

1 **A CDK-mediated phosphorylation switch of disordered protein condensation**
2

3 **Authors:** Juan Manuel Valverde^{1,2†}, Geronimo Dubra^{3,4‡}, Henk van den Toorn^{1,2}, Austin
4 Haider⁸, Michael Phillips⁸, Albert J.R. Heck^{1,2}, Carlos Elena-Real⁵, Aurélie Fournet⁵, Emile Al
5 Ghoul⁷, Dhanvantri Chahar^{3,4}, Nuria Andrés-Sánchez^{3,4}, Matteo Paloni⁵, Guido van Mierlo⁶,
6 Michiel Vermeulen⁶, Angelos Constantinou⁷, Alessandro Barducci⁵, Kingshuk Ghosh⁸, Pau
7 Bernado⁵, Nathalie Sibille⁵, Puck Knipscheer⁹, Liliana Krasinska^{3,4‡}, Daniel Fisher^{3,4‡*},
8 Maarten Altelaar^{1,2‡*}

9 **Affiliations:**

10 ¹Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research
11 and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH
12 Utrecht, Netherlands.

13 ²Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, Netherlands.

14 ³IGMM, University of Montpellier, CNRS, Inserm, Montpellier, France.

15 ⁴Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France.

16 ⁵CBS, University of Montpellier, INSERM, CNRS, Montpellier, France.

17 ⁶Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life
18 Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the
19 Netherlands.

20 ⁷IGH, University of Montpellier, CNRS, Montpellier, France.

21 ⁸ Department of Physics and Astronomy, and Department of Molecular and Cellular
22 Biophysics, University of Denver, Denver, Colorado 80208, USA.

23 ⁹Oncode Institute, Hubrecht Institute–KNAW and University Medical Center, Utrecht, 3584
24 CT, Netherlands.

25 *Correspondence to: m.altelaar@uu.nl and daniel.fisher@igmm.cnrs.fr

26 ^{†‡} Equal contributions

27

28 Cell cycle transitions result from global changes in protein phosphorylation states triggered by
29 cyclin-dependent kinases (CDKs). To understand how this complexity produces an ordered

30 and rapid cellular reorganisation, we generated a high-resolution map of changing phosphosites
31 throughout unperturbed early cell cycles in single *Xenopus* embryos, derived the emergent
32 principles through systems biology analysis, and tested them by biophysical modelling and
33 biochemical experiments. We found that most dynamic phosphosites share two key
34 characteristics: they occur on highly disordered proteins that localise to membraneless
35 organelles, and are CDK targets. Furthermore, CDK-mediated multisite phosphorylation can
36 switch homotypic interactions of such proteins between favourable and inhibitory modes for
37 biomolecular condensate formation. These results provide insight into the molecular
38 mechanisms and kinetics of mitotic cellular reorganisation.

39 **Introduction**

40 The cell cycle is driven by CDKs, which are essential to promote entry into S-phase and
41 mitosis. Two general strategies have been used to understand how CDK-dependent
42 phosphorylation brings about these transitions¹. First, top-down screens have revealed key
43 system components. Hundreds of CDK substrates²⁻⁷ and cell cycle-regulated proteins⁸ and
44 thousands of mitotic phosphorylations⁹ have been identified in this manner. Yet determining
45 their roles has lagged behind; for example, painstaking genetic analysis in yeast models was
46 required to reveal the requirement for CDK-mediated phosphorylation of two key substrates to
47 allow DNA replication^{10,11}. Second, bottom-up molecular analysis of the structural effects of
48 individual phosphorylations on single proteins provides mechanistic insight into regulation of
49 their activity¹². Both of these approaches are rendered more difficult by the fact that CDKs
50 often phosphorylate multiple sites, whose combined effects may result in a phenotype; for
51 example, multisite phosphorylation of the CDK inhibitor Sic1 in budding yeast is required to
52 prevent its degradation¹³. As such, it has proven challenging to use studies performed from
53 these different perspectives to understand global cellular behaviour.

54 Different models of CDK-mediated phosphorylation have been proposed. Specific interactions
55 between distinct CDK-cyclin complexes and sequence motifs encoded in substrates might
56 result in highly ordered phosphorylation¹⁴, yet such complex mechanisms may not be essential
57 since the cell cycle can be driven by single CDK1-cyclin complexes^{15,16}. Furthermore,
58 theoretical modelling and biochemical analysis have suggested that the mitotic control network
59 can trigger switch-like activation of CDK1¹⁷, yet approaches using fluorescent biosensors
60 imply that mitotic CDK1 activation is rather progressive¹⁸. Along with the CDK-mediated
61 ordered phosphorylation model, this suggests that mitotic phosphorylation states should change
62 progressively *in vivo*, yet mitotic reorganisation is rapid and abrupt. Thus, understanding cell

cycle transitions requires a description of the dynamics of global mitotic phosphorylation, which is largely unknown, as well as an investigation of the biochemical effects of phosphorylations, most of which remain uncharacterised. We reasoned that this would require a multidisciplinary quantitative approach involving cell biology, biochemistry, bioinformatics and biophysics. We aimed to generate a quantitative time-resolved map of *in vivo* cell cycle phosphorylation, extract global principles of phosphorylation dynamics, perform comparative analysis to assess conservation of these principles across species, and analyse effects of phosphorylation by modelling, biophysical approaches and biochemical experiments.

71

72 **Results**

73 *A high-resolution map of in vivo cell cycle phosphorylation*

74 Dynamic phosphorylation states cannot be determined from cell populations ¹⁹, while single-cell proteomics studies ^{20,21} currently have insufficient sensitivity and reproducibility for low stoichiometry and dynamic targets. We wanted to identify and quantify cell cycle-regulated phosphosites in a system devoid of artifacts arising from cell synchronisation ^{22,23}, and with temporal resolution that alternative approaches, like centrifugal elutriation ²⁴ or FACS ²⁵ cannot provide. We thus took advantage of the naturally synchronous early cell cycles of *Xenopus laevis* embryos ^{26,27}. We performed quantitative phosphoproteomics *in vivo* using a sensitive phosphopeptide enrichment strategy ²⁸. We collected single embryos at 15-minute intervals while recording visual cues of cell divisions, and phosphopeptides from each embryo were purified and analysed by mass spectrometry (Fig. 1a). These individual embryo phosphorylation states strongly correlated (Supplementary Fig. 1a). We identified 4583 high-confidence phosphosites mapping to 1843 proteins (Supplementary Fig. 1b; Supplementary Dataset 1), most being phosphoserines (Supplementary Fig. 1c). Our approach thus allowed us to generate a dynamic map of protein phosphorylation from an unfertilised egg to a 16-cell embryo.

89 We focused on 1032 sites on 646 proteins whose phosphorylation state changed over time (hereafter denoted “dynamic phosphosites”). Gene ontology (GO) and network analysis of 90 proteins harbouring these sites revealed high functional association and interconnectivity 91 between groups of proteins involved in RNA binding and the nuclear pore complex (NPC), 92 DNA replication and chromatin remodeling, and microtubule regulation (Fig. 1b). Hierarchical 93 clustering uncovered four groups with distinct dynamic behaviour (Fig. 1c; Supplementary 94

95 Dataset 1). The levels of clusters A and B phosphosites were highest in eggs and post-
96 fertilisation, and decreased during the first round of DNA replication. GO analysis for group A
97 highlighted proteins involved in RNA regulation and nuclear organisation, including the NPC
98 and nuclear transport, chromosomal structure and segregation (Supplementary Fig. 1d), as also
99 observed in a recent study on meiosis exit ²⁹. Cluster B phosphosites were enriched in
100 regulators of RNA biosynthesis and stability, translation, actin, DNA replication and repair
101 (Supplementary Fig. 1d). Dephosphorylation of these sites, which coincide with the meiosis-
102 zygote transition, may prepare the embryo for upcoming cell divisions ³⁰. Cluster C
103 phosphosites progressively increased after meiotic exit, while cluster D phosphosites had a
104 clear oscillating signature with upregulation preceding each cell division. GO analysis of
105 cluster C showed dominance of interphase cell cycle processes including DNA replication,
106 RNA-related processes and chromosome organisation (Supplementary Fig. 1d). Several sites
107 were from monophosphorylated peptides, while the multiphosphorylated forms were found in
108 clusters A or D (Supplementary Fig. 1e), further indicating that cluster C sites are from
109 interphase. Cluster D shows coordinated phosphorylation of multiple members of protein
110 complexes involved in distinct processes such as nuclear transport, RNA processing, chromatin
111 remodelling and DNA replication, suggesting a common mechanism of regulation
112 (Supplementary Fig. 1f). Importantly, phosphoproteome changes were not simply a reflection
113 of changes in abundance of the corresponding proteins (Supplementary Fig. 2), which are
114 generally negligible during *Xenopus* early development ³¹. Together, these results suggest that
115 multisite phosphorylation, rather than progressive phosphorylation, might constitute the
116 mitotic trigger.

117 To investigate this idea further, we assigned *in vivo* embryo phosphosites to different cell cycle
118 stages by comparing with phosphorylation patterns of replicating or mitotic egg extracts (Fig.
119 1d). Replication was initiated by adding purified sperm chromatin to interphase egg extracts
120 and quantified over time by measuring radioactive nucleotide incorporation (Fig. 1e, top),
121 while mitosis was triggered by adding recombinant cyclin B and verified microscopically. To
122 compare meiotic exit with mitosis, we also used egg extracts arrested at meiotic metaphase II
123 (Cytostatic Factor, CSF-arrested). Overall, we identified 6937 phosphosites, which included
124 71% of the sites identified *in vivo* (Fig. 1f, Supplementary Dataset 1). 1728 sites varied between
125 S and M-phase, including 693 sites upregulated in S-phase and 1035 in mitosis (Fig. 1e,
126 Supplementary Dataset 1). The S-phase specific phosphosites detected in this dataset greatly
127 increase the known repertoire of phosphorylation sites upregulated during DNA replication ⁹.

128 Although several DNA-replication factors, including MCM4 and RIF1, were already
129 phosphorylated in S-phase, they displayed marked multi-site phosphorylation in mitosis
130 (Supplementary Fig. 3a). GO analysis of interphase and mitotic sites revealed processes
131 enriched in *in vivo* cluster C and cluster D, respectively (Supplementary Fig. 3b).

132 We next analysed the cell cycle behaviour of the dynamic phosphosites that we identified *in*
133 *vivo* (Supplementary Fig. 3c). Most embryo cluster A sites were upregulated in both CSF-
134 arrested meiotic extracts and mitotic extracts, highlighting the global similarities of meiotic
135 and mitotic M-phase, despite the additional activity of the Mos/MEK/MAP kinase pathway in
136 meiosis. In contrast, 78% of embryo cluster B sites were not mapped in extracts, suggesting
137 that these are specific to the developmental transition from meiosis to early embryogenesis. In
138 agreement, cluster B sites that mapped to extracts were generally low in mitosis. Most sites
139 that mapped from embryo cluster C were present only in S-phase, whereas a subfraction peaked
140 in mitosis. As such, this analysis revealed that clusters B and C do not strictly identify cell
141 cycle phases. In contrast, all mapped cluster D sites were absent in S-phase and high in M-
142 phase *in vitro*, showing that single embryo data can successfully identify mitotic
143 phosphorylations. Next, we assessed the behaviour of the 102 peptides detected in both singly
144 and multi-phosphorylated forms in extracts, and found that they segregated into two distinct
145 clusters corresponding to interphase and M-phase, with a strong enrichment for multisite
146 phosphorylation in M-phase (odds ratio 4.6, adjusted p-value $< 10^{-6}$) (supplementary Fig. 3d).
147 The same analysis of multi-site phosphorylation on the 35 peptides detected in singly or
148 multiply phosphorylated forms in embryos revealed four clusters, which correspond to clusters
149 A-D (supplementary Fig. 3e). Despite the small sample, multi-site phosphorylation was highly
150 enriched in meiotic metaphase cluster A (odds ratio 5.6, adjusted p-value 0.011), while two
151 peptides were present as singly phosphorylated in interphase cluster C and doubly
152 phosphorylated in mitotic cluster D. Overall, these data show that diverse biological processes
153 may share a common regulatory mechanism of multisite phosphorylation during cell cycle
154 progression.

155 *Predominance of CDK targets*

156 We further investigated our detected phosphosites to identify putative kinases responsible for
157 their dynamic phosphorylation. Analysis of kinase consensus motifs showed that proline-
158 directed (S/T-P) sites, which conform to the minimal consensus for CDKs, constitute 51% of
159 all detected phosphosites *in vivo* and 60% of dynamic sites (Supplementary Fig. 4a). Around
160 10% of all phosphosites matched the full CDK1-family consensus motif (S/TPxK/R).

161 Replicating and mitotic extracts displayed a similar trend (Supplementary Fig. 4a). Putative
162 CDK targets dominated all clusters, with 80% of sites in cluster D *in vivo* and mitotic clusters
163 *in vitro* conforming to the minimal CDK motif (Fig. 1g, Supplementary Fig. 4b, c). Consensus
164 sites of other kinases such as Aurora, Polo-like kinase (PLK), DBF4-dependent kinase (DDK)
165 and Casein kinase I and II were present to a lesser extent (Supplementary Fig. 4b, d). The
166 fraction of S/T-P sites that correspond to the full CDK consensus site motif is lower in clusters
167 A (6%) and B (11%) than in clusters C and D (26 and 21%, respectively). Many of the cluster
168 B S/T-P sites are likely mediated by MAP kinases, which are proline-directed kinases that are
169 active in meiotic M-phase but are inactivated during early embryonic cell cycles ³². In
170 agreement with this idea, the MAP kinase consensus motif (GPLSP)³³ is clearly detectable in
171 cluster B (Supplementary Fig. 4c). In contrast, around half of cluster A sites mapped to extracts
172 are present in mitosis; this cluster has an unusual S/T-P motif that may correspond to a new
173 class of CDK sites phosphorylated with distinct kinetics from cluster D sites.

174 Few direct CDK substrates have been characterised in *Xenopus*, but we surmised that CDK
175 sites are likely conserved between vertebrates. Thus, to further analyse the proportion of
176 dynamic sites dependent on CDKs, we manually curated a set of 654 human CDK1-subfamily
177 targets (Supplementary Dataset 2; see Supplementary Methods for sources). 304 of these have
178 *Xenopus* homologues among the 1843 phosphoproteins we detected, and 149 were present
179 among the 646 proteins with dynamic phosphosites in *Xenopus* embryos (Fig. 1h). Thus, the
180 predominance of CDK motifs among dynamic phosphosites reflects a high proportion of *bona*
181 *fide* CDK substrates. This is a conservative estimate, since we only considered proline-directed
182 sites as CDK motifs, although we found that 10-20% of human and yeast CDK substrates
183 (Supplementary Dataset 2; see Supplementary Methods for sources) were non-proline-directed
184 (Supplementary Fig. 4e), confirming a recent finding ³⁴. These data reinforce the dominant role
185 of CDKs in cell cycle-regulated phosphorylation.

186 *Mechanisms generating synchronous mitotic phosphorylation in vivo*

187 Since contrasting models of CDK activity predict either switch-like or progressive dynamics
188 of substrate phosphorylation, we determined the *in vivo* dynamics of mitotic phosphorylation
189 of individual phosphosites at extremely high-time resolution. We focused on 64 cluster D sites
190 from diverse proteins, 60 of which conform to CDK minimal consensus motifs. We analysed
191 these sites in single embryos every 180-seconds using quantitative targeted phosphoproteomics
192 ³⁵⁻³⁷ by parallel reaction monitoring ³⁸ (Fig. 2a), and thus obtained a highly resolved
193 quantitative description of mitotic phosphorylation of different protein complexes *in vivo*. This

194 revealed an exceptionally synchronous transition from low to maximal phosphorylation of all
195 phosphosites preceding each cell division (Fig. 2b, c). The latter is as close to switch-like
196 behaviour (an all-or-nothing response to a small change in regulator activity) as can be
197 expected given the spatial metachronicity of mitotic entry in early *Xenopus* embryos^{39,40}.
198 Therefore, any differences in affinities of CDKs for substrates *in vitro*¹⁴ do not translate into
199 major timing differences in mitotic phosphorylation *in vivo*.

200 Highly synchronous mitotic phosphorylation of diverse proteins did not require oscillation of
201 CDK1-Y15 inhibitory phosphorylation, which was downregulated over time (Fig. 2d), as
202 previously reported⁴¹, consistent with lack of oscillating phosphorylation of the CDK1-Y15-
203 regulatory enzymes, CDC25 and WEE1 (Fig. 2e). In contrast, oscillating phosphorylations on
204 NIPA and the APC/C, which regulate mitotic cyclin accumulation, as well as Greatwall kinase,
205 which activates the PP2A inhibitors Arpp19/ENSA, were apparent (Fig. 2f). This suggests that,
206 in early embryos, control of mitotic cyclin levels and PP2A activity, and thus the overall
207 CDK/phosphatase activity ratio¹⁷, may be the key determinant of substrate phosphorylation
208 timing and generate synchronous mitotic phosphorylation, whereas regulated CDK1-Y15
209 phosphorylation is not essential (Fig. 2g). This is consistent with the self-sufficiency of futile
210 cycles in generating switch-like network output in the absence of allosteric regulation⁴², and
211 suggests that multiple layers of regulation may have evolved to ensure robustness of the
212 dynamics.

213 *The cell cycle phosphoproteome is intrinsically disordered*

214 We next investigated whether the diverse dynamic phosphoproteins that we identified share
215 common structural features facilitating CDK-mediated phosphorylation, and if so, whether this
216 is conserved across species. Phosphosites in general are often located in intrinsically disordered
217 regions (IDRs) of proteins⁴³, which is also true for yeast and mouse CDK sites^{44,6,7}. However,
218 previous analyses did not take into account the enrichment of serine, threonine and proline in
219 disordered regions, which is consistently predicted across the entire proteome of *Xenopus*,
220 human and yeast (Supplementary Fig. 5a). Therefore, to date, it is not clear whether the
221 presence of phosphorylatable amino acids, or specifically their phosphorylation, is enriched in
222 disordered regions. We corrected for this compositional bias (see Methods), and found that
223 phosphorylatable residues in IDRs were more highly phosphorylated than those in ordered
224 regions (Fig. 3a-c). This enrichment was increased for proteins with at least one site displaying
225 dynamic phosphorylation; the same was true for human CDK substrates (Fig. 3b, c). To
226 estimate the differential phosphorylation of disordered sites globally, we calculated the ratio of

227 dynamically phosphorylated (*Xenopus*) or CDK-phosphorylated (yeast, human) to non-
228 phosphorylated serine and threonine in both disordered and structured regions (Supplementary
229 Fig. 5b; see Methods). This showed that cell cycle and CDK-regulated phosphorylation is
230 highly skewed towards disordered regions (Fig. 3d, Supplementary Fig. 5c). We then asked
231 whether this is also true for substrates of other protein kinases, again taking into account
232 compositional bias. We analysed the mitotic PLK and Aurora kinases (which control various
233 aspects of mitotic chromosome and spindle dynamics), DYRK kinases, (which promote mitotic
234 phosphorylation of several intrinsically disordered proteins [IDPs])⁴⁵, NEK kinases (which
235 have roles in centrosome duplication and various stages of mitosis), and MAP kinases (which
236 share the proline-directed S/T minimal consensus site with CDKs). For each of these, with the
237 exception of NEK kinase targets, documented phosphosites were strongly enriched in IDRs
238 (Supplementary Fig. 5c, d), supporting the idea that phosphorylation of residues in IDRs is a
239 general cellular control mechanism and is not specific to CDKs.

240 Given the preponderance of CDK substrates among cell cycle-regulated phosphosites despite
241 the evidence that many kinases may preferentially phosphorylate IDRs, we wondered whether
242 CDK substrates might be more disordered than phosphoproteins in general. We therefore
243 determined the percentage of disordered residues of proteins in our datasets, compared to the
244 rest of their respective phosphoproteomes (Supplementary Dataset 3). This revealed that, on
245 average, both *Xenopus* dynamic phosphoproteins and human and yeast CDK substrates contain
246 approximately twice the proportion of disordered amino acids as all other phosphoproteins
247 (Fig. 3e, Supplementary Fig. 5e), putting them among the top quartile of proteins with the most
248 disorder in the proteome. Furthermore, targets of most cell cycle kinases except NEK are
249 significantly more disordered than targets of MAP kinase (Fig. 3f), whose phosphosites are
250 also proline-directed and preferentially located in IDRs (Supplementary Fig. 5d). This suggests
251 that several cell cycle kinases have evolved to phosphorylate some of the most disordered
252 proteins in the proteome.

253 *Enrichment of MLO components among CDK substrates*

254 We surmised that the critical importance of intrinsic disorder might underlie a common
255 mechanism of phosphoregulation of diverse proteins during the cell cycle. We noted that IDPs
256 are key components of membrane-less organelles (MLO), many of which (e.g. Cajal bodies,
257 nucleoli, nuclear pore complexes, splicing speckles) show cell cycle-regulated assembly or
258 disassembly and are thought to arise by phase separation (PS)⁴⁶ that can be controlled by
259 phosphorylation^{45,47-49}. We thus hypothesised that CDKs might regulate PS during the cell

cycle. We analysed available data on cellular localisation for each of our curated human CDK substrates, and found that 257 (39.2%) are present in MLOs (Fig. 4a). We then manually curated an MLO proteome from human proteomics studies and asked whether proteins undergoing cell cycle-regulated phosphorylation are enriched in these compartments (Supplementary Dataset 4; See Supplementary Methods for sources). Indeed, homologues of 204 dynamic *Xenopus* phosphoproteins (31.6%) localise to MLOs, as do 73 of the 149 proteins (50%) that show dynamic phosphorylation in *Xenopus* and are CDK substrates in human (Fig. 4a). Of the latter, we studied the location of phosphosites on key IDPs of different MLOs, including coolin (Cajal bodies), nucleophosmin, nucleolin and Ki-67 (nucleoli), 53BP1 (53BP1 bodies), nucleoporins (NPC) and PML (PML bodies). As we anticipated, the vast majority of both proline-directed phosphosites and confirmed CDK sites on these proteins were located in predicted IDRs (Fig. 4b). We next investigated whether dynamically phosphorylated IDPs have properties characteristic of phase separation. We first applied a machine learning classifier⁵⁰ to predict whether cell cycle-regulated phosphoproteins show higher propensity to phase separate (PSAP score). Indeed, we observed a sharp increase in the PSAP score, from the proteome to the phosphoproteome, and a further increase for dynamic phosphoproteins, with the highest score for mitotic cluster D (Supplementary Fig. 6). Similarly, the PSAP score is far higher amongst targets of most cell cycle kinases (CDK, Aurora, PLK, but not NEK) and DYRK kinases than the overall phosphoproteome, but less so for MAP kinase substrates.

279 CDKs regulate IDR phase separation

280 Both stochastic and specific interactions between IDPs contribute to PS and MLO assembly
281^{46,51,52}, and protein phosphorylation can promote or inhibit PS, depending on the protein
282 sequence context^{49,53}. Although most MLOs disassemble in mitosis, there is a notable
283 exception: the perichromosomal layer (PCL), which has been hypothesised to form via PS. We
284 reasoned that the degree of CDK-mediated multisite IDP phosphorylation might constitute a
285 switch between PS promotion and inhibition. For example, the maximal CDK activity present
286 at the onset of mitosis might promote both disassembly of most MLOs and formation of the
287 PCL. Studying the effects of CDK-mediated phosphorylation in a considerable number of
288 diverse proteins is not feasible by biochemical approaches and is challenging even for
289 molecular dynamics simulations. To overcome this obstacle, we employed analytical
290 modeling. We took advantage of a newly developed mathematical theory called renormalised
291 Gaussian random phase approximation (rG-RPA)⁵⁴, that combines traditional RPA theory with
292 sequence-dependent single-chain theory using a renormalised Gaussian (rG) chain formulation.

293 This theory provides a better account of conformational heterogeneity and density fluctuations,
294 allows predictions of phase separation, and can be employed at a medium-throughput scale.
295 We supported our findings by another recent theory that computes sequence charge decoration
296 matrices (SCDM) to study conformational properties of a single IDP chain; this accounts for
297 the effects of sequence-specific electrostatic interactions on chain conformation, which dictate
298 the distance between any two amino acid residues ⁵⁵⁻⁵⁷. Since single chain properties can
299 predict multi-chain physical behaviour, we expect SCDM to provide further insights into the
300 propensity of phase separation. We chose 12 IDPs representing different biological processes
301 and MLOs and containing multiple CDK phosphorylation sites (Supplementary Dataset 5).
302 Phosphorylation of all described CDK-sites lowered critical temperature and phase separation
303 propensity of 8 IDPs (NCL, NPM1, NUP53, ELYS, 53BP1, MCM4, MDC1, and SF3B1) (Fig.
304 5a). These trends are consistent with SCDM maps showing decreased self-association
305 propensity (increased red regions, Fig. 5b). Conversely, for Ki-67, SRRM2, TICRR and coilin,
306 CDK-mediated phosphorylation increased critical temperature and PS tendency (Fig. 5a),
307 consistent with SCDM maps (increased blue or reduced red regions, Fig. 5b). Overall, these
308 data are in agreement with our hypothesis that CDK-mediated phosphorylation is a key
309 regulator of PS propensity of IDPs.

310 To analyse this in more detail, we focused on a model CDK substrate, Ki-67, an IDP that
311 organises heterochromatin structure ⁵⁸ and perichromosomal layer formation from nucleolar
312 components in mitosis ^{59,60}. Ki-67 is highly phosphorylated in mitosis by CDKs, which
313 regulates its perichromosomal localisation ⁶¹. It contains a multivalent repeat domain of 122
314 amino acids, known as the Ki-67 repeat, each harbouring a highly conserved motif, the Ki-67
315 motif, currently of unknown function (Fig. 6a).

316 To evaluate the possibility that Ki-67 may show PS behaviour in living cells, we expressed a
317 GFP-tagged full length Ki-67 protein and compared its localisation pattern in cells with
318 different expression levels (Fig. 6b). At lower levels, Ki-67 was detectable in the nucleolus,
319 the site of endogenous Ki-67, but not in the nucleoplasm, while at higher levels, additional foci
320 appeared outside the nucleolus. This suggests that Ki-67 is partitioned by PS into dense and
321 dilute phases. At the highest levels, Ki-67 showed a virtually continuous condensed phase,
322 reminiscent of spinodal decomposition ⁶² whereby the single phase spontaneously separates
323 uniformly throughout the space into two phases, without the nucleation and growth which
324 normally characterises phase separation. In these conditions, chromatin exhibited the same
325 pattern (Fig. 6b), indicating that Ki-67 overexpression drives heterochromatinisation,

326 consistent with our earlier findings ⁵⁸. We next examined whether Ki-67 mobility is consistent
327 with liquid-like behaviour by Fluorescent Recovery After Photobleaching (FRAP)
328 experiments. We investigated both the recovery of the bleached area of part of a Ki-67-positive
329 compartment, and an adjacent unbleached area of the same compartment. Rapid recovery of
330 the bleached area and preferential mixing of components from the unbleached to the bleached
331 area would be indicative of a liquid-like phase-separated compartment ⁶³. We performed such
332 FRAP assays on cells with different levels of Ki-67, in interphase, or in mitosis where Ki-67
333 localises to the PCL. At low expression levels, the recovery half-time was of about 14 seconds,
334 while high expression levels showed a significantly slower recovery. This is consistent with
335 the emerging idea that phase separation may be coupled with percolation, whereby a percolated
336 network of molecules spanning the volume of condensates confers viscoelastic properties ⁶⁴.
337 Interestingly, the recovery was extremely rapid in mitosis, of 8 seconds (Fig. 6c, d;
338 Supplementary Movies 1-3). This behaviour indicates liquid-like mixing with an impermeable
339 barrier of the phase-separated compartment ⁶³, and suggests that the perichromosomal layer
340 may be a highly liquid-like phase (Fig. 6c, d; Supplementary Movies 1-3). We further analysed
341 the propensity of Ki-67 to undergo phase separation in cells by using the light-activated Cry2
342 “optodroplet” system ⁶⁵ with full length Ki-67 or a series of deletion mutants. Full-length Ki-
343 67 localised to the nucleolus, as expected, but exposure to blue light caused rapid appearance
344 of small round foci in the nucleoplasm, which was dependent on the level of induced Ki-67
345 expression, consistent with PS (Fig. 6e). These foci showed colocalisation with nucleolin and
346 nucleophosmin (Fig. 6f), intrinsically disordered proteins and interactors of Ki-67 involved in
347 nucleolar organisation, indicating the existence of heterotypic interactions typical of phase-
348 separated MLOs.

349 We next analysed both by modelling and experiments the consequences of phosphorylation for
350 PS of Ki-67. As shown above, rG-RPA of full length Ki-67 predicted that its complete
351 phosphorylation should promote PS (Fig. 5a), in agreement with Coarse-grained (CG)
352 molecular dynamics (MD) simulation, which showed increased compaction upon
353 phosphorylation (Fig. 7a; Supplementary Movie 4), and with SCDM analysis, which indicated
354 increased intra-chain interactions (Fig. 5b). We next tested effects of CDK-mediated
355 phosphorylation on Ki-67 phase separation propensity using the optodroplet system in cells.
356 To do this, we promoted the CDK-mediated phosphorylation state by treating cells with
357 okadaic acid to inhibit PP2A, that reverses CDK-mediated phosphorylation, or inhibited CDKs
358 with purvalanol A ¹⁷. Even in the absence of blue light, treatment with okadaic acid led to

359 formation of new Ki-67 foci within the nucleoplasm (Fig. 7b, c), which also incorporated
360 nucleolin and nucleophosmin (Fig. 7d). Therefore, phosphorylation promotes PS of Ki-67
361 independently of oligomerisation of the Cry2 domain. Conversely, pan-CDK inhibition with
362 purvalanol A prevented induction of foci upon illumination (Fig. 7b, c). These results are
363 consistent with phosphorylation of full-length Ki-67 promoting PS, as predicted by SCDM,
364 rG-RPA and MD. We observed similar behaviour for constructs lacking the C-terminal LR
365 domain, that binds chromatin, or the N-terminal domain, which is required for the nucleolar
366 localisation of Ki-67 (Supplementary Fig. 7a, b), indicating that PS of Ki-67 is an autonomous
367 property of the protein and is not dependent on a specific localisation on chromatin or to the
368 nucleolus.

369 A recent *in vitro* study using purified peptides corresponding to repeat domains showed that
370 partial phosphorylation by CDKs of one of the Ki-67 repeats, or phospho-mimicking amino
371 acid substitutions, promotes PS, possibly by generating charge blocks⁶⁶. However, rG-RPA
372 and SCDM analysis predicts that the effects of phosphorylation on PS propensity strongly
373 depend on the sequence. To test this, we analysed each repeat individually by rG-RPA and
374 SCDM, and indeed found that effects of phosphorylation were dependent on the particular
375 repeat studied, as illustrated by the behaviour of repeats 1, 3 and 12. Full phosphorylation was
376 predicted to enhance PS for repeat 1 but suppress it for repeat 3 (Supplementary Fig. 8a, b).
377 Furthermore, we observed that phospho-mimicking substitutions, which each add one negative
378 charge, do not recapitulate effects of phosphorylation, which adds two per site, and can even
379 have opposite effects, as seen for repeat 12 (Supplementary Fig. 8a, b). These results indicate
380 that effects of phosphorylation on PS depend on sequence context and phosphorylation
381 stoichiometry.

382 We hypothesised that, for many IDPs, full site phosphorylation, which is characteristic of
383 mitosis⁹, might have different effects on PS from the lower levels of phosphorylation typical
384 of interphase, thereby providing directionality to PS changes during the cell cycle and
385 potentially creating a switch at mitosis. To test this hypothesis, we designed a synthetic IDP
386 constituting a single “consensus” synthetic Ki-67 repeat derived from an alignment of all 16
387 Ki-67 repeats, in effect constituting a novel IDP and model CDK substrate with multiple
388 potential phosphosites (Supplementary Fig. 9a). We expected that this protein might show a
389 different behaviour from that of the native full-length Ki-67 due to its single valency and
390 distinct sequence context. Indeed, MD simulation (Supplementary Movie 5) showed that the
391 fully phosphorylated single synthetic Ki-67 repeat is less compact (Supplementary Fig. 9b) and

392 has lower tendency to phase separate (Supplementary Fig. 9c). This behaviour contrasts with
393 full length native Ki-67, where phosphorylation promotes PS. We purified the synthetic repeat
394 as a GFP-tagged polypeptide and phosphorylated it *in vitro* with recombinant CDK complexes.
395 Nuclear Magnetic Resonance spectroscopy showed a reduced amide proton spectral dispersion
396 typical for an IDP and confirmed appearance of at least 7 phosphorylated residues when fully
397 phosphorylated (Fig. 8a), while we mapped 11 phosphorylation sites by phosphoproteomics
398 (Fig. 8b). We next performed *in vitro* phase separation assays and compared both partially and
399 fully phosphorylated forms of the consensus repeat by varying incubation times and the activity
400 of purified CDK complexes (Fig. 8c). The purified synthetic Ki-67 repeat could form droplets,
401 and, as predicted, this was abolished upon full phosphorylation by CDK, whereas partial
402 phosphorylation had no effect (Fig. 8d), suggesting that CDK-mediated phosphorylation acts
403 as a buffered switch for phase separation. To define the properties of this switch, we analysed
404 all 2048 combinations of the 11 phosphorylation sites on this synthetic protein by rG-RPA and
405 SCDM. Strikingly, 1-6 phosphosites enhanced PS propensity while 8-11 phosphosites strongly
406 reduced it (Fig. 8e, top), which was consistent with SCDM analysis (Fig. 8e, bottom). For low
407 and high numbers of phosphosites, the overall behaviour was independent of the specific
408 combination of phosphorylated sites, whereas 7 sites could either enhance or reduce PS
409 propensity, depending on the exact combination. Taken together, our results lend support to
410 our hypothesis whereby CDK-mediated phosphorylation can generate a buffered switch for
411 homotypic interactions that contribute to PS.

412

413 **Discussion**

414 In this multidisciplinary study, we show *in vivo* that CDK-dependent mitotic phosphorylation
415 occurs synchronously on diverse proteins whose common denominators are a high level of
416 disorder, localisation to MLOs, and multisite phosphorylation. Our data suggest that the
417 majority of cell cycle regulated phosphorylation may be controlling phase separation of
418 components of membraneless organelles. Furthermore, CDK-mediated multisite
419 phosphorylation may act as a phase separation switch promoting an abrupt transition into
420 mitosis.

421 We first exploited the naturally synchronous cell cycles of *Xenopus laevis* to characterise cell
422 cycle-regulated phosphorylation in single embryos at ultra-high resolution, allowing us to
423 distinguish between progressive phosphorylation where different substrates become

424 phosphorylated sequentially, as suggested by a model in which a complex combination of
425 features encoded in the amino acid sequence of substrates determines phosphorylation timing
426 ¹⁴, from the rapid phosphorylation that might result from the observed switch-like mitotic
427 activation of CDK1 ⁶⁷. A previous large-scale analysis of cell cycle-regulated phosphorylation
428 used cell synchronisation procedures (nocodazole, thymidine) to show that potential
429 phosphorylation sites are fully phosphorylated in mitosis ⁹, but phosphorylation dynamics
430 could not be determined. True cell cycle synchronisation of entire cell populations has been
431 deemed impossible due to differences between cells in the timing of entry into and exit from
432 the blocks ²². Thus, the rather progressive dynamics of CDK-mediated phosphorylation seen
433 from synchronisation studies in fission yeast ⁶⁸ may not reflect the behaviour occurring in
434 single cells. Indeed, a comparison of cell cycle-regulated phosphorylation sites derived from
435 synchronised cells ⁹ or from non-synchronised cells selected by flow cytometry ²⁵ revealed that
436 the synchronisation procedures used previously may artificially select for maximal
437 phosphorylation. The same study ²⁵ also showed that all identified phosphosites that peaked in
438 mitosis displayed similar cell cycle behaviour, but the resolution was not sufficient to
439 distinguish differences in kinetics between different phosphosites; this might be due to the
440 elutriation windows used that, by definition, select similar but not identically sized cells from
441 the population. Thus, our study in single embryos is unique to date, and demonstrates that all
442 mitotic phosphosites observed undergo phosphorylation simultaneously, irrespective of the
443 nature of the substrate. This is not incompatible with differences in affinity of CDK1 for
444 different substrates, since a theoretical consideration of futile cycles demonstrates how graded
445 inputs can generate all-or-nothing outputs ⁴². We further show that this switch-like behaviour
446 does not depend on regulated phosphorylation of CDK1 itself, consistent with the observation
447 that tyrosine-15 phosphorylation of CDK1 is downregulated during early embryonic cell cycles
448 ^{32,41}; instead, it can likely be accounted for by regulation by Greatwall of the phosphatase that
449 reverses CDK-mediated phosphorylation, as well as by phosphorylation of NIPA, which
450 inactivates the SCF ubiquitin ligase that degrades cyclin B in interphase ⁶⁹.

451 Second, we reveal an underlying similarity between most cell cycle kinase substrates: they
452 contain a much higher proportion of disordered residues than other phosphoproteins. While it
453 has previously been found that intrinsic disorder generally predicts phosphorylation site
454 localisation for any protein, irrespective of the kinase ⁴³, and it was previously confirmed that
455 CDK sites conform to this rule by tending to cluster in regions of proteins predicted to be
456 disordered ^{6,44}, what distinguishes cell cycle-regulated phosphorylation from other

457 phosphorylation, and what determines which kinases are involved, has remained unknown. We
458 find that substrates of CDKs, Aurora and Polo-like kinases are far more disordered than the
459 phosphoproteome average. Even when substrates of two kinase families (CDK and MAP
460 kinases) with the same minimal consensus site motif are compared, the CDK substrates have
461 close to twice the disorder of MAP kinase substrates. This further highlights the enrichment
462 for disordered proteins in cell cycle processes, noted recently ⁸. Our data also resolve a
463 circularity problem inherent in earlier work: previous observations of enrichment of CDK sites
464 in disordered regions of proteins ^{6,44} might have a trivial explanation, since the amino acids
465 constituting the consensus site for CDKs (S, T, P, K and R) are already highly enriched in
466 disordered regions. Our bioinformatic approach corrects for this bias and confirms the validity
467 of the previous observations. We propose that cell cycle kinases have been selected by
468 evolution to phosphorylate the most highly disordered proteins of the proteome, and that this
469 necessarily requires several families of kinases, to phosphorylate sites in disordered regions of
470 proteins that are either positively charged at physiological pH (CDKs, Aurora) or negatively
471 charged (PLK), while Aurora and PLK cannot phosphorylate proline-proximal sites.

472 Our observations that cell cycle kinase substrates are more disordered than other proteins and
473 that they are frequently key components of MLOs lends the hypothesis that phosphorylation of
474 these substrates might regulate MLOs themselves, consistent with the cell cycle-dependent
475 assembly and disassembly of many MLOs. We provide a medium-throughput analysis of
476 effects of phosphorylation on different CDK substrates that substantiates this hypothesis, which
477 could only be achieved by applying a theoretical approach. Molecular dynamics simulations of
478 biomolecules require large computer resources and timescales and are currently essentially
479 unfeasible for modeling phase separation. In contrast, analytical simulations are powerful tools
480 that can predict conformational properties of IDPs and average the ensemble of disordered
481 states that depend on the sequence of IDRs, with high throughput and with minimal computer
482 load ⁵⁷. Theoretical models also allow us to systematically vary different inputs, such as post-
483 translational modifications, mutations, salt concentrations and pH to explore their relative
484 contributions. Our calculations with one IDP and solvent predict binary phase diagrams, and
485 the results match our experimental data for the protein that we use to test our hypothesis, Ki-
486 67.

487 A previous study provided evidence for phospho-regulation of MLOs in mitosis but attributed
488 it to a different kinase, DYRK3 ⁴⁵. However, DYRK3 inhibition led to mitotic formation of
489 abnormal hybrid condensates that contained material from various MLOs (splicing speckles,

490 stress granules and pericentriolar material), but did not prevent the normal breakdown of MLOs
491 such as nucleoli, nuclear pore complexes or Cajal bodies. Our data rather implicate CDK1 as
492 the likely major MLO regulator in mitosis. This is not unprecedented since CDKs can prevent
493 phase separation of components of replication complexes⁷⁰, promote nuclear pore disassembly
494⁷¹ and dissolve stress granules in yeast⁷². We additionally provide evidence that CDK-mediated
495 phosphorylation can both promote or inhibit biological phase separation, depending both on
496 the sequence context and the stoichiometry of phosphorylation. The latter adds an additional
497 switch-like regulation to the onset of mitosis: passing a threshold number of phosphorylations
498 can switch from promoting phase separation to inhibiting it. Thus, our data show that CDK-
499 mediated multisite phosphorylation may act as a buffered switch for phase separation, which
500 is independent of the exact combinations of phosphorylated sites, providing a robust underlying
501 mechanism that may contribute to the abruptness of the cellular reorganisation at the entry into
502 mitosis. Interestingly, phosphosites specific to meiotic M-phase samples appeared to be the
503 most highly phosphorylated, and the most multiphosphorylated peptides were detected in these
504 samples. We speculate that such a prevalence of “hyper-phosphorylation” might reflect the
505 long term maintenance of the M-phase state in unfertilised eggs, and suggest that a more
506 detailed quantitative analysis of the threshold phosphorylation levels required to generate and
507 maintain meiotic versus mitotic M-phase might reveal interesting differences between these
508 two states.

509 Finally, we provide evidence that the perichromosomal layer of mitotic chromosomes may be
510 liquid, and we suggest a mechanism for mitotic targeting of nucleolar components to the
511 perichromosomal layer by Ki-67^{58,59} via CDK-mediated phosphorylation, which reduces PS
512 propensity of several major nucleolar IDPs, thus triggering nucleolar disassembly, while
513 simultaneously promoting PS of Ki-67 to recruit nucleolar components to chromosomes.

514
515 **Acknowledgments:** We thank Merlijn Witte for technical assistance with the *Xenopus laevis*
516 egg fertilization experiments, Ariane Abrieu for a gift of CSF egg extracts, and Markus Raschle
517 from the Technical University of Kaiserslautern for providing the *Xenopus laevis* protein
518 database, Jonathan Huihui during early phases of theoretical analysis using SCDM, and
519 Damien Coudreuse for critical reading of the manuscript. **Funding:** AJRH and MA
520 acknowledge support from the Horizon 2020 program INFRAIA project Epic-XS (Project
521 823839) and the NWO funded Netherlands Proteomics Centre through the National Road Map
522 for Large-scale Infrastructures program X-Omics (Project 184.034.019) of the Netherlands

523 Proteomics Centre. JMV is supported by scholarships from the Ministry of Science and
524 Technology of Costa Rica (MICITT) and the University of Costa Rica (UCR). PK and MV are
525 funded by the Oncode Institute which is financed by the Dutch Cancer Society and by the
526 gravitation program CancerGenomiCs.nl from the Netherlands Organisation for Scientific
527 Research (NWO). DF and LK are Inserm employees. GD is funded by the Institut National de
528 Cancer, France (INCa) PRT-K programme (PRT-K17 n° 2018-023). The Fisher lab is funded
529 by the Ligue Nationale Contre le Cancer, France (EL2018.LNCC/DF) and INCa (PLBIO18-
530 094). The CBS is a member of France-BioImaging (FBI) and the French Infrastructure for
531 Integrated Structural Biology (FRISBI), supported by the French National Research Agency
532 (ANR-10-INBS-04-01 and ANR-10-INBS-05). KG acknowledges support from
533 R01GM138901.

534 **Author contributions:** MA and DF conceived and supervised the project. JMV, PK and LK
535 designed and interpreted experiments. JMV, HT, AH, MPh, GvM, CE-R, AF, NAS, EAG, DC,
536 MPa, AB, LK and GD performed experiments and interpreted the data. MV and AC supervised
537 GvM and EAG, respectively. JMV, LK, GD, KG, DF and MA wrote the paper.

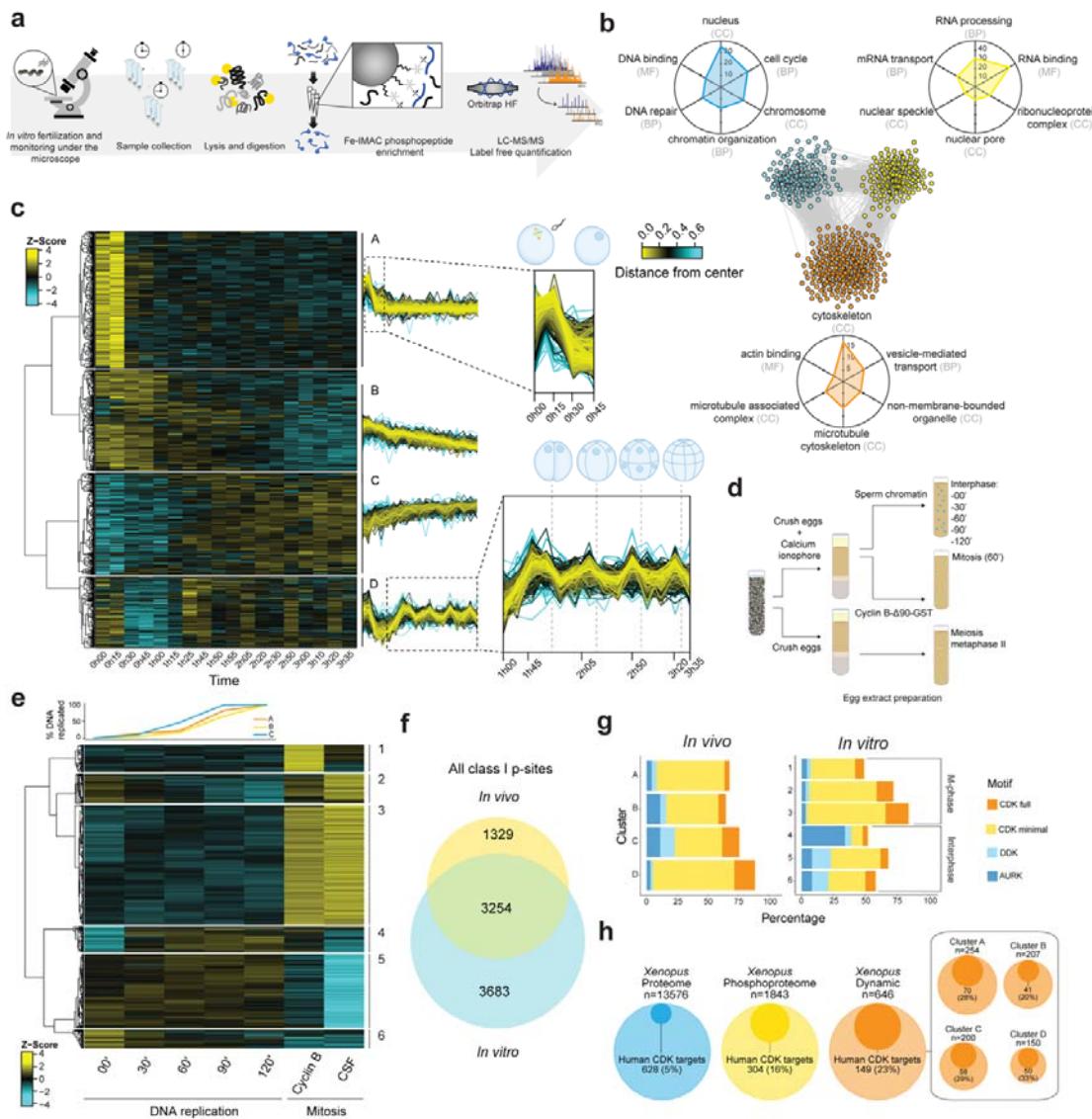
538 **Competing interests:** Authors declare no competing interests.

539 **Data and materials availability:** All data is available in the main text or the supplementary
540 materials. All code and materials are available on request.

541 **Supplementary Materials:**

542 Materials and Methods

543 Supplementary Fig. 1-9

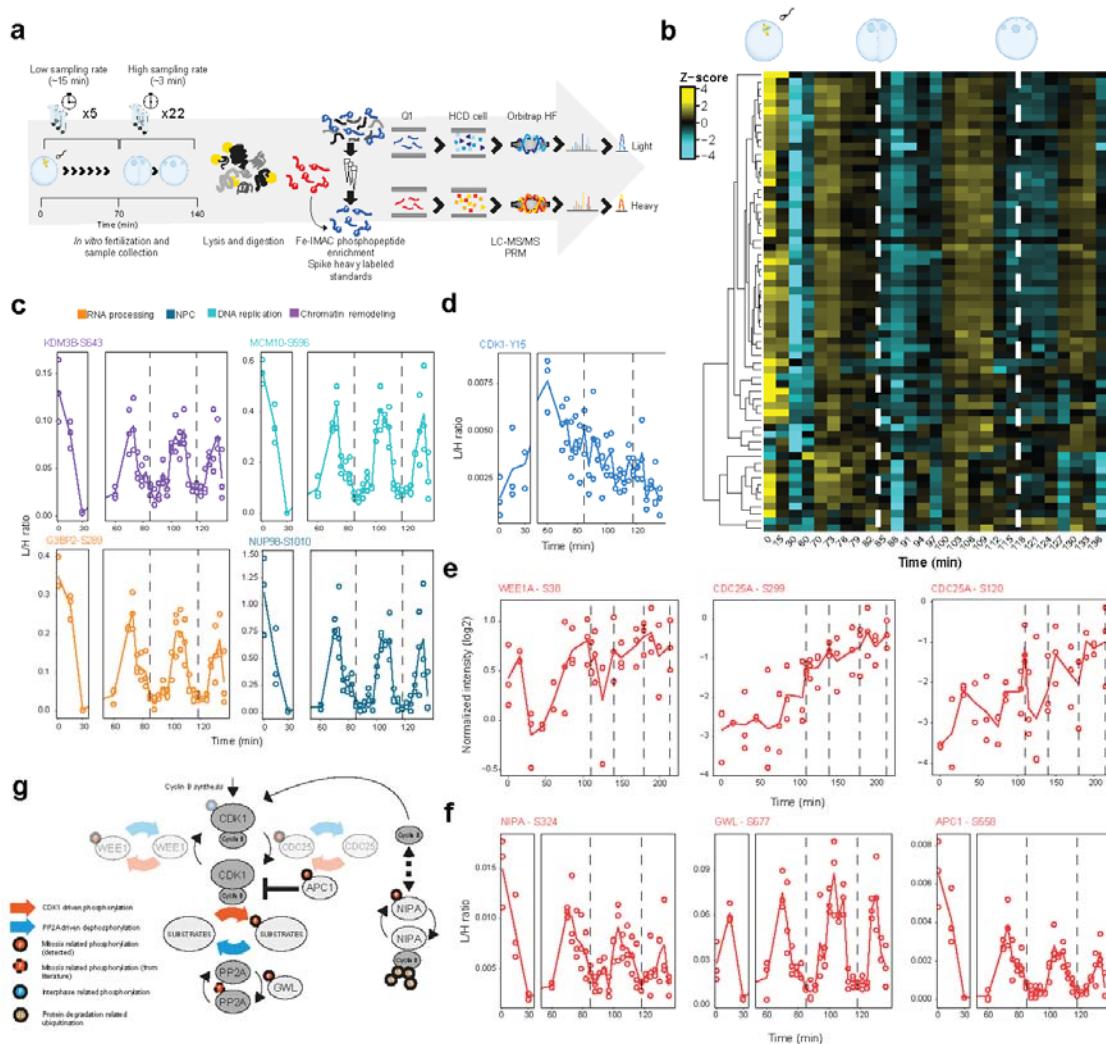

544 Supplementary Dataset 1-5

545 Supplementary Movies 1-5

546

547

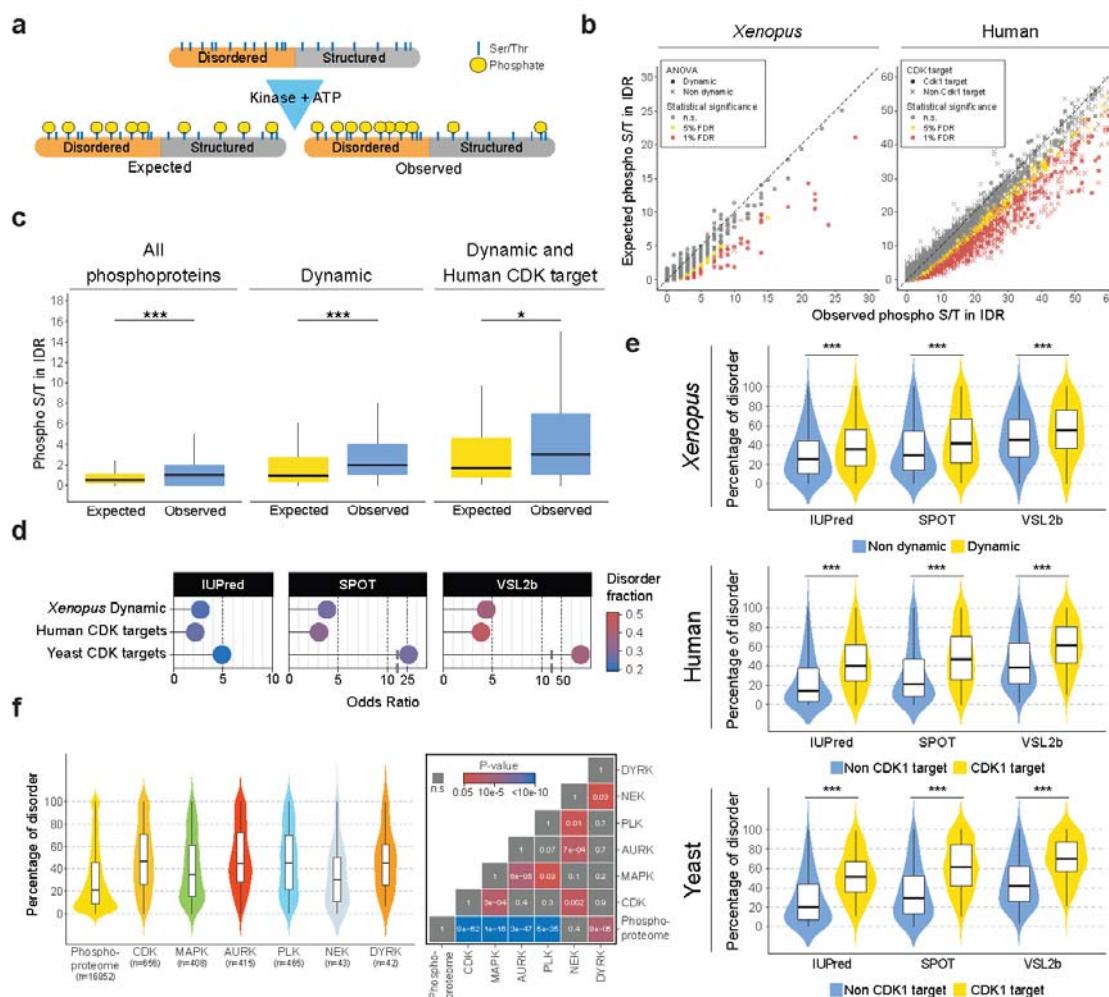
548 **Figures**

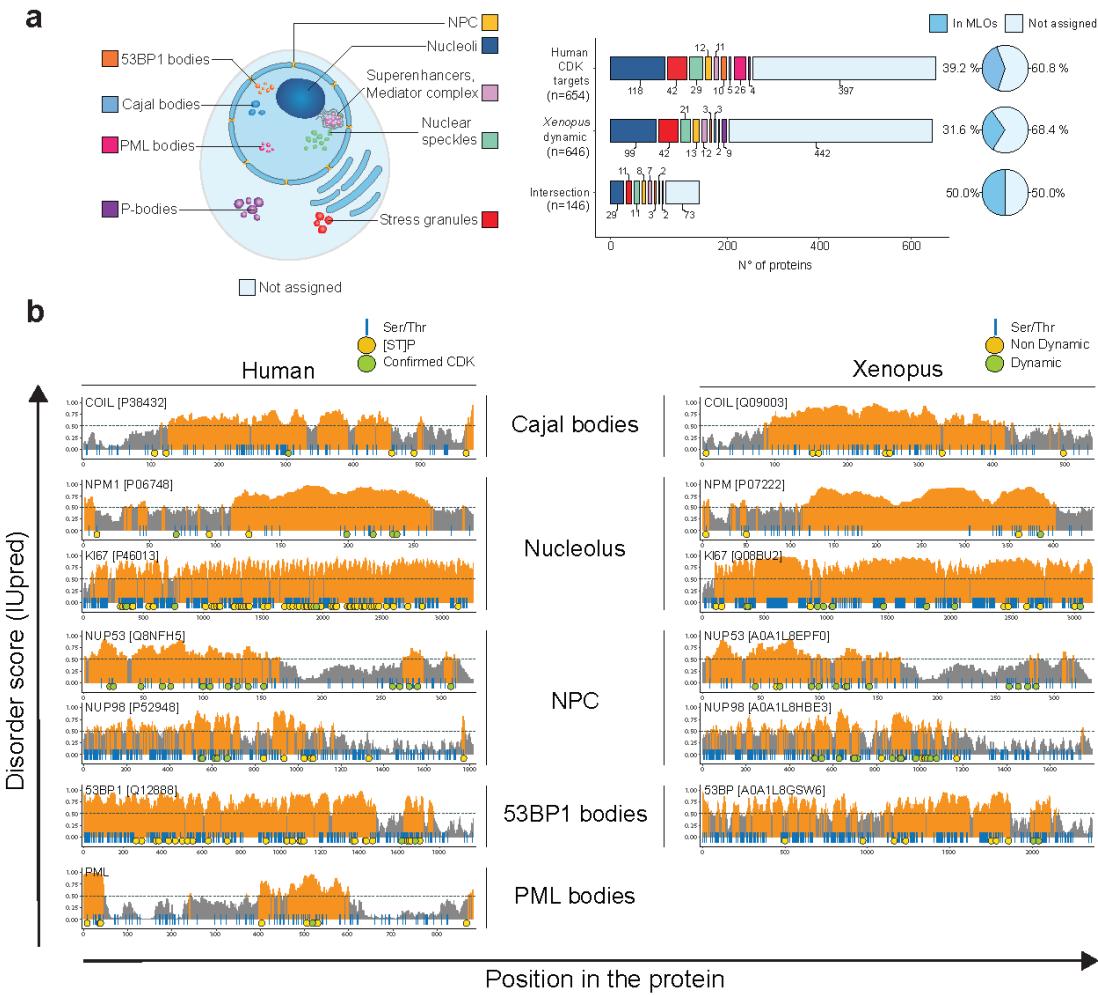


549

550 **Figure 1. The time-resolved phosphoproteome from a single-cell to a 16-cell embryo and**
 551 **its cell cycle assignment. a. Schematic representation of the workflow. Single *Xenopus* eggs**
 552 **and embryos were collected followed by cell lysis, protein digestion, phosphopeptide**
 553 **enrichment and high-resolution proteomics analysis. b. STRING network of functionally**
 554 **associated proteins undergoing dynamic phosphorylation (each node represents a protein).**
 555 **Vicinity clustering reveals three main groups (yellow, blue and orange) with a high degree of**
 556 **association. Radar plots show the corresponding GO terms (adjusted p value <0.05) for each**
 557 **group (axes show -Log₁₀(adj p value) for each GO term). c. Hierarchical clustering of**
 558 **significantly changing phosphosites (ANOVA, Benjamini-Hochberg correction, FDR 0.05),**
 559 **reveals 4 clusters with distinct regulation (A-D). Dashed boxes in clusters A and D are zoomed-**

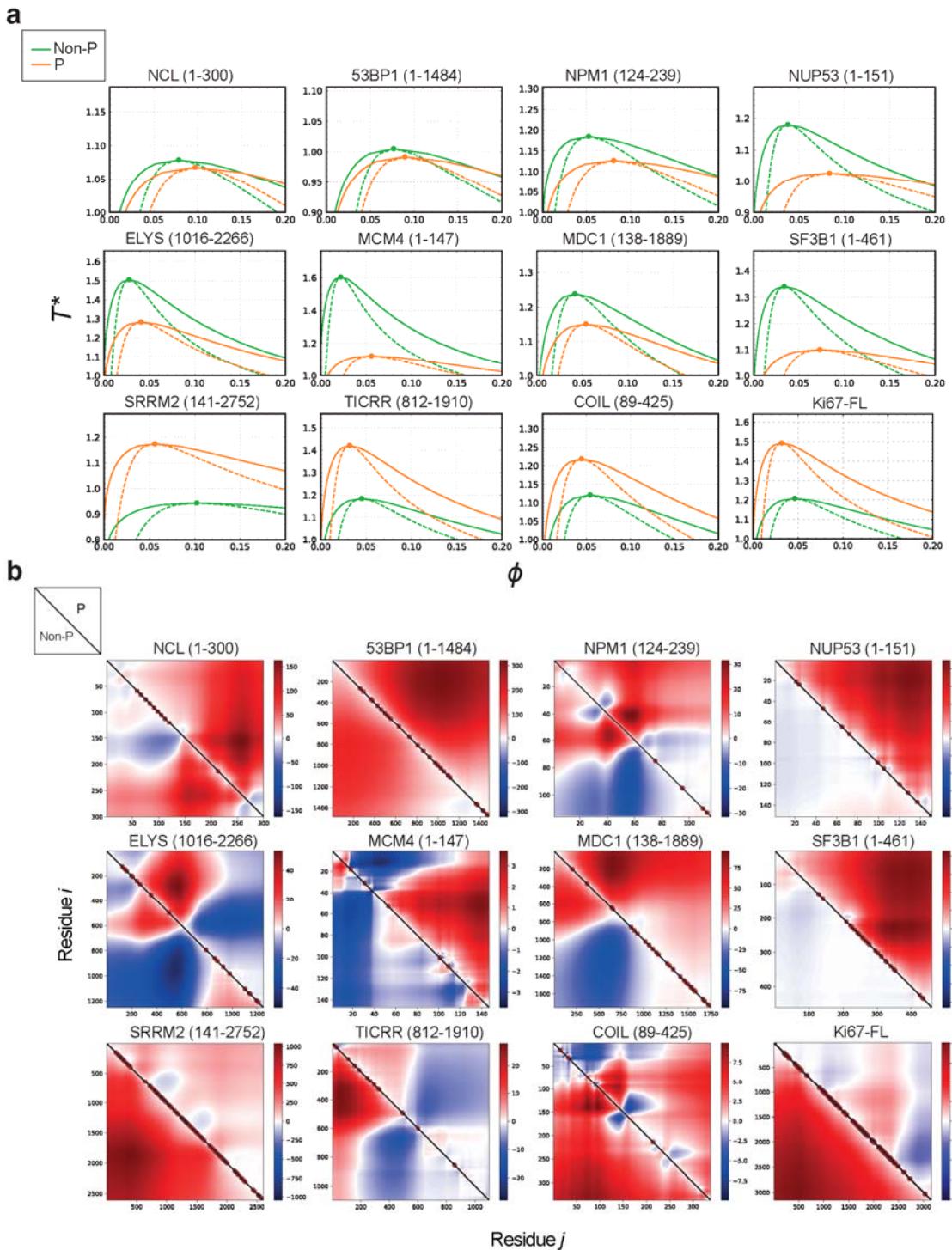
560 in to highlight dynamic phosphorylation patterns (dashed lines depict the time points of cell
 561 division). Time point 0h00 corresponds to the unfertilised egg. **d.** Scheme of the experiment in
 562 the *Xenopus* egg extract. **e.** Top: quantification of DNA replication in each biological replicate.
 563 Below: Hierarchical clustering of dynamic phosphosites (ANOVA, Benjamini-Hochberg
 564 correction, FDR 0.05) reveals differential regulation of phosphosites during S-phase and
 565 mitosis. **f.** Overlap between *in vivo* (embryo) and *in vitro* (egg extract) phosphoproteomics. **g.**
 566 Proportion of phosphosites according to their potential upstream kinase for each cluster in the
 567 *in vivo* (left) and *in vitro* (right) experiments. **h.** Circle plots presenting enrichment of
 568 homologues of human CDK substrates among *Xenopus* phosphoproteins detected *in vivo* and
 569 those with dynamic phosphosites.


570


571

572 Figure 2. Switch-like mitotic phosphorylation *in vivo*. a. Schematic representation of the
 573 workflow for high-time resolution analysis of mitotic phosphosites. Samples were collected

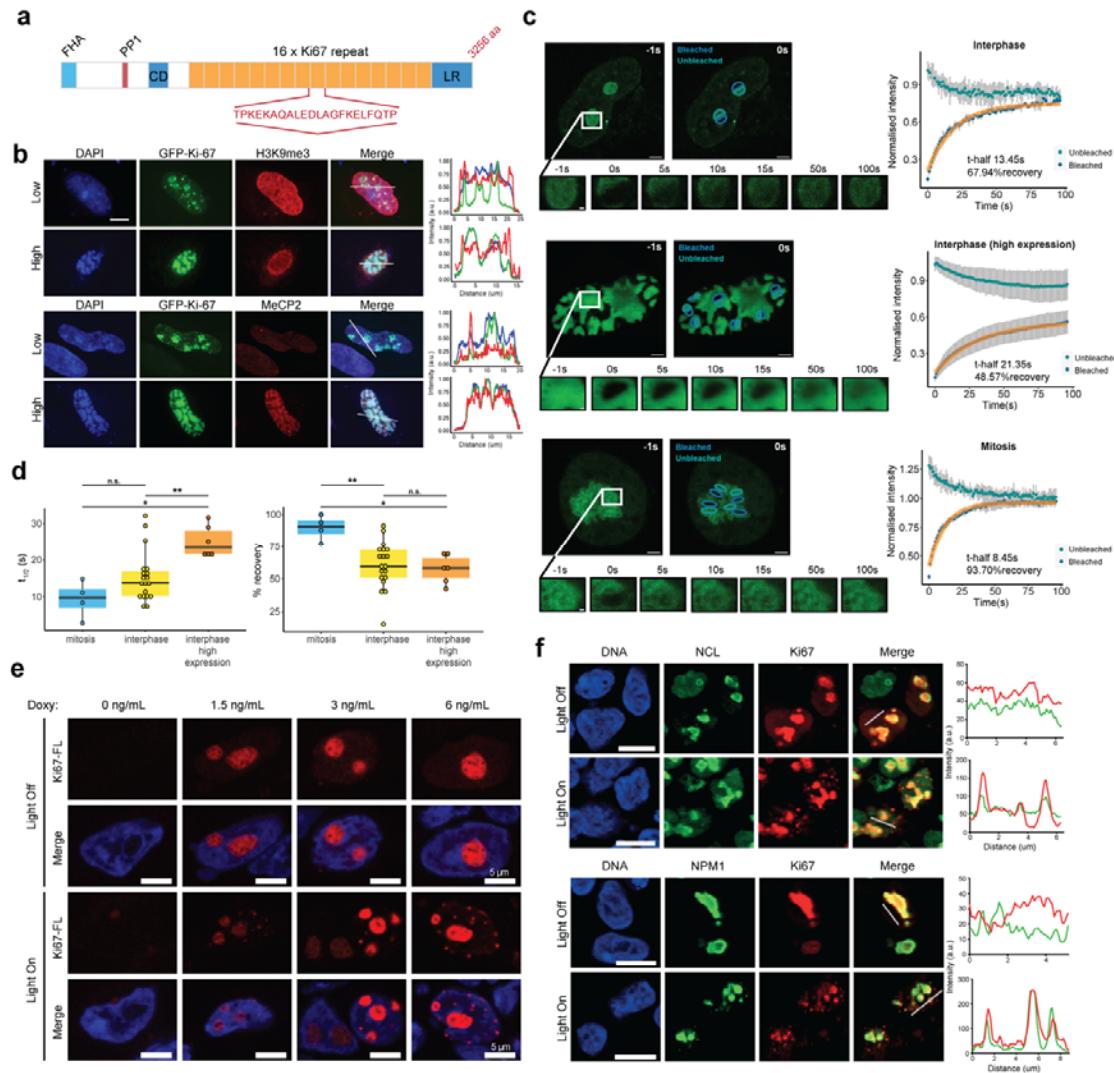
574 over two cell divisions and enriched phosphopeptides were subjected to targeted proteomics
575 analysis. **b.** Heat map shows a highly synchronous wave of phosphorylation preceding each of
576 the two cell divisions. Dashed lines depict times when cell divisions were recorded. **c.** Single
577 phosphosite plots from selected proteins related to different biological processes. Each dot
578 represents a biological replicate (n=3). Dashed lines depict times when cell divisions were
579 recorded. **d.** Single phosphosite plot of CDK1 inhibitory phosphorylation (Y15). **e-g.**
580 Phosphorylation dynamics of the CDK1-oscillator network. Single phosphosite plots of CDK1
581 regulators measured by shotgun (e) or targeted (f) phosphoproteomics. **g.** CDK1-oscillator
582 network: our data suggest that control of cyclin levels via positive (e.g. NIPA ubiquitin ligase)
583 and negative (e.g. APC) feedback loops, accompanied by PP2A inactivation via GWL, can
584 generate oscillation of CDK1 activity during early cell divisions. CDK1-Y15 regulation via
585 feedback loops consisting of CDC25 and WEE1A (greyed out) seems to be less important for
586 switch-like mitotic phosphorylation after the first cell division.



588 **Fig. 3. The cell cycle phosphoproteome is characterised by intrinsic disorder.** **a.** Scheme
589 illustrating hypothetical enrichment of phosphorylation in disordered regions when taking into
590 account amino acid compositional bias. **b.** Scatter plot of expected vs observed phosphorylated
591 Ser/Thr for each protein of human and *Xenopus* phosphoprotein datasets. FDR thresholds of
592 5% and 1% are marked in yellow and red respectively. Circles: proteins with at least one
593 dynamic phosphorylation in *Xenopus*, or human CDK1 subfamily substrates, respectively. **c.**
594 Boxplots showing expected vs observed phosphorylated Ser/Thr among all phosphoproteins
595 detected (left), phosphoproteins with at least one dynamic phosphosite (middle), and dynamic
596 phosphoproteins also detected as CDK1 subfamily targets in humans (right). Distributions were
597 compared with the Wilcoxon signed-rank test. * $p<0.05$, ** $p<0.01$, *** $p<0.001$. **d.** Plots
598 showing the common Odds Ratio of Ser/Thr phosphorylation in structured and disordered
599 regions calculated with the Fisher's test (see Supplementary Fig. 5b, c). For all organisms, the
600 disordered regions were calculated with three different disorder predictors. The disordered
601 fraction is presented in a colour scale. **e.** Violin plots of the distribution of disordered residues
602 per protein for CDK targets vs the rest of the phosphoproteome for human and yeast, and
603 dynamic phosphoproteins vs the rest of the phosphoproteome for *Xenopus*. Intrinsic disorder
604 was calculated with three different predictors (IUPred, SPOT, and VSL2b). Statistical
605 significance was evaluated with the Wilcoxon–Mann–Whitney test; *** $p<0.001$. **f.** Violin plot
606 (left) showing the distribution of disordered residues per protein for CDK, MAPK, Aurora,
607 PLK, NEK and DYRK kinase targets vs the rest of the phosphoproteome for human targets.
608 Statistical significance was assessed by Kruskal-Wallis ANOVA, and pairwise comparisons
609 were performed with Dunn's post-hoc tests. The adjusted p-values (Benjamini-Hochberg) are
610 shown in a tile plot (right).

611

612 **Fig. 4. Cell cycle-regulated phosphorylation of key MLO proteins. a.** Human CDK1
 613 subfamily targets, *Xenopus* dynamic phosphoproteins, and the intersection of both sets, that are
 614 present in our manually curated proteome of membraneless organelles. **b.** Diagrams of IUPred
 615 scores over the length of human CDK targets identified as primary components of MLOs in
 616 different studies, and their *Xenopus* homologues in this study. Regions with scores >0.5
 617 (orange) are considered to be disordered, and <0.5 (grey) structured. Blue vertical lines indicate
 618 Ser and Thr residues; yellow circles, known Ser/Thr-Pro phosphosites (human) and non-
 619 dynamic phosphosites (*Xenopus*); green circles, confirmed CDK1 subfamily phosphorylations
 620 (human) and dynamic phosphorylations (*Xenopus*), from both embryos and egg extracts.

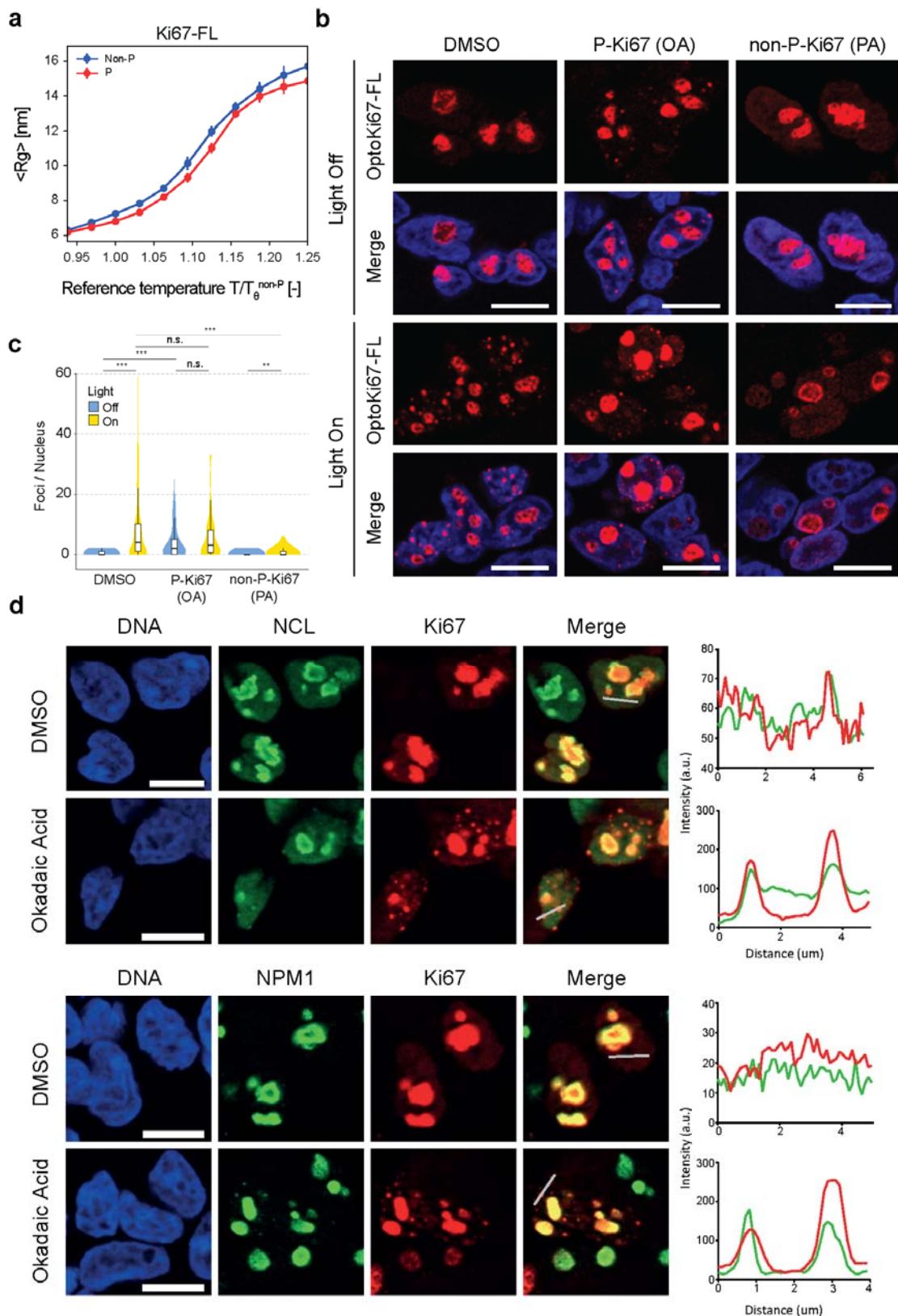


621

622 **Fig. 5. CDK-mediated phosphorylation regulates phase separation propensity of major**
 623 **MLO components. a.** Temperature-density phase diagrams for the phosphorylated (P, in
 624 orange) and non-phosphorylated (Non-P, in green) forms of a selection of human CDK targets
 625 and major MLO components. Any point within the coexistence region (bounded by the solid
 626 line) will phase separate into a dilute and dense phase whose density is given by the values on

627 the phase boundary. Points within the spinodal line (in dash) will spontaneously phase separate
628 into dilute and dense phases without going through the process of nucleation. Circles denote
629 critical temperature and density which is also the location where the coexistence and spinodal
630 curves meet. For temperature above the critical value, there is no phase separation. **b.** Sequence
631 Charge Decoration Matrix (SCDM) maps for the proteins in (a) (IDRs analysed are indicated),
632 depicting the contribution of electrostatic interaction dictating the distance between two amino
633 acid residues i and j (shown in x and y axes). The values of SCDM for different residue pairs
634 (i,j) are shown using colour schemes with red and blue denoting positive (repulsive) and
635 negative (attractive) values, respectively. The lower and upper triangles indicate SCDM map
636 for the unphosphorylated (non-P) and phosphorylated (P) sequences, respectively. Confirmed
637 and putative (Ser/Thr-Pro) CDK phosphorylation sites were taken into account for the analysis
638 and are indicated with red circles.

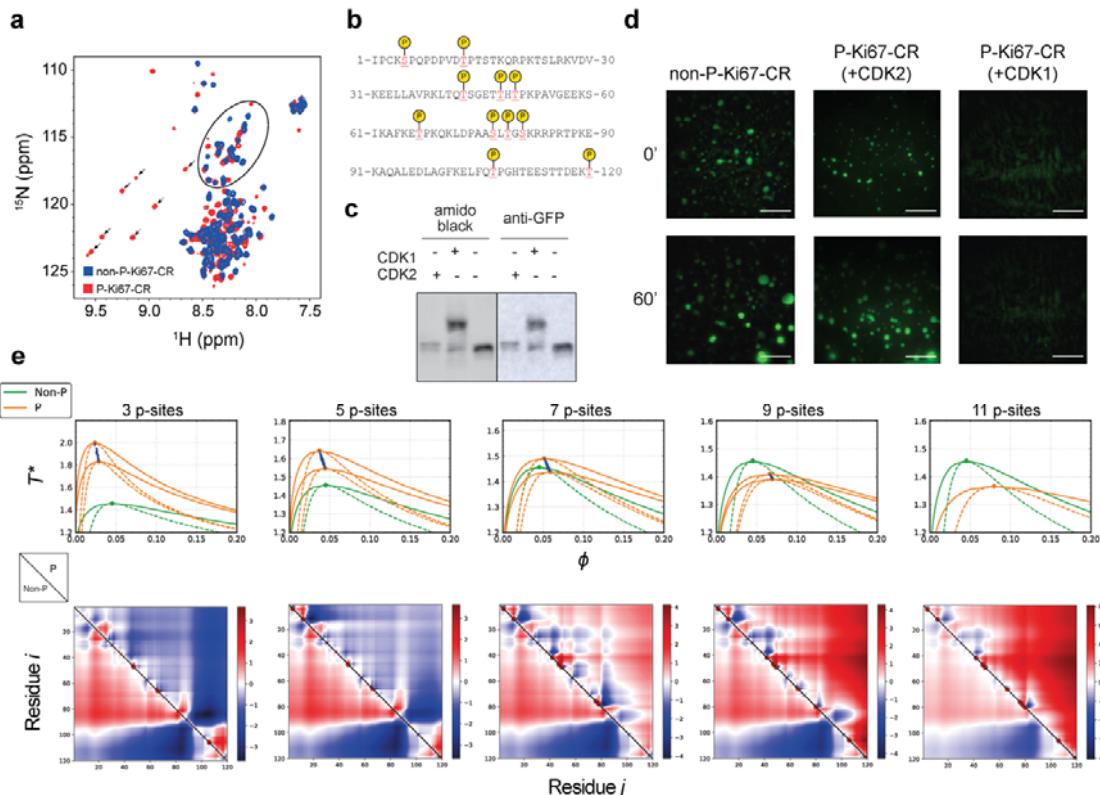
639



640

641 **Fig. 6. The model CDK substrate Ki-67 forms biomolecular condensates in cells.**

642 **a.** Scheme of the human Ki-67 protein (FHA, forkhead-associated domain; PP1, PP1
643 phosphatase-binding domain; CD, conserved domain; LR, leucine arginine-rich domain).
644 Highlighted, Ki-67 repeat consensus motif. **b.** Cells expressing full-length Ki-67 at different
645 levels show evidence for phase separation; at low levels Ki-67 is predominantly nucleolar but
646 also forms foci in nucleoplasm that recruit heterochromatin, as indicated by H3K9me3 staining;
647 at high levels Ki-67 partitions the entire nucleus into two phases, a Ki-67-dense phase that
648 induces global heterochromatin formation marked by H3K9me3 and MeCP2. DNA was stained
649 with DAPI. Scale bar, 10 μ m. **c.** FRAP of Ki-67 shows liquid-like behaviour. Left:
650 representative images of cells expressing different levels of Ki-67 in interphase (top, middle)
651 and in mitosis where Ki-67 localises to the perichromosomal layer (bottom) showing bleached
652 regions and contiguous non-bleached regions; just before (left) and after (right) bleaching.


653 Scale bars, 3 μ m. Insets: images of Ki-67 fluorescence at different recovery times after
654 bleaching. Scale bars, 0.5 μ m. Right: average fluorescence intensity values over time for
655 bleached (dark blue) and unbleached (teal blue) regions. Orange, non-linear regression fitting
656 of the data. **d.** Left: boxplot of the average recovery half-time for each cell, grouped by category
657 of Ki-67 expression: mitosis (n=4), interphase medium-low expression (n=19) and interphase
658 high expression (n=6). Right: boxplot of the average percentage of recovery for each cell,
659 grouped by category of Ki-67 expression: mitosis (n=4), interphase medium-low expression
660 (n=19) and interphase high expression (n=6). **= p<0.01 (Wilcoxon test). **e.** Optogenetic
661 induction of Ki-67 biomolecular condensates. Representative fluorescent images of HEK-293
662 cells expressing opto-Ki-67 (FL) construct, induced by the indicated concentrations of
663 doxycycline (Doxy), before (Light Off) and after (Light On) exposure to blue light. DNA was
664 stained with Hoechst 33258. **f.** Left, representative fluorescent images of U2OS cells
665 expressing opto-Ki-67 construct (full length protein) before (Light Off) and after (Light On)
666 exposure to blue light. Additional staining for nucleolar proteins nucleolin (NCL, top) and
667 nucleophosmin (NPM1, bottom) was performed and colocalisation with Ki-67 assessed (right).
668 DNA was stained with Hoechst 33258; scale bars, 10 μ m.

669

670 **Fig. 7. Phosphorylation promotes phase separation of Ki-67.** **a.** Coarse-grained single-chain
 671 MD simulations for full chain Ki-67 showing dependency of the radius of gyration (R_g) on the

672 simulation temperature. The reference temperature is the θ temperature of the non-
 673 phosphorylated molecule. Reported error bars are obtained by block analysis over 10 blocks.
 674 **b.** Representative fluorescent images of HEK-293 cells expressing opto-Ki-67 (FL) construct
 675 before (Light Off) and after (Light On) exposure to blue light. Cells were pretreated for 1h with
 676 either vehicle (DMSO), 0.5 μ M okadaic acid (OA), to inhibit protein phosphatase 2A, or 5 μ M
 677 purvalanol A (PA), to inhibit CDKs. DNA was stained with Hoechst 33258; scale bars, 10 μ m.
 678 **c.** Violin plot presenting quantification of results from (b); the number of foci per nucleus was
 679 counted. Statistical significance was assessed by one-way ANOVA on ranks (Kruskal–Wallis
 680 test) and pairwise post-hoc comparisons using the Mann–Whitney test. P-values were adjusted
 681 by the Benjamini–Hochberg method. **d.** Phosphorylation-induced Ki-67 foci are biological
 682 condensates. Cells were treated for 1h with either vehicle (DMSO) or 0.5 μ M okadaic acid
 683 (OA), to inhibit protein phosphatase 2A. Additional staining for nucleolar proteins nucleolin
 684 (NCL) and nucleophosmin (NPM1) was performed and colocalisation with Ki-67 foci assessed
 685 (right). DNA was stained with Hoechst 33258; scale bars, 10 μ m.

686
 687 **Fig. 8. CDK-mediated phosphorylation can generate a buffered phase separation switch.**
 688 **a.** Overlaid NMR ^1H - ^{15}N HSQC of unphosphorylated (blue) and CDK-phosphorylated (red)
 689 GFP-tagged Ki-67 consensus repeat. Each cross-peak corresponds to one residue. The seven

690 new deshielded cross peaks (highlighted by a black flag) appearing above 8.5 ppm in ^1H
691 correspond to phosphorylated serines or threonines (^1H downfield chemical shift perturbation
692 on phosphorylated Ser/Thr residues due to phosphate electronegativity). Non phosphorylated
693 Ser/Thr residues are surrounded by a black oval. **b, c.** GFP-Ki-67 consensus repeat was
694 phosphorylated *in vitro* using recombinant CDK1-cyclin B-CKS1 or CDK2-cyclin A protein
695 complexes and the phosphosites were mapped by mass-spectrometry (b) and the stoichiometry
696 of phosphorylation was analysed by Phos-Tag SDS-PAGE (c) (amidoblack staining was used
697 as loading control). **d.** Representative fluorescence images of *in vitro* phase separation assay
698 with purified GFP-tagged Ki-67 consensus repeat (CR), non-phosphorylated (non-P) or *in vitro*
699 phosphorylated (P) with recombinant CDK1-cyclin B-CKS1 or CDK2-cyclin A, at indicated
700 time points; scale bars, 10 μm . **e.** Top, temperature-density phase diagrams for the consensus
701 repeat sequence of Ki-67. Critical temperature and density (blue circles) were computed for all
702 possible 2048 sequences that arise from different degrees of phosphorylation. For a given
703 degree of phosphorylation there are multiple possible sequences, of which two were chosen,
704 corresponding to the highest and lowest values of the critical point. For these, temperature-
705 dependent (in reduced unit) phase diagrams (solid orange) and spinodal lines (dashed orange)
706 are shown along with the unmodified sequence (in green). Only critical points (blue circles)
707 are presented for all the other sequences for a given stoichiometry/degree of phosphorylation.
708 Bottom, SCDM maps of the unmodified sequence (Non-P, lower triangle) and a specific
709 phosphorylated sequence (P, upper triangle). The phosphorylated sequence for a given
710 stoichiometry (degree of phosphorylation) was chosen by selecting the sequence with the
711 corresponding critical temperature and density closest to the average of the highest and lowest
712 critical points. SCDM and Phase diagrams are consistent and show that phosphorylation can
713 lower propensity to phase separate when eight or more sites are phosphorylated, contrary to
714 sequences where six or less sites are phosphorylated.

715
716

717 **References**

718 1. Hyman, A. A. Whither systems biology. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **366**, 3635–3637 (2011).

719 2. Errico, A., Deshmukh, K., Tanaka, Y., Pozniakovsky, A. & Hunt, T. Identification of substrates for cyclin
720 dependent kinases. *Adv. Enzyme Regul.* **50**, 375–399 (2010).

721 3. Ubersax, J. A. *et al.* Targets of the cyclin-dependent kinase Cdk1. *Nature* **425**, 859–64 (2003).

722 4. Chi, Y. *et al.* Identification of CDK2 substrates in human cell lysates. *Genome Biol.* **9**, R149 (2008).

723 5. Blethrow, J. D., Glavy, J. S., Morgan, D. O. & Shokat, K. M. Covalent capture of kinase-specific
724 phosphopeptides reveals Cdk1-cyclin B substrates. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 1442–7 (2008).

725 6. Holt, L. J. *et al.* Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.
726 *Science* **325**, 1682–6 (2009).

727 7. Michowski, W. *et al.* Cdk1 Controls Global Epigenetic Landscape in Embryonic Stem Cells. *Mol. Cell* **78**,
728 459–476.e13 (2020).

729 8. Mahdessian, D. *et al.* Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. *Nature*
730 **590**, 649–654 (2021).

731 9. Olsen, J. V. *et al.* Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy
732 during mitosis. *Sci. Signal.* **3**, ra3 (2010).

733 10. Zegerman, P. & Diffley, J. F. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes
734 DNA replication in budding yeast. *Nature* **445**, 281–5 (2007).

735 11. Tanaka, S. *et al.* CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding
736 yeast. *Nature* **445**, 328–32 (2007).

737 12. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate
738 selection and orientation by the SCFCdc4 ubiquitin ligase. *Cell* **112**, 243–256 (2003).

739 13. Nash, P. *et al.* Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA
740 replication. *Nature* **414**, 514–21 (2001).

741 14. Örd, M. *et al.* Multisite phosphorylation code of CDK. *Nat. Struct. Mol. Biol.* **26**, 649–658 (2019).

742 15. Coudreuse, D. & Nurse, P. Driving the cell cycle with a minimal CDK control network. *Nature* **468**, 1074–
743 1079 (2010).

744 16. Basu, S., Greenwood, J., Jones, A. W. & Nurse, P. Core control principles of the eukaryotic cell cycle.
745 *Nature* **607**, 381–386 (2022).

746 17. Krasinska, L. *et al.* Protein Phosphatase 2A Controls the Order and Dynamics of Cell-Cycle Transitions.
747 *Mol. Cell* **44**, 437–50 (2011).

748 18. Gavet, O. & Pines, J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. *Dev. Cell* **18**,
749 533–43 (2010).

750 19. Purvis, J. E. & Lahav, G. Encoding and decoding cellular information through signaling dynamics. *Cell*
751 **152**, 945–956 (2013).

752 20. Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass spectrometry of single mammalian
753 cells quantifies proteome heterogeneity during cell differentiation. *Genome Biol.* **19**, 161 (2018).

754 21. Lombard-Banek, C., Moody, S. A., Manzini, M. C. & Nemes, P. Microsampling Capillary Electrophoresis
755 Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live
756 *Xenopus laevis* and Zebrafish Embryos. *Anal. Chem.* **91**, 4797–4805 (2019).

757 22. Cooper, S. The synchronization manifesto: a critique of whole-culture synchronization. *FEBS J.* **286**, 4650–
758 4656 (2019).

759 23. Ly, T., Endo, A. & Lamond, A. I. Proteomic analysis of the response to cell cycle arrests in human myeloid
760 leukemia cells. *eLife* **4**, e04534 (2015).

761 24. Ly, T. *et al.* A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia
762 cells. *eLife* **3**, e01630 (2014).

763 25. Ly, T. *et al.* Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic
764 subphases, using PRIMMUS. *eLife* **6**, e27574 (2017).

765 26. Newport, J. & Kirschner, M. A major developmental transition in early *Xenopus* embryos: I.
766 characterization and timing of cellular changes at the midblastula stage. *Cell* **30**, 675–686 (1982).

767 27. Newport, J. W. & Kirschner, M. W. Regulation of the cell cycle during early *Xenopus* development. *Cell*
768 **37**, 731–42 (1984).

769 28. Post, H. *et al.* Robust, Sensitive, and Automated Phosphopeptide Enrichment Optimized for Low Sample
770 Amounts Applied to Primary Hippocampal Neurons. *J. Proteome Res.* **16**, 728–737 (2017).

771 29. Presler, M. *et al.* Proteomics of phosphorylation and protein dynamics during fertilization and meiotic exit
772 in the *Xenopus* egg. *Proc. Natl. Acad. Sci. U.S.A.* **114**, E10838–E10847 (2017).

773 30. Clift, D. & Schuh, M. Restarting life: fertilization and the transition from meiosis to mitosis. *Nat. Rev. Mol.*
774 *Cell Biol.* **14**, 549–562 (2013).

775 31. Peuchen, E. H. *et al.* Phosphorylation Dynamics Dominate the Regulated Proteome during Early *Xenopus*
776 Development. *Sci. Rep.* **7**, 15647 (2017).

777 32. Ferrell, J. E., Jr., Wu, M., Gerhart, J. C. & Martin, G. S. Cell cycle tyrosine phosphorylation of p34cdc2
778 and a microtubule-associated protein kinase homolog in *Xenopus* oocytes and eggs. *Mol. Cell. Biol.* **11**,
779 1965–71 (1991).

780 33. Songyang, Z. *et al.* A structural basis for substrate specificities of protein Ser/Thr kinases: primary
781 sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent
782 kinase II, CDK5, and Erk1. *Mol. Cell. Biol.* **16**, 6486–6493 (1996).

783 34. Suzuki, K. *et al.* Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic
784 regulation of C2H2 zinc finger proteins and Ect2. *Sci. Rep.* **5**, 7929 (2015).

785 35. Lawrence, R. T., Searle, B. C., Llovet, A. & Villén, J. Plug-and-play analysis of the human
786 phosphoproteome by targeted high-resolution mass spectrometry. *Nat. Methods* **13**, 431–434 (2016).

787 36. Schmidlin, T. *et al.* Assessment of SRM, MRM3, and DIA for the targeted analysis of phosphorylation
788 dynamics in non-small cell lung cancer. *Proteomics* **16**, 2193–2205 (2016).

789 37. Schmidlin, T. *et al.* High-Throughput Assessment of Kinome-wide Activation States. *Cell Systems* **9**, 366–
790 374.e5 (2019).

791 38. Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel Reaction Monitoring
792 for High Resolution and High Mass Accuracy Quantitative, Targeted Proteomics *. *Mol. Cell. Proteomics*
793 **11**, 1475–1488 (2012).

794 39. Rankin, S. & Kirschner, M. W. The surface contraction waves of Xenopus eggs reflect the metachronous
795 cell-cycle state of the cytoplasm. *Curr. Biol.* **7**, 451–4 (1997).

796 40. Perez-Mongiovi, D., Chang, P. & Houlston, E. A propagated wave of MPF activation accompanies surface
797 contraction waves at first mitosis in Xenopus. *J. Cell Sci.* **111**, 385–393 (1998).

798 41. Tsai, T. Y.-C., Theriot, J. A. & Jr, J. E. F. Changes in Oscillatory Dynamics in the Cell Cycle of Early
799 Xenopus laevis Embryos. *PLoS Biol.* **12**, e1001788 (2014).

800 42. Goldbeter, A. & Koshland, D. E., Jr. An amplified sensitivity arising from covalent modification in
801 biological systems. *Proc. Natl. Acad. Sci. U. S. A.* **78**, 6840–4 (1981).

802 43. Iakoucheva, L. M. *et al.* The importance of intrinsic disorder for protein phosphorylation. *Nucleic Acids
803 Res.* **32**, 1037–1049 (2004).

804 44. Moses, A. M., Hériché, J.-K. & Durbin, R. Clustering of phosphorylation site recognition motifs can be
805 exploited to predict the targets of cyclin-dependent kinase. *Genome Biol.* **8**, R23 (2007).

806 45. Rai, A. K., Chen, J.-X., Selbach, M. & Pelkmans, L. Kinase-controlled phase transition of membraneless
807 organelles in mitosis. *Nature* **559**, 211–216 (2018).

808 46. Shimobayashi, S. F., Ronceray, P., Sanders, D. W., Haataja, M. P. & Brangwynne, C. P. Nucleation
809 landscape of biomolecular condensates. *Nature* **599**, 503–506 (2021).

810 47. Berchtold, D., Battich, N. & Pelkmans, L. A Systems-Level Study Reveals Regulators of Membrane-less
811 Organelles in Human Cells. *Mol. Cell* **72**, 1035-1049.e5 (2018).

812 48. Hur, W. *et al.* CDK-Regulated Phase Separation Seeded by Histone Genes Ensures Precise Growth and
813 Function of Histone Locus Bodies. *Dev. Cell* **54**, 379-394.e6 (2020).

814 49. Sridharan, S. *et al.* Systematic discovery of biomolecular condensate-specific protein phosphorylation. *Nat.*
815 *Chem. Biol.* **18**, 1104–1114 (2022).

816 50. van Mierlo, G. *et al.* Predicting protein condensate formation using machine learning. *Cell Rep.* **34**, 108705
817 (2021).

818 51. Lin, Y.-H., Wu, H., Jia, B., Zhang, M. & Chan, H. S. Assembly of model postsynaptic densities involves
819 interactions auxiliary to stoichiometric binding. *Biophys. J.* **121**, 157–171 (2022).

820 52. Ghosh, K. Stoichiometric versus stochastic interaction in models of liquid-liquid phase separation. *Biophys.*
821 *J.* **121**, 4–6 (2022).

822 53. Kim, T. H. *et al.* Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of
823 translation and deadenylation. *Science* **365**, 825–829 (2019).

824 54. Lin, Y.-H., Brady, J. P., Chan, H. S. & Ghosh, K. A unified analytical theory of heteropolymers for
825 sequence-specific phase behaviors of polyelectrolytes and polyampholytes. *J. Chem. Phys.* **152**, 045102
826 (2020).

827 55. Huihui, J. & Ghosh, K. An analytical theory to describe sequence-specific inter-residue distance profiles for
828 polyampholytes and intrinsically disordered proteins. *J. Chem. Phys.* **152**, 161102 (2020).

829 56. Huihui, J. & Ghosh, K. Intrachain interaction topology can identify functionally similar intrinsically
830 disordered proteins. *Biophys. J.* **120**, 1860–1868 (2021).

831 57. Ghosh, K., Huihui, J., Phillips, M. & Haider, A. Rules of Physical Mathematics Govern Intrinsically
832 Disordered Proteins. *Annu. Rev. Biophys.* **51**, 355–376 (2022).

833 58. Sobecki, M. *et al.* The cell proliferation antigen Ki-67 organises heterochromatin. *eLife* **5**, e13722 (2016).

834 59. Booth, D. G. *et al.* Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery.
835 *eLife* **3**, e01641 (2014).

836 60. Hayashi, Y., Kato, K. & Kimura, K. The hierarchical structure of the perichromosomal layer comprises
837 Ki67, ribosomal RNAs, and nucleolar proteins. *Biochem. Biophys. Res. Commun.* **493**, 1043–1049 (2017).

838 61. Hégarat, N. *et al.* Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B. *EMBO J.*
839 **39**, e104419 (2020).

840 62. Bracha, D. *et al.* Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-
841 Oligomerizable Seeds. *Cell* **175**, 1467-1480.e13 (2018).

842 63. Erdel, F. *et al.* Mouse Heterochromatin Adopts Digital Compaction States without Showing Hallmarks of
843 HP1-Driven Liquid-Liquid Phase Separation. *Mol. Cell* **78**, 236-249.e7 (2020).

844 64. Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing
845 open questions and challenges. *Mol. Cell* **82**, 2201–2214 (2022).

846 65. Shin, Y. *et al.* Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated
847 optoDroplets. *Cell* **168**, 159-171.e14 (2017).

848 66. Yamazaki, H., Takagi, M., Kosako, H., Hirano, T. & Yoshimura, S. H. Cell cycle-specific phase separation
849 regulated by protein charge blockiness. *Nat. Cell Biol.* **24**, 625–632 (2022).

850 67. Rata, S. *et al.* Two Interlinked Bistable Switches Govern Mitotic Control in Mammalian Cells. *Curr. Biol.*
851 **28**, 3824-3832.e6 (2018).

852 68. Swaffer, M. P., Jones, A. W., Flynn, H. R., Snijders, A. P. & Nurse, P. CDK Substrate Phosphorylation and
853 Ordering the Cell Cycle. *Cell* **167**, 1750-1761.e16 (2016).

854 69. Bassermann, F. *et al.* Multisite phosphorylation of nuclear interaction partner of ALK (NIPA) at G2/M
855 involves cyclin B1/Cdk1. *J. Biol. Chem.* **282**, 15965–15972 (2007).

856 70. Parker, M. W. *et al.* A new class of disordered elements controls DNA replication through initiator self-
857 assembly. *eLife* **8**, (2019).

858 71. Laurell, E. *et al.* Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during
859 mitotic entry. *Cell* **144**, 539–550 (2011).

860 72. Yahya, G. *et al.* Stress granules display bistable dynamics modulated by Cdk. *J. Cell Biol.* **220**, (2021).

861 73. Parisis, N. *et al.* Initiation of DNA replication requires actin dynamics and formin activity. *EMBO J.* (2017)
862 doi:10.15252/embj.201796585.

863 74. Lindeboom, R. G. H., Smits, A. H., Perino, M., Veenstra, G. J. C. & Vermeulen, M. Mass Spectrometry-
864 Based Absolute Quantification of Single Xenopus Embryo Proteomes. *Cold Spring Harb. Protoc.* (2018)
865 doi:10.1101/pdb.prot098376.

866 75. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for
867 proteome analysis. *Nat. Methods* **6**, 359–62 (2009).

868 76. Meiring, H. D., van der Heeft, E., ten Hove, G. J. & de Jong, A. P. J. M. Nanoscale LC-MS(n): technical
869 design and applications to peptide and protein analysis. *J. Sep. Sci.* **25**, 557–568 (2002).

870 77. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass
871 accuracies and proteome-wide protein quantification. *Nat. Biotechnol.* **26**, 1367–1372 (2008).

872 78. Temu, T., Mann, M., Raschle, M. & Cox, J. Homology-driven assembly of NOn-redundant protEin
873 sequence sets (NOmESS) for mass spectrometry. *Bioinformatics* **32**, 1417–9 (2016).

874 79. Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of (prote)omics data.
875 *Nat. Methods* **13**, 731–40 (2016).

876 80. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional
877 genomic data. *Bioinformatics* **32**, 2847–2849 (2016).

878 81. Szklarczyk, D. *et al.* STRING v11: protein-protein association networks with increased coverage,
879 supporting functional discovery in genome-wide experimental datasets. *Nucleic Acids Res.* **47**, D607–
880 D613 (2019).

881 82. Su, G., Kuchinsky, A., Morris, J. H., States, D. J. & Meng, F. GLay: community structure analysis of
882 biological networks. *Bioinformatics* **26**, 3135–7 (2010).

883 83. Maere, S., Heymans, K. & Kuiper, M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene
884 ontology categories in biological networks. *Bioinformatics* **21**, 3448–9 (2005).

885 84. Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long lists of gene
886 ontology terms. *PLoS One* **6**, e21800 (2011).

887 85. MacLean, B. *et al.* Skyline: an open source document editor for creating and analyzing targeted proteomics
888 experiments. *Bioinformatics* **26**, 966–8 (2010).

889 86. Wickham, H. *et al.* Welcome to the Tidyverse. *J. Open Source Soft.* **4**, 1686 (2019).

890 87. Hornbeck, P. V. *et al.* PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. *Nucleic Acids Res.* **43**,
891 D512–D520 (2015).

892 88. Orthwein, A. *et al.* Mitosis Inhibits DNA Double-Strand Break Repair to Guard Against Telomere Fusions.
893 *Science* **344**, 189–193 (2014).

894 89. Wyatt, H. D. M., Sarbajna, S., Matos, J. & West, S. C. Coordinated Actions of SLX1-SLX4 and MUS81-
895 EME1 for Holliday Junction Resolution in Human Cells. *Mol. Cell* **52**, 234–247 (2013).

896 90. Linder, M. I. *et al.* Mitotic Disassembly of Nuclear Pore Complexes Involves CDK1- and PLK1-Mediated
897 Phosphorylation of Key Interconnecting Nucleoporins. *Dev. Cell* **43**, 141–156.e7 (2017).

898 91. Liu, J. *et al.* Cell cycle-dependent localization of the CDK2-cyclin E complex in Cajal (coiled) bodies. *J*
899 *Cell Sci.* **113**, 1543–1552 (2000).

900 92. Chi, Y. *et al.* A novel landscape of nuclear human CDK2 substrates revealed by in situ phosphorylation.
901 *Sci. Adv.* **6**, eaaz9899 (2020).

902 93. Klein, U. R., Haindl, M., Nigg, E. A. & Muller, S. RanBP2 and SENP3 Function in a Mitotic SUMO2/3
903 Conjugation-Deconjugation Cycle on Borealin. *Mol. Biol. Cell* **20**, 410–418 (2008).

904 94. Goto, H. *et al.* Complex formation of Plk1 and INCENP required for metaphase–anaphase transition. *Nat. Cell Biol.* **8**, 180–187 (2006).

905 95. Bartsch, O., Horstmann, S., Toprak, K., Klempnauer, K.-H. & Ferrari, S. Identification of cyclin A/Cdk2
906 phosphorylation sites in B-Myb. *Eur. J. Biochem.* **260**, 384–391 (1999).

907 96. Curtis, M., Nikolopoulos, S. N. & Turner, C. E. Actopaxin is phosphorylated during mitosis and is a
908 substrate for cyclin B1/cdc2 kinase. *Biochem. J.* **363**, 233–242 (2002).

909 97. Fourest-Lievin, A. *et al.* Microtubule Regulation in Mitosis: Tubulin Phosphorylation by the Cyclin-
910 dependent Kinase Cdk1. *Mol. Biol. Cell* **17**, 1041 (2006).

911 98. Milner, R. E., Busaan, J. L., Holmes, C. F., Wang, J. H. & Michalak, M. Phosphorylation of dystrophin.
912 The carboxyl-terminal region of dystrophin is a substrate for in vitro phosphorylation by p34cdc2 protein
913 kinase. *J. Biol. Chem.* **268**, 21901–21905 (1993).

914 99. Lowe, M. *et al.* Cdc2 Kinase Directly Phosphorylates the cis-Golgi Matrix Protein GM130 and Is Required
915 for Golgi Fragmentation in Mitosis. *Cell* **94**, 783–793 (1998).

916 100. Yun, J. *et al.* Cdk2-dependent Phosphorylation of the NF-Y Transcription Factor and Its Involvement in the
917 p53-p21 Signaling Pathway. *J. Biol. Chem.* **278**, 36966–36972 (2003).

918 101. Kitzmann, M. *et al.* cdk1- and cdk2-Mediated Phosphorylation of MyoD Ser200 in Growing C2 Myoblasts:
919 Role in Modulating MyoD Half-Life and Myogenic Activity. *Mol. Cell. Biol.* **19**, 3167–3176 (1999).

920 102. Thiel, D. A. *et al.* Cell Cycle-Regulated Phosphorylation of p21-Activated Kinase 1. *Curr. Biol.* **12**, 1227–
921 1232 (2002).

922 103. Li, M., Stefansson, B., Wang, W., Schaefer, E. M. & Brautigan, D. L. Phosphorylation of the Pro-X-Thr-
923 Pro site in phosphatase inhibitor-2 by cyclin-dependent protein kinase during M-phase of the cell cycle.
924 *Cell. Signal.* **18**, 1318–1326 (2006).

925 104. Jain, S. *et al.* ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. *Cell* **164**,
926 487–498 (2016).

927 105. Fong, K. *et al.* Whole-genome screening identifies proteins localized to distinct nuclear bodies. *J. Cell Biol.*
928 **203**, 149–164 (2013).

930 106. Dopie, J., Sweredoski, M. J., Moradian, A. & Belmont, A. S. Tyramide signal amplification mass
931 spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. *J. Cell Biol.* **219**, (2020).

932 107. Liu, J. *et al.* Functional proteomic analysis of promyelocytic leukaemia nuclear bodies in irradiation-
933 induced MCF-7 cells. *J. Biochem.* **148**, 659–667 (2010).

934 108. Hubstenberger, A. *et al.* P-Body Purification Reveals the Condensation of Repressed mRNA Regulons.
935 *Mol. Cell* **68**, 144-157.e5 (2017).

936 109. Stenström, L. *et al.* Mapping the nucleolar proteome reveals a spatiotemporal organization related to
937 intrinsic protein disorder. *Mol. Syst. Biol.* **16**, e9469 (2020).

938 110. Tafforeau, L. *et al.* The complexity of human ribosome biogenesis revealed by systematic nucleolar
939 screening of Pre-rRNA processing factors. *Mol. Cell* **51**, 539–51 (2013).

940 111. Lin, D. H. & Hoelz, A. The Structure of the Nuclear Pore Complex (An Update). *Annu. Rev. Biochem.* **88**,
941 725–783 (2019).

942 112. Machyna, M., Heyn, P. & Neugebauer, K. M. Cajal bodies: where form meets function. *WIREs RNA* **4**, 17–
943 34 (2013).

944 113. Quevedo, M. *et al.* Mediator complex interaction partners organize the transcriptional network that defines
945 neural stem cells. *Nat. Commun.* **10**, 1–15 (2019).

946 114. Piovesan, D. *et al.* MobiDB: intrinsically disordered proteins in 2021. *Nucleic Acids Res.*
947 doi:10.1093/nar/gkaa1058.

948 115. Gentleman, R. C. *et al.* Bioconductor: open software development for computational biology and
949 bioinformatics. *Genome Biol.* **5**, 1–16 (2004).

950 116. Douglass, J. *et al.* Identifying protein kinase target preferences using mass spectrometry. *Am. J. Physiol.*
951 *Cell Physiol.* **303**, C715–C727 (2012).

952 117. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–589 (2021).

953 118. Mariani, V., Biasini, M., Barbato, A. & Schwede, T. IDDT: a local superposition-free score for comparing
954 protein structures and models using distance difference tests. *Bioinformatics* **29**, 2722–2728 (2013).

955 119. Varadi, M. *et al.* AlphaFold Protein Structure Database: massively expanding the structural coverage of
956 protein-sequence space with high-accuracy models. *Nucleic Acids Res.* **50**, D439–D444 (2022).

957 120. Akdel, M. *et al.* A structural biology community assessment of AlphaFold 2 applications.

958 2021.09.26.461876 Preprint at <https://doi.org/10.1101/2021.09.26.461876> (2021).

959 121. Mészáros, B., Erdos, G. & Dosztányi, Z. IUPred2A: context-dependent prediction of protein disorder as a
960 function of redox state and protein binding. *Nucleic Acids Res.* **46**, W329–W337 (2018).

961 122. Erdős, G. & Dosztányi, Z. Analyzing Protein Disorder with IUPred2A. *Curr. Protoc. Bioinformatics* **70**,
962 e99 (2020).

963 123. Dignon, G. L., Zheng, W., Kim, Y. C., Best, R. B. & Mittal, J. Sequence determinants of protein phase
964 behavior from a coarse-grained model. *PLoS Comp. Biol.* **14**, e1005941 (2018).

965 124. Regy, R. M., Thompson, J., Kim, Y. C. & Mittal, J. Improved coarse-grained model for studying sequence
966 dependent phase separation of disordered proteins. *Protein Sci.* **30**, 1371–1379 (2021).

967 125. Abraham, M. J. *et al.* GROMACS: High performance molecular simulations through multi-level
968 parallelism from laptops to supercomputers. *SoftwareX* **1–2**, 19–25 (2015).

969 126. Feldman, H. J. & Hogue, C. W. A fast method to sample real protein conformational space. *Proteins* **39**,
970 112–131 (2000).

971 127. Feldman, H. J. & Hogue, C. W. V. Probabilistic sampling of protein conformations: new hope for brute
972 force? *Proteins* **46**, 8–23 (2002).

973 128. Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and analysis. *J.*
974 *Comput. Chem.* **25**, 1605–1612 (2004).

975 129. Case, D. A. *et al.* The Amber biomolecular simulation programs. *J. Comput. Chem.* **26**, 1668–1688 (2005).

976 130. Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C. & Mittal, J. Relation between single-molecule properties
977 and phase behavior of intrinsically disordered proteins. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 9929–9934
978 (2018).

979 131. Studier, F. W. Protein production by auto-induction in high density shaking cultures. *Protein Expr. Purif.*
980 **41**, 207–234 (2005).

981 132. Vranken, W. F. *et al.* The CCPN data model for NMR spectroscopy: development of a software pipeline.
982 *Proteins* **59**, 687–696 (2005).

983 133. Markley, J. L. *et al.* Recommendations for the presentation of NMR structures of proteins and nucleic
984 acids. *J. Mol. Biol.* **280**, 933–952 (1998).

985