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Abstract
Human ratings are ubiquitous in creativity research. Yet the process of rating responses
to creativity tasks—typically several hundred or thousands of responses, per rater—is
often time consuming and expensive. Planned missing data designs, where raters only
rate a subset of the total number of responses, have been recently proposed as one
possible solution to decrease overall rating time and monetary costs. However,
researchers also need ratings that adhere to psychometric standards, such as a certain
degree of reliability, and psychometric work with planned missing designs is currently
lacking in the literature. In this work, we introduce how judge response theory and
simulations can be used to fine-tune planning of missing data designs. We provide open
code for the community and illustrate our proposed approach by a cost-effectiveness
calculation based on a realistic example. We clearly show that fine tuning helps to save
time (to perform the ratings) and monetary costs, while simultaneously targeting

expected levels of reliability.
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Planning Missing Data Designs for Human Ratings in Creativity Research: A Practical
Guide

Human ratings are ubiquitous in creativity research. Beginning with early work by
Guilford, which required human judges for the scoring of creative thinking performance (P. R.
Christensen et al., 1957; Wilson et al., 1953), to Amabile’s Consensual Assessment Technique
(CAT) for the assessment of creative products (Amabile, 1982), and more recently, to creative
thinking assessment of divergent thinking (Benedek et al., 2013; Forthmann et al., 2017; Silvia
et al., 2008), creative metaphor (Beaty & Silvia, 2013; Primi, 2014) or humor production (A. P.
Christensen et al., 2018; Nusbaum et al., 2017), human ratings seemingly follow a long tradition
of being indispensable for the assessment of creativity. In a sense, they are considered a gold
standard in creativity research. This status of human ratings is further emphasized by the fact
that most recent attempts of automated scoring of creative thinking aim at the prediction of
human ratings (Beaty & Johnson, 2021; Buczak et al., 2022; Dumas et al., 2020; Stevenson et
al., 2020). Automated scoring is motivated by the fact that human ratings are associated with
two drawbacks: scoring might be affected by various idiosyncrasies of raters (Mouchiroud &
Lubart, 2001; Robitzsch & Steinfeld, 2018), and scoring of creativity tasks by human raters
does not always result in agreements between raters (Forthmann et al., 2017), but is very
laborious and may even take weeks (Benedek et al., 2013; Shaw, 2021; Silvia et al., 2009).

The current work addresses the latter issue by demonstrating how Judge Response
Theory (JRT; (Myszkowski, 2021; Myszkowski & Storme, 2019)—i.e., the application of item
response modeling to human ratings in creativity research—and simulation techniques can be
leveraged for effective distribution of rater work (i.e., by means of a planned missing data
design), while at the same time a sufficient degree of measurement precision of the final scores
is to be expected. Such a careful planning approach to rating designs can reduce the amount of
coding work put on the shoulder of raters (preventing adverse effects of rater fatigue; e.g.,
(Forthmann et al., 2017), allows the overall coding task being finished in comparably less time

(i.e., compared to having all products rated by all available raters), and provides an empirical
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rationale for saving valuable project money. We argue that such work will be highly useful for
the field as long as automated scorings are not yet fully available for all creativity measures that
typically require human ratings.
Human Ratings in Creativity Research

Roughly speaking, creativity refers to the novelty and usefulness of a perceptible
product (Plucker et al., 2004). This notion of creativity as a property of perceptible products is
important for the current work, because it is open to encompass rather small expressions of
thought. From this perspective, products include responses generated in a divergent thinking
task (Runco et al., 2001), a list of ideas obtained from a small-group brainstorming session
(Reinig & Briggs, 2013), a written story (Kornilov et al., 2016; Taylor & Barbot, 2021),
responses to a scientific creative thinking task (Long, 2014; Long & Pang, 2015), as well as
drawings or a design for furniture. Indeed, all these kinds of products are rated by human judges
in creativity research which highlights the broad range of usage contexts of human rater scores.

Beyond the product, it is important to look at the samples of raters used. For example,
the famous consensual assessment technique (Amabile, 1982) is considered a valid measure of
creativity because experts of the respective product domain assess a product’s creativity (e.g.,
furniture designers rate the creativity of furniture designs). However, quasi-experts (e.g., design
students which are not yet fully developed experts; (Kaufman et al., 2013) have also been
sampled for providing creativity ratings as well as laypersons (also named novices or naive
raters; (Hass et al., 2018; Kaufman et al., 2013). While researchers have cautioned against using
other than expert samples, empirical work suggests that laypersons may provide valid and
reliable ratings when adequately prepared for the rating task (Hass et al., 2018; Storme et al.,
2014). Either way, rater-characteristics should be taken into account when considering the
provided responses in sophisticated statistical models (Myszkowski & Storme, 2019; Primi et
al., 2019; Robitzsch & Steinfeld, 2018).

When considering the full product range, it becomes further clear that for some products

(e.g., responses generated in divergent thinking tasks) no group of experts is readily available.
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Who can be reasonably considered being an expert on how to creatively use a spoon? In such
situations, raters are typically equipped with a more extensive coding guide instructing them
that more creative responses tend to be uncommon, remote, and clever (Silvia et al., 2008).
These three classical indicators of originality were already used by Guilford and colleagues for
the scoring of divergent thinking tasks (Wilson et al., 1953). For example, responses for the Plot
Titles task were scored for cleverness, whereas responses to the Consequences task were judged
by human raters for their remoteness (P. R. Christensen et al., 1957). Similar scores as obtained
by human ratings were used for tasks requiring the production of creative metaphors or humor
(Beaty & Silvia, 2013; A. P. Christensen et al., 2018; Nusbaum et al., 2017; Primi, 2014).

Beyond these various characteristics of human ratings such as the type of products to
rate, the sample of raters, or the scoring dimensions which differ from study to study, there is
one common aspect of all such rating tasks that should be emphasized: the high workload put on
the raters. For example, in a study focusing on divergent thinking, thousands of ratings might be
needed (Kleinkorres et al., 2021) and researchers have already considered approaches to reduce
the amount of work this brings along. For example, rating all responses generated by a
participant at once (i.e., the full response set and not each response separately) has been
proposed to reduce overall rating time (Shaw, 2021; Silvia et al., 2009), but scoring all
responses at once comes along with the need to rate a comparably more complex product (i.e.,
all responses vs. only one response) and it has been shown that increasing complexity of sets of
responses is associated with larger rater disagreement (Forthmann et al., 2017). In addition,
scoring all responses is not an option if the focus of a study is the level of responses (Silvia et
al., 2009).

A more sophisticated approach that reduces the burden on raters is to rely on planned
missing data designs (Graham, 2009) which allow for unbiased estimation of creativity scores
based on the response level. In fact, these designs take advantage of a reduced amount of
information per rater without relying on a single data point by treating each response for what it

is: an individual behavioral outcome to a given task. In the case of creativity research, these can
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be referred to as products. Notably, there are applications of planned missing data designs in
creativity research (Barbot, 2020; Fiirst, 2020; Primi et al., 2019). For example, Barbot (2020)
merged different datasets in which some measures were in common and added another dataset,
as a type of a linking sample to increase covariance coverage. Hence, his approach of
integrative data analysis was highly similar with a planned missing data design. In addition,
Fiirst (2020) employed a planned missing data design for a more efficient, yet comprehensive,
assessment of creative potential. While Barbot (2020) and Fiirst (2020) used structural equation
modeling and full information maximum likelihood estimation to handle missing data, Primi et
al. (2019) examined simulated missing data patterns in the context of many facet Rasch
modeling.
Psychometric Modeling of Human Ratings

Judge response theory (JRT) refers to the adaptation of polytomous item response
theory models [e.g., the graded response model (Samejima, 1969) or the generalized partial
credit model (Muraki, 1992)] for human ratings in the context of creativity research
(Myszkowski, 2021; Myszkowski & Storme, 2019). JRT explicitly models differences in the
rating behavior of human judges as reflected by severity (or leniency) effects and differences
between raters with respect to their discrimination parameter. The considered unit of
measurement in JRT is situated at the product level. Products must be conceptualized very
broadly for the context of the current work. For example, one might consider more complex
products such as newly designed electronic devices or very simple expressions of thought (e.g.,
a response generated within the context of creative thinking testing). Following Plucker et al.
(2004) and Runco et al. (2001), we use the term “product’ in its broadest sense referring to
something that is perceptible. With availability of ratings for each of the products in a given
dataset, JRT as implemented in the R package jrt (Myszkowski, 2021) is a powerful tool for
estimation of rater parameters and reliability. The jrt package uses the mirt package (Chalmers,

2012) for multidimensional item response theory modeling as estimation engine. The mirt
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package provides fast estimation algorithms (also when missing data are present) and it also
includes highly efficient functions for simulation studies.

Specifically, the default setting of the jrt() function (i.e., the main function of the jrt
package) fits various unidimensional polytomous item response theory models to the rating data
and chooses the best fitting model (Myszkowski, 2021). The best fitting model is chosen based
on the Akaike information criterion (AIC; Akaike, 1973) which combines a model’s likelihood
and a penalty for model complexity to emphasize that a useful model should be parsimonious
and fit to the data. Smaller AIC values imply better model fit, while model parsimony is also
taken into account. Consequently, in the jrt() function the model with the lowest AIC is chosen.
In addition, it provides classical inter-rater agreement statistics such as intra-class correlations
and also model-based empirical reliability estimates along with estimates of the latent creative
quality for each of the products in the datasets. Here, reliability refers to the estimated squared
correlation between the estimated latent creative quality [i.e., the factor scores provided by the
jrt() function] and true latent creative quality. The square-root of this estimate is also known as
factor determinacy index (FDI) in the literature on factor analysis. Hence, the FDI is an estimate
of the correlation between the factor scores obtained for the rated products and the true factor
scores. For both types of indices (i.e., reliability and FDI), cut-offs for research and practical
assessment contexts exist and such cut-offs should be considered when planning a study
involving creativity ratings. For a research project, the rating design could be planned towards a
target FDI of .80 (Ferrando & Lorenzo-Seva, 2018), for example. Although we appreciate that
such cut-offs are frequently subject of debate, and rightfully so, they offer a pragmatic
benchmark that can be easily tested against.

In general, the recruitment of human raters is hard, and especially so in the case of
rating creativity data, because rating creativity data is less of a trivial task as compared to other
rating ventures. Further, the recruitment of human judges might be limited due to monetary
reasons, for example, because the available project budget might be already exhausted.

Regardless, researchers will be interested in getting the job done in the most pragmatic way:
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with the least amount of time and money spent, while still obtaining high-quality data (i.e.,
reliable ratings that approximate the true ability of a participant).

Such a dataset that needs rating might for example include 5000 products (e.g.,
divergent thinking test responses). If we assume 500 responses can be rated (without rushing) in
1 hour (i.e., on average 7.2 seconds per response) and each rater receives $10 per hour of work,
this would equal $100 per rater for rating the full response set. Obviously, costs increase with
the number of raters that are employed for the task, and as the raters will usually not work in
full synchronicity, the temporal aspect need not be forgotten either.

The number of raters depends, as mentioned above, on various considerations and, in a
best-case scenario, should be chosen on the basis of empirical reasoning. For example, an
arguably well-defined criterion would be to adhere to the afore-mentioned .80 FDI cut-off (i.e.,
FDI > .80), in order to ensure sufficient reliability for further analysis. If the most likely model
and typical model parameters for the target rater population and the target product population
are known (at least reasonable “guesstimates” are needed, which could also rely on experiences
with similar data), it is possible to leverage mirt’s simulation functionality to answer such
questions of rater design (i.e., how many raters are needed?).

Based on a simulation study, an expected FDI can be obtained. In the same vein, we
obtain information regarding the number of raters and how many responses are rated by how
many raters. Hence, the expected measurement precision and how much it would cost can be
determined a priori. For example, based on the above calculations, it might be that a cut-off of
.80 for the FDI will be surpassed with 3 raters which implies costs of $300. However, it might
take 10 raters to surpass a cut-off of .90 and a much higher budget of $1000 would then be
needed. Although the costs for the respective number of raters could have been easily calculated
before, the simulation study extends the provided information by an estimate regarding the FDI,
and thus the reliability of the obtained ratings. This information provides real value to
researchers, as this enables them to consider trade-offs between monetary and temporal costs,

and measurement precision.
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To further refine planning of rater design, it is also highly useful that mirt models can
be estimated for planned missing data designs (e.g., Fiirst, 2018). For example, it is possible to
simulate data that account for specific levels of missingness (e.g., one rating less for 20% of all
responses). This functionality can thus be used in a pragmatic way to further reduce costs
without sacrificing too much measurement precision. By means of planned missing data
designs, rating designs can be efficiently and effectively planned towards both a target level of
measurement precision and an available budget. Similarly, missing data designs could be used
for planning towards a given due date at which the ratings must be available for further data
analysis.

The Present Research

The goal of the current work is to introduce simulation-based planning of rating designs
that (a) incorporate planned missingness designs, and (b) allow for an effective outweighing of a
target level of measurement precision and monetary costs (or costs in terms of time, when
approaching a due date). We argue that this work will be helpful for researchers studying
creativity, as it provides a practical example on how to use planned missing rating designs for
their own purposes. To this end, we illustrate the usefulness of this approach based on a realistic
planning scenario when layperson ratings are to be used for scoring of an Alternate Uses Task
(e.g., Hass et al., 2018).

Method

The empirical part of this work comprises of (a) an initial analysis of rating data and (b)
a simulation study to inform planning of a missing data design. The first part was needed to
derive a realistic simulation model and ranges for model parameters (e.g., discrimination
parameters), whereas the second part was needed to see which planned missing data designs
work well with respect to psychometric as well as cost-effectiveness criteria. Importantly, the
empirical part should be understood as providing proof-of-concept on how to implement the
approach for planning a missing data design for human ratings. As such, all reported findings

are limited to the rater population that was sampled and the Alternate Uses Task as a measure of
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creative thinking, for example. Thus, we strongly recommend caution when interpreting the
current findings. Especially, for other rater populations, other populations from which
participants are sampled from, and other creativity measures, we recommend to contextualize
and redo all steps outlined in this work.
Dataset

We first tested different rater models on an available dataset. The dataset included 3236
responses generated by N = 209 participants on two different Alternate Uses Tasks (using the
words box and rope, respectively). Participants had two minutes to complete each of the tasks
and were instructed to be creative. Each response was rated by three raters (undergraduate
students majoring in psychology) using the subjective scoring method guidelines for divergent
thinking (https://osf.io/vie7s). Following these guidelines, the raters used a 5-point Likert-scale.
According to Cicchetti’s criteria (Cicchetti, 2001), inter-rater reliabilities were fair in terms of
absolute agreement (ICC = .42, 95%-CI: [.02, .63]) and consistency (ICC = .56, 95%-CI: [.53,
.58]). The study was approved by the Institutional Review Board of The Pennsylvania State
University. All participants gave informed consent to participate in the study.
Obtaining a Realistic Rater Model

Before a simulation can be set up for planning of a rating design, a reasonable
simulation model and a realistic range of rater parameters (i.c., parameters related to raters’
severity and discrimination between products) ought to be found. We used the jrt() function
from the jrt package (Myszkowski, 2021) which is implemented in the statistical software R (R
Core Team, 2021). This way, the best fitting polytomous IRT model was determined based on
the Akaike Information Criterion and AIC-based model weights (Wagenmakers & Farrell,
2004). The parameter estimates from the best fitting model were then used to construct an
empirically justified simulation setup. Model comparison results of all computed models as to
the default function of jrt() can be found in Table S1 in the online supplemental material

(https://osf.i0/7b925/?view only=902f015df3304dfbac60a4c06eb66¢70).



11
PLANNED MISSING DATA
The best fitting model was the generalized partial credit model (Muraki, 1992). As this

model will be used for the simulation below, it is worthwhile to consider its model equation

exp[akk—l(a*6)+dk—1] (1)
25:1 explak,_;(a*6)+dy_/]’

P(X = k|9ua],d]) =

with 0; being the latent score for response i, o, being the discrimination parameter of rater j, dj
being the intercept vector of rater j, and ak; being constraint to 0, 1,..., K-1 (with K being the
number of response categories). In addition, / refers to the number of responses in the context of
this work, and J to the number of raters. This parameterization of the GPCM is implemented in
the mirt package (Chalmers, 2012) and commonly referred to as the slope-intercept
parameterization (Matlock et al., 2018). The model is further identified by assuming that the
latent response scores are N(0,1) distributed. Given that the data at hand had five response
categories (i.e., K = 5), there were K-1 = 4 intercept parameters for each of the three raters (i.e.,
dyj, dyj, d3j, and dy; with j = 1,..., J), and three discrimination parameters (i.e., o1, oz, and a3). The
estimated model parameters for each rater are shown in Table 1. For example, Rater 2 was
found to have a much higher discrimination parameter as compared to Rater 1 and Rater 3
which means that this rater was much better in distinguishing highly creative responses from
less creative responses. In addition, for Rater 2 by far the lowest intercept parameters were
obtained which means that this rater was the most severe during the rater process. Rater 1 and
Rater 3 were much more lenient in their ratings with Rater 1 being the most lenient one in this
rater sample (c.f., Table 1).

Table 1

Rater Parameter Estimates based on the Generalized Partial Credit Model

Parameter Rater 1 Rater 2 Rater 3

oy o =0.72 o =1.83 o3 =0.77
dyj dii=3.84 diz=-1.66 diz=1.67
dyj dr1 =3.53 dn=-3.76 dr; =1.03
dsj d31=1.92 dp=-7.52 dz; =-0.89

dyj dy=-1.16 dpn=-13.42 dyz=-3.79
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Note. a

= discrimination parameter, d = intercept. The response category curves for all three

raters can be found in Figure S1 in the online supplemental material

(https://0sf.i0/769z5/?view _only=902f015d{3304dfbac60a4c06eb66c70).

Simulations

Construction of Planned Missing Data Matrices

In this work, we focus on matrix planned missing data designs (Silvia et al., 2014)

because they allow equal distribution of work across available raters. We constructed the

designs the following way:

1.

Design

We obtained all possible combinations of raters based on the overall number of raters
and the target number of ratings per response. The combinations were calculated by
means of the CombSet() function from the DescTools R package (Signorell, 2021). For
example, for three available raters and two ratings per response there would be three
possible combinations of raters: {{Rater 1, Rater 2}, {Rater 1, Rater 3}, {Rater 2, Rater
3}

We determined how many rows in the planned missing data matrix should be rated by
each of the combinations obtained from Step 1. This was obtained by the floor function
of the ratio of overall number of responses and the number of combinations obtained
from Step 1. If the number of responses exceeded this number the last combinations
were randomly sampled with replacement from all possible combinations.

The matrix planned missing data designs obtained from Step 2 were further reduced or
increased as a final optional step. A reduced design was obtained by randomly setting a
planned rating to a planned missing value for a fixed percentage of responses.
Analogously, an increased design was obtained by randomly setting a planned missing
value to a planned rating for a fixed percentage of responses. Responses were also

chosen randomly for both types of designs.
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In our simulation design, we varied the number of raters (2 vs. 3 vs. 4 vs. 5) and the
number of responses rated by each rater (2 vs. 3 vs. 4 vs. 5) resulting in 10 possible design cells
(i-e., 5 ratings were only possible with 5 raters; see also Figure 1 below). The number of
possible raters adheres to numbers of raters usually used for research purposes. In addition, we
crossed this design with different percentages (20% vs. 40% vs. 60% vs. 80%) to reduce the
number of ratings needed which resulted in 40 additional design cells. Decreasing a design with
3 ratings per response by 20%, for example, means that 20% of the responses will receive only
2 ratings per response. The responses and the rater who would not rate the response anymore
were chosen randomly. Analogously, we crossed the design with different percentages (20% vs.
40% vs. 60% vs. 80%) to increase the number of ratings needed which resulted in another 24
additional design cells. Thus, here we did not combine cells with increasing percentages in
which the number of raters equals the number of ratings (i.e., all complete designs). It should be
noted, however, that increasing a complete design with two raters by 20% would also result
from reducing a complete three rater design by 80% (which is already included). Increasing a
design with 3 ratings per response by 20%, for example, means that 20% of the responses will
receive 4 ratings per response. The responses and the rater who would rate this additional
response were also chosen randomly. Thus, overall 74 different design cells were simulated.
Data Generation

We used the simdata() function from the mirt package (Chalmers, 2012) for data
generation. First, we sampled latent response scores from a N(0, 1) distribution. Discrimination
parameters were sampled from a U(0.72, 1.83) distribution (i.e., the range was taken from the
estimates reported in Table 1). The intercept parameters were sampled as follows: first, we
calculated the average across each rater’s intercept parameters to reflect rater easiness. Then, we
sampled from a U(-6.59, 2.03) to reflect rater easiness. Next, we subtracted each rater’s easiness
from their four intercept parameters for centered intercept parameters. Each of the four centered
intercept parameters was averaged across raters and used to construct a sampling rationale for

the four intercept parameters. The d; parameter was sampled from U(2.97, 4.93) with 2.97 being
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the average centered d; parameter across raters and 4.93 being the maximum of the centered d,
parameters. The d> parameter was sampled from U(1.95, 2.97) and the ds parameter from U(-
0.48, 1.94) with the lower bounds here being the average centered intercept parameters,
respectively. Finally, the d4 parameter was sampled from U(-6.83, -0.49) with -6.83 being the
minimum of the centered ds parameters. The sampled easiness and the sampled centered
intercept parameters were added up to yield the intercept parameters for data generation. For
each cell we simulated 500 replications of 1000 AUT responses (e.g., approximating an
assessment context in which for n = 100 participants ten responses are to be expected on
average). The average correlation across replications between the estimated latent response
scores (based on the expected a-posteriori method; EAP) and the true latent response scores was
our main dependent variable in this simulation. We further obtained the standard deviations and
the standard errors of the correlations as an indicator of sampling variability. The R code to
reproduce all reported results in this work is openly available via the Open Science Framework
(https://osf.i0/7b69z5/?view_only=902f015d{3304dfbaec60a4c06eb66c70).
Results and Discussion

Simulation-Based Planning of a Rater Design

The reported findings from our simulation study serve the purpose of making readers
familiar with interpreting findings obtained by the proposed approach for planning of missing
data designs. In addition, we report the findings quite comprehensively so that interested
researchers get an impression of how one might adjust simulation-based planning (e.g., by
decreasing or increasing the number of rated responses for a proportion of raters) in ways that
improve initially unsuccessful designs. For example, a design could be considered as
unsuccessful when reliability is far above a target cut-off (the efficiency of the design can still
be improved) or still below such a target cut-off (the expected psychometric quality must be
improved).

First, we present the results of the full-data simulations, where either all raters rated all

responses, or all responses were rated by n-1 raters in Figure 1. We observed a clear main effect
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for the number of ratings per response. Although the confidence intervals for all simulations
supposing three ratings per response include the defined target level (» = .8) of the correlation
between latent score estimates and their true values, on average this specific target level is not
surpassed under this condition (i.e., three ratings per response). This holds independent of the
number of raters that were specified. In order to exceed the defined target level of » = .8, at least
four ratings per response would be needed, which corresponds to employing at least four
independent raters.

Figure 1

Results of Full Design Simulations

0.9

0.7

Average Correlation (+/- 2 SE)

0.6
2 3 4 5
Ratings per Response
Note. Each point is based on 500 replications and 1000 responses in each replication. The red
dotted line at .80 on the y-axis refers to the common cut-off for the correlation between latent
score estimates and their true values. When the correlation surpasses this cut-off, latent score

estimates display high enough measurement precision for research purposes (Ferrando &

Lorenzo-Seva, 2018).

Next, we present the results of the planned-missingness data simulations, where in each

simulation the ratings per response of the full dataset were reduced by either 20%, 40%, 60%, or
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80% (Figure 2). Again, decreasing a design with 3 ratings per response by 20%, for example,
means that 20% of the responses will receive only 2 ratings per response. Again, we observed a
clear main effect for the number of ratings per response. However, although again at least four
ratings per response yield the best results in terms of surpassing the a priori defined correlation
of .80, further reducing the relative amount of responses that need to be rated at least four times,
does not impair the estimated correlations very much. On the contrary, reducing the responses
needed to be rated by all four raters by 60% still leaves enough information in the data to
surpass the target level of » = .80. This finding can be readily translated to a monetary
advantage, as not all raters have to rate all of the responses, but sufficient reliability is still

achieved.

Figure 2

Results of Reduced Design Simulations
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Reduction

Note. Reduction = % of total responses that are rated by n - 1 raters. The red dotted line at .80

on the y-axis refers to the common cut-off for the correlation between latent score estimates and



17
PLANNED MISSING DATA

their true values. When the correlation surpasses this cut-off, latent score estimates display high

enough measurement precision for research purposes (Ferrando & Lorenzo-Seva, 2018).

Lastly for this section, we show the results of the planned-missingness data simulations,
where in each simulation the ratings per response of the full dataset were increased by either
20%, 40%, 60%, or 80% (Figure 3). In these simulations, the previously observed main effect of
number of ratings per response remained. We were not able to identify any substantial effects
that go beyond this main effect; the confidence intervals of all remaining simulation cells were
overlapping. Increasing the responses needed to be rated by a given set of raters slightly
increases the observed correlation, but according to the here provided data the differences might
be negligible.

Figure 3

Results of Increased Design Simulations
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Increase
Note. Increase = % of total responses that are rated by n + 1 raters. The red dotted line at .80 on
the y-axis refers to the common cut-off for the correlation between latent score estimates and
their true values. When the correlation surpasses this cut-off, latent score estimates display high

enough measurement precision for research purposes (Ferrando & Lorenzo-Seva, 2018).
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Cost-Effectiveness Calculations

In this section, we provide some insights into possible cost-effectiveness calculations,
that is, considerations regarding a trade-off between measurement precision and monetary costs.
To do so, we first provide a set of assumptions for our calculations: We assume that a layperson
rater, who is properly trained via a short, written instruction regarding what is expected of them,
can rate about 500 responses per hour. This equals 7.2 seconds per response, but this estimate
seems reasonable given that raters will usually accelerate the rating process over time and with
every response. For sake of the argument, we also assume that raters are paid $10 per every
hour of work. In the current case, we further assume that instructing a rater does not count as
time spent working; after all, we would like to provide relatively pure estimations only
regarding the rating process itself. In addition to that, we base but not constrain our calculations
to the assumption that any given number of raters can work perfectly parallel to each other.
Although this assumption will be rarely met in reality, it will help to illustrate the inherent
advantages of using certain planned-missingness rater designs. For our first example, we will
further assume that four human raters can be appointed to rating data of an Alternate Uses Task
with 1000 responses in total. We aim at illustrating the process that can be applied to decide for
one or the other planned-missingness rater design.

In Table 2, we provide a complete overview of all relevant parameters important for
deciding for a rater design. Each row of the table refers to a unique (planned-missingness) rater
design. We explicitly report the number of total raters; the given ratings per response; whether
the full, an increased, or a reduced dataset was used; how many responses were assigned to each
rater; what the mean and the standard deviation of the obtained correlation was; how much
money a specific design translates; and the estimated rating time in total and per rater (which
would also equal the total rating time for all four raters, if all of them would be working

perfectly parallel).
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Table 2

Example of Cost-Effectiveness Calculations

Nraers  Ratings Condition Rangeresponses M- SD,  Estimated Estimated Estimated

per per Rater Costs Timetotal Timeper Rater
Response inh inh
4 4 Full 1000 832 .116  $80.00 8.00 2.00
4 4 reduction 940-957 828 113 $76.00 7.60 1.90
(20%)
4 4 reduction 891-913 819 109 $72.00 7.20 1.80
(40%)
4 4 reduction 831-864 .808 .109 $68.00 6.80 1.70
(60%)
4 4 reduction 782-809 804 .105 $64.00 6.40 1.60
(80%)
4 3 increase 758-802 801 .105 $62.12 6.21 1.55
(20%)
4 3 increase 776-860 804 106 $64.20 6.42 1.61
(40%)
4 3 increase 779-914 .808 .107 $66.50 6.65 1.66
(60%)
4 3 increase 804-956 810  .109 $68.70 6.87 1.72
(80%)

Note. Reduction = % of total responses that are rated by n - 1 raters. Increase = % of total
responses that are rated by n + 1 raters. An extended version of this table including much more
simulated conditions can be found in Table S2 in the online supplemental material file in the

OSF repository (https://osf.io/7b9z5/?view_only=9021015df3304dfbae60ad4c06eb66c70).

For example, while having the full data set rated by all four raters (i.e., 1000 responses
per rater) would cost $80 and, on average, yield a correlation of .83 between latent score

estimates and their true scores; using a design that supposes only 3 ratings per response, with an
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increase of one more rating per response for only 20% of the data, would reduce the total
estimated costs by > 5 (i.e., ~22.5%), and still yields a correlation of » = .80. This reduction in
monetary costs is obviously also reflected in the time that is needed to obtain all necessary
ratings; that is, instead of 8h of scoring for the full data, implementing the planned missingness
design of the provided example results in a total time of 6.2h.

It can be argued that this reduction of monetary and temporal costs by 22.5% could be
understood as both a relative and an absolute increase of cost-effectiveness. Whereas in our
example with 1000 responses, the absolute cost reduction of the planned missingness rating
design can seem negligible in the light of huge research grants, or when researchers only plan
on rating one creativity task like the Alternate Uses Task, the inherent benefit of these planned
designs becomes clearer, when a larger scale is considered.

For example, consider a large online-panel study assessing creativity by means of a
two-item Alternate Uses Task with 1000 participants. If we assume that each participant, on
average, provides 10 responses per item, a huge dataset with 20,000 responses would be
obtained. Appointing four raters to rate all of the responses would result in costs of $1,600 (40h
of work per rater) and take a considerable amount of time, as rating creativity responses is
usually not a full-time job and moreover exhausting for the raters (fatigue). If the design
mentioned above would be applied to this situation (3 ratings per response, with an increase of
one more rating per response for only 20% of the data), the relative decrease of costs would of
course remain the same, but in terms of absolute numbers the cost decrease would add up to
$360, which sometimes is the price of attending a conference to present the results of a study. In
addition, of course the time for each rater working on their rating would decrease considerably
(9h - which is longer than the time spent working in an ordinary 9-5 job).

Summary and Recommendations

In this work we proposed a simulation-based approach for effective planning of rater

designs with missing data. We demonstrated in an empirical proof of concept illustration how a

reasonable simulation model can be obtained from existing data, how simulations can be used to
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fine tune the planned design, and how based on these simulations cost-benefit analysis can be
done when project budget and/or time are limited resources. Specifically, we used available
rating data for responses on the Alternate Uses task and found by means of the the jrt package
(Myszkowski, 2021) that the GPCM fitted these data best. Hence, we used the GPCM and the
obtained parameter estimates for informing simulation-based planning. Then, our simulation
implies strategies that are useful for fine-tuning the planned missing values design: run
simulations with full data designs and varying numbers of raters, identify the full data designs
that are closest to a target level of the correlation between estimated and true factor scores (e.g.,
.80), and finally increase or decrease the number of ratings per response for a certain proportion
of randomly chosen responses.

Importantly, we have shown that even in situations in which ratings might not be too
expensive in terms of monetary costs, enough money could be saved that allows a doctoral
student, for example, to go to a conference. Clearly, in case that experts are needed as raters for
a study the planning approach outlined in this paper is expected to result in even greater savings,
because expert raters are much more expensive; for example, architects that would be hired to
rate construction designs provided by participants of a study on architectural creativity.

We strongly recommend that researchers use this approach—adapted to the context of
their studies—for the case that that human ratings of creative products are involved to ensure
the quality of final scores based on planned missing data designs. We provide the needed R
code for simulation-based planning in an openly accessible repository
(https://0sf.i0/7b9z5/7view _only=902f015df3304dtbaec60a4c06eb66c70) to facilitate this step
for researchers who are not yet familiar with the software used in this work. However, having
planned a missing data rating design implies that further steps are needed.

As a final step, one would reevaluate the best fitting model of the obtained ratings by
means of the jrt package. Of course, the more is known about the target rater population (e.g.,
laypersons for rating divergent thinking responses), the unlikelier it will be that the JRT model

fitting the data best will deviate from the anticipated model in the planning phase. However, as
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in our illustration here one might have only three raters available for setting up a reasonable
simulation model (or even no data at all). In such situations the final data could better fit to a
different model which should then be used for deriving final latent scores. Furthermore, also the
finally achieved reliability of the scores should be reevaluated to check if the rating process
resulted in the anticipated level of measurement precision and/or if the level of measurement
precision is high enough for the purpose of measurement (Ferrando & Lorenzo-Seva, 2018). We
recommend to check the square-root of empirical reliability of the final scores which provides
an estimate of the correlation between estimated latent response scores and the true responses.
Limitations and Future Directions

The dataset we used in our study for illustration and for a hypothetical planning
scenario might not have been comprehensive. Additional complexities are expected to arise
when, for example, model parameters for each rater differ as a function of the task for which the
ratings are needed. For example, in the used dataset, participants generated responses for two
different AUT objects (i.e., box and rope) and we ignored that discrimination and intercept
parameters in the GPCM could differ between both objects. Such differences could be
considered during the simulation by means of using a multiple group model with as many
groups as there are tasks in the planned study. However, such a more complex simulation would
only make sense when enough empirical evidence for a mostly non-overlapping parameter
range between the tasks is available. Of course, this knowledge can only be gained if such
differences in parameters are evaluated and this can be nicely done at the stage of reevaluating
model fit and reliability of the final ratings.

The outlined empirical example is further limited to a range of matrix planned missing
data designs (Silvia et al., 2014). This design type is attractive as it will likely result in a well
linked sample which guarantees unbiased parameter and latent score estimation. However, there
are other designs that might be as attractive for a rating study. For example, Fiirst (2020) used a
design in which two raters (out of five for one of the tasks) rated all responses, whereas three

other raters provided two ratings per response in a full matrix design. Of course, such designs
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come with their own disadvantages, namely that at least some raters are experiencing the full
burden of the rating task. With that being said, we recommend researchers choosing their rating
design also based on the expected work load of the single raters and take into consideration the
experience of their raters. In addition, it is arguably a good idea to check a simulation even in
situations that allows all raters to rate all responses, just to make sure study planning is sound.
The open material we provide along with this paper can be easily extended to such other
designs.

Furthermore, the designs considered in this work can be easily extended by anticipating
other missing value issues (e.g., missing values because of study drop-out of participants). For
example, when assuming that a certain proportion of responses will be missing completely at
random, it is possible to incorporate this in the simulation to identify a “safe” rater design.
Furthermore, it is important that not all studies will focus on comparably large numbers of
products to be rated. Some studies may require only very few (or at least much fewer) ratings
instead. For such situations one might further consider technical issues such as problems with
model convergence, for example. In such situations the target model might not be estimable and
it would be very useful to anticipate approaches to deal with such issues. For example, one
could increase the number of iterations, focus on less complex models (i.e., models that require
less parameters to be estimated), or use Bayesian estimation with somewhat informative priors.
As a final remark it should be noted that there could be a trade-off between the number of
Likert-points used by the raters and model complexity. While more scale points provide more
information and potentially increase reliability, the estimated models would incorporate more
parameters (e.g., intercept parameters in the GPCM) to be estimated.

Conclusion

Human ratings are ubiquitous in creativity research which makes running studies a
laborious endeavor. In this work, we have demonstrated how information obtained from JRT
and simulations can be used for a fine-tuned planning of missing data designs that reduce the

amount of work needed for reliable scoring. We have further shown how such a careful
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planning further translates into cost-effectiveness considerations. Hence, we anticipate that the
outlined approach will be of great practical value for the field and invite interested researchers
to explore and use the material we made available. This way, research money—and a lot of

time—will be saved for all of us.
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