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Abstract 

Human ratings are ubiquitous in creativity research. Yet the process of rating responses 

to creativity tasks—typically several hundred or thousands of responses, per rater—is 

often time consuming and expensive. Planned missing data designs, where raters only 

rate a subset of the total number of responses, have been recently proposed as one 

possible solution to decrease overall rating time and monetary costs. However, 

researchers also need ratings that adhere to psychometric standards, such as a certain 

degree of reliability, and psychometric work with planned missing designs is currently 

lacking in the literature. In this work, we introduce how judge response theory and 

simulations can be used to fine-tune planning of missing data designs. We provide open 

code for the community and illustrate our proposed approach by a cost-effectiveness 

calculation based on a realistic example. We clearly show that fine tuning helps to save 

time (to perform the ratings) and monetary costs, while simultaneously targeting 

expected levels of reliability.  

 

Keywords: creativity assessment; human ratings; judge response theory; planned missing data
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Planning Missing Data Designs for Human Ratings in Creativity Research: A Practical 

Guide 

Human ratings are ubiquitous in creativity research. Beginning with early work by 

Guilford, which required human judges for the scoring of creative thinking performance (P. R. 

Christensen et al., 1957; Wilson et al., 1953), to Amabile’s Consensual Assessment Technique 

(CAT) for the assessment of creative products (Amabile, 1982), and more recently, to creative 

thinking assessment of divergent thinking (Benedek et al., 2013; Forthmann et al., 2017; Silvia 

et al., 2008), creative metaphor (Beaty & Silvia, 2013; Primi, 2014) or humor production (A. P. 

Christensen et al., 2018; Nusbaum et al., 2017), human ratings seemingly follow a long tradition 

of being indispensable for the assessment of creativity. In a sense, they are considered a gold 

standard in creativity research. This status of human ratings is further emphasized by the fact 

that most recent attempts of automated scoring of creative thinking aim at the prediction of 

human ratings (Beaty & Johnson, 2021; Buczak et al., 2022; Dumas et al., 2020; Stevenson et 

al., 2020). Automated scoring is motivated by the fact that human ratings are associated with 

two drawbacks: scoring might be affected by various idiosyncrasies of raters (Mouchiroud & 

Lubart, 2001; Robitzsch & Steinfeld, 2018), and scoring of creativity tasks by human raters 

does not always result in agreements between raters (Forthmann et al., 2017), but is very 

laborious and may even take weeks (Benedek et al., 2013; Shaw, 2021; Silvia et al., 2009).  

The current work addresses the latter issue by demonstrating how Judge Response 

Theory (JRT; (Myszkowski, 2021; Myszkowski & Storme, 2019)—i.e., the application of item 

response modeling to human ratings in creativity research—and simulation techniques can be 

leveraged for effective distribution of rater work (i.e., by means of a planned missing data 

design), while at the same time a sufficient degree of measurement precision of the final scores 

is to be expected. Such a careful planning approach to rating designs can reduce the amount of 

coding work put on the shoulder of raters (preventing adverse effects of rater fatigue; e.g., 

(Forthmann et al., 2017), allows the overall coding task being finished in comparably less time 

(i.e., compared to having all products rated by all available raters), and provides an empirical 
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rationale for saving valuable project money. We argue that such work will be highly useful for 

the field as long as automated scorings are not yet fully available for all creativity measures that 

typically require human ratings. 

Human Ratings in Creativity Research 

Roughly speaking, creativity refers to the novelty and usefulness of a perceptible 

product (Plucker et al., 2004). This notion of creativity as a property of perceptible products is 

important for the current work, because it is open to encompass rather small expressions of 

thought. From this perspective, products include responses generated in a divergent thinking 

task (Runco et al., 2001), a list of ideas obtained from a small-group brainstorming session 

(Reinig & Briggs, 2013), a written story (Kornilov et al., 2016; Taylor & Barbot, 2021), 

responses to a scientific creative thinking task (Long, 2014; Long & Pang, 2015), as well as 

drawings or a design for furniture. Indeed, all these kinds of products are rated by human judges 

in creativity research which highlights the broad range of usage contexts of human rater scores. 

Beyond the product, it is important to look at the samples of raters used. For example, 

the famous consensual assessment technique (Amabile, 1982) is considered a valid measure of 

creativity because experts of the respective product domain assess a product’s creativity (e.g., 

furniture designers rate the creativity of furniture designs). However, quasi-experts (e.g., design 

students which are not yet fully developed experts; (Kaufman et al., 2013) have also been 

sampled for providing creativity ratings as well as laypersons (also named novices or naïve 

raters; (Hass et al., 2018; Kaufman et al., 2013). While researchers have cautioned against using 

other than expert samples, empirical work suggests that laypersons may provide valid and 

reliable ratings when adequately prepared for the rating task (Hass et al., 2018; Storme et al., 

2014). Either way, rater-characteristics should be taken into account when considering the 

provided responses in sophisticated statistical models (Myszkowski & Storme, 2019; Primi et 

al., 2019; Robitzsch & Steinfeld, 2018). 

When considering the full product range, it becomes further clear that for some products 

(e.g., responses generated in divergent thinking tasks) no group of experts is readily available. 
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Who can be reasonably considered being an expert on how to creatively use a spoon? In such 

situations, raters are typically equipped with a more extensive coding guide instructing them 

that more creative responses tend to be uncommon, remote, and clever (Silvia et al., 2008). 

These three classical indicators of originality were already used by Guilford and colleagues for 

the scoring of divergent thinking tasks (Wilson et al., 1953). For example, responses for the Plot 

Titles task were scored for cleverness, whereas responses to the Consequences task were judged 

by human raters for their remoteness (P. R. Christensen et al., 1957). Similar scores as obtained 

by human ratings were used for tasks requiring the production of creative metaphors or humor 

(Beaty & Silvia, 2013; A. P. Christensen et al., 2018; Nusbaum et al., 2017; Primi, 2014). 

Beyond these various characteristics of human ratings such as the type of products to 

rate, the sample of raters, or the scoring dimensions which differ from study to study, there is 

one common aspect of all such rating tasks that should be emphasized: the high workload put on 

the raters. For example, in a study focusing on divergent thinking, thousands of ratings might be 

needed (Kleinkorres et al., 2021) and researchers have already considered approaches to reduce 

the amount of work this brings along. For example, rating all responses generated by a 

participant at once (i.e., the full response set and not each response separately) has been 

proposed to reduce overall rating time (Shaw, 2021; Silvia et al., 2009), but scoring all 

responses at once comes along with the need to rate a comparably more complex product (i.e., 

all responses vs. only one response) and it has been shown that increasing complexity of sets of 

responses is associated with larger rater disagreement (Forthmann et al., 2017). In addition, 

scoring all responses is not an option if the focus of a study is the level of responses (Silvia et 

al., 2009).  

A more sophisticated approach that reduces the burden on raters is to rely on planned 

missing data designs (Graham, 2009) which allow for unbiased estimation of creativity scores 

based on the response level. In fact, these designs take advantage of a reduced amount of 

information per rater without relying on a single data point by treating each response for what it 

is: an individual behavioral outcome to a given task. In the case of creativity research, these can 
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be referred to as products. Notably, there are applications of planned missing data designs in 

creativity research (Barbot, 2020; Fürst, 2020; Primi et al., 2019). For example, Barbot (2020) 

merged different datasets in which some measures were in common and added another dataset, 

as a type of a linking sample to increase covariance coverage. Hence, his approach of 

integrative data analysis was highly similar with a planned missing data design. In addition, 

Fürst (2020) employed a planned missing data design for a more efficient, yet comprehensive, 

assessment of creative potential. While Barbot (2020) and Fürst (2020) used structural equation 

modeling and full information maximum likelihood estimation to handle missing data, Primi et 

al. (2019) examined simulated missing data patterns in the context of many facet Rasch 

modeling.  

Psychometric Modeling of Human Ratings 

 Judge response theory (JRT) refers to the adaptation of polytomous item response 

theory models [e.g., the graded response model (Samejima, 1969) or the generalized partial 

credit model (Muraki, 1992)] for human ratings in the context of creativity research 

(Myszkowski, 2021; Myszkowski & Storme, 2019). JRT explicitly models differences in the 

rating behavior of human judges as reflected by severity (or leniency) effects and differences 

between raters with respect to their discrimination parameter. The considered unit of 

measurement in JRT is situated at the product level. Products must be conceptualized very 

broadly for the context of the current work. For example, one might consider more complex 

products such as newly designed electronic devices or very simple expressions of thought (e.g., 

a response generated within the context of creative thinking testing). Following Plucker et al. 

(2004) and Runco et al. (2001), we use the term ‘product’ in its broadest sense referring to 

something that is perceptible. With availability of ratings for each of the products in a given 

dataset, JRT as implemented in the R package jrt (Myszkowski, 2021) is a powerful tool for 

estimation of rater parameters and reliability. The jrt package uses the mirt package (Chalmers, 

2012) for multidimensional item response theory modeling as estimation engine. The mirt 
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package provides fast estimation algorithms (also when missing data are present) and it also 

includes highly efficient functions for simulation studies. 

 Specifically, the default setting of the jrt() function (i.e., the main function of the jrt 

package) fits various unidimensional polytomous item response theory models to the rating data 

and chooses the best fitting model (Myszkowski, 2021). The best fitting model is chosen based 

on the Akaike information criterion (AIC; Akaike, 1973) which combines a model’s likelihood 

and a penalty for model complexity to emphasize that a useful model should be parsimonious 

and fit to the data. Smaller AIC values imply better model fit, while model parsimony is also 

taken into account. Consequently, in the jrt() function the model with the lowest AIC is chosen. 

In addition, it provides classical inter-rater agreement statistics such as intra-class correlations 

and also model-based empirical reliability estimates along with estimates of the latent creative 

quality for each of the products in the datasets. Here, reliability refers to the estimated squared 

correlation between the estimated latent creative quality [i.e., the factor scores provided by the 

jrt() function] and true latent creative quality. The square-root of this estimate is also known as 

factor determinacy index (FDI) in the literature on factor analysis. Hence, the FDI is an estimate 

of the correlation between the factor scores obtained for the rated products and the true factor 

scores. For both types of indices (i.e., reliability and FDI), cut-offs for research and practical 

assessment contexts exist and such cut-offs should be considered when planning a study 

involving creativity ratings. For a research project, the rating design could be planned towards a 

target FDI of .80 (Ferrando & Lorenzo-Seva, 2018), for example. Although we appreciate that 

such cut-offs are frequently subject of debate, and rightfully so, they offer a pragmatic 

benchmark that can be easily tested against.  

 In general, the recruitment of human raters is hard, and especially so in the case of 

rating creativity data, because rating creativity data is less of a trivial task as compared to other 

rating ventures. Further, the recruitment of human judges might be limited due to monetary 

reasons, for example, because the available project budget might be already exhausted. 

Regardless, researchers will be interested in getting the job done in the most pragmatic way: 
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with the least amount of time and money spent, while still obtaining high-quality data (i.e., 

reliable ratings that approximate the true ability of a participant).  

Such a dataset that needs rating might for example include 5000 products (e.g., 

divergent thinking test responses). If we assume 500 responses can be rated (without rushing) in 

1 hour (i.e., on average 7.2 seconds per response) and each rater receives $10 per hour of work, 

this would equal $100 per rater for rating the full response set. Obviously, costs increase with 

the number of raters that are employed for the task, and as the raters will usually not work in 

full synchronicity, the temporal aspect need not be forgotten either.  

The number of raters depends, as mentioned above, on various considerations and, in a 

best-case scenario, should be chosen on the basis of empirical reasoning. For example, an 

arguably well-defined criterion would be to adhere to the afore-mentioned .80 FDI cut-off (i.e., 

FDI > .80), in order to ensure sufficient reliability for further analysis. If the most likely model 

and typical model parameters for the target rater population and the target product population 

are known (at least reasonable “guesstimates” are needed, which could also rely on experiences 

with similar data), it is possible to leverage mirt’s simulation functionality to answer such 

questions of rater design (i.e., how many raters are needed?).  

Based on a simulation study, an expected FDI can be obtained. In the same vein, we 

obtain information regarding the number of raters and how many responses are rated by how 

many raters. Hence, the expected measurement precision and how much it would cost can be 

determined a priori. For example, based on the above calculations, it might be that a cut-off of 

.80 for the FDI will be surpassed with 3 raters which implies costs of $300. However, it might 

take 10 raters to surpass a cut-off of .90 and a much higher budget of $1000 would then be 

needed. Although the costs for the respective number of raters could have been easily calculated 

before, the simulation study extends the provided information by an estimate regarding the FDI, 

and thus the reliability of the obtained ratings. This information provides real value to 

researchers, as this enables them to consider trade-offs between monetary and temporal costs, 

and measurement precision. 
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To further refine planning of rater design, it is also highly useful that mirt models can 

be estimated for planned missing data designs (e.g., Fürst, 2018). For example, it is possible to 

simulate data that account for specific levels of missingness (e.g., one rating less for 20% of all 

responses). This functionality can thus be used in a pragmatic way to further reduce costs 

without sacrificing too much measurement precision. By means of planned missing data 

designs, rating designs can be efficiently and effectively planned towards both a target level of 

measurement precision and an available budget. Similarly, missing data designs could be used 

for planning towards a given due date at which the ratings must be available for further data 

analysis. 

The Present Research 

         The goal of the current work is to introduce simulation-based planning of rating designs 

that (a) incorporate planned missingness designs, and (b) allow for an effective outweighing of a 

target level of measurement precision and monetary costs (or costs in terms of time, when 

approaching a due date). We argue that this work will be helpful for researchers studying 

creativity, as it provides a practical example on how to use planned missing rating designs for 

their own purposes. To this end, we illustrate the usefulness of this approach based on a realistic 

planning scenario when layperson ratings are to be used for scoring of an Alternate Uses Task 

(e.g., Hass et al., 2018). 

Method 

 The empirical part of this work comprises of (a) an initial analysis of rating data and (b) 

a simulation study to inform planning of a missing data design. The first part was needed to 

derive a realistic simulation model and ranges for model parameters (e.g., discrimination 

parameters), whereas the second part was needed to see which planned missing data designs 

work well with respect to psychometric as well as cost-effectiveness criteria. Importantly, the 

empirical part should be understood as providing proof-of-concept on how to implement the 

approach for planning a missing data design for human ratings. As such, all reported findings 

are limited to the rater population that was sampled and the Alternate Uses Task as a measure of 
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creative thinking, for example. Thus, we strongly recommend caution when interpreting the 

current findings. Especially, for other rater populations, other populations from which 

participants are sampled from, and other creativity measures, we recommend to contextualize 

and redo all steps outlined in this work.   

Dataset 

We first tested different rater models on an available dataset. The dataset included 3236 

responses generated by N = 209 participants on two different Alternate Uses Tasks (using the 

words box and rope, respectively). Participants had two minutes to complete each of the tasks 

and were instructed to be creative. Each response was rated by three raters (undergraduate 

students majoring in psychology) using the subjective scoring method guidelines for divergent 

thinking (https://osf.io/vie7s). Following these guidelines, the raters used a 5-point Likert-scale. 

According to Cicchetti’s criteria (Cicchetti, 2001), inter-rater reliabilities were fair in terms of 

absolute agreement (ICC = .42, 95%-CI: [.02, .63]) and consistency (ICC = .56, 95%-CI: [.53, 

.58]). The study was approved by the Institutional Review Board of The Pennsylvania State 

University. All participants gave informed consent to participate in the study. 

Obtaining a Realistic Rater Model 

Before a simulation can be set up for planning of a rating design, a reasonable 

simulation model and a realistic range of rater parameters (i.e., parameters related to raters’ 

severity and discrimination between products) ought to be found. We used the jrt() function 

from the jrt package (Myszkowski, 2021) which is implemented in the statistical software R (R 

Core Team, 2021). This way, the best fitting polytomous IRT model was determined based on 

the Akaike Information Criterion and AIC-based model weights (Wagenmakers & Farrell, 

2004). The parameter estimates from the best fitting model were then used to construct an 

empirically justified simulation setup. Model comparison results of all computed models as to 

the default function of jrt() can be found in Table S1 in the online supplemental material 

(https://osf.io/7b9z5/?view_only=902f015df3304dfbae60a4c06eb66c70).  
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The best fitting model was the generalized partial credit model (Muraki, 1992). As this 

model will be used for the simulation below, it is worthwhile to consider its model equation 

𝑃(𝑋 =  𝑘 | 𝜃𝑖, 𝛼𝑗, 𝑑𝑗) =
exp[𝑎𝑘𝑘−1(𝑎∗𝜃)+𝑑𝑘−1]

∑ exp[𝑎𝑘𝑣−1(𝑎∗𝜃)+𝑑𝑣−1]𝐾
𝑣=1

 ,    (1) 

with θi being the latent score for response i, αj being the discrimination parameter of rater j, dj 

being the intercept vector of rater j, and akk being constraint to 0, 1,…, K-1 (with K being the 

number of response categories). In addition, I refers to the number of responses in the context of 

this work, and J to the number of raters. This parameterization of the GPCM is implemented in 

the mirt package (Chalmers, 2012) and commonly referred to as the slope-intercept 

parameterization (Matlock et al., 2018). The model is further identified by assuming that the 

latent response scores are N(0,1) distributed. Given that the data at hand had five response 

categories (i.e., K = 5), there were K-1 = 4 intercept parameters for each of the three raters (i.e., 

d1j, d2j, d3j, and d4j with j = 1,…, J), and three discrimination parameters (i.e., α1, α2, and α3). The 

estimated model parameters for each rater are shown in Table 1. For example, Rater 2 was 

found to have a much higher discrimination parameter as compared to Rater 1 and Rater 3 

which means that this rater was much better in distinguishing highly creative responses from 

less creative responses. In addition, for Rater 2 by far the lowest intercept parameters were 

obtained which means that this rater was the most severe during the rater process. Rater 1 and 

Rater 3 were much more lenient in their ratings with Rater 1 being the most lenient one in this 

rater sample (c.f., Table 1).  

Table 1 

Rater Parameter Estimates based on the Generalized Partial Credit Model 

Parameter Rater 1 Rater 2 Rater 3 

αj α1 = 0.72 α2 = 1.83 α3 = 0.77 

d1j d11 = 3.84 d12 = -1.66 d13 = 1.67 

d2j d21 = 3.53 d22 = -3.76 d23 = 1.03 

d3j d31 = 1.92 d32 = -7.52 d33 = -0.89 

d4j d41 = -1.16 d42 = -13.42 d43 = -3.79 
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Note. α = discrimination parameter, d = intercept. The response category curves for all three 

raters can be found in Figure S1 in the online supplemental material 

(https://osf.io/7b9z5/?view_only=902f015df3304dfbae60a4c06eb66c70).  

Simulations 

Construction of Planned Missing Data Matrices 

 In this work, we focus on matrix planned missing data designs (Silvia et al., 2014) 

because they allow equal distribution of work across available raters. We constructed the 

designs the following way: 

1. We obtained all possible combinations of raters based on the overall number of raters 

and the target number of ratings per response. The combinations were calculated by 

means of the CombSet() function from the DescTools R package (Signorell, 2021). For 

example, for three available raters and two ratings per response there would be three 

possible combinations of raters: {{Rater 1, Rater 2}, {Rater 1, Rater 3}, {Rater 2, Rater 

3}}.  

2. We determined how many rows in the planned missing data matrix should be rated by 

each of the combinations obtained from Step 1. This was obtained by the floor function 

of the ratio of overall number of responses and the number of combinations obtained 

from Step 1. If the number of responses exceeded this number the last combinations 

were randomly sampled with replacement from all possible combinations. 

3. The matrix planned missing data designs obtained from Step 2 were further reduced or 

increased as a final optional step. A reduced design was obtained by randomly setting a 

planned rating to a planned missing value for a fixed percentage of responses. 

Analogously, an increased design was obtained by randomly setting a planned missing 

value to a planned rating for a fixed percentage of responses. Responses were also 

chosen randomly for both types of designs. 

Design 
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 In our simulation design, we varied the number of raters (2 vs. 3 vs. 4 vs. 5) and the 

number of responses rated by each rater (2 vs. 3 vs. 4 vs. 5) resulting in 10 possible design cells 

(i.e., 5 ratings were only possible with 5 raters; see also Figure 1 below). The number of 

possible raters adheres to numbers of raters usually used for research purposes. In addition, we 

crossed this design with different percentages (20% vs. 40% vs. 60% vs. 80%) to reduce the 

number of ratings needed which resulted in 40 additional design cells. Decreasing a design with 

3 ratings per response by 20%, for example, means that 20% of the responses will receive only 

2 ratings per response. The responses and the rater who would not rate the response anymore 

were chosen randomly. Analogously, we crossed the design with different percentages (20% vs. 

40% vs. 60% vs. 80%) to increase the number of ratings needed which resulted in another 24 

additional design cells. Thus, here we did not combine cells with increasing percentages in 

which the number of raters equals the number of ratings (i.e., all complete designs). It should be 

noted, however, that increasing a complete design with two raters by 20% would also result 

from reducing a complete three rater design by 80% (which is already included). Increasing a 

design with 3 ratings per response by 20%, for example, means that 20% of the responses will 

receive 4 ratings per response. The responses and the rater who would rate this additional 

response were also chosen randomly. Thus, overall 74 different design cells were simulated. 

Data Generation 

 We used the simdata() function from the mirt package (Chalmers, 2012) for data 

generation. First, we sampled latent response scores from a N(0, 1) distribution. Discrimination 

parameters were sampled from a U(0.72, 1.83) distribution (i.e., the range was taken from the 

estimates reported in Table 1). The intercept parameters were sampled as follows: first, we 

calculated the average across each rater’s intercept parameters to reflect rater easiness. Then, we 

sampled from a U(-6.59, 2.03) to reflect rater easiness. Next, we subtracted each rater’s easiness 

from their four intercept parameters for centered intercept parameters. Each of the four centered 

intercept parameters was averaged across raters and used to construct a sampling rationale for 

the four intercept parameters. The d1 parameter was sampled from U(2.97, 4.93) with 2.97 being 
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the average centered d1 parameter across raters and 4.93 being the maximum of the centered d1 

parameters. The d2 parameter was sampled from U(1.95, 2.97) and the d3 parameter from U(-

0.48, 1.94) with the lower bounds here being the average centered intercept parameters, 

respectively. Finally, the d4 parameter was sampled from U(-6.83, -0.49) with -6.83 being the 

minimum of the centered d4 parameters. The sampled easiness and the sampled centered 

intercept parameters were added up to yield the intercept parameters for data generation. For 

each cell we simulated 500 replications of 1000 AUT responses (e.g., approximating an 

assessment context in which for n = 100 participants ten responses are to be expected on 

average). The average correlation across replications between the estimated latent response 

scores (based on the expected a-posteriori method; EAP) and the true latent response scores was 

our main dependent variable in this simulation. We further obtained the standard deviations and 

the standard errors of the correlations as an indicator of sampling variability. The R code to 

reproduce all reported results in this work is openly available via the Open Science Framework 

(https://osf.io/7b9z5/?view_only=902f015df3304dfbae60a4c06eb66c70). 

Results and Discussion 

Simulation-Based Planning of a Rater Design 

 The reported findings from our simulation study serve the purpose of making readers 

familiar with interpreting findings obtained by the proposed approach for planning of missing 

data designs. In addition, we report the findings quite comprehensively so that interested 

researchers get an impression of how one might adjust simulation-based planning (e.g., by 

decreasing or increasing the number of rated responses for a proportion of raters) in ways that 

improve initially unsuccessful designs. For example, a design could be considered as 

unsuccessful when reliability is far above a target cut-off (the efficiency of the design can still 

be improved) or still below such a target cut-off (the expected psychometric quality must be 

improved). 

First, we present the results of the full-data simulations, where either all raters rated all 

responses, or all responses were rated by n-1 raters in Figure 1. We observed a clear main effect 
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for the number of ratings per response. Although the confidence intervals for all simulations 

supposing three ratings per response include the defined target level (r = .8) of the correlation 

between latent score estimates and their true values, on average this specific target level is not 

surpassed under this condition (i.e., three ratings per response). This holds independent of the 

number of raters that were specified. In order to exceed the defined target level of r = .8, at least 

four ratings per response would be needed, which corresponds to employing at least four 

independent raters. 

Figure 1 

Results of Full Design Simulations 

 

Note. Each point is based on 500 replications and 1000 responses in each replication. The red 

dotted line at .80 on the y-axis refers to the common cut-off for the correlation between latent 

score estimates and their true values. When the correlation surpasses this cut-off, latent score 

estimates display high enough measurement precision for research purposes (Ferrando & 

Lorenzo-Seva, 2018).  

 

 Next, we present the results of the planned-missingness data simulations, where in each 

simulation the ratings per response of the full dataset were reduced by either 20%, 40%, 60%, or 
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80% (Figure 2). Again, decreasing a design with 3 ratings per response by 20%, for example, 

means that 20% of the responses will receive only 2 ratings per response. Again, we observed a 

clear main effect for the number of ratings per response. However, although again at least four 

ratings per response yield the best results in terms of surpassing the a priori defined correlation 

of .80, further reducing the relative amount of responses that need to be rated at least four times, 

does not impair the estimated correlations very much. On the contrary, reducing the responses 

needed to be rated by all four raters by 60% still leaves enough information in the data to 

surpass the target level of r = .80. This finding can be readily translated to a monetary 

advantage, as not all raters have to rate all of the responses, but sufficient reliability is still 

achieved. 

 

Figure 2 

Results of Reduced Design Simulations 

 

Note. Reduction = % of total responses that are rated by n - 1 raters. The red dotted line at .80 

on the y-axis refers to the common cut-off for the correlation between latent score estimates and 
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their true values. When the correlation surpasses this cut-off, latent score estimates display high 

enough measurement precision for research purposes (Ferrando & Lorenzo-Seva, 2018). 

 

 Lastly for this section, we show the results of the planned-missingness data simulations, 

where in each simulation the ratings per response of the full dataset were increased by either 

20%, 40%, 60%, or 80% (Figure 3). In these simulations, the previously observed main effect of 

number of ratings per response remained. We were not able to identify any substantial effects 

that go beyond this main effect; the confidence intervals of all remaining simulation cells were 

overlapping. Increasing the responses needed to be rated by a given set of raters slightly 

increases the observed correlation, but according to the here provided data the differences might 

be negligible. 

Figure 3 

Results of Increased Design Simulations 

 

Note. Increase = % of total responses that are rated by n + 1 raters. The red dotted line at .80 on 

the y-axis refers to the common cut-off for the correlation between latent score estimates and 

their true values. When the correlation surpasses this cut-off, latent score estimates display high 

enough measurement precision for research purposes (Ferrando & Lorenzo-Seva, 2018). 
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Cost-Effectiveness Calculations 

In this section, we provide some insights into possible cost-effectiveness calculations, 

that is, considerations regarding a trade-off between measurement precision and monetary costs. 

To do so, we first provide a set of assumptions for our calculations: We assume that a layperson 

rater, who is properly trained via a short, written instruction regarding what is expected of them, 

can rate about 500 responses per hour. This equals 7.2 seconds per response, but this estimate 

seems reasonable given that raters will usually accelerate the rating process over time and with 

every response. For sake of the argument, we also assume that raters are paid $10 per every 

hour of work. In the current case, we further assume that instructing a rater does not count as 

time spent working; after all, we would like to provide relatively pure estimations only 

regarding the rating process itself. In addition to that, we base but not constrain our calculations 

to the assumption that any given number of raters can work perfectly parallel to each other. 

Although this assumption will be rarely met in reality, it will help to illustrate the inherent 

advantages of using certain planned-missingness rater designs. For our first example, we will 

further assume that four human raters can be appointed to rating data of an Alternate Uses Task 

with 1000 responses in total. We aim at illustrating the process that can be applied to decide for 

one or the other planned-missingness rater design. 

In Table 2, we provide a complete overview of all relevant parameters important for 

deciding for a rater design. Each row of the table refers to a unique (planned-missingness) rater 

design. We explicitly report the number of total raters; the given ratings per response; whether 

the full, an increased, or a reduced dataset was used; how many responses were assigned to each 

rater; what the mean and the standard deviation of the obtained correlation was; how much 

money a specific design translates; and the estimated rating time in total and per rater (which 

would also equal the total rating time for all four raters, if all of them would be working 

perfectly parallel).  
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Table 2  

Example of Cost-Effectiveness Calculations 

NRaters Ratings 

per 

Response 

Condition RangeResponses 

per Rater 

Mr SDr Estimated 

Costs 

Estimated 

Timetotal 

in h 

Estimated 

Timeper Rater 

in h 

4 4 Full 1000 .832 .116 $80.00 8.00 2.00 

4 4 reduction 

(20%) 

940-957 .828 .113 $76.00 7.60 1.90 

4 4 reduction 

(40%) 

891-913 .819 .109 $72.00 7.20 1.80 

4 4 reduction 

(60%) 

831-864 .808 .109 $68.00 6.80 1.70 

4 4 reduction 

(80%) 

782-809 .804 .105 $64.00 6.40 1.60 

4 3 increase 

(20%) 

758-802 .801 .105 $62.12 6.21 1.55 

4 3 increase 

(40%) 

776-860 .804 .106 $64.20 6.42 1.61 

4 3 increase 

(60%) 

779-914 .808 .107 $66.50 6.65 1.66 

4 3 increase 

(80%) 

804-956 .810 .109 $68.70 6.87 1.72 

Note. Reduction = % of total responses that are rated by n - 1 raters.  Increase = % of total 

responses that are rated by n + 1 raters. An extended version of this table including much more 

simulated conditions can be found in Table S2 in the online supplemental material file in the 

OSF repository (https://osf.io/7b9z5/?view_only=902f015df3304dfbae60a4c06eb66c70). 

 

For example, while having the full data set rated by all four raters (i.e., 1000 responses 

per rater) would cost $80 and, on average, yield a correlation of .83 between latent score 

estimates and their true scores; using a design that supposes only 3 ratings per response, with an 
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increase of one more rating per response for only 20% of the data, would reduce the total 

estimated costs by > ⅕ (i.e., ~22.5%), and still yields a correlation of r = .80. This reduction in 

monetary costs is obviously also reflected in the time that is needed to obtain all necessary 

ratings; that is, instead of 8h of scoring for the full data, implementing the planned missingness 

design of the provided example results in a total time of 6.2h.  

It can be argued that this reduction of monetary and temporal costs by 22.5% could be 

understood as both a relative and an absolute increase of cost-effectiveness. Whereas in our 

example with 1000 responses, the absolute cost reduction of the planned missingness rating 

design can seem negligible in the light of huge research grants, or when researchers only plan 

on rating one creativity task like the Alternate Uses Task, the inherent benefit of these planned 

designs becomes clearer, when a larger scale is considered.  

For example, consider a large online-panel study assessing creativity by means of a 

two-item Alternate Uses Task with 1000 participants. If we assume that each participant, on 

average, provides 10 responses per item, a huge dataset with 20,000 responses would be 

obtained. Appointing four raters to rate all of the responses would result in costs of $1,600 (40h 

of work per rater) and take a considerable amount of time, as rating creativity responses is 

usually not a full-time job and moreover exhausting for the raters (fatigue). If the design 

mentioned above would be applied to this situation (3 ratings per response, with an increase of 

one more rating per response for only 20% of the data), the relative decrease of costs would of 

course remain the same, but in terms of absolute numbers the cost decrease would add up to 

$360, which sometimes is the price of attending a conference to present the results of a study. In 

addition, of course the time for each rater working on their rating would decrease considerably 

(9h - which is longer than the time spent working in an ordinary 9-5 job).   

Summary and Recommendations 

 In this work we proposed a simulation-based approach for effective planning of rater 

designs with missing data. We demonstrated in an empirical proof of concept illustration how a 

reasonable simulation model can be obtained from existing data, how simulations can be used to 
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fine tune the planned design, and how based on these simulations cost-benefit analysis can be 

done when project budget and/or time are limited resources. Specifically, we used available 

rating data for responses on the Alternate Uses task and found by means of the the jrt package 

(Myszkowski, 2021) that the GPCM fitted these data best. Hence, we used the GPCM and the 

obtained parameter estimates for informing simulation-based planning. Then, our simulation 

implies strategies that are useful for fine-tuning the planned missing values design: run 

simulations with full data designs and varying numbers of raters, identify the full data designs 

that are closest to a target level of the correlation between estimated and true factor scores (e.g., 

.80), and finally increase or decrease the number of ratings per response for a certain proportion 

of randomly chosen responses.  

Importantly, we have shown that even in situations in which ratings might not be too 

expensive in terms of monetary costs, enough money could be saved that allows a doctoral 

student, for example, to go to a conference. Clearly, in case that experts are needed as raters for 

a study the planning approach outlined in this paper is expected to result in even greater savings, 

because expert raters are much more expensive; for example, architects that would be hired to 

rate construction designs provided by participants of a study on architectural creativity. 

 We strongly recommend that researchers use this approach—adapted to the context of 

their studies—for the case that that human ratings of creative products are involved to ensure 

the quality of final scores based on planned missing data designs. We provide the needed R 

code for simulation-based planning in an openly accessible repository 

(https://osf.io/7b9z5/?view_only=902f015df3304dfbae60a4c06eb66c70) to facilitate this step 

for researchers who are not yet familiar with the software used in this work. However, having 

planned a missing data rating design implies that further steps are needed. 

 As a final step, one would reevaluate the best fitting model of the obtained ratings by 

means of the jrt package. Of course, the more is known about the target rater population (e.g., 

laypersons for rating divergent thinking responses), the unlikelier it will be that the JRT model 

fitting the data best will deviate from the anticipated model in the planning phase. However, as 
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in our illustration here one might have only three raters available for setting up a reasonable 

simulation model (or even no data at all). In such situations the final data could better fit to a 

different model which should then be used for deriving final latent scores. Furthermore, also the 

finally achieved reliability of the scores should be reevaluated to check if the rating process 

resulted in the anticipated level of measurement precision and/or if the level of measurement 

precision is high enough for the purpose of measurement (Ferrando & Lorenzo-Seva, 2018). We 

recommend to check the square-root of empirical reliability of the final scores which provides 

an estimate of the correlation between estimated latent response scores and the true responses. 

Limitations and Future Directions 

 The dataset we used in our study for illustration and for a hypothetical planning 

scenario might not have been comprehensive. Additional complexities are expected to arise 

when, for example, model parameters for each rater differ as a function of the task for which the 

ratings are needed. For example, in the used dataset, participants generated responses for two 

different AUT objects (i.e., box and rope) and we ignored that discrimination and intercept 

parameters in the GPCM could differ between both objects. Such differences could be 

considered during the simulation by means of using a multiple group model with as many 

groups as there are tasks in the planned study. However, such a more complex simulation would 

only make sense when enough empirical evidence for a mostly non-overlapping parameter 

range between the tasks is available. Of course, this knowledge can only be gained if such 

differences in parameters are evaluated and this can be nicely done at the stage of reevaluating 

model fit and reliability of the final ratings. 

 The outlined empirical example is further limited to a range of matrix planned missing 

data designs (Silvia et al., 2014). This design type is attractive as it will likely result in a well 

linked sample which guarantees unbiased parameter and latent score estimation. However, there 

are other designs that might be as attractive for a rating study. For example, Fürst (2020) used a 

design in which two raters (out of five for one of the tasks) rated all responses, whereas three 

other raters provided two ratings per response in a full matrix design. Of course, such designs 
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come with their own disadvantages, namely that at least some raters are experiencing the full 

burden of the rating task. With that being said, we recommend researchers choosing their rating 

design also based on the expected work load of the single raters and take into consideration the 

experience of their raters. In addition, it is arguably a good idea to check a simulation even in 

situations that allows all raters to rate all responses, just to make sure study planning is sound. 

The open material we provide along with this paper can be easily extended to such other 

designs. 

 Furthermore, the designs considered in this work can be easily extended by anticipating 

other missing value issues (e.g., missing values because of study drop-out of participants). For 

example, when assuming that a certain proportion of responses will be missing completely at 

random, it is possible to incorporate this in the simulation to identify a “safe” rater design. 

Furthermore, it is important that not all studies will focus on comparably large numbers of 

products to be rated. Some studies may require only very few (or at least much fewer) ratings 

instead. For such situations one might further consider technical issues such as problems with 

model convergence, for example. In such situations the target model might not be estimable and 

it would be very useful to anticipate approaches to deal with such issues. For example, one 

could increase the number of iterations, focus on less complex models (i.e., models that require 

less parameters to be estimated), or use Bayesian estimation with somewhat informative priors. 

As a final remark it should be noted that there could be a trade-off between the number of 

Likert-points used by the raters and model complexity. While more scale points provide more 

information and potentially increase reliability, the estimated models would incorporate more 

parameters (e.g., intercept parameters in the GPCM) to be estimated. 

Conclusion 

Human ratings are ubiquitous in creativity research which makes running studies a 

laborious endeavor. In this work, we have demonstrated how information obtained from JRT 

and simulations can be used for a fine-tuned planning of missing data designs that reduce the 

amount of work needed for reliable scoring. We have further shown how such a careful 
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planning further translates into cost-effectiveness considerations. Hence, we anticipate that the 

outlined approach will be of great practical value for the field and invite interested researchers 

to explore and use the material we made available. This way, research money—and a lot of 

time—will be saved for all of us.
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