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Abstract

Cortical circuits encoding sensory information consist of populations of neurons, yet how information aggregates via pooling indi-
vidual cells remains poorly understood. Such pooling may be particularly important in noisy settings where single-neuron encod-
ing is degraded. One example is the cocktail party problem, with competing sounds from multiple spatial locations. How
populations of neurons in auditory cortex code competing sounds have not been previously investigated. Here, we apply a
novel information-theoretic approach to estimate information in populations of neurons in mouse auditory cortex about compet-
ing sounds from multiple spatial locations, including both summed population (SP) and labeled line (LL) codes. We find that a
small subset of neurons is sufficient to nearly maximize mutual information over different spatial configurations, with the labeled
line code outperforming the summed population code and approaching information levels attained in the absence of competing
stimuli. Finally, information in the labeled line code increases with spatial separation between target and masker, in correspon-
dence with behavioral results on spatial release from masking in humans and animals. Taken together, our results reveal that a
compact population of neurons in auditory cortex provides a robust code for competing sounds from different spatial locations.

NEW & NOTEWORTHY Little is known about how populations of neurons within cortical circuits encode sensory stimuli in the
presence of competing stimuli at other spatial locations. Here, we investigate this problem in auditory cortex using a recently
proposed information-theoretic approach. We find a small subset of neurons nearly maximizes information about target sounds
in the presence of competing maskers, approaching information levels for isolated stimuli, and provides a noise-robust code for
sounds in a complex auditory scene.

auditory cortex; complex scene analysis; information theory; neural coding; population coding

INTRODUCTION

A central, surprising finding of systems neuroscience is that
the discrimination performance of single cortical neurons can
match behavior (1, 2). However, some outstanding questions
are whether single neurons canwithstand highly noisy settings,
and whether population coding, in which the activity of multi-
ple neurons are aggregated to represent stimuli, can improve
discrimination performance in such settings. An important
example of a noisy setting is the cocktail party problem, where
competing sounds originate from different spatial locations (3).

Such settings are highly challenging for a variety of populations
with impairments, for example, attention-deficit/hyperactivity
disorder (ADHD), autism and hearing impairment, assistive
devices, and for speech recognition technology, for example,
SIRI and Alexa. Understanding how information is coded in
such noisy settings by single neurons and how it aggregates
with population coding may illuminate better strategies for
treatments in impaired populations, as well as improvements
in assistive devices and speech recognition in noise.

Previous studies in songbirds quantified the discrimina-
tion performance of single neurons and found degraded
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discrimination of target sounds in the presence of a compet-
ing masker at the same location (4), with high performance
levels when the target and masker are spatially separated (5).
In this case, the best single neuron code may suffice to sup-
port behavior. However, a more recent study in the mouse
auditory cortex (ACx) with a similar experimental design
found that discrimination performance of single neurons in
the presence of competing sounds is significantly degraded
in the presence of competing sounds (6). In this case, popula-
tion codingmay be necessary to support behavior.

Recent studies in ACx have investigated population cod-
ing of natural sounds (7) and dynamic amplitude-modu-
lated sounds (8). However, population coding of competing
sounds has yet to be investigated, motivating the following
questions: can population coding improve the representa-
tion of competing sounds? How do different coding schemes
compare? What is the size and composition of the best popu-
lation under such schemes? Here, we investigate these ques-
tions in mouse ACx by applying a novel information-
theoretic approach. We examine these questions using
two population coding schemes: the summed population
(SP) code, where the identity of each neuron does not
impact coding, and the labeled line (LL) code, where neu-
ron identity is preserved and can impact coding (9).

Many information-theoretic approaches require binning
spike trains at a certain temporal resolution (7), whereas the
relevant temporal resolution in cortex is unknown. Other
approaches have used spike distance metrics that are free
of a choice of temporal resolution (10, 11). However, spike
distance-based approaches have typically been used in con-
junction with a specific classifier (2, 4–6). It is unclear how
to choose a classifier that best corresponds to cortical com-
putations, or how the choice of classifier influences esti-
mates of discrimination performance. Here, we combine
the strengths of a time scale-free distance measure (10, 11),
and a recently proposed classifier-free information-theo-
retic approach (12, 13) to probe population coding of com-
peting sounds in mouse ACx. We find that population
coding achieves near-maximal information levels with a
surprisingly compact population of neurons in both the SP
and LL schemes. Furthermore, the LL scheme outperforms
the SP scheme, using a population of neurons with diverse
spatial responses and cell types, greatly improving informa-
tion available from single neurons, and approaching infor-
mation levels of “clean” stimuli without competing noise.
Finally, information available in population in the LL scheme
increases with spatial separation between competing sounds,
matching spatial release from masking observed at the be-
havioral level in animals and humans. Our results reveal a ro-
bust and compact, population code for competing sounds in
ACx.

MATERIALS AND METHODS

Subjects

All procedures involving animals were approved by
the Boston University Institutional Animal Care and Use
Committee and the University of Illinois at Urbana-
Champaign Institutional Animal Care and Use Com-
mittee (IACUC). A total of 12 mice were used in this

study. Original breeding pairs of parvalbumin-Cre (PV-
Cre: B6;129P2-Pvalbtm1(cre)Arbr/J) and Ai40 mice (Arch:
B6.Cg-Gt(ROSA)26Sortm40.1(CAG-aop3/EGFP)Hze/J) mice were
obtained from Jackson Laboratory (Maine), and all breed-
ing was done in-house. Subjects consisted of both male
and female transgenic PV-Arch (n ¼ 7 mice) offspring and
PV-Cre (n ¼ 5 mice) only offspring 8- to 12-wk old on the
day of recording.

Surgery

Under isoflurane anesthesia, stereotaxic surgery was per-
formed onmice to install a head plate, electrode, and optical
fiber (14, 15). The custom head-plate was mounted anterior
to the bregma to allow caudal access to ACx and anchored to
the skull with three stainless steel screws and dental cement.
A fourth screw was connected to a metal pin and placed in
the skull above the contralateral cerebellum to serve as the
reference. A craniotomy was made above the right auditory
cortex [anteroposterior (AP) �2.3 to �3.6, mediolateral (ML)
þ4.0 to þ4.5, dorsoventral (DV)]. Using a stereotaxic arm, a
32-contact linear probe (Neuronexus, Ann Arbor, MI; Model:
a 4 � 8–5 mm-100-400-177-CM32) with 100-μm spacing
between electrode contacts and 400-μm spacing between
shanks was positioned into ACx, perpendicular to the corti-
cal surface. Because of the curvature of the ACx surface, not
all four shanks could be placed at precisely the same depth
during each experiment. Probes were advanced until all elec-
trode contacts were within the cortical tissue and shanks
were positioned along the rostrocaudal axis of ACx (Fig. 1, A
and B). An optical fiber, 200 μm in diameter, was placed
medially to the four shanks and positioned between the two
innermost shanks terminating at the cortical surface (Fig. 1A
and Supplemental Fig. S1). After implantation, mice were
allowed to recover for 4–7 days before undergoing habitua-
tion to being head-fixed as described in the following
section.

Habituation

Following surgery and complete recovery, mice were first
handled for several days before being head-fixed to the re-
cording apparatus. Mice were gradually exposed to longer
restraint periods at the same time of day as subsequent re-
cording sessions and received at least six habituation ses-
sions before the first recording day. Under head-fixed
conditions, mice were loosely covered with a piece of labora-
tory tissue taped down on either side (Kimwipes: Kimberly-
Clark, Irving, TX) to encourage reduced movement. At the
end of habituation, mice underwent recording sessions in
the presence of spatially distributed auditory stimuli.

Auditory Stimuli

All auditory stimuli were generated in Matlab and con-
sisted of either target, masker, or combination of the two
stimuli played from four TDT ES-1 electrostatic speakers.
Target stimuli consisted of white noise modulated in time by
human speech envelopes taken from the Harvard IEEE
speech corpus (16), which has been used in previous psycho-
logical studies of the cocktail party effect (17). Masker stimuli
consisted of 10 independent tokens of unmodulated white
noise. All stimuli were 3-s long, with a 1 ms cosine ramp
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at onset and offset. Stimuli were loaded onto a custom
RPvdsEx circuit on an RZ6 Multi I/O processor, which was
connected to two PM2Rmultiplexers that controlled the spa-
tial location of stimuli during playback.

Recording Sessions and Data Acquisition

All recordings were made with a Tucker Davis Technologies
(TDT; Alachua, FL) RZ2 recording system in an electrically
shielded sound attenuation chamber. Broadband neural sig-
nals at 24,414.0625 Hz were recorded for each of the 32 chan-
nels. Local field potentials (LFPs) were band-pass filtered
between 1 and 300Hz, notch-filtered at 60Hz, and digitized at
3,051.8 Hz and used for current source density analysis.

Recording sessions consisted of both nonoptogenetic and
optogenetic trials in random order. The intertrial interval
was 5 s, with 3 s of stimulus playback followed by 2 s of
silence. Mice were exposed to target-alone (clean) trials and
target-masker (masked) combinations. Ten trials were given
per target identity for all possible combinations of target
location, masker location (including clean trials), and opto-
genetic suppression of PV neurons. Thus, animals received a
total of 800 trials per �60-min recording session, with each
session having a set laser power. For the present study, we
focus on the responses recorded during nonoptogenetic
trials.

During recordings, the stimuli were presented 18 cm from
the mouse’s head using four TDT ES-1 speakers driven by
two TDT ED-1 speaker drivers. The four speakers were
arranged around the mouse at four locations on the azi-
muthal plane: directly in front (0�), two contralateral (45�

and 90�), and one ipsilateral (�90�) to the right auditory

cortex recording area. Before recording sessions, stimulus
intensity was calibrated using a conditioning amplifier
and microphone (Br€uel and Kjær, Nærum, Denmark;
Amplifier Model: 2690, and Microphone Model: 4939-A-
011). For seven of the nine Arch mice and the five Arch-
nonexpressing animals, all stimuli were set to 75 dB inten-
sity at the mouse’s head. For the remaining two Arch mice,
stimulus intensity was set to 70 dB.

Spike Extraction and Clustering

Kilosort2.0 (https://zenodo.org/record/4147288) was used
to automatically detect single units (SUs) (18), with the
broadband signal passed through a third-order Butterworth
filter with band-pass frequencies 300 and 5,000 Hz. Kilosort
results were then loaded onto Phy2 (https://github.com/
cortex-lab/phy) to manually determine if spike clusters
exhibited neural activity or noise (19). Clusters with either ar-
tifact-like waveforms from laser activity or similar responses
across all channels were rejected, and spikes with artifact-
like waveforms were removed from clusters whenever possi-
ble. Clusters were merged if the cross-correlograms were
similar to the component clusters’ autocorrelograms and
showed overlap in principal component feature space at the
same channel. The spikes toolbox (https://github.com/
cortex-lab/spikes) was used to import the cluster informa-
tion from Phy2 to Matlab and extract spike waveforms from
the high-passed signal (18). Clusters were assigned to record-
ing channels based on which site yielded the largest average
spike amplitude. To remove any remaining artifacts from
laser onset and offset, all spikes with waveforms above an
absolute threshold of 1,500 lV or a positive value above 750 lV

Figure 1. Experimental methods. All sub-
plots replicated from Nocon et al. (6), li-
censed under a Creative Commons license.
A: recording electrode location and optical
fiber placement. Subjects were implanted
with a 4-shank, 32-channel electrode array
and optogenetic fiber in the right hemi-
sphere of ACx. Each shank contained
eight sites per shank with 100 lm spacing
between electrode contacts. Mouse brain
illustration is from Pixta (https://www.
pixtastock.com/illustration/67155575). A1,
primary auditory cortex; ACx and ACtx,
auditory cortex; CA1, CA1 field; DG, den-
tate gyrus; Ent, entorhinal area; S2, sec-
ondary somatosensory cortex; V2,
secondary visual cortex. B: representa-
tive local field potential (LFP) activity from
one subject. LFPs were used to estimate
current source density and the granular
layer (L4) within each shank. C: example
mean single-unit waveform and inter-
spike interval (ISI) autocorrelogram. Black
dashed lines in the mean waveform rep-
resent ±1 SD, while scale bars measure
voltage and time. Dashed red lines in the
correlogram represent ISIs of ±2 ms.
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were discarded, and clusters that still showed a high amount
of remaining artifact-like spikes after removal were excluded
from further analysis. To determine which of the remaining
clusters were SUs, we used the sortingQuality toolbox (https://
github.com/cortex-lab/sortingQuality) to calculate isolation
distances and L-ratios (20). SUs must 1) have less than 5% of
interspike intervals below 2 ms (Fig. 1C), 2) an isolation dis-
tance above 15, and 3) an L-ratio below 0.25. For clusters where
isolation distance and L-ratio were not defined, only the first
threshold was used. These thresholds are consistent with past
studies on single-unit activity (21–23), and clusters that did
not meet any of these criteria were deemed multi-units
(MUs). Finally, SUs were classified as narrow-spiking if the
trough-peak interval of their mean waveform was below 0.5
ms, which is consistent with past studies on inhibitory units
withinmouse auditory cortex (24).

Current Source Density Estimation and Layer Analysis

Current source density (CSD) analysis estimates the sec-
ond spatial derivative of LFP signals to determine the rela-
tive current across the cortical laminar depth. Similar to
previous studies (15), LFPs were first low-passed filtered at
150 Hz before being downsampled by a factor of 8 to 381 Hz.
For each channel, LFPs were averaged across all control
masked trials before CSD estimation, as the rise time was
more similar between target stimuli than in clean trials.
Channels that did not show an evoked response were inter-
polated using neighboring sites on the same shank. LFPs (U)
were then spatially smoothed across the eight channels in
each shank:

/ zð Þ ¼ / z þ Dzð Þ þ 2/ zð Þ þ / z� Dzð Þ
4

ð1Þ

where z is the depth perpendicular to the cortical surface
and Dz is the electrode spacing. CSD was then estimated as:

CSD zð Þ ¼ �/ z þ Dzð Þ � 2/ zð Þ þ / z� Dzð Þ
Dz2

ð2Þ

For each of the middle six channels, CSD sink onset was
calculated as the time when the CSD goes below �3 times the
standard deviation of prestimulus activity. If more than one
channel was found to have the earliest sink onset, the channel
whose neighbors yielded the smallest difference in onset time
was deemed the granular layer, or L4. The depths of each
layer were estimated based on previous anatomical studies
(25): L1 consisted of channels at least 500 lm above the input
layer, L2/3 consisted of channels 200–400 lm above the
channel with the earliest sink onset; L4 consisted of the input
channel and the channel 100 lm above it; L5 consisted of
channels 100–300 lmbelow the input layer, and L6 consisted
of all channels at 400 lmbelow the input layer.

Neural Discriminability Performance Using SPIKE-
Distance

Neural discrimination performance refers to the ability to
determine stimulus identity based on neural responses, thus
measuring a neuron’s ability to encode stimulus features.
Here, performance was calculated using a template-match-
ing approach similar to our previous studies (5). Spike trains
were compared to template responses from both target stim-
uli, and each train was classified as being elicited by the

target whose template yielded the smaller spike distance.
For each target-masker configuration, 100 iterations of tem-
plate matching were done. In each iteration, one of the 10
spike trains for each target was chosen as a template, and all
remaining trials were matched to each template to deter-
mine target identity. All possible pairs of templates were
used across the 100 iterations to calculate an average value
of neural discriminability. SPIKE-distance (10) calculates the
dissimilarity between two spike trains based on differences
in spike timing and instantaneous firing rate without addi-
tional parameters. For one spike train in a pair, the instanta-
neous spike timing difference at time t is:

S1 tð Þ ¼ Dt 1ð Þ
P tð Þx 1ð Þ

F þ Dt 1ð Þ
F tð Þx 1ð Þ

P

x 1ð Þ
ISI tð Þ

; t 1
ð Þ
P � t � t 1

ð Þ
F ð3Þ

where DtP represents the distance between the preceding
spike from train 1 [tP

(1)] and the nearest spike from train 2,
DtF represents the distance between the following spike from
train 1 [tF

(1)] and the nearest spike from train 2, xF is the abso-
lute difference between t and tF

(1), xP is the absolute differ-
ence between t and tP

(1), and xISI
(1) is the interspike interval

(ISI) between tF and tP in spike train 1. All these quantities
are functions of t, as they measure the distances between
spikes and the current time t or between spikes whose iden-
tity will change with t, as illustrated in Supplemental Fig. S2,
A and B. To calculate S2(t), the spike timing difference from
the view of the other train, all spike times and ISIs are
replaced with the relevant values in train 2. The pairwise in-
stantaneous difference between the two trains is calculated
as:

S
0 0
tð Þ ¼ S1 tð Þ þ S2 tð Þ

2
D
x 1ð Þ
ISI tð Þ; x 2ð Þ

ISI tð Þ
E ð4Þ

Finally, S1(t) and S2(t) are locally weighted by their instan-
taneous interspike intervals to account for differences in fir-
ing rate:

S tð Þ ¼ S1 tð Þx 2ð Þ
ISI tð Þ þ S2 tð Þx 1ð Þ

ISI tð Þ
2
D
x 1ð Þ
ISI tð Þ; x 2ð Þ

ISI tð Þ
E2 ð5Þ

For a train of length T, the distance is the integral of the
dissimilarity profile across the entire response interval, with
aminimum value of 0 for identical spike trains:

DS ¼ 1
T

ðT
0

S tð Þdt ð6Þ

cSPIKE (https://www.thomaskreuz.org/source-codes/cspike),
a toolbox used to calculate SPIKE-distance, was used to calcu-
late all spike train distances between all possible spike train
pairs for all target-masker configurations (10).

Identifying “Hotspots” of High Neural Discriminability

To restrict the number of single units used for population
coding analysis, we used only the single units that showed at
least one “hotspot” or target-masker configuration showing
high neural discriminability during either clean or masked
presentations. “Hotspots”were determined using three crite-
ria: 1) performance must be above 70% during the control
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condition; 2) the control performance distribution must be
significantly different from chance (P < 0.05), calculated
using a null distribution obtained by classifying spike trains
within each target, which results in performances around
chance value 50%; and 3) the effect size between the two
distributions (control vs. null), calculated using Cohen’s d,
must be greater than 1:

d ¼ �x1 � �x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þs21 � n0 � 1ð Þs20

n1 þ n0 � 2

s
ð7Þ

where values with subscript 0 represent the mean, standard
deviation, and number of template-matching iterations for
the null performance distribution. In addition, configura-
tions where at least three trials for one target showed zero
spiking were excluded from analysis, to avoid inaccurate
estimates of performance.

Of the 137 identified SUs, 45 exhibited at least one hotspot.
To determine whether the remaining SUs were silent during
stimulus coding, we measured the auditory responsiveness
of all units. We compared the average and maximum firing
rate during stimulus playback to spontaneous activity using
unpaired Wilcoxon rank-sum tests. These two comparisons
were done for each of the 20 target-masker configurations
and two target identities, resulting in 80 total statistical tests
per unit. An SU was deemed auditory-responsive if any of
these tests were found to be significant after a Bonferroni
correction (P < 0.05/80). Ninety-seven of the 137 SUs were
found to be auditory responsive, including all 45 SUs with at
least one hotspot. Thus, 52 of the remaining 97 SUs without a
hotspot were found to be auditory-responsive. These find-
ings are consistent with other studies that show a sparse-
evoked population response within auditory cortex (26, 27),
with single units exhibiting sustained responses for preferred
stimuli and transient responses for nonpreferred stimuli (28).
For the remaining analysis, we restricted our population of
SUs to the 45 that exhibited at least one hotspot.

Rate-Normalized Root-Mean-Square Difference and
Trial Similarity

To characterize the distribution of responses from our
single units, we calculated two other measures: the simi-
larity of responses within a given target and the dissimilar-
ity of responses across targets. To quantify intertrial reliability
of responses to target stimuli, we adopted the measure of trial
similarity from previous studies (29). Specifically, we randomly
divided the 10 trials in each configuration into two equal
groups, binned spike times with a time resolution of 25 ms,
and calculated the Pearson’s correlation coefficient between
the two resulting peristimulus time histograms (PSTHs). This
process was repeated 100 times to obtain a mean correlation
coefficient or trial similarity.

We also calculated the rate-normalized root-mean-square
(RMS) difference between target responses to quantify the dis-
similarity in the temporal pattern of responses between the
two targets. We first binned each target response using the
same time resolution as trial similarity (25 ms) and normal-
ized each peristimulus time histogram (PSTH) such that the
sum of all bins over time was 1. The RMS difference between
the two rate-normalized PSTHs was then calculated. This

measure quantifies the dissimilarity in the temporal pattern
of responses between both targets while accounting for differ-
ences inmean evoked firing rate.

Calculating Mutual Information Using Spike Train
Distances

To calculate the mutual information of target identity
from spike trains for each target-masker location configura-
tion, we used an estimator on SPIKE-distances. From these
distances, mutual information of stimulus identity was cal-
culated using a Kozachenko–Leonenko estimator (12, 13, 30,
31), which estimates mutual information on a metric space.
It is derived without any reference to a coordinate structure,
something the space of spike trains lacks. Essentially, it esti-
mates mutual information by approximating probability
densities using probabilities:

p xð Þ �
ð
B

p yð Þdy ¼ Prob x 2 Bð Þ ð8Þ

for a region B. Prob(x [ B) is then estimated by counting the
number of data points inB. In this approach, the distancemet-
ric is used to define the small region and the estimator itself is
a sort of nearest-neighbor formula, requiring us to look at
which data points are near to each other. Calculating mutual
information typically requires a lot of data, but this formula
appears to work well even when there are not many data
points and can be effectively debiased (32). Supplemental Fig.
S2C illustrates the calculation of this measure of mutual infor-
mation. To determine whether the layer location of single
units influenced target discriminability, we ran a one-way
ANOVA on the single-unit mutual information (MI) values
across all target-masker configurations, including those from
clean trials, with layer as the between-group factor. Post hoc
multiple comparisons were done if the ANOVA yielded statis-
tical significance (P< 0.05).

Population Searches Using Summed Population and
Labeled Line Hypotheses

Given a full population ofN encoding cellsX¼ [x1, x2, . . ., xN],
we wanted to determine the subset within X that best encodes
stimulus information, which we define as Kopt with size n < N,
where n is the number of single units in a subpopulation. For
each target-masker configuration, searches forKopt were carried
out using either the summed population (SP) or labeled line
(LL) approach. The SP code hypothesizes that mutual informa-
tion is optimized by pooling various neurons to create a single,
population-wide response. Specifically, the single response is a
union of all spike times from each individual train, and coinci-
dent spike times from multiple units are only counted once
(10). Meanwhile, the LL code hypothesizes that stimulus fea-
tures are best decoded on a neuron-by-neuron basis. In this
approach, responses from different units were concatenated in
time to create a responsewhose length is the product of the trial
length and the number of units. Unlike the SP code, the LL
code keeps responses from each single unit intact. To account
for the deletion of spike times in the SP code, all coincident
spike times in the LL code were deleted such that only one neu-
ron would spike at a given time. In both approaches, we treated
all units as pseudo-simultaneous.
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For all population searches, a bottom-up forward selection
algorithm from a study by Satuvuori et al. (11) was used. The
algorithm first starts with the single neuron that yields the
best mutual information and then builds up the popula-
tion by adding all remaining units at each step, based on
the resulting mutual information (Fig. 3C). To account for
unnecessary additions to the subpopulation due to pla-
teaus in mutual information values, we define Kopt as the
value of n that reached 90% of the maximum MI across all
subset sizes. To determine how target-masker location
configurations affect discriminability, the “upper enve-
lope” was defined as the maximum MI at each target-
masker configuration. To determine whether the MI value
from Kopt was statistically different from null values, we
shuffled the labels of each target and calculated the resulting
MI for 1,000 permutations to create a 95% confidence inter-
val. Statistical significance was yielded if the MI from the
unshuffled trial labels was outside of the confidence interval.
Finally, to measure the variance in MI for each neuron sub-
population, we ran a leave-one-out approach. Briefly, in each
iteration, one trial from each of the two targets was removed
before calculating SPIKE distances and estimating MI. All
possible pairs of removed trials were used, resulting in a dis-
tribution of 100MI values per configuration.

RESULTS

Investigating Cortical Coding in Mouse ACx Using a
Cocktail Party-Like Paradigm

We recorded single units (SUs) and multi-units (MUs)
using a multielectrode array with four shanks and 32 chan-
nels throughout different layers in ACx of unanesthetized
PV-Arch transgenic mice (Fig. 1 and Supplemental Fig. S1).
We used a semiautomated detection and sorting algorithm
to identify 192 units from n ¼ 12 animals (18, 19). Of these 192
units, 137 were identified as SUs (e.g., Fig. 1C). To better
understand cortical coding of complex scenes, we adopted a
cocktail party-like experimental paradigm (5) while record-
ing from neurons in ACx. Specifically, we recorded responses
to spatially distributed sound mixtures to determine how
competing sound sources influence cortical coding of stim-
uli. The recording configuration consisted of four speakers
arranged around the mouse at four locations on the azi-
muthal plane: directly in front (0�), two contralateral (45�

and 90�), and one ipsilateral (�90�) to the right auditory cor-
tex recording area. Target stimuli consisted of white noise
modulated by human speech envelopes extracted from a
speech corpus (16). We used two target waveforms (target
1 and target 2) and a competing masker consisting of
unmodulated white noise. Mice were exposed to either
target-alone trials (Clean) or target-masker combinations
(Masked) (Fig. 2, A–C).

Enhanced Neural Discriminability is Dependent on
Spatial Configuration of Competing Auditory Stimuli

We assessed cortical coding using neural discriminability,
which refers to the ability to determine stimulus identity
based on neural responses and thus a neuron’s ability to
encode stimulus features. Neural discriminability between
the two targets (% correct) was computed for trials without

the masker (Clean) and with the masker (Masked) for all pos-
sible combinations of target and masker locations using a
spike train distance-based classifier to determine how well
target identity can be decoded based on dissimilarities
between responses in spike timing and instantaneous
rate (5). Values near 100% and 50%, respectively, repre-
sent perfect discriminability and chance discriminability.
Configurations of target and masker locations with high
neural discriminability were deemed as “hotspots” (6)
using three criteria: 1) performance must be 	70%; 2)
statistically significant (P < 0.05) from a null distribution
in which responses from a given target were template-
matched with themselves, yielding chance values, and 3)
effect size d must be greater than 1, relative to the null
distribution. Figure 2A illustrates spike trains from an
example SU that shows high discriminability under a tar-
get-only configuration and a specific spatial configuration in
the presence of a competing noise masker (Fig. 2B). In
another example configuration of target and masker location
(Fig. 2C), discriminability is greatly reduced, indicating that
the response of this neuron is spatial configuration sensitive.

Generally, discriminability between targets depends on
the similarity of responses to the same stimulus as well as
the dissimilarity in responses between different stimuli. To
characterize both components in our population of high-per-
formance SUs, we calculated the trial similarity within tar-
gets (Fig. 2D) and the rate-normalized RMS difference
between targets (Fig. 2E). The distributions for each metric
during clean and masked trials show that when a competing
masker is introduced, both within-target reliability and
between-target differences in single units decrease relative
to clean presentations of target stimuli. From these results, a
question arises: how can populations of single units aggre-
gate their activity to restore neural discriminability in the
presence of competing sound sources? Previous studies have
demonstrated that neurons with the highest performance
are most strongly correlated with behavior and strongly con-
strain population performance (1, 2, 8, 33, 34). For the follow-
ing population coding results, we restricted our analysis to
the 45 single units that showed at least one “hotspot.”
Supplemental Table S1 shows the amount of SUs with at least
one hotspot per layer and per animal.

Description of Experimental Data and Population
Searches

Using the 45 single units that exhibited at least one “hot-
spot” of high neural discriminability in response to spatially
distributed auditory stimuli, we determined the neural sub-
population that gives the highest mutual information (MI)
about stimulus identity at each configuration of target and
masker location. Here, MI serves as a measure of target dis-
criminability for a given target-masker location. This dis-
criminability is based on both the reliability of responses to a
given target and dissimilarities in responses between targets.
We expected that 1) MI would decrease when a masker is
present versus when target-only trials, 2) MI would increase
when the target is either presented by itself or spatially sepa-
rated from the masking stimulus, and 3) MI would be
reduced when the target location is ipsilateral due to the
contralateral bias in the auditory hemisphere. To reduce the
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effect of time resolution on analysis and to avoid the under-
sampling problems associated with classical estimators of
MI, MI was estimated using spike train distances (12, 13, 31).
We calculated spike train distances using the SPIKE-distance
metric, which measures the difference in local firing rate
and spike timing between trains without the need for an
additional parameter (35). We explored two schemes of pop-
ulation coding: the summed population (SP, Fig. 3A), where
spike trains from different neurons are pooled, and the la-
beled line (LL, Fig. 3B), where spike trains are concatenated
in time to preserve unit identity. In both approaches, we
used a forward search algorithm (10), where neurons are
added to the population based on howwell they complement
the mutual information of the current set of neurons,

starting from single unit values (Fig. 3C). To control for the
deletion of coincident spikes in the SP code, we deleted the
same spikes in the LL code, such that only a single neuron
within the subpopulation spikes at a given time. With this
control, we found that an average of 10 coincident spikes is
deleted when all 45 single units are pooled together
(Supplemental Fig. S3), the effect of which is very small com-
pared with the number of remaining spikes.

Finally, because population searches in the labeled line
case exhibited plateaus in mutual information as neurons
were added to the population (Fig. 3C), we estimated the
minimum number of neurons needed to reach optimal MI.
This minimum number was defined as the smallest subpopu-
lation of neurons whose MI was above 90% of the maximum

Figure 2. Cortical discrimination in a cocktail
party paradigm in mouse auditory cortex (ACx).
Portions of this figure are replicated from
Nocon et al. (6), licensed under a Creative
Commons license. A: stimulus configuration
for clean trials originating at þ90� azimuth
and responses to both target stimuli.
Auditory stimuli were presented from
speakers at four locations. Target stimuli
consisted of white noise modulated by
human speech envelopes extracted from
recordings of speech sentences (see
METHODS). Responses during clean trials ex-
hibit spike timing and rapid firing rate mod-
ulation that follow the amplitude envelope
of both target stimuli, resulting in a neural
discriminability value of 92%. All plotted
peristimulus time histograms (PSTHs) have
a bin length of 20 ms. B: stimulus configura-
tion and responses for trials where targets
(T) played at þ90� and a competing masking
stimulus (M) played at �90�. Masking stimuli
consisted of unmodulated white noise with
the same onset and offset times as target
stimuli. In this configuration, spike timing and
firing rate modulation follow both target stim-
uli, despite the presence of the competing
masker, resulting in a neural discriminability
value of 87%. C: stimulus configuration and
responses for trials where targets played at
0�, and maskers played at þ45�. In this con-
figuration, spike timing and firing rate modu-
lation do not follow either target stimulus,
resulting in similar responses between target
identities, resulting in a neural discriminability
value of 60%. D: distribution of rate-normal-
ized root-mean-square (RMS) difference
between targets for all clean configurations
(n¼ 180 configurations) and masked configu-
rations (n ¼ 720 configurations) across all 45
single units. Dashed lines represent median
rate-normalized RMS differences for clean
(median: 0.072) and masked (median: 0.059)
trials. E: distributions of trial similarity for all
clean trial configurations (n ¼ 180 configura-
tions) and masked trial configurations (n ¼
720 configurations) across all 45 single units.
Dashed lines represent median trial similar-
ities for clean (median: 0.4113) and masked
(median: 0.2926) trials.
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value found across all values of n in the forward search for
both population codes.

Upper Envelopes of Mutual Information

With our population search approach, we asked: what cod-
ing strategies improve upon single-unit target discriminabil-
ity in the presence of competing stimuli? How does each
coding strategy improve discriminability at certain configu-
rations of target and masker location? We define the “upper
envelope” as the maximal MI for each spatial configuration
of target and masker location across all possible subpopula-
tions of single units. We found that the summed population
approach (Fig. 4Ai) yielded worse upper envelope MI values
than that of the labeled line approach (Fig. 4Aii) in all config-
urations. In both cases, a diversity of neuron identities and
layer locations was found to contribute to the upper enve-
lope across all configurations, especially in configurations
where the target was located at 0�.

When comparing how both approaches differed from the
best single unit MI values (bottom-most dashed lines), we
found that the labeled line code improved stimulus informa-
tion coding across all configurations, whereas the single unit
MI was optimal at some configurations for the summed popu-
lation code. In some configurations of the summed population

code, we found that the forward search approach resulted
in combinations of units where MI was lower than the best
single unit value (Supplemental Fig. S4A), before additional
units to the subpopulation resulted in improved MI. We at-
tribute this nonmonotonic trend in MI to the destructive
effect of the summed population code and the MI threshold
criterion for the optimal subpopulation. In contrast, we find
that MI in the labeled-line approach saturates at very small
population sizes. As a result, adding more neurons to the
optimal subpopulation results in very little to no change in
MI until large values of n, at which we see a decrease
(Supplemental Fig. S4B).

Number of Neurons in Optimal Subpopulations and
Spatial Separation between Target and Masker

For the remaining analysis, we focused on all configura-
tions where the target location is either contralaterally or
centrally located relative to the recorded auditory cortex.
When we compared the number of neurons that compose
the MI upper envelope, we found that the labeled line code
had larger subpopulation sizes than the summed population
code. Indeed, the median number of neurons in Kopt from
summed population searches was 1 (Fig. 4Bi), whereas the
median number from labeled line searches was 2.5 (Fig.

Figure 3. Population approaches and forward selection algorithm. A: Two spike trains in the summed population approach. Spike trains that occur dur-
ing the same trial are pooled, resulting in a single neural response. B: example of labeled line approach. The same spike trains in A are concatenated in
time to create a response whose length is the product of the trial time and the population size. C: the forward selection algorithm for determining the
optimal subpopulation, starting with the mutual information (MI) values for all individual units. Left: matrix showing all MI values for each population size,
with each element depicting the MI of one specific subpopulation. In each row, starting from single unit MI at the bottom row, “þ ” represents the unit
that complements the current subpopulation of all prior “þ ” units, whether by yielding the largest increase or smallest decrease in MI. The forward
selection search continues by adding each “þ ” (indicated by the upward arrow) until all neurons have been added. Right: line plot showing the best MI
for a given population size, corresponding to the values shown in the matrix at each “þ ”. To estimate the minimum number of neurons needed to reach
optimal MI, we used a threshold at 90% of the maximum MI across all populations (black dashed line). The population that first crosses this threshold
was deemed as the optimal neural subpopulation Kopt with size n (red open circles in the matrix and line plot). Color bar shows the color scale for the mu-
tual information values in the matrix.
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4Bii). In total, 13 unique units were required to optimally
code MI across all optimal subpopulations with a SP code,
whereas 16 unique units were required with an LL code.
When directly comparing the two codes, we found that

the labeled line approach resulted in mutual information
values that outperformed those from the summed popu-
lation approach (Fig. 4C). These results, along with the
finding that optimal subpopulations in the labeled line

Figure 4. Upper envelopes of mutual information. A: upper envelope of mutual information (MI) for the summed population (SP, Ai) and labeled line (LL,
Aii) approaches at all target-masker configurations. Shaded gray region denotes configurations where the target stimulus was ipsilateral (�90�) to the
recorded auditory cortex hemisphere. Gray vertical lines separate the plot into sections based on the target location; within each section, the masker
location is ordered from contralateral (90�) to ipsilateral (�90�), as shown by the arrow bounded with dashed lines in bottom-left of Ai. Within each target
location section: thin black lines represent clean MI; bold black lines represent raw maximum MI at masked configurations; and dashed lines represent
MI from the best single unit (n ¼ 1 unit) at masked configurations, which is identical between approaches. Each configuration shows n, the number of
neurons in Kopt. All units included in Kopt are shown as markers, with shape representing the cortical layer and color representing the identity of the unit
and error bars representing ±SE from 100 iterations of leave-one-out resampling (see METHODS). For readability, error bars are only included for the best
single unit and subpopulation MIs. For some configurations (SP configurations at�90� in SP, all configurations in LL), the highest incremental MI is lower
than the upper envelope due to our estimations of Kopt. In addition, for some configurations in the SP approach, best single unit MI was higher than MI
from combinations of single units (e.g., Target 0�, Masker�90� and Target�90�, Masker 45�, shown in Supplemental Fig. S2. for both SP and LL codes).
One-way ANOVAs on the effect of layer in single-unit MI did not yield significance for the clean condition [P(4,175)¼ 0.119, g2 ¼ 0.041], but yielded a sig-
nificant effect for the masked condition [P(4,715)¼ 0.0198, g2 ¼ 0.016]. However, none of the post hoc multiple comparisons yielded significant pairwise
differences between layers. B: histograms of the number of neurons in Kopt for all nonipsilateral target configurations for the summed population (Bi) and
labeled line (Bii) approaches, with the dashed lines representing the median number of neurons per configuration. C: scatter plot comparing the upper
envelope of MI between both approaches at all nonipsilateral target configurations, with dashed line representing unity.
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codes are larger than those in summed populations, are
consistent with a previous study (7).

Finally, when we plotted the MIs versus the amount of
spatial separation between target and masker, we found that
MI increased with spatial release for both population
approaches (Fig. 5). In both cases, there was a significant cor-
relation between the spatial separation of target and masker
and stimulus mutual information, which is consistent with
findings on the effects of spatial unmasking of auditory stim-
uli in humans (36) and songbirds (5).

DISCUSSION

Bin-Less Estimation of Mutual Information

Previous studies on population coding of auditory stimuli
have systematically varied bin sizes on spike times (8) or
stimulus epochs (7), which affect calculations of mutual in-
formation based on spike trains. Here, we present an
approach for the bin-less estimation of mutual information
that involves the use of spike train distance, based on differ-
ences between spike trains (12). For this present study, we
used a time scale-free spike distance metric where the dis-
tance between two trains is based on differences in spike
timing and local rate (10, 35). The combination of a time
scale-free distance metric and estimator decreases the
effects that firing rate would have on mutual information
results and avoids the need to determine time scales that
reflect the neural population of interest (37). Although past
studies have shown that the calculation of mutual informa-
tion is robust against the choice of metric, including those
with a time scale, these studies have also shown that while
mutual information calculations demonstrate a mild de-
pendence on the choice of time scale (13), these calculations
have little dependence on the chosenmetric, with the excep-
tion of firing rate that shows poor decoding accuracy (38).

Studies combining neurophysiological and psychophysi-
cal approaches have shown that sensory areas drive higher
cortical regions, which integrate past and current informa-
tion to form behavioral decisions (39). Similarly, ACx exhib-
its the ability to encode behavioral choices during tasks,
even before prefrontal regions (40). These findings suggest a
processing chain between ACx and upstream cortical regions
that features both top-down and bottom-up connections.
Our data were collected from recordings in passive condi-
tions, which limited our ability to explore the ACx’s role in
behavioral tasks. Future studies can use our cocktail party-

like paradigm with attentive tasks and recordings from other
regions to elucidate how behavioral states affect ACx responses.
In such studies, our methods for calculating mutual informa-
tion can be readily applied to compare single-unit responses
from different areas. Here, we use this method to calculate tar-
get discriminability from responses from the same single unit
or subpopulation, but prior studies demonstrate that this
method can calculate the mutual information between two
neurons with a common input (13). Our method could also be
used to calculate mutual information about behavioral choices,
for example, go left versus go right, in a decision-making task.

Comparisons between SP and LL Codes

In this study, we used two different population coding
schemes to determine how stimulus information is opti-
mally coded within mouse ACx. The key difference between
these two approaches is whether neuron identity is main-
tained: in SP, responses are collapsed across time, resulting
in a single response. Because of this, SP coding appears to
have a destructive effect on the temporal features of individ-
ual neural responses, which we previously found to be espe-
cially important for high neural discrimination of dynamic
stimuli (6). Indeed, for the configurations with contralateral
target locations, the median optimal population size was 1
during summed population coding. In this approach, only a
fraction of single units was required to span all possible com-
binations of target and masker locations. In contrast, indi-
vidual neuron identities and temporal response features
were kept intact in the LL code. This approach to coding
yielded higher optimal MI values at all contralateral target
configurations and improved upon the best MI from single
units. Finally, we found that the values for MI for ipsilateral
target configurations were consistently lower compared with
contralateral target positions. This is likely due to the fact
our recordings sampled units only from one hemisphere and
the contralateral bias in ACx.

When comparing the upper envelopes from both popula-
tion codes, we found that the optimal subpopulation for MI
at 90�-target configurations consisted of a single unit. In
masked configurations with the same target location, MI
approached the ceiling of clean values. For other contralat-
eral target locations, the optimal subpopulation size was typ-
ically larger, with the LL code providing significantly higher
MI and reaching levels near the MI for clean targets. Thus, a
LL code provided a highly noise-robust code compared with
the SP, which was more susceptible to noise. Notably, for

Figure 5.Mutual information and spatial release frommask-
ing. Mutual information (MI) vs. spatial separation between
target and masker with linear regression lines for both
approaches, excluding all ipsilateral target configurations.
Each data point represents the raw maximal MI for each
masked configuration shown in Fig. 4 with error bars repre-
senting ±SE. There was no significant correlation between
spatial release and stimulus mutual information for the
summed population approach (A) (r ¼ 0.51, P ¼ 0.091), but
this correlation yielded significance for the labeled line
approach (B) (r¼ 0.70, P¼ 0.0115).
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certain target-masker configurations, optimal subpopula-
tions in the LL code consisted of single units from multiple
cortical layers. Although our analysis showed a significant
effect of cortical layer on single unit MI, post hoc compari-
sons were unable to pinpoint significant differences between
layers. We attribute this result to the low group size in certain
layers, namely, L1 (1 unit) and L6 (2 units). To better analyze
how layer affects single-unit MI, additional recordings with a
better sampling of high-performing L1 and L6 units are
required. Nevertheless, our findings suggest that a combina-
tion of cells from different layers facilitates high neural dis-
criminability in the presence of competing spatial stimuli.

Despite our findings that discriminability in the labeled
line code outperformed that of the summed population
code, both approaches yielded a similar number of unique
single units across all optimal subpopulations from each tar-
get-masker configuration. Thirteen out of the 45 analyzed
single units were a member of at least one subpopulation in
the SP code, while 16 of these single units were a member of
at least one subpopulation in the LL code. Past studies have
found that sparse coding within the auditory cortex main-
tains stimulus representations (26), even in the presence of
background noise (41). Our implementation of the LL code
concatenates individual responses along the time axis (8),
which is analogous to a multidimensional vector in which
each neuron’s response contributes to a feature vector.
Although it remains unknown if and how such a representa-
tion is implementedmechanistically in the brain, theoretical
studies have proposed biologically plausible networks that
can decode such multidimensional representations using
workingmemory (42, 43) or balanced networks (44).

Spatial Release fromMasking Increases Stimulus
Mutual Information

Previous studies within cortical responses in songbirds
have found that neural discriminability increases with spa-
tial separation between target and masking stimuli. We
found that spatial separation between target and masker sig-
nificantly increased the MI for the LL code but not the SP
code. These findings are consistent with similar results from
behavioral experiments involving both speech and non-
speech stimuli showing spatial release from masking (36,
45). Thus, the LL code better reflects such behavioral data.

Limitations of Study

One limitation of our analysis is our sampling of ACx.
From our previously collected data, we identified a total of
137 single units across 12 mice, all recorded from right hemi-
sphere. Here, we restricted our population to the 45 single
units that showed at least one hotspot of high neural dis-
criminability, and our analysis did not include resampling.
In comparison, Downer et al. (8) used 278 single units across
two subjects, and their analysis involved repeated sampling
of subpopulations of 20 neurons each. In contrast, Ince et al.
(7) used 49 neurons across three subjects and did not restrict
their population to responsive units only for unbiased analy-
sis. Despite the differences in population sizes and sampling
methods, our analysis showed that labeled line code quickly
approaches saturation values at around a few (�5) neurons,
whereas summed population codes show the highest target

discriminability when the population is very small or close
to 1, both of which agree with these previous studies.

For population coding analysis, neural populations were
optimized using a forward search approach. We found that a
brute force search consisting of all possible neuron popula-
tions did not supplement our analysis, as single-unit MIs
were already for half of the configurations in the summed
population code and labeled line-based MI approached ceil-
ing values for some configurations with just one iteration of
the forward search. Although a brute force analysis would
have given us the true subset of neurons that compose the
upper envelope, we found that the final step of estimating
the minimum population size at each configuration pro-
vided the best tradeoff between accuracy and computational
overhead. In addition, the population of single-unit neurons
used for this analysis was restricted to those that showed at
least one performance hotspot during complex scene analy-
sis and thus did not include any nonencoding neurons. We
were interested in determining if a population of multiple
neurons could improve upon single-unit results, which have
already been shown to encode the two target stimuli during
clean trials where only the target was present.

In this study, we defined population code as the aggrega-
tion of activity from multiple neurons, an approach that has
been used by other studies on population coding within au-
ditory cortex (7, 8). One alternative approach to uncover pop-
ulation coding strategies for sensory stimuli involves
linearly weighted sums of single-unit outputs. The results
from such an approach, however, depend on the model used
to simulate population readout, as well as its architecture
and parameters. Although the intrinsic reliability of single
units could serve as a basis for weights, our discriminability
metric also depends on the difference in temporal structure
between target responses. Furthermore, while our analysis
does not weight responses from individual neurons, single
units with the highest discriminability take precedence in
the forward search approach, in concordance with neurons
showing high selectivity having higher weights in the
weighted readout method (46). Another approach involves
estimating the latent variables that underlie neural activity
in populations (47), which has been used to represent neural
population dynamics during motor tasks (48, 49) and
responses to stimulus offsets (50). We did not use this
method within our study, as we do not have a sufficient
number or length of trials required to effectivelymodel these
factors. With more data, this approach can be applied to
quantify and visualize population dynamics during the cock-
tail party problem. Such methods are complementary to our
approach of calculating mutual information. Together these
approaches could better unravel population dynamics dur-
ing different brain states, e.g., passive versus attentive or dif-
ferent areas, e.g., primary sensory cortical areas like A1 and
prefrontal cortex.

Finally, mutual information was based on how spikes in a
train contribute to the discriminability between two
dynamic auditory stimuli. Because of this, we did not expect
the summed population results to greatly improve upon sin-
gle-unit results, which we have already found to encode
stimulus identity via template-based classifiers (6). Previous
studies on population coding have used multiple stimuli (8)
or binned responses in time (7), whereas our calculations of
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SPIKE-distance were based on differences between trains
across the entire period of stimulus playback. Future studies
on population coding during complex scene analysis could
use multiple target stimuli or stimuli with both spectral and
temporal differences to better determine how each approach
optimizes target discriminability in a complex auditory
scene.
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