentive-compatible mechanism is easy in the traditional model of social

welfare: either conduct a second-price auction on the grand bundle or allocate all items randomly.

However, these mechanisms do not approximate the NSW well (a second price auction on the grand

bundle provides an approximation ratio of 0, and a random allocation may provide a reasonable
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approximation with an exponentially small probability). We develop a new method that provides an

n-approximation by utilizing n-wise independent distributions.

When n is not necessarily a constant, we develop two randomized maximal-in-range algorithms.

The first one (Subsection 3.2), provides a ratio of O (m
2
3 ) in polynomial time with poly (n,m) value

queries. The second one (Subsection 3.3) provides a better ratio of O (m
1
2 ) with poly (n,m) value

queries. However, although the number of queries of the latter algorithm is polynomial, its running

time is exponential.

Finally, in Subsection 3.4, we show that maximal-in-range mechanisms cannot do much better in

polynomial time: for any constant number of players n > 1, there is no maximal-in-range algorithm

that provides an approximation ratio better than n, unless NP ¦ P/poly.

3.1 Approximations for a Constant Number of XOS / Subadditive Players

THEOREM 3.1. Form items andn players with XOS valuations, there is a deterministic mechanism

in the percentage fee model that guarantees an (1 + ε )n-approximation to the Nash Social Welfare

(for any constant ε > 0). If the valuations are subadditive, then the approximation ratio is O (n logm).

The running time of the mechanism is O (mn ), hence polynomial for a constant number of agents n.

We remark that a trivial mechanism maximizing over all possible allocations would have a running

time of O (nm ). This is exponential even for a constant number of agents n. (We may assume that

m g n, otherwise in every allocation there is one player that is not allocated any item, thus the NSW

is always 0.)

PROOF. Our mechanism is a maximal-in-range mechanism with the following range: Given a

set of items M and a set of agents N , consider an n-wise independent distribution over NM , i.e. a

distribution D such that for any j1, j2, . . . , jn ∈ M , D projected on N {j1, ..., jn } is a uniform product

distribution. Such distributions are known with support of size O (mn ), with exact uniformity form,n

powers of a prime p, and with some small deviation from uniformity for generalm,n.8 The deviation

from uniformity is the reason for (1 + ε )n in the statement, otherwise we get a factor of n. In the

following, we ignore this issue and assume that we have a uniform n-wise distribution D.

Given valuationsv1, . . . ,vn , the mechanism maximizes
∏n

i=1vi (Si ) over all allocations (S1, . . . , Sn )

in the support of D, which takes takes O (mn ) running time (by simple exhaustive search). The re-

maining claim is that this mechanism provides an n-approximation to the optimal Nash Social

Welfare. We prove that

E(S1, ...,Sn )∼D


n
∏

i=1

vi (Si )

 g
1

nn

n
∏

i=1

vi (Oi ) (1)

where (O1, . . . ,On ) is an optimal allocation. Hence, the best allocation in the support of D provides

an n-approximation in terms of the Nash social welfare,
(

∏n
i=1vi (Si )

)1/n g 1
n

(

∏n
i=1vi (Oi )

)1/n
. 9

The proof of (1) is as follows: consider an optimal allocation (O1, . . . ,On ) and for each agent, an

additive valuation in their XOS representation that attains the value of Oi : vi (Oi ) =
∑

j ∈Oi
wi j . We

8Assuming m > n are powers of the same prime p, and Fm is a field with m elements, we consider a polynomial

p (x ) =
∑n−1
k=0

akx
k where a0, a1, . . . , an−1 are uniformly random in Fm . Agent i receives item j if and only if p (j ) = i

(mod n). The random variables p (j ) are n-wise independent, and uniformly distributed in Fm . The size of the probability

space is O (mn ), corresponding to the choices of n coefficients in Fq . For general values of m, n, we can choose a prime

power q > m, q = O (m) and embed our construction in Fq , with some small non-uniformity in our distribution (due to q not

being divisible by n).
9Note a subtle point here: We cannot claim that a randomized mechanism which samples a random allocation from D provides

an n-approximation in expectation, because E[
(

∏n
i=1 vi (Si )

)1/n
] could be substantially smaller than

(

E[
∏n
i=1 vi (Si )]

)1/n
.)
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also have vi (S ) g
∑

j ∈S wi j for every bundle S , by the definition of XOS valuations. Hence,

E(S1, ...,Sn )∼D


n
∏

i=1

vi (Si )

 g E(S1, ...,Sn )∼D


n
∏

i=1

∑

j ∈Si
wi j


g E(S1, ...,Sn )∼D


n
∏

i=1

∑

j ∈Si∩Oi

wi j


= E(S1, ...,Sn )∼D


∑

j1∈S1∩O1

. . .
∑

jn ∈Sn∩On

n
∏

i=1

wi ji


=

∑

j1∈O1

. . .
∑

jn ∈On

Pr[j1 ∈ S1, . . . , jn ∈ Sn]
n
∏

i=1

wi ji .

Now by the property of uniform n-wise independent distributions, we have Pr[j1 ∈ S1, . . . , jn ∈ Sn] =
∏n

i=1 Pr[ji ∈ Si ] = 1
nn

. So we can write

E(S1, ...,Sn )∼D


n
∏

i=1

vi (Si )

 g
∑

j1∈O1

. . .
∑

jn ∈On

1

nn

n
∏

i=1

wi ji

=

1

nn

n
∏

i=1

∑

j ∈Oi

wi j =
1

nn

n
∏

i=1

vi (Oi )

which is the desired inequality (1).

Finally, for subadditive valuations, we recall that for every subadditive valuation v there is an XOS

valuation v ′ that approximates it within an O (logm) factor: for every S , v ′(S ) f v (S ) f v ′(S ) · logm
[Dobzinski, 2007]. As a corollary, the same analysis gives a factor of O (n logm) for subadditive

valuations. □

3.2 A Polynomial Time O (m
2
3 )-Approximation Mechanism

We now provide a randomized maximal-in-range mechanism that provides an approximation ratio of

O (m
2
3 ) for subadditive valuations. The mechanism combines two maximal-in-range algorithms. The

first mechanism finds an allocation that maximizes the NSW among all allocations that allocate one

item to each player. This mechanism provides an approximation ratio of m
n

. Note that this mechanism

can be implemented by running a bipartite matching algorithm on the graph that contains players on

one side and items on the other. The graph has an edge between player i and item j if vi ({j}) > 0 and

in this case its weight is logvi ({j}) .

The second mechanism partitions the set of items to n2 bundles S1, ...,Sn , by allocating each item

to one of the bundles independently at random and finding the allocation that maximizes the NSW

among all allocations in which each player gets one such bundle. This allocation can be found by

running a bipartite matching algorithm, similarly to before. We show that this mechanism provides

an approximation ratio of O (n2). Intuitively, the idea of the algorithm is as follows. Consider some

player i and the bundle Oi that he gets in the optimal solution. For each player i there is at least one

bundle Si that is valuable enough for her, since by subadditivity there is at least one bundle S j such

that vi (S j ∩Oi ) g vi (Oi )

n2 . We say that player i is interested in the bundle S j . A simple application

of the birthday paradox shows that since the bundle S j that player i is interested in is distributed

uniformly and independently, the probability that no two players are interested in the same bundle
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S j is at most 1
2
. Thus we can allocate each player i the bundle S j that she is interested in and get an

approximation ratio of 1
n2 .

The Algorithm.

• Randomly partition the items into n2 bundles, S1, . . . , Sn2 . Each item j is assigned to a set

uniformly and independently of the other items.

• Choose the allocation that maximizes the Nash Social Welfare from the union of the following

sets of allocations:

(1) The set of allocations which consists of all allocations in which each player gets one item.

(2) The set of allocations which consists of all allocations in which each player gets one of the

bundles S1, . . . , Sn2 .

THEOREM 3.2. There are payments that make the mechanism above incentive compatible in

the percentage fee model. The mechanism guarantees an approximation ratio of min(m
n
,n2) =m

2
3

with probability at least 1
2

whenever the valuations of the players are subadditive. There is an

implementation of the mechanism that uses polynomially many value queries and runs in polynomial

time.

It is easy to implement the mechanism with polynomially many value queries: query each player i

for her value vi ({j}), for every item j, and for her value for the bundles S1, . . . , Sn2 . The total number

of queries is at most n · (m + n2). Note that given these queries we can find the allocation that

maximizes the NSW in polynomial time, by running a bipartite matching twice, once for each set of

allocations. Incentive compatibility also follows since the mechanism is maximal-in-range (in the

percentage fee model).

As stated above, the mechanism is randomized and succeeds with probability 1
2
. Thus, we can run

the mechanism t times and the success probability increases to 1− ( 1
2
)t . That is, the failure probability

is 1/exp (m,n) when t is large enough but still polynomial. In general, incentive compatibility is

not preserved when repeating an incentive compatible mechanism several times and choosing the

best outcome. However, the incentive compatibility of maximal-in-range mechanisms (and hence

also of this specific mechanism) is preserved: randomization is used only to define the range of the

mechanism. When payments are computed with respect to the union of the ranges produced by the

different coin flips, the composed mechanism is incentive compatible.

It remains to prove that the mechanism provides the required approximation ratio. This will be

proved by the following two lemmas by noting that min(m
n
,n2) f m

2
3 for all possible values ofm,n.

LEMMA 3.3. With probability 1, the mechanism returns a solution of NSW at least n
m
OPT .

PROOF. We will show that this approximation ratio is guaranteed even if we consider only the

first set of allocations, where each player gets at most one item.

Let (O1, . . . ,On ) denote an allocation that maximizes the NSW. For each Oi , let oi denote an item

in Oi with the largest value as a singleton, i.e., oi ∈ argmaxj ∈Oi
vi ({j}). Let ({a1}, . . . , {an }) denote

the allocation that maximizes the NSW in the first set of allocations. We have that:
n
∏

i=1

vi ({ai }) g
n
∏

i=1

vi ({oi }) g
n
∏

i=1

1

|Oi |
· vi (Oi ) g

(

n

m

)n n
∏

i=1

vi (Oi )

where the second inequality is due to subadditivity and the last inequality follows from Σi |Oi | f m

and the AM-GM inequality. □

LEMMA 3.4. With probability at least 1
2
, the mechanism returns a solution of NSW at least

1
n2OPT .
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PROOF. We will show that this approximation ratio is guaranteed with the specified probability

even if we consider only the second set of allocations.

Let (O1, . . . ,On ) denote an allocation that maximizes the NSW. By subadditivity, we are guaran-

teed that for each player i there exists at least one index ji ∈ [n2] such that vi (Oi ∩ S ji ) g
vi (Oi )

n2 (if

there are several such ji ’s, choose one uniformly at random). Note that since each item is assigned

to one of S1, . . . , Sn2 independently, the ji ’s are independent and uniform in {1, 2, . . . ,n2}. The rest

of the proof follows from the following claim, which is essentially the (flip side of the) birthday

paradox:

CLAIM 3.5. With probability at least 1
2
, there are no two players i, i ′ such that ji = ji′ .

PROOF. Fix two players, i, i ′. Since ji , ji′ are chosen independently and uniformly from a range of

n2 values, the probability that ji = ji′ is 1
n2 . The number of pairs is

(

n
2

)

, so by the union bound, the

probability that there exists a pair of players i , i ′ such that ji = ji′ is at most
(n2 )
n2 <

1
2
. □

Let ALG denote the NSW of the best allocation in the range. This is at least as good as the

allocation that gives each player i the bundle S ji , which provides an approximation ratio of n2:

ALG g *,
n
∏

i=1

vi (S ji )
+-
1/n

g *,
n
∏

i=1

vi (Oi )

n2
+-
1/n

g 1

n2
OPT .

□

3.3 An Õ (m
1
2 )-Approximation Mechanism using O (n +m) Value Queries

We now show how to improve the approximation ratio of the algorithm provided in Subsection 3.2.

However, while the number of queries the algorithm of this subsection makes is still polynomial, the

running time is not polynomial.

We again combine two maximal-in-range algorithms. The first one finds an optimal matching

and provides an approximation ratio of m
n

exactly as before. In the second mechanism, we partition

the items uniformly and independently into t = 2n bundles, S1, . . . , St . Our range consists of

allocations where each player gets either one of the bundles S j or a singleton item. We show that the

approximation factor of this mechanism is Õ (n) w.h.p.

Consider an optimal allocation (O1, . . . ,On ). We show that if player i does not have an item j ∈ Oi

that contributes Ω̃( 1
t
vi (Oi )), then E[vi (Si ∩Oi )] = Ω̃( 1

t
vi (Oi )) with high probability. So if a typical

bundle S j is not valuable for player i with high probability, then there is a “significant item” which

is valuable for player i (if there are several such item, arbitrarily choose one item the “significant

item” of player i). Thus, the following allocation gives a good approximation with high probability:

if player i has a significant item, allocate this item to the player. For the remaining players, allocate

them an arbitrary bundle that does not contain items that are significant for some player. Note that

since there are at most n players and thus n item that are significant for some player, there are at

most n bundles that contain items that are significant for some player. Hence, at most n out of the 2n

bundles can be invalidated in this way, and so at least n bundles still remain available to be allocated

to players that do not have significant items.

We note that the first type of allocation (one item for each player) is actually a special case of the

second type, so we state only the second type in our algorithm.

The Algorithm.

• Randomly partition the items into t = 2n bundles, S1, . . . , St . Each item j is assigned to Si for

a random i ∈ [t] uniformly and independently of the other items.
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• Choose an allocation that maximizes the Nash Social Welfare over the following set of

allocations: All allocations in which each player i either gets some bundle S j , or a single item

outside of the bundles allocated to other players.

THEOREM 3.6. The mechanism above with suitable payments is incentive-compatible in the

percentage fee model, and guarantees an approximation ratio of min(m
n
,O (n · log2m)) = O (m1/2 ·

logm) with probability at least 1− 1/m whenever the valuations of the players are subadditive. There

is an implementation of the mechanism that uses O (m + n) value queries, and the running time is

2O (n)poly(m).

It is easy to implement the mechanism with O (m + n) value queries: Given the random partition

(S1, . . . , Sn ), query each player i for her value vi ({j}) for every item j, and her value v (Si ) for every

bundle Si , 1 f i f t . The total number of such queries is m + 2n. To find the best allocation in the

range, we enumerate over all subsets A of players who should get a full bundle, and over all subsets

B of |A| bundles to be allocated as a full bundle: these are 2O (n) configurations to consider. For each

configuration, we find the best assignment B to A by solving a max-weight matching problem with

weights logvi (S j ) (if vi (S j ) > 0), and also the best assignment of singletons outside of
⋃

i ∈B Si to the

players outside of A, by solving another matching problem with weights logvi ({j}) (if vi ({j}) > 0).

This takes poly(m,n) time for each configuration. So the total running time is 2O (n)poly(m).

It remains to prove that the mechanism provides the required approximation ratio. We will use the

following lemma:

LEMMA 3.7. For some constant c > 0, the following holds. Let v : 2S → R+ be subadditive

and let S ′ be a random subset of S that is obtained by including each item of S independently with

probability 1
t
, for some t > 1. Suppose that for every j ∈ S , v ({j}) f v (S )

c ·t ·log2m . Then,

Pr

[
v (S ′) g v (S )

c · t · logm

]
> 1 − 1

m2
.

PROOF. We use the following claim from [Dobzinski, 2007], which is essentially a result on

approximation of subadditive functions by XOS ones.

CLAIM 3.8 ([DOBZINSKI, 2007]). There exists a constant c ′ > 0 such that for every subadditive

function v : 2S → R+, there exist prices (pj : j ∈ S ) such that

(1)
∑

j ∈S pj g v (S )
c ′ ·log |S | ,

(2) ∀S ′ ¦ S ,
∑

j ∈S ′ pj f v (S ′).

We choose the c in the lemma as c = 6c ′. Given S , consider the prices pj given by the claim. We will

give a lower bound on the expected value of v (S ′), where each element of S appears independently

with probability 1/t . We will use the following Chernoff bound:

Pr[X < (1 − ε )µ] < e−ε
2µ/2

where X =
∑

j ∈S ajX j , 0 f aj f 1, {X j : j ∈ S } are independent random values in {0, 1}, and

µ = E[X ].

In our setting, X j is the indicator variable of the event j ∈ S ′, and we set aj =
c ·t ·log2m

v (S )
pj . Thus, by

assumption we have aj f c ·t ·log2m
v (S )

v ({j}) f 1, µ = E[X ] = 1
t

∑

j ∈S aj =
6c ′ ·log2m

v (S )

∑

j ∈S pj g 6 logm

and hence by the Chernoff bound with ϵ = 5/6,

Pr[X < logm] f Pr[X < µ/6] < e−(5/6)
2µ/2 < e−µ/3 f 1

m2
.
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Consequently, with probability more than 1 − 1/m2, X g logm, and

v (S ′) g
∑

j ∈S ′
pj =

v (S )

c · t · log2m

∑

j ∈S ′
aj =

v (S )

c · t · log2m
X g v (S )

c · t · logm .

□

The approximation ratio can now be proved by combining the following two lemmas.

LEMMA 3.9. With probability 1, the mechanism outputs an allocation of value at least n
m
OPT .

The proof of this Lemma is identical to the proof of Lemma 3.3, using the fact that allocations of 1

item to each player are included in our range: We select a set of players A who obtain a full bundle

S j , and the other agents obtain a singleton item. As a special case, we consider A = ∅, in which case

the allocation is simply a matching.

LEMMA 3.10. With probability 1 − 1/m, the mechanism outputs an allocation of value at least
1

2cn log2m
OPT .

PROOF. Let (O1, . . . ,On ) denote an allocation that maximizes the NSW. We call player i focused

if there exists some item si ∈ Oi such that vi ({si }) g vi (Oi )

c ·t ·log2m . In this case, we call si the significant

item of player i (if there are several such items, we choose one arbitrarily). If the significant item si
of a focused player i is assigned to a set S j , we say that player i is interested in the set S j .

Let’s call a bundle available if it doesn’t contain any significant item. Observe that at most n of

the bundles S1, . . . , St can contain a significant item of some player, and hence at least n bundles

are available (recall that t = 2n). Let us allocate some available bundle SÃ (i ) to each player i who

is not focused; we can do this uniformly at random, given the set of available bundles. Since items

are assigned to bundles S j independently, the choice of Ã (i ) is independent of how Oi is partitioned

among the bundles. Hence, from the point of view of an unfocused player i (assuming that she cares

only about the items in Oi ), the choice of Ã (i ) is uniformly random, and the set Oi ∩ SÃ (i ) can be

viewed as sampling elements of Oi with probability 1/t . Hence, we can apply Lemma 3.7.

CLAIM 3.11. Assuming OPT > 0, with probability at least 1 − 1
m

, for each player i that is not

focused it holds that vi (SÃ (i ) ) g vi (Oi )

c ·t ·logm .

PROOF. For each player i that is not focused, the value of every singleton is bounded by

vi ({j}) < vi (Oi )

c ·t ·log2m . As discussed above, Oi ∩ SÃ (i ) is a random subset of Oi where each item

appears independently with probability 1/t . By Lemma 3.7, Pr[vi (Oi ∩ SÃ (i ) ) <
vi (Oi )

c ·t ·logm ] < 1
m2 . By

the union bound, since there are at most n players that are not focused, the statement of the lemma

holds with probability at least 1 − n
m2 g 1 − 1

m
(where in the last inequality we use n f m otherwise

in any allocation at least one player gets no items and OPT = 0). □

We can now finish the proof of the lemma by considering the following allocation: Each player i

that is focused receives its significant item si . Each player i that is not focused receives the bundle

SÃ (i ) . By construction, these are disjoint sets and hence this is a valid allocation. With probability

at least 1 − 1/m, every player i receives value at least
vi (Oi )

c ·t ·log2m , either from their bundle or their

significant item. Hence, the allocation provides an approximation factor of 1
2c ·n log2m

. □

To conclude, we note that the mechanism achieves simultaneously an approximation factor of n
m

and 1
2cn log2m

. Hence, we have a factor at least max{ n
m
, 1
n log2m

} g 1
m1/2 logm

for all possible values of

m,n (the worst case being n = m1/2

logm
).
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3.4 An Impossibility Result for MIR Mechanisms with Additive Valuations

We now prove that the Nash Social Welfare cannot be maximized to within a factor better than 1/n by

a maximal-in-range mechanism in polynomial time. The proof is composed of two steps. In the first

step we show that if the range of some mechanism contains many allocations then there is a relatively

large subset of the items S and a set of players T such that projecting the set of all allocations of

the mechanism on the subset S , we get all possible allocations of the items in S to the players in

T . The proof relies on similar lemmas that were obtained to prove the limits of polynomial time

maximal-in-range mechanisms for maximizing the social welfare. We then use these sets S , T to

show that the maximal-in-range mechanism must solve exactly the problem of maximizing the NSW

for two players with additive valuations, which is NP-hard.

THEOREM 3.12. Fix a constant ε > 0 and n g 2. There is no polynomial-time maximal-in-range

mechanism for n players with additive valuations that provides a ( 1
n
+ ε )-approximation to the Nash

social welfare, unless NP ¦ P/poly.

DEFINITION 3.13. Let R be a set of allocations. We say that R contains an (S,T )-shattering if

the range R restricted to the set of items S , contains T S , i.e. all possible allocations of items in S to

players in T .

The next lemma follows from a similar lemma in [Buchfuhrer et al., 2010].

LEMMA 3.14. Suppose that |M | = m, |N | = n, ε ∈ (0, 1
4
), m g 2

ε2
n log(2n). Then there exists

¶ = ¶ (n, ϵ ) > 0 such that ifM is a maximal-in-range mechanism with range R ¦ NM that provides

a ( 1
n
+ ε )-approximation in terms of Nash social welfare for additive valuations, then there exists a

subset of items S ¦ M , |S | g ¶m, and a subset of the players T ¦ N , |T | g 2, such that R contains

an (S,T )-shattering.

PROOF. Consider a uniformly random function f : M → N . We interpret f as an instance of Nash

Social Welfare, where f −1 (i ) is the set of items in which player i is interested, and her (additive)

valuation is vi (S ) = |S ∩ f −1 (i ) |. We assume thatM provides a c-approximation, hence there must

be an allocation in the range (S1, . . . , Sn ) ∈ R such that

*,
n
∏

i=1

vi (Si )+-
1/n

=
*,

n
∏

i=1

|Si ∩ f −1 (i ) |+-
1/n

g
(

1

n
+ ε

)

·OPT =
(

1

n
+ ε

)

· *,
n
∏

i=1

| f −1 (i ) |+-
1/n

(2)

This holds for every instance f , but we are particularly interested in those instances where the sets

f −1 (i ) are “ε-balanced”: | f −1 (i ) | g (1 − ε )m
n

for every i. By Chernoff bounds, this happens for a

uniformly random f with probability at least 1/2: For each i, | f −1 (i ) | is a summation of independent

0/1 random variables with expectation µ =m/n, and by the Chernoff bound, Pr[| f −1 (i ) | < (1−ε )µ] <
e−ε

2µ/2 f e− log(2n) = 1/(2n) by the assumptions of the lemma.

Assuming that f is ε-balanced, (2) implies the following: By the AM-GM inequality,

1

n

n
∑

i=1

|Si ∩ f −1 (i ) | g *,
n
∏

i=1

|Si ∩ f −1 (i ) |+-
1/n

g
(

1

n
+ ε

)

· *,
n
∏

i=1

| f −1 (i ) |+-
1/n

g
(

1

n
+ ε

)

(1 − ε )m
n
>

(

1

n
+

ε

2

)

m

n
. (3)

Let us define a function д : M → N ∪ {∗} encoding (S1, . . . , Sn ): д(j ) = i if j ∈ Si and д(j ) = ∗ if

j is not contained
⋃n

i=1 Si . Equation (3) can be interpreted as saying that f and д agree on at least
(

1
n
+

ε
2

)

m coordinates, i.e. the Hamming distance between f and д is at most (1 − 1
n
− ε

2
)m. Now

we refer to Lemma 4.4 in [Buchfuhrer et al., 2010], with U = M , V = N , µ = 1/2, q = 2: The lemma
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concludes that for some ¶ (n, ϵ ) > 0 there is a set of items S ¦ M and a set of players T ¦ N such

that |S | g ¶ |M |, |T | g 2, and R contains an (S,T )-shattering. □

LEMMA 3.15. LetM be a maximal-in-range mechanism for n players, for some constant n g 2.

Suppose for some fixed ¶ > 0 and everym, the range ofM contains an (S,T ) shattering, for |S | g ¶m

and |T | g 2. Then,M does not run in polynomial time, unless NP ¦ P/poly.

PROOF. We useM to exactly solve the problem of maximizing the NSW with a set of 2 additive

players and m′ items. Recall that this problem is NP-hard (by a simple reduction from the NP-

complete Subset Sum problem). Let (v ′1,v
′
2) be such an instance onm′ items.

Givenm′, we consider instances of NSW with n players andm = +m′/¶, items. Our assumed MIR

mechanism with these parameters contains an (S,T )-shattering where |S | g ¶m g m′ and |T | g 2.

We can actually assume that |T | = 2, which is implied by any shattering with a larger T . Let us also

assume for convenience that S = [m′] = {1, 2, . . . ,m′} and T = {1, 2}.
Given the valuations v ′1,v

′
2 on [m′], we define additive valuations v1,v2 on [m] as follows: vi (j ) =

v ′i (j ), for 1 f j f m′, and vi (j ) = 0 otherwise. To extend this to an instance with n players, we need

to define the valuations of players 3, . . . ,n. For each such player i, we will have a set of (1 − ε )m
permissible valuations v

j
i : For everym′ < j f m, we set v

j
i ({j}) = 1 and v

j
i ({j ′}) = 0, if j ′ , j.

Note that the set of permissible valuations for each extra player is of size (1 − ε )m and thus there

are ((1 − ε )m)n−2 instances that may be obtained by each extra player having one valuation from its

permissible set. We runM on all such instances and choose an allocation that maximizes the NSW.

Thus, the total running time of the reduction is O (mn−2) times the running time of the mechanism

M, which is polynomial assuming that n is constant and the running time ofM is polynomial as

well. The correctness of the reduction follows from the following claim.

CLAIM 3.16. In all iterations of the reduction, the optimal NSW of the constructed instance is at

most the optimal NSW of the original instance. Further, there exists an iteration of the reduction in

which the optimal NSW equals the optimal NSW in the original instance.

Consider some iteration of the reduction, where the choice of the valuation of each player i,

n g i > 2, is v
j
i . Consider some allocations of the items (S1, . . . , Sn ). Note that

∏n
i=3v

j
i (Si ) ∈ {0, 1},

by construction. Also note that
∏2

i=1vi (Si ) =
∏2

i=1vi (Si ∩ [m′]) =
∏2

i=1v
′
i (Si ∩ [m′]). We thus have

that
∏n

i=1vi (Si ) f
∏2

i=1v
′
i (Si ∩ [m′]). Note that (S1 ∩ [m′], . . . , Sn ∩ [m′]) is an allocation of the

items in [m′]. Hence, the first part of the claim follows.

We now prove the second part of the claim. Let (O1,O2) be an optimal allocation of items in [m′] to

players inT = {1, 2}. Note that there since the range has an (S,T )-shattering with S = [m′],T = {1, 2},
there is an allocation (S1, . . . , Sn ) such that

∏2
i=1vi (Si ∩ [m′]) =

∏2
i=1v

′
i (Oi ). We can assume that

for each i > 2, Si , ∅, otherwise the NSW of (S1, . . . , Sn ) is always 0 and thus we can assume that

this allocation is not in the range of the algorithm in the first place. Consider the iteration where the

valuation of each player i > 2 is v
j
i , for some j ∈ Si . We have that

∏n
i=3v

j
i (Si ) = 1. In total we get

that
∏n

i=1vi (Si ) =
∏2

i=1v
′
i (Oi ), as needed. □

To summarize, the maximum NSW over all allocations in the range would be one whose value is

exactly v ′1 (O1) · v ′2 (O2) and we could also find O1,O2 (or another allocation of equal NSW value) by

restricting the output of our mechanism to the first two players. Hence, we would be able to solve

an NP-hard problem for every given input size (possibly non-uniformly, hence the conclusion is

NP ¢ P/poly).
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CONCLUSION AND FUTURE DIRECTIONS

In this work we design incentive compatible mechanisms that maximize the Nash Social Welfare

by considering a novel percentage fee model. Our work leaves a number of open questions. At

the most immediate level, can we obtain an approximation ratio of m
1
2 not just with a polynomial

number of value queries but also in polynomial time? In addition, our hardness result applies only to

maximal-in-range mechanisms; is it possible to prove that obtaining an approximation ratio better

thanm
1
2 for any incentive-compatible mechanism in our model is computationally hard, or requires an

exponential number of queries? Such impossibilities are known in the traditional model [Dobzinski,

2011, Dughmi and Vondrák, 2011, Dobzinski and Vondrák, 2012] but we do not know how to obtain

analogous results for approximating the NSW in the percentage fee model.

In addition, all of our bounds use simple value queries. We do not know whether more complicated

queries, e.g., demand queries, can help obtain better approximation ratios.

Finally, in this paper we have demonstrated how different payment schemes enable the implemen-

tation of useful social choice functions. Is it always possible to characterize the set of implementable

social choice functions as a function of the payment method? Specifically, what can be implemented

if the designer is allowed to offer, for each alternative, either a fixed fee or a percentage fee? It will

also be very interesting to understand whether there are other natural payment schemes that enable

the incentive-compatible implementation of different fairness notions.
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