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An index for quantum cellular automata on fusion spin chains

Corey Jones, Junhwi Lim

Abstract

Interpreting the GNVW index for 1D quantum cellular automata (QCA) in terms of the
Jones index for subfactors leads to a generalization of the index defined for QCA on more
general abstract spin chains. These include fusion spin chains, which arise as the local operators
invariant under a global (categorical/MPO) symmetry, and as the boundary operators of 2D
topological codes. We show that for the fusion spin chains built from the fusion category Fib,
the index is a complete invariant for the group of QCA modulo finite depth circuits.
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1 Introduction

Quantum cellular automata (QCA) are models of discrete-time unitary dynamics for quantum
spin systems [SW04]. They have many intriguing connections with a wide array of topics at the
intersection of quantum information and condensed matter physics [Arr19,Far20]. Recently, there
has been significant interest in studying topological phases of QCA as characterized by the group of
quantum cellular automata modulo the normal subgroup of finite depth quantum circuits (FDQC)
[Haa21,GNVW09,FH20,FHH19,Haa23,Haa22,HFH18].1

In this paper, we are interested in studying quantum cellular automata defined in the context
of more general “abstract” spin systems. Abstract spin systems are defined by nets of local finite-
dimensional C*-algebras on a lattice, with the property that operators localized on disjoint regions
commute (as in [BR97], see Definition 2.1). However, unlike “concrete” spin systems, the local
algebras are not required to factorize as tensor products of the algebras localized at individual

1In some of these settings, other equivalence relations on QCA such as stable equivalence and blending are used.
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sites. In this paper, our primary focus will be on fusion spin chains, which are nets of algebras on
a 1D lattice built from the tensor powers of an object in a fusion category.

Fusion spin chains arise naturally as local operators in a concrete spin chain that are invari-
ant under a global symmetry (group, Hopf [NS95], weak Hopf [Ina22, MAGR+22], or categor-
ical/MPO [LFH+20, Kaw20, Kaw21, Hol22, BG17]), and as boundary operators of 2D topologi-
cal codes [JNPW23]. There are obvious extensions of the concepts of QCA and FDQC in this
context [Jon23], which are motivated both by classifying dualities of symmetric local Hamiltoni-
ans [AMF16, AFM20, LDV22, LDOV23] and boundary dynamics of periodic topological systems
[RLBL13,FPPV19,AHLM23], (see Section 2.1 for further discussion). This gives rise to the purely
mathematical problem of understanding the group QCA /FDQC for a given fusion spin chain.

The GNVW index [GNVW09] provides a complete characterization of QCA on a concrete spin
chain up to finite-depth circuits in 1D. Our goal is to consider a generalization of the GNVW index
to abstract spin chains by reinterpreting it in terms of the Jones index for subfactors. The Jones
index for an inclusion of II1 factors N ⊆M is a numerical invariant introduced by V. Jones [Jon83].
Remarkably, this index is quantized, only taking values in the set {4cos2(πn) : n ≥ 3}∪ [4,∞]. The
Jones index is the foundation for the modern theory of subfactors, and has led to the discovery
of its many connections with mathematical physics, representation theory, and low-dimensional
topology [Jon85,Jon07,Pop95,EK,JMS14,JS97,EK98,Jon21]. It was observed in [Vog09] that the
GNVW index can be expressed as a ratio of Jones indices of subfactors constructed from the spin
system algebras. Using a slightly different formulation, we show that this perspective can be used
to make sense of the index for QCA on abstract spin chains satisfying what we call the finite index
property, which in particular holds for fusion spin chains. We demonstrate that the index gives a
homomorphism from the group of QCA modulo FDQC to R×

+.

Theorem A. Let A be an abstract spin chain that satisfies the finite index property (Definition
3.1). Then

Ind : QCA(A) → R

×
+

from Definition 3.3 is a homomorphism containing FDQC(A) in its kernel.

We then turn to the computation of the index in some concrete examples. We focus our attention
on fusion spin chains and introduce a large family of examples of QCA with readily computable
indices which we call “generalized translations.” These encapsulate ordinary translations but also
more interesting examples that have non-trivial interaction with the DHR category in the sense of
[Jon23]. In many cases of interest, all QCA on fusion spin chains are generalized translations up
to composition by a finite depth circuit.

We then give an in-depth analysis of the group of QCA for the fusion spin chain Aτ built from
the rank two fusion category Fib with simple objects {1, τ} and fusion rules τ⊗2 ∼= 1 ⊕ τ . This
net of algebras has been studied in various physical settings and is closely related to “the golden
anyon chain” (see e.g. [FTL+07, TTWL08, BG17]. We show that the kernel of Ind is precisely
FDQC(Aτ ). In particular, we obtain the following theorem:

Theorem B. Let φ = 1+
√
5

2 . Then

Ind : QCA(Aτ )/FDQC(Aτ ) → {φn : n ∈ Z} ⊆ R×
+

is an isomorphism of groups. In particular, every QCA on Aτ is a composition of a finite depth
circuit and a (honest) translation.

Despite the above theorem, we do not expect Ind to be a complete invariant for fusion spin
chains in general. Indeed, in [Jon23] it is shown that the group QCA /FDQC can be non-abelian,
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even in the case of an abelian global gauge group on a 1D lattice. This implies that the numerical
index cannot be complete in general since it is valued in an abelian group. However, we hope that
by combining the index and the DHR invariant [Jon23] we will have a nearly complete picture of the
group of topological phases of QCA on abstract spin chains (see Section 6 for further discussion).

Acknowledgements. The authors would like to thank Dave Aasen, Dietmar Bisch, Jeongwan
Haah, Andrew Schopieray and Dominic Williamson for helpful comments and conversations. The
first author is supported by NSF Grant DMS- 2247202. The second author is supported by US
ARO grant W911NF2310026.

2 QCA on abstract spin chains

In this section, we define abstract spin chains and QCA.

Definition 2.1. An abstract spin chain consists of a unital C*-algebra A and an order homomor-
phism from the poset Int(Z) of finite nonempty intervals in Z to the poset of finite dimensional
unital subalgebras of A, I 7→ AI , such that

1. (Locality) If I ∩ J = ∅, then [AI , AJ ] = 0,

2. (Quasi-locality)
⋃
AI is norm dense in A.

Remark 2.2. We will typically abuse notation slightly and refer to the entire net by its quasi-local
algebra A.

As mentioned in the introduction, there are at least two motivations for considering abstract
spin chains. The first is that abstract spin chains arise as nets of algebras invariant under global
symmetries (group, Hopf [NS95], weak Hopf [Ina22, MAGR+22], or categorical/MPO [LFH+20,
Kaw20,Kaw21,Hol22,BG17]) of concrete spin chains. Suppose we have a spin chain with a finite
group of global symmetries acting on site. Define AG = {a ∈ A : g(a) = a for all g ∈ G}. For
each interval I, set AG

I = (AI)
G. This will give an abstract spin chain which is not a concrete spin

chain, since the algebras AG
I do not split as a tensor product over the algebras localized at sites.

This renders many aspects of the analysis of spin chains in the concrete case unworkable. This
example is a special case of a more general example:

Example 2.3. (Fusion spin chains) Let C be a unitary fusion category and X a choice of tensor
generating object. We assume X is self-dual and strongly tensor generating, meaning there is a
positive integer n such that every simple object is a summand of X⊗n. We also assume that C is
strict as a monoidal category (for convenience). Then for any interval I ⊆ Z, define,

AI := C(X⊗n,X⊗n)

where n = |I|, and for I = [a, b] ⊆ J = [c, d]

AI →֒ AJ

w 7→ 1⊗a−c
X ⊗ w ⊗ 1⊗d−b

X .

We then take the colimit of these inclusions in the category of C*-algebras to obtain the quasi-local
AF C*-algebras
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A := lim
Int(Z)

AI .

For notational convenience, we identify AI with its image in the colimit A. Clearly, this data defines
an abstract spin chain with the quasi-local algebra A. We will denote this net A(C,X), and call this
a fusion spin chain. Fusion spin chains are realized as the local operators in a spin chain invariant
under a weak-Hopf [Ina22,MAGR+22] or MPO symmetry [LFH+20,Kaw20,Kaw21,Hol22,BG17].
Alternatively, they arise as the local boundary operators in topologically ordered 2+1 D spin system
as in [JNPW23]. Moreover, from a purely mathematical point of view, they arise from the lattice
of relative commutants of a finite depth subfactor [EK98,Kaw22].

The self-duality of X in the definition of the fusion spin chain is unnecessary. However, we
require X to be self-dual as it facilitates the application of subfactor theory. See Remark 3.10 for
details.

In the sequel, for any interval I = [a, b] ⊆ Z and l ≥ 0, we use the notation I+l = [a− l, b+ l].

Definition 2.4. A ∗-automorphism α ∈ Aut(A) on an abstract spin chain A is called a quantum
cellular automaton (QCA) if there exists an integer l ≥ 0 such that α(AI) ⊆ AI+l and α−1(AI) ⊆
AI+l for all I ∈ Int(Z).2 The minimum such l is called the spread of α.

It is clear that the composition and the inverse of QCA are QCA, and thus, QCA form a
subgroup of Aut(A). We denote this group QCA(A).

We now introduce the definition of finite depth circuits. To define a depth one quantum circuit,
suppose we have of a partition {Ii}i∈N of Z such that supi |Ii| = l < ∞, and for each i a unitary
ui ∈ AIi . From this data, we can construct a QCA on A by defining, for any local operator w ∈ A

α(w) :=

(
∏

i

ui

)
w

(
∏

i

u∗i

)
.

Since any local w commutes with all but finitely many of the ui, the above product gives a well-
defined ∗-automorphism on the local algebra

⋃
I AI . Furthermore, if w ∈ AI , then α(w), α

−1(w) ∈
AI+l (where l is the largest diameter in the partition {Ii}) and hence, extends to a QCA on A. We
say the QCA α is a depth one circuit.

Definition 2.5. A QCA α ∈ Aut(A) is a finite depth quantum circuit if it can be written as a
composition α1 ◦ α2 ◦ · · · ◦ αn where each αi is a depth one circuit.

Clearly these form a subgroup of QCA(A), which we denote FDQC(A). It is shown in
[Jon23] that FDQC(A) is a normal subgroup of QCA(A), which leads us to consider the group
QCA(A)/FDQC(A). In the setting of concrete spin systems, the groupQCA(A)/FDQC(A) can
be interpreted as characterizing topological phases of discrete unitary dynamics [Haa22]. If we view
an abstract net as the observables under a (generalized) global symmetry, thenQCA(A)/FDQC(A)
can be viewed as the topological phases of symmetric unitary dynamics.

2.1 Physical motivation

There are many motivations from both physics and quantum information for studying QCA on
concrete spin systems (see, for example, the review article [Far20]). In this section, we discuss
physical motivations for studying QCA in our more general setting of abstract spin systems (see
[Jon23, Section 2.2] for additional discussion).

2The condition on α
−1 follows automatically from the condition on α if we assume some version of Haag duality,

see [Jon23].
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1. QCA on spin systems model locally finite-dimensional discrete space/discrete time quantum
field theories. In the concrete case, they have been used to approximate continuous quantum
field theories (see the review [Far20, Section 6.5]). Concrete spin systems are in some sense
the “topologically trivial” examples, since they have a trivial local superselection theory
(i.e. DHR category [Jon23]). More general abstract spin systems can have non-trivial local
superselection sectors if they are obtained, for example, by gauging a global symmetry. These
then have the potential to approximate continuum theories with non-trivial superselection
sectors which are important, for example, in chiral conformal field theories [GF93,KLM01].

2. QCA map local Hamiltonians to local Hamiltonians. If the abstract spin system AG consists
of local operators invariant under a global symmetry G on the concrete spin system G, then
QCA(AG) maps symmetric local Hamiltonians to symmetric local Hamiltonians. In some
instances, a symmetric QCA mapping between Hamiltonians cannot be extended to a QCA
defined on the concrete spin system A, hence the equivalence of the two theories is only
witnessed by taking symmetries into account. This is called duality, the most famous exam-
ple being Kramers-Wannier duality [AMF16, AFM20, LDV22, LDOV23]. By characterizing
symmetric QCA, we parameterize possible dualities of any given Hamiltonians.

3. Suppose we have a (n+1)D locally topologically ordered spin system. The study of topo-
logical floquet systems [FPPV19,PFM+16] and paths of gapped Hamiltonians [AWH22] can
be approximated by considering finite depth circuit U intertwining the local ground state
projections. If we cut a boundary in the spin system such that the finite depth circuit U ′

built from the terms localized on one side of the boundary commutes with the local ground
state projections localized on that same side, then conjugation by U ′ induces a QCA on the
net of boundary algebras of that spin system. This “chiral boundary dynamics” is then used
to characterize the topological order of the bulk circuit.

We have motivated the study of QCA on abstract spin systems, but why should we be interested
in the quotient group QCA /FDQC? An immediate practical answer is that QCA is far too large
and unwieldy as a group, and we would have little hope of understanding it. However, a large part
of that complexity is contained in the subgroup FDQC and by quotienting it out, we obtain a
manageable group that is amenable to study and classify.

A more principled answer comes from an operational definition of “topological phases,” intro-
duced in [CGW10]. There it is proposed that two many-body states are in the same topological
phase (or more properly, they have the same “long-range entanglement structure”) if there ex-
ists a finite depth circuit mapping one to the other. This suggests a natural interpretation of
QCA /FDQC as the group of topological phases of QCA, as in [Haa22].

3 Index for QCA on abstract spin chains

In this section, we will introduce a generalization of the GNVW index [GNVW09] that applies to
abstract spin chains with a unique tracial state, satisfying some finite index type properties.

First, recall a II1 factor is an infinite-dimensional von Neumann algebra with trivial center and
a normal tracial state. If an infinite dimensional C*-algebra A has a unique tracial state tr, then
its bicommutant A′′ in the GNS representation L2(A, tr) is a II1 factor. We give a sketch of the
proof of this fact:

Since A has a unique tracial state, A′′ also has a unique normal tracial state. Indeed, for
x ∈ A′′ there is a sequence {xn}n ∈ A converging to x in the weak operator topology by the
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bicommutant theorem. i.e. for all a, b ∈ A lim
n→∞

tr(axnb) = tr(axb). In particular, when a = b = 1,

lim
n→∞

tr(xn) = tr(x). It is easy to show that this is a well-defined normal tracial state on A′′. If A′′

admits another normal tracial state tr0, then tr0 |A = tr |A by the uniqueness of the tracial state
on A. Thus, by the normality, tr0 = tr.

Now, suppose A′′ is not a factor. Then we can choose any positive element z in the center such
that tr(z) = 1 and z 6= 1. Then tr(z · (−)) is another tracial state on A′′. This contradicts the
uniqueness of normal trace on A′′. Hence, A′′ is a factor.

For instance, let A =
⋃∞

n=0An
‖−‖

be an AF C*-algebra such that the inclusion matrix Tn (or
the Bratteli diagram) for An ⊂ An+1 is indecomposable and Tn = T t

n−1 for all n ≥ 1. Then the
trace value of the minimal projections from each of the direct summand of An+1 is determined by
the unique Perron-Frobenius eigenvector of T t

nTn. Hence, A has a unique trace and A′′ is a factor.
Now, let M be a II1 factor. Associated to any Hilbert space representation H of M is its

Murray-von Neumann dimension dimM (H) ∈ R+∪{∞}. Given an inclusion of II1 factors N ⊆M ,
we define the Jones index [Jon83] as

[M : N ] := dimN (L2(M)).

A subfactor has finite index if [M : N ] < ∞. We recall one of the most useful properties of the
Jones index: its multiplicativity. If N ⊆ P ⊆ M is an inclusion of II1 factors and [M : N ] < ∞,
then

[M : P ], [P : N ] <∞

and
[M : N ] = [M : P ][P : N ].

We refer the reader to [Jon83,JS97] for a proof and various other basic properties of the index.
There is an incredibly rich theory of finite index subfactors [Jon83, JMS14] and our goal is to

make use of this theory in the study of QCA defined on abstract spin chains. To this end, we have
the following definition, which allows us to make use of the Jones index.

Definition 3.1. Let A be an abstract spin chain with a unique tracial state tr, and let A := A′′ ⊆
B(L2(A, tr)). A satisfies the (left) finite index property if for any x ∈ Z,

1. The subalgebra of A, Ax := (
⋃

I≤xAI)
′′ ⊆ B(L2(A, tr)), is an infinite-dimensional factor.

2. For any z > x, the subfactor Ax ⊆ Az has finite index.

Remark 3.2. Since A has a unique tracial state, any QCA preserves tr and thus extends uniquely
to an automorphism of A. Furthermore, it is easy to see from the definitions that if α ∈ QCA(A)
has spread l, then Ax−l ⊆ α(Ax) ⊆ Ax+l.

Definition 3.3. Let A be an abstract spin chain and α be a QCA on A satisfying the finite index
property. Let y ≤ x be integers such that Ay ⊆ α(Ax). Then the (left) index of α is defined by

Ind(α) =

(
[α(Ax) : Ay]

[Ax : Ay]

)1/2

.

The numerator [α(Ax) : Ay] is finite, since there is an integer z ≥ x such that Ay ⊆ α(Ax) ⊆ Az

and we have [α(Ax) : Ay] ≤ [Az : Ay] <∞ by the finite index property.

Proposition 3.4. Ind(α) is independent of the choice of x and y.
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Proof. We first prove the independence of y. Suppose x is fixed and y is the maximum integer that
satisfies the condition in Definition 3.3. For y′ ≤ y ≤ x,

[α(Ax) : Ay′ ]

[Ax : Ay′ ]
=

[α(Ax) : Ay][Ay : Ay′ ]

[Ax : Ay][Ay : Ay′ ]
=

[α(Ax) : Ay]

[Ax : Ay]
.

Hence, Ind(α) is independent of y.
Next, we show the independence of x. Suppose x, x′, y ∈ Z such that y ≤ x′ ≤ x and Ay ⊆

α(Ax′) ⊆ α(Ax). Then

[α(Ax) : Ay]

[Ax : Ay]
=

[α(Ax) : α(Ax′)][α(Ax′) : Ay]

[Ax : Ax′ ][Ax′ : Ay]
=

[α(Ax′) : Ay]

[Ax′ : Ay]

The last identity follows from [Ax : Ax′ ] = [α(Ax) : α(Ax′)].

Proposition 3.5. Let α and A be as in Definition 3.3 and let y ≤ x ≤ z be integers satisfying
Ay ⊆ α(Ax) ⊆ Az. Then

Ind(α) =

(
[Az : Ax]

[Az : α(Ax)]

)1/2

=

(
[Az : Ax][α(Ax) : Ay]

[Az : α(Ax)][Ax : Ay]

)1/4

.

Proof. We first show the first identity.

Ind(α)2 =
[α(Ax) : Ay]

[Ax : Ay]
=

[Az : Ay]/[Az : α(Ax)]

[Az : Ay]/[Az : Ax]
=

[Az : Ax]

[Az : α(Ax)]
.

Observe that

Ind(α) = Ind(α)1/2
(

[Az : Ax]

[Az : α(Ax)]

)1/4

=

(
[Az : Ax][α(Ax) : Ay]

[Az : α(Ax)][Ax : Ay]

)1/4

.

Hence, we have the second identity.

Proposition 3.6. Ind(α ◦ β) = Ind(α) Ind(β)

Proof. Choose integers y ≤ y′ ≤ x satisfying the following:

1. Ay ⊆ α(Ay′);

2. Ay′ ⊆ β(Ax).

Then we have

Ind(α ◦ β)2 =
[α ◦ β(Ax) : Ay]

[Ax : Ay]
=

[α ◦ β(Ax) : α(Ay′)][α(Ay′) : Ay]

[Ax : Ay′ ][Ay′ : Ay]

=
[β(Ax) : Ay′ ][α(Ay′) : Ay]

[Ax : Ay′ ][Ay′ : Ay]
= Ind(β)2 Ind(α)2.

Proposition 3.7. Finite depth circuits are in ker(Ind).

Proof. It suffices to show that the depth 1 circuits are in ker(Ind). Let {I} be a collection of
intervals that partitions Z and supI |I| <∞. Let α = Ad(U) where U =

∏
I UI for some unitaries

UI in AI . Choose an interval I in the partition, and let x = sup I. Then we have α(Ax) = Ax.
Therefore, for any y ≤ x

Ind(α)2 =
[α(Ax) : Ay]

[Ax : Ay]
=

[Ax : Ay]

[Ax : Ay]
= 1.

7



Remark 3.8. Our treatment of index has been somewhat asymmetric. We have only assumed
that the left infinite algebras are factors, and thus our index only makes sense a-priori with the
“left infinite” algebras. Alternatively, we could consider a (right) finite index property, and define
the subfactors A+

x := (
⋃

I≥xAI)
′′ ⊆ B(L2(A, tr)). In this case we could define a “right” version of

the index as follows. For x ≤ z with A+
z ⊆ α(A+

x ), set

Ind(α) =

(
[A+

x : A+
z ]

[α(A+
x ) : A

+
z ]

)1/2

.

In general, this may give different information than the left index (in the case when both indices
make sense!). However, in the case of the fusion spin chains, with some work one can show this
alternative index is equal to the index defined above. Since we make no use of the “right” version,
we do not include the argument since it would take us too far afield.

Theorem 3.9. If X ≇ 1 is strongly tensor generating, then the net A(C,X) has a unique tracial
state and satisfies the finite index property. Thus, we have a canonical homomorphism

Ind : QCA(A(C,X))/FDQC(A(C,X)) → R

×
+.

Proof. It suffices to show that the quasi-local algebra has a unique tracial state, and that the left
infinite quasi-local algebras are factors in the GNS completion of the global tracial state. Choose
some n so that X⊗n contains all isomorphism classes of simple objects in C. Set Ak := A(−kn,(k+1)n].
Then we can view the quasi-local algebra as the AF-C*-algebra with finite dimensional tower

A0 ⊆ A1 ⊆ . . . .

The Bratelli diagram (ignoring multiplicities) has at each level vertices indexed by the simple objects
of C, and the adjacency matrix given between levels by the fusion graph of X⊗n⊗ (·)⊗X⊗n. Thus,
the Bratteli diagram is stationary, so there is a unique tracial state given by the Perron-Frobenius
eigenvector [Eff81, Chapter 6].

Similar reasoning shows that the left algebras A≤x have representations by stationary Bratteli
diagrams, hence also have unique tracial state. In particular, the restriction of the global tracial
state to this one is unique, and thus, the bicommutant completion in the GNS representation is a
II1 factor (we use X 6= 1 here to guarantee the factor is infinite dimensional).

Remark 3.10. We can now explain the subfactor perspective on fusion spin chains. Let A =
A(C,X) with X self-dual and strongly tensor generating, and let Ax denote the II1 factors as
described above.

Pick any x. Then Ax ⊆ Ax+1 is a finite index, finite depth subfactor. Indeed, this is the
standard model [Pop90,EK98] for the finite depth subfactor with standard invariant

C End(X) End(X ⊗X) End(X ⊗X ⊗X) . . .

C End(X) End(X ⊗X) . . .

⊆ ⊆ ⊆ ⊆

⊆

⊆ ⊆

⊆

⊆

⊆

Since X ∼= X, each of these algebras is isomorphic to End(X⊗n) in C for various n. Furthermore,
Ax ⊆ Ax+1 ⊆ Ax+2 is an instance of the basic construction, and thus, we view the entire tower
· · · ⊆ Ax−1 ⊆ Ax ⊆ Ax+1 ⊆ · · · as the Jones tower of the standard model for the subfactor with
the above invariant.
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In particular, this allows us to identify End(X⊗z−x) ∼= A(x,z] = A′
x ∩Az for x < z. This fact is

well-known to experts, so we only give a sketch here. Choose a positive integer n such that X⊗n

contains all simple objects in C as direct summands. Then for all k ≥ n− 1

A[x−k,z] A[x−k−1,z]

A[x−k,x] A[x−k−1,z]

⊂

⊂

⊂ ⊂

is a commuting square, and

A[x−k,z] A[x−k−1,z] A[x−k−2,z]

A[x−k,x] A[x−k−1,z] A[x−k−2,z]

⊂ ⊂

⊂

⊂ ⊂

⊂

⊂

is isomorphic to the basic construction of commuting square. Recall that Ax = (
⋃∞

k=n−1A[x−k,x])
′′

and Az = (
⋃∞

k=n−1A[x−k,z])
′′. Thus, by the Ocneanu compactness, A′

x∩Az = A′
[x−n,x]∩A[x−n+1,z].

(See for instance, [JS97].) It is easy to see that A(x,z] ⊂ A′
[x−n,x] ∩ A[x−n+1,z]. To show the

reverse inclusion, let w ∈ A′
[x−n,x] ∩ A[x−n+1,z] and ex−n+1 = 1

dim(X) coevX ◦ evX ∈ A[x−n,x−n+1]

be the Jones projection. Note that X is self-dual and we assume evX = coev∗X . Since ex−n+1 ∈
A[x−n,x−n+1] ⊂ A[x−n,x] and w ∈ A′

[x−n,x], they must commute. Therefore,

w = [1X ⊗ (evX ◦ex−n+1)⊗ 1⊗z−x+n−1
X ] ◦ (coevX ⊗w)

= (1X ⊗ evX ⊗1⊗z−x+n−1
X ) ◦ (1⊗2

X ⊗ w) ◦ (1X ⊗ ex−n+1 ⊗ 1z−x+n−1
X ) ◦ (coevX ⊗1z−x+n

X )

=
1

dim(X)
1X ⊗ [(evX ⊗1⊗z−x+n−1

X ) ◦ (1X ⊗ w) ◦ (coevX ⊗1z−x+n−1
X )

∈ A[x−n+2,z].

Thus, w ∈ A′
[x−n+1,x] ∩A[x−n+2,z]. By induction, we obtain that w ∈ A(x,z].

4 Generalized translations on fusion spin chains

In this section, we consider a class of examples of QCA called generalized translations. Consider a
fusion spin chain A(C,X), which in this subsection we denote for A for short. Suppose in addition
we have the following data:

1. A fusion category D and a full inclusion C ⊆ D.

2. A factorization X⊗n ∼= Y ⊗ Z for some fixed n and Y,Z ∈ D

3. An isomorphism σ : Y ⊗ Z ∼= Z ⊗ Y in D.

We define a QCA α on A as follows. First, partition Z into intervals of length n. Then consider
intervals I which are unions of intervals in the partition. We call these coarse-grained intervals.
Then for coarse-grained intervals I consisting of m intervals of length n,

AI
∼= EndC((X

⊗n)⊗m) ∼= EndD((Y ⊗ Z)⊗m).

9



Recall that for any coarse-grained interval I with m length n intervals, then I+n is again a
coarse-grained interval consisting of m + 2 intervals of length n. Then for any coarse-grained
interval I and w ∈ AI , we define

α(w) = 1Y⊗Z ⊗ 1Y ⊗ [σ⊗m ◦ w ◦ (σ−1)⊗m]⊗ 1Z ∈ AI+n

where σ⊗m : (Y ⊗ Z)m ∼= (Z ⊗ Y )m is simply the m-fold tensor product σ ⊗ · · · ⊗ σ. This clearly
extends to a C*-homomorphism on the quasi-local algebra. Its inverse is given, for w ∈ AI with I
coarse-grained as

α−1(w) = [(σ−1)⊗m+1 ◦ (1Z ⊗ w ⊗ 1Y ) ◦ σ
⊗m+1]⊗ 1Y⊗Z ∈ AI+n .

It is easy to see that α and α−1 are QCA, which we call generalized translations. The reason for
this terminology is choosing D = C, n = 1 and X ∼= X ⊗ 1 the coherence unitor, then the resulting
QCA α is simply translation to the right by one site. In many cases of interest (including concrete
spin systems), generalized translations represent all possible QCA up to finite depth circuits, and
the index can be used to show this. We have the following computation of the index for these QCA.

Proposition 4.1. Let α be a generalized translation constructed as above from a factorization
X⊗n ∼= Y ⊗ Z. Then Ind(α) = dim(Y ).

Proof. Let x be an endpoint of a coarse-grained interval. Then Ax ⊆ α(Ax). It is easy to see that
α(Ax) is precisely the subalgebra of operators in Ax+n which can be written w⊗ 1Z . The resulting
subfactor Ax ⊆ α(Ax) has Jones index dim(Y )2, and thus Ind(α) = dim(Y ).

4.1 Concrete spin chains

Now let C = Hilbf.d., the category of finite dimensional Hilbert spaces. If we pick X := C

d,
then we obtain the usual definition of a spin chain of qudits. This is the case of QCA studied in
[GNVW09]. We can now see that our index agrees with the index defined in [GNVW09], which we
call the GNVW index.

Proposition 4.2. The definition of index above agrees with the GNVW index for concrete spin
chains.

Proof. Let us denote the qudit system Ad. The GNVW index gives an isomorphism

QCA(Ad)/FDQC(Ad) → Z[
1

d
]×+,

where Z[1d ]
×
+ denotes the group of positive units of the ring inside Q generated by Z and 1

d . In
particular, this shows that QCA(Ad)/FDQC(Ad) is generated as a group by (the cosets of)
generalized translations, built from a factorization of integers (Cd)⊗k ∼= C

p ⊗ Cq and using the
symmetric “swap” braiding σ from Hilbf.d. for the isomorphism.

Let Ii = (k(i − 1), ki] and x = x(1) ⊗ x(2) ∈ AIi
∼=M i

p(C)⊗M i
q(C), we define

αp(x) = (1ip ⊗ x(2))⊗ (x(1) ⊗ 1i+1
q ) ∈ AIi ⊗AIi+1 .

By the above proposition, Ind(α) = p. This agrees with the GNVW index, and since the value of
the homomorphism Ind agrees with the GNVW index on a generating set, it must be precisely the
same homomorphism.
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4.2 Generalized Kramers-Wannier translations from G-graded extensions

Now consider the case where
D =

⊕

g∈G
Cg

is a faithful G-graded extension of C, so that Ce = C, each Cg is an invertible C-bimodule, and
Cg ⊗ Ch ⊆ Cgh. We will suppose that G = Z/nZ with a generator 1 and the identity 0, and that
we have an object Y ∈ C1 such that X := Y ⊗n ∈ C = C0 is a strong tensor generator for C. Then
we have X = Y ⊗ Z, where Z = Y n−1, and we use the isomorphism idY n : Y ⊗ Z ∼= Z ⊗ Y , with
n = 1 in the above construction. If we think of the single X-sites as being in fact n-coarse-grained
Y sites, then this is simply the shift to the right by one Y string.

We call a generalized translation of the above type a generalized Kramers-Wannier duality, due
to the example below.

Remark 4.3. G-graded extensions of a fusion category C are classified by morphisms of 3-groups
ψ : G → BrPic(C). Dimensionally reducing and applying the ENO isomorphism (see [ENO10,
Theorem 1.1]) yields a morphism of 2-groups ψ̃ : G → Autbr(Z(C)). For a generalized Kramers-
Wannier translation α built from a Z/nZ extension of C built from the 3-group ψ, let ξ = ψ̃(1) ∈
Autbr(Z(C)). Then utilizing the equivalence DHR(A(C,X)) ∼= Z(C), it is straightforward to see
by unpacking the definitions that DHR(α) = [ξ], where by [ξ] we mean the monoidal equivalence
class of ξ.

Example 4.4. (Kramers-Wannier translations.) We consider a special case, which extends the
original Kramers-Wannier duality. Let B be an abelian group, and consider the unitary fusion
category C := Hilb(B) of finite dimensional B-graded Hilbert spaces. We let X :=

⊕
g∈B Cg.

Then we have X ∼= C[B], the group algebra viewed as an B-graded Hilbert space.
We consider the fusion spin chain A(C,X). We will construct a QCA on this net using the

above G-graded recipe.
Now, recall a (unitary Tambara-Yamagami) category with abelian group of invertibles B is

characterized by a non-degenerate, symmetric, bicharacter χ on B and a choice of sign ǫ ∈ {−,+}
[TY98]. Then T Y(B,χ, ǫ) has (isomorphism classes of) simple objects B ∪ {ρ}, with fusion rules

b⊗ a ∼= ba

ρ⊗ ρ ∼=
⊕

b∈B
b

b⊗ ρ ∼= ρ⊗ b ∼= ρ

Note we have a full inclusion Hilb(B) ⊆ T Y(B,χ, ǫ), and in fact T Y(B,χ, ǫ) is a Z/2Z-graded
extension of Hilb(B).

Utilizing the unique simple object ρ ∈ T Y(B,χ, ǫ) that is not in the trivially graded component,
we have ρ⊗2 ∼= X ∈ Hilb(B). In particular, we can apply the generalized translation associated to
this factorization, and we obtain a α ∈ QCA(A(C,X)) with

Ind(α) =
√

|B|.
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If we consider the case B := Z/2Z, this implements a version of the famous Kramers-Wannier
duality (for a detailed explanation of this see [LDOV23, Section II.A]). We also note that having
index values with square roots also appears, in a closely related context, in [FPPV19].

5 Index as an isomorphism for the Fib chain

In this section, we consider the fusion spin chain constructed from the fusion category Fib with
simple generating object τ . Recall Fib is the rank 2 unitary fusion category with simple objects 1
and τ , with fusion rule τ ⊗ τ ∼= 1⊕ τ .

In this section, we denote by Aτ the fusion spin chain of algebras built from Fib with generating
object τ . Our goal in this section is to use the index to characterize the group QCA /FDQC for
Aτ .

The algebra Aτ can be viewed either as the boundary algebra for a Levin-Wen model built from
Fib (after coarse-graining nearest neighbors), or as the net of local operators on the golden anyon
chain, invariant under the Fib MPO symmetry. From another perspective, this is the even part of
the A4 subfactor standard invariant, and in fact, the net we build can also be viewed as the two-
sided tower of relative commutants in the tunnel of the Jones tower of the unique A4 hyperfinite
subfactor [EK98,Kaw21].

First, we examine possible values of the index. Note that Ax ⊆ Ax+1 ⊆ Ax+2 is a basic
construction triple, and thus, Ax ⊆ Ax+k is the iterated basic construction, and has index φ2k,

where φ = 1+
√
5

2 is the golden ratio.
We recall that the unitary fusion category Fib is torsion-free in the sense of [ADC19]: every

indecomposable Q-system in Fib is a Morita trivial Q-system. A Q-system is Morita trivial if and
only if it can be written as X ⊗ X̄ with multiplication induced from evaluation, for some object
X ∈ Fib [CHPJP22].

Definition 5.1. Let D be a (full, replete) tensor subcategory of Bim(N), where N is a II1 factor.
Suppose that N ⊆M is a finite index subfactor with L2(M) ∈ D. Then we define the dual category
of M with respect to D, denoted D∗

M , as the (full, replete) unitary subcategory of Bim(M) which
is the preimage of D under the restriction functor Bim(M) → Bim(N).

Categorically, D∗
M is equivalent to the category of bimodules of the Q-system NL

2(M)N , internal
to D (see [EGNO15, Proposition 7.11.1]).

Now, for any x and any z > x, the even part of the subfactor Ax ⊆ Az generates a canonical
copy of Fib inside Bim(Ax) (the same copy of Fib for all z) [Pop90, Theorem 4.9]. We call this
Fibx.

Lemma 5.2. Let x < z and Ax ( P ⊆ Az an intermediate subfactor. Then (Fibx)
∗
P
∼= Fib, and

the P -P bimodule PL
2(Az)P ∈ (Fibx)

∗
P .

Proof. Since Ax ( P ⊆ Az, we have L2(P ) ∈ Fibx. Moreover, since Fib is torsion free, L2(P ) is
Morita trivial, which means (Fibx)

∗
P
∼= Fib. Furthermore, the P -P bimodule L2(Az) is in Fibx as

an Ax-Ax bimodule by construction, hence PL
2(Az)P ∈ (Fibx)

∗
P .

Theorem 5.3. The map Ind : QCA(Aτ ) → R

×
+ surjects onto the subgroup {φn : n ∈ Z} ∼= Z.

Proof. First, we claim that the image of Ind is contained in the subring Z[φ] of R. Indeed, let

y < x < z such that Ay ⊆ α(Ax) ⊆ Az. Then Ind(α)−1 =
(
[Az:α(Ax)]
[Az :Ax]

) 1
2
= [Az : α(Ax)]

1
2φ−(z−x).
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By the previous lemma α(Ax)L
2(Az)α(Ax) is an indecomposable Q-system in (Fiby)

∗
α(Ax)

∼= Fib,

hence there exists some object X ∈ (Fiby)
∗
α(Ax)

with α(Ax)L
2(Az)α(Ax)

∼= X ⊗ X̄ . In particular,

[Az : α(Ax)] = dim(α(Ax)L
2(Az)α(Ax)) = dim(X)2

Thus, [Az : α(Ax)]
1
2 = dim(X). Since every object in Fib has dimension value in Z[φ], we have

dim(X) ∈ Z[φ]. Since φ−1 = φ − 1, φ−(z−x) = (φ − 1)z−x ∈ Z[φ]. Thus, Ind(α)−1 ∈ Z[φ]. Note
that Ind(α−1)−1 = Ind(α), so Ind(α) ∈ Z[φ]×+. The group Z[φ]×+ of positive units of the ring Z[φ]
consists precisely of integral powers of φ. Thus, the image of Ind lies in {φn : n ∈ Z}.

It remains to show that every φn is realized by some QCA. These are seen to be the indices of
the translations.

Next, we show that the index 1 QCA on Aτ are precisely FDQC. First, given an index 1 QCA
α with spread l, we construct a depth 1-circuit β1 such that β1 ◦ α maps A2kl onto itself for all
k ∈ Z. Then, we construct another depth 1-circuit β2 such that β2 ◦ β1 ◦ α maps Ax onto itself for
all x ∈ Z. Such a QCA automatically fixes the Jones projections. Since the algebra Aτ is generated
by the Jones projections, it follows that β2 ◦ β1 ◦ α is the identity. Hence, we have α = β−1

1 ◦ β−1
2

which is a FDQC.
In order to construct the above depth-1 circuits, one must choose specific local unitaries that

constitute these depth-1 circuits. This is done by iterative application of Lemma 5.6.

Lemma 5.4. Let A0 ⊆ A1 ⊆ A2 be a unital inclusion of multimatrix algebras and n(i) be the
dimension vector of Ai. We allow n(i) to have zero entries with the understanding that Ai

∼=⊕
j:n

(i)
j 6=0

M
n
(i)
j

(C). Suppose we can identify the slots of vectors n(0) and n(2) so that there is an

indecomposable matrix T with nonnegative integer entries satisfying

n(0)T t = n(1) and n(1)T = n(2).

Let tr be a unique tracial state on A2 whose corresponding trace vector t(2) is the Perron-Frobenius
eigenvector of T tT with the eigenvalue 1

λ . Then there is a projection f in A′
0 ∩ A2 such that

E(f) = λ · 1 where E is the tr-preserving conditional expectation from A2 to A1.

Proof. Consider the Bratteli diagrams Γ1
0, Γ

2
1, and Γ2

0 for the inclusion A0 ⊆ A1, A1 ⊆ A2, and
A0 ⊆ A1 ⊆ A2, respectively. We assume each of the edges is directed from the vertex of a smaller
algebra to that of a larger algebra. By using Γ2

0, we can introduce the path algebra representation
of A0 ⊆ A1 ⊆ A2. (For the definition of the path algebra, see for instance, [JS97].) For each
path γ on Γ2

0, let s(γ) and r(γ) be the source and the range of the path γ, respectively. Since the
“generalized inclusion matrices” T t and T for A0 ⊆ A1 and A1 ⊆ A2 are transpose to each other,
we can pair each edge γ1 in Γ1

0 with an edge γ2 in Γ2
1 such that s(γ1) = r(γ2) and r(γ1) = s(γ2).

We denote such a γ2 by γ∗1 . Throughout the proof, the edges in Γ1
0 and Γ2

1 will be denoted with the
subscripts 1 and 2, respectively, and the length 2 paths in Γ2

0 will be denoted without subscript.
Let t(0) and t(1) be the trace vector of A0 and A1 induced by tr. Choose

f =
∑

s(γ1)=s(δ1),

n
(0)
s(γ1)

6=0

√√√√√
t
(1)
r(γ1)

t
(1)
r(δ1)

t
(0)
s(γ1)

t
(0)
s(δ1)

eγ1γ∗
1 ,δ1δ

∗
1
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where eγ1γ2,δ1δ2 are the matrix units in the path algebra representation. It is easy to show that f
is a projection. For x ∈ A′

0 ∩A2, x can be written as

x =
∑

s(γ)=s(δ),
r(γ)=r(δ)

xγδeγδ.

By Proposition 5.4.3 of [JS97],

E(x) =
∑

s(γ1)=s(δ1),
r(γ1)=r(δ1)

∑

θ2:s(θ2)=r(γ1)

t
(2)
r(θ2)

t
(1)
s(θ2)

xγ1θ2,δ1θ2eγ1,δ1 .

where eγ1,δ1 =
∑

θ′2:s(θ
′
2)=r(γ1)

eγ1θ′2,δ1θ′2 . Thus,

E(f) =
∑

γ1

t
(2)
s(γ1)

t
(1)
r(γ1)

t
(1)
r(γ1)

t
(0)
s(γ1)

eγ1,γ1 = λ
∑

γ1

eγ1γ1 = λ · 1.

Lemma 5.5. Let p and q be projections in End(τ⊗n) with the same normalized categorical trace.
Then p and q are equivalent.

Proof. Recall End(τ⊗n) ∼=Man(C)⊕Mbn (C), where an = dim(C(1, τ⊗n)) and bn = dim(C(τ, τ⊗n)).
The canonical tracial state assigns 1

φn to minimal projections in the first factor while assigning 1
φn−1

to minimal projections in the second factor. Thus tr(p) = p1
φn + p2

φn−1 for integers 0 ≤ p1 ≤ an and
0 ≤ p2 ≤ bn.

If tr(p) = tr(q), then we have

(p1 − q1)

φn
+

(p2 − q2)

φn−1
= 0

and multiplying by φn we see
(p1 − q1) + (p2 − q2)φ = 0.

Since φ is not rational, we must have p1 = q1 and p2 = q2. Thus p is Murray-von Neumann
equivalent to q, hence there is a unitary conjugating them as desired.

Lemma 5.6. Let α be an index 1 QCA. If Aa ⊆ α(Ax) ( Ab for a ≤ x < b then there is a unitary
u ∈ A′

a ∩Ab = A(a,b] such that Aa ⊆ Ad(u)(α(Ax)) ⊆ Ab−1.

Proof. Let Ab−1 ⊆ Ab

eb+1

⊆ Ab+1 be the basic construction. Note that eb+1 ∈ A′
b−1∩Ab+1 = A[b,b+1].

Now, by the QCA index 1 assumption, [Ab : α(Ax)] = φ2(b−x). By Lemma 5.2, the α(Ax) bimodule
L2(Ab) is in (Fiba)

∗
α(Ax)

∼= Fib, and thus there exists someX ∈ (Fiba)
∗
α(Ax)

withX⊗X = X⊗X ∼=

L2(Ab). Here, we used the fact that every object in Fib is self-dual. Note that the function from
isomorphism classes of objects of Fib to R given by the dimension function is injective. Thus,

φ2(b−x) = [Ab : α(Ax)] = dim(α(Ax)L
2(Ab)α(Ax)) = dim(X)2

which implies X ∼= τ⊗b−x.
In particular, the standard invariants of α(Ax) ⊆ Ab and Ax ⊆ Ab are isomorphic. Hence, the

adjacency matrix for the principal graph for the subfactor α(Ax) ⊆ Ab is

[
0 1
1 1

]b−x

.

14



Thus, we can choose a subalgebra B ⊆ α(Ax)
′ ∩Ab, whose inclusion matrix in the sense of Lemma

5.4 is [
0 1
1 1

]
.

The chain of algebras B ⊆ α(Ax)
′ ∩ Ab ⊆ α(Ax)

′ ∩ Ab+1 satisfies the condition in Lemma 5.4.

Thus, there exists a projection fb+1 ∈ α(Ax)
′ ∩ Ab+1 such that E

Ab+1

Ab
(fb+1) =

1
φ2 where E

Ab+1

Ab
is

the unique trace-preserving conditional expectation from Ab+1 to Ab. Then by Lemma 5.5, there

is a unitary v in A′
a ∩Ab+1 such that fb+1 = v∗eb+1v. Let u = φ2E

Ab+1

Ab
(eb+1v), i.e. u is the unique

element in Ab such that eb+1v = eb+1u by Lemma 1.2 of [PP86]. Note that u ∈ A′
a ∩Ab. We claim

that u is a unitary.

u∗u = φ2u∗E
Ab+1

Ab
(eb+1)u = φ2E

Ab+1

Ab
(u∗eb+1u) = φ2E

Ab+1

Ab
(v∗eb+1v)

= φ2E
Ab+1

Ab
(fb+1) = 1.

Thus, u is an isometry in the finite-dimensional von Neumann algebra A′
a ∩ Ab. Therefore, it is a

unitary. Since fb+1 = u∗eb+1u by construction, we have eb+1 = Ad(u)(fb+1). Then

Aa = Ad(u)(Aa) ⊆ Ad(u)(α(Ax)) ⊆ Ad(u)(Ab) ∩ {Ad(u)(fb+1)}
′

= Ab ∩ {eb+1}
′ = Ab−1.

Corollary 5.7. Let α be a QCA with the index 1 and spread l. Then for each x ∈ Z there is a
unitary u ∈ A(x−l,x+l] such that Ad(u)(α(Ax)) = Ax.

Proof. Since the spread of α is l, Ax−l ⊆ α(Ax) ⊆ Ax+l for all x. Applying Lemma 5.6 l times
gives the desired result.

Corollary 5.8. Let α be a QCA with index 1 and spread l. Then there is a depth-1 circuit Ad(U)
such that Ad(U)(α(A2kl)) = A2kl for all k ∈ Z.

Proof. For each k ∈ Z, we can choose a unitary uk ∈ A((2k−1)l,(2k+1)l] such that

Ad(uk)(α(A2kl)) = A2kl.

Since all uk are supported on disjoint intervals, Ad(U) for U =
∏

k∈Z uk is a depth-1 circuit. Fix
k ∈ Z and let U− =

∏
j<k uj and U+ =

∏
j>k uj . Then U− and U+ are products of mutually

commuting unitaries supported on (−∞, (2k − 1)l] and ((2k + 1)l,∞). Since A(2k−1)l ⊆ α(A2kl) ⊆
A(2k+1)l,

Ad(U−)(α(A2kl)) = α(A2kl),

Ad(U+)(α(A2kl)) = α(A2kl).

Therefore,

Ad(U)(α(A2kl)) = Ad(uk)(Ad(U+)(Ad(U−)(α(A2kl))))

= Ad(uk)(α(A2kl))

= A2kl.

Corollary 5.9. Let α be a QCA with index 1 and spread l. Then there is a depth-1 circuit Ad(U)
such that Ad(U)(α(A(2jl,2kl])) = A(2jl,2kl] for all integers j < k.
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Proof. Choose a depth-1 circuit U as in Corollary 5.8. Then we have

Ad(U)(α(A(2jl,2kl])) = Ad(U)(α(A′
2jl ∩A2kl))

= Ad(U)(α(A2jl))
′ ∩Ad(U)(α(A2kl))

= A′
2jl ∩ A2kl

= A(2jl,2kl].

Theorem 5.10. If α is a QCA with index 1, then it is a finite depth circuit.

Proof. Let l be the spread of α. By Corollary 5.8 we may assume that α(A2kl) = A2kl for all
k ∈ Z. Fix k ∈ Z. We claim that for each 0 ≤ n ≤ 2l − 1 there is un ∈ A(2(k−1)l,2kl] such that
Ad(un)(α(A2kl−m)) = A2kl−m for all 0 ≤ m ≤ n. We use induction on n. For n = 0, we can simply
choose u0 = 1. Suppose we have found un−1. Then

A2(k−1)l = Ad(un−1)(α(A2(k−1)l)) ⊆ Ad(un−1)(α(A2kl−n))

⊆ Ad(un−1)(α(A2kl−n+1)) = A2kl−n+1.

By Lemma 5.6 there is a unitary v ∈ A(2(k−1)l,2kl−n+1] such that

A2(k−1)l ⊆ Ad(v)(Ad(un−1)(α(A2kl−n))) ⊆ A(2kl−n+1)−1 = A2kl−n.

Since [Ad(v)(Ad(un−1)(α(A2kl−n))) : A2(k−1)l] = [A2kl−n : A2(k−1)l], we have

Ad(v)(Ad(un−1)(α(A2kl−n))) = A2kl−n.

Since v ∈ A(2(k−1)l,2kl−n+1] ⊆ A2kl−n+1, for 0 ≤ m ≤ n− 1

Ad(v)(Ad(un−1)(α(A2kl−m))) = Ad(v)(A2kl−m) = A2kl−m.

Set un = vun−1. This proves the claim. In particular, there is a unitary wk = u2l−1 in A(2(k−1)l,2kl]

such that
Ad(wk)(α(Ax)) = Ax

for all 2(k − 1)l + 1 ≤ x ≤ 2kl. Take wk for each k ∈ Z and let W =
∏

k∈Zwk. Let x ∈ Z and
2(k − 1)l + 1 ≤ x ≤ 2kl for some k. Then by arguing as in Corollary 5.8 we obtain

Ad(W )(α(Ax)) = Ad(wk)(α(Ax)) = Ax.

Thus, Ad(W )(α(Ax)) = Ax for all x ∈ Z. Arguing as in Corollary 5.9, we have that

Ad(W )(α(A[a,b])) = A[a,b]

for all integers a ≤ b. Recall that A[x−1,x]
∼= End(τ⊗2) ∼= C ⊕C. The Jones projection ex for the

inclusion Ax−2 ⊆ Ax−1

ex
⊆ Ax is the unique central projection in A[x−1,x] with tracial state value

1/φ2. Thus, Ad(W )(α(ex)) = ex. Since any local algebra is generated by the Jones projections,
Ad(W ) ◦ α is the identity.
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6 Toward general topological invariants of QCA

A topological invariant of QCA is a group G and a homomorphism π : QCA(A) → G with
FDQC(A) ⊆ ker(π). Ideally G should be some sort of “well-understood” group and the homomor-
phism π should be easily computable.

One approach to the classification of topological phases of QCA in terms of invariants is to find
a complete set of topological invariants. A finite family of topological invariants πi : QCA → Gi is
complete if

⋂
i ker(πi) = FDQC(A). Then the homomorphism

∏
i πi : QCA(A) →

∏
iGi

α 7→ (π1(α), . . . , πn(α))

induces an isomorphism of QCA(A)/FDQC(A) onto its image.
The two examples of topological invariants we know of that apply to QCA on fusion spin

chains are Ind as developed here and the homomorphism DHR : QCA(A) → Autbr(DHR(A))
from [Jon23]. This leads to the following question:

Question 6.1. Let A be a fusion spin chain. Is the pair (Ind,DHR) a complete set of topological
invariants? If not, what are other topological invariants?

Our analysis shows the pair is complete for the fusion category Fib. Indeed, we show Ind
itself is a complete invariant. Moreover, Autbr(Z(Fib)) is trivial. In general, however, it appears
that Ind and DHR are not completely independent, as we can see from examining the generalized
Kramers-Wannier translations from Example 4.4.
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