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Abstract: Standard learning assessments like multiple-choice questions measure what students
know but not how their knowledge is organized. Recent advances in cognitive network science pro-
vide quantitative tools for modeling the structure of semantic memory, revealing key learning
mechanisms. In two studies, we examined the semantic memory networks of undergraduate stu-
dents enrolled in an introductory psychology course. In study 1, we administered a cumulative
multiple-choice test of psychology knowledge, the Intro Psych Test, at the end of the course. To
estimate semantic memory networks, we administered two verbal fluency tasks: domain-specific
fluency (naming psychology concepts) and domain-general fluency (naming animals). Based on
their performance on the Intro Psych Test, we categorized students into a high-knowledge or low-
knowledge group, and compared their semantic memory networks. Study 1 (N = 213) found that
the high-knowledge group had semantic memory networks that were more clustered, with shorter
distances between concepts—across both the domain-specific (psychology) and domain-general
(animal) categories —compared to the low-knowledge group. In Study 2 (n =145), we replicated and
extended these findings in a longitudinal study, collecting data near the start and end of the semes-
ter. In addition to replicating Study 1, we found the semantic memory networks of high-knowledge
students became more interconnected over time, across both domain-general and domain-specific
categories. These findings suggest successful learners show a distinct semantic memory organiza-
tion—characterized by high connectivity and short path distances between concepts —highlighting
the utility of cognitive network science for studying variation in student learning.

Keywords: cognitive network science, educational assessment, expertise, knowledge, semantic
memory, undergraduate education

1. Introduction

Psychologists have long been interested in studying the relationship between learning
and memory, a link that is of considerable importance for informing modern educational
practices (Anderson, 2000). To evaluate student learning, educators often employ assess-
ments such as multiple-choice quizzes or short-answer questions (Becker & Watts, 2001).
Despite their popularity, such assessments can only evaluate what students know on a sur-
face level. To provide a deeper understanding of student learning, researchers have recently
employed methods from cognitive network science that can model (latent) knowledge
structures. Network science quantifies the relationships between units in a complex sys-
tem —such as words in a semantic memory network — providing powerful tools for under-
standing how students represent and retrieve knowledge to facilitate successful learning
and academic performance (Nesbit & Adesope, 2006; Siew, 2020). Previous cross-sectional
research has found that older students have different knowledge structures compared to
younger students across a variety of academic subjects (Siew et al., 2022). To date, no study
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has employed network science to compare the knowledge structures of more and less
knowledgeable students taking the same academic course. In the present research, we ad-
dress this gap by examining the knowledge structures of students with higher levels of
course knowledge, investigating whether their representation of concepts differs from stu-
dents who learn less course knowledge.

Assessing student learning is of vital importance in education, as it provides a means
to identify gaps in knowledge, provide directed feedback, as well as determine academic
achievement (Suskie, 2018). Since the popularization of pen-and-paper examinations in the
1920s, student learning has often been evaluated in terms of raw information retention on
multiple-choice quizzes (Stiggins, 1991). Despite certain advantages, such as quick grading,
such assessments have been criticized for their poor effectiveness at measuring a students’
understanding of a topic (Biggs, 1973; Entwistle & Entwistle, 1992). Other assessments
which favor concept understanding come then in the form of constructed responses such as
short answer questions (Martinez, 1999). Although constructed responses allow for a more
nuanced measurement of student learning, they carry their own downsides such as long
grading times (Simkin & Kuelcher, 2005). Of note, neither multiple-choice nor constructed
responses are able to tap into the hidden mental structures formed by learned concepts
(Siew & Guru, 2022). These memory structures have been shown to allow for a unique eval-
uation of a student’s understanding of concepts and problems within a domain, distinguish-
ing more from less experienced students, and may ultimately serve as a valid complemen-
tary tool to traditional learning assessments (Chi et al., 1981; Siew, 2019).

A common way of measuring student knowledge structures has been concept maps—
diagrams representing the relationships shared by concepts or ideas (Novak, 2010; Novak
& Canas, 2007). Concept maps are typically evaluated in terms of their visual properties, by
judging the unique shape of each map and drawing qualitative conclusions as to the
memory structure that they reflect. In these terms, more experienced students tend to draw
concept maps that are more “net-like”, with more connections between concepts, than the
more “chain-like” concept maps drawn by less experienced students (Kinchin et al., 2000;
Lavigne, 2005). These kinds of conclusions have been regarded to be distinct from those
allowed by typical educational assessments, given that concept maps may expose infor-
mation on the nature of learned concepts, such as the relationships shared between them in
long-term memory (Siew & Guru, 2022). Concept maps have also proven to be a more ef-
fective tool than grades for measuring subject knowledge in students in low-income and
culturally diverse schools (Maker & Zimmerman, 2020). However, a major challenge of us-
ing concept maps in education or research is quantifying their structural properties so that
learning may be clearly measured and compared across students (Rittle-Johnson & Schnei-
der, 2015; Ruiz-Primo, & Shavelson, 1996).

One potential solution has emerged from the use of network science to analyze concept
maps as mathematical graphs (Koponen & Nousiainen, 2014; Koponen & Pehkonen, 2010;
Siew, 2019). Mathematical graph theory involves the representation of complex systems as
graphs or networks (e.g., Borner et al., 2008; Newman et al., 2006). Networks are made up
of nodes (e.g., an idea or concept) which are connected to each other via edges (e.g., the
similarity between two edges). In the study of human cognition, there has been a growing
interest in using network science methodologies (Baronchelli et al., 2013; Siew et al., 2019).
This trend is mainly due to the availability of quantitative tools for modelling semantic
memory —consistent with longstanding theoretical accounts which posit that semantic
memory is structured as a network (Collins & Loftus, 1975; Smith et al., 1974). For instance,
network science allowed researchers to demonstrate that a Montessori school curriculum,
compared to a traditional one, promoted more “flexible” memory structures in children,
with higher connectivity and shorter paths between concepts (Denervaud et al., 2021). Sim-
ilar research has shown how creativity relates to second language learning, exhibited via
more “flexible” semantic memory structures of the learned language (Kenett, 2024). This
structure is conducive to connecting concepts in semantic memory networks, and has
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previously been associated with higher cognitive abilities, including creative thinking (He 99
et al.,, 2021; Kenett, 2024). 100
Network science has also been employed for the quantitative analysis of concept maps 101
drawn by university students enrolled in an introductory psychology course (Siew, 2019). 102
Concept maps were drawn based on topics covered in a psychology textbook chapter (i.e., 103
neuroscience), which were included on a later quiz. Students who scored higher on the quiz 104
also exhibited longer paths between concepts in their maps, indicating that higher content 105
knowledge was associated with representing concepts further apart from each other. This 106
finding may appear counterintuitive when considering that networks with shorter paths 107
and higher clustering of nodes, also known as “small-world” networks, have consistently 108
been associated with higher processing efficiency (He et al.,, 2021; Watts & Strogatz, 1998), 109
flexibility (Kenett et al., 2018), and creative thinking (Kenett, 2024). However, higher fluid 110
intelligence has been related to longer paths between concepts, alongside more compart- 111
mentalized semantic memory networks, that exhibit more discrete conceptual subcategories 112
(e.g., types of animals in the animal category), suggesting that a well-structured semantic 113
memory network may facilitate memory search and retrieval (Kenett, 2024). Thus, a critical 114
question for the current research is whether students’ effective learning is reflected in more 115
structured or more flexible semantic memory networks. 116
Recently, Siew and Guru (2022) adopted the verbal fluency task —which involves gen- 117
erating words based on an initial prompt word —to model semantic memory networks of 118
university and high school students. One version of this task, the animal fluency task, is 119
widely used to measure domain-general semantic memory, i.e., general knowledge catego- 120
ries, as the animal category has been found to be the most stable across cultures and lan- 121
guages (Ardila et al., 2006). Verbal fluency data is typically analyzed via group-based net- 122
works that require the aggregation of participants into discrete groups (Christensen & 123
Kenett, 2023; Zemla & Austerweil, 2018). Siew and Guru (2022) compared both domain- 124
general (animal, fruit) and domain-specific (psychology, biology) semantic memory net- 125
works of university students and novice high-school students. The authors found that uni- 126
versity students had memory structures that were more small-worlded, across both do- 127
main-general and domain-specific categories compared to novice high-school students, sup- 128
porting the view that domain knowledge is linked with more flexible/less structured 129
memory structures. 130

1.2 The Present Research 131

The investigation by Siew and Guru (2022) shed light on the relationship between a 132
student’s learning and knowledge structure. However, comparing groups of different ages 133
can make it difficult to disentangle whether group differences are related to domain 134
knowledge or cognitive development, i.e., whether students differ in their knowledge struc- 135
tures due to learning or age-related changes in the semantic system. Besides, measuring stu- 136
dents at a single timepoint makes it hard to disentangle learning from other factors that may 137
influence domain expertise, such as individual differences in cognitive ability. The present 138
paper thus aims to build upon these findings by comparing age-matched students with var- 139
ying levels of domain-specific expertise (Study 1). Further, we test students at two separate 140
timepoints in the academic semester and compare whether any changes in knowledge struc- 141
ture are associated with learning (Study 2). 142

2. Study 1 143

In Study 1, we aimed to test whether learning was associated with structural differ- 144
ences in the semantic memory of students. To measure domain-general and domain-specific 145
memory structures, we employed the verbal fluency task, which is commonly used to esti- 146
mate semantic memory networks (Christensen & Kenett, 2023). Undergraduate students 147
were separated into a high-knowledge or low-knowledge group based on their scoresona 148
cumulative psychology test at the end of the course. We hypothesized that higher psychol- 149
ogy knowledge would be related to more interconnected semantic memory networks for 150
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psychology (i.e., domain-specific networks), with psychology concepts being more richly 151
connected to each-other, consistent with past work using different experimental designs 152
(e.g., Kinchin et al., 2000; Lavigne, 2005; Siew et al., 2022). Given past work linking expertise = 153
and general semantic memory structure, we further expected that higher psychology 154
knowledge would lead to domain-general semantic memory networks that would be more 155

interconnected and less modular (Siew & Guru, 2022). 156
2.1. Materials and Methods 157
2.1.1. Participants 158

A total of 267 (184 females; 79 males; 4 non-binary; M = 18.97 years, SD =2.73 years) 159
participants who were enrolled in an undergraduate introductory psychology class were 160
recruited from The Pennsylvania State University (PSU). Participants were tested, near 161
the end of the academic semester, on an online battery of cognitive tasks lasting 1 hour. 162
Beyond the tasks reported in the following analyses, the battery also included a series of 163
creativity tasks that were completed after the verbal fluency tasks and the Intro Psych 164
Test. The study was approved by the PSU Institutional Review Board. 165

2.1.2. Materials 166

Animal Fluency Task. The animal fluency task was administered to estimate domain- 167
general semantic networks—the most commonly used task for estimating group-based 168
semantic memory networks (Christensen & Kenett, 2023). The duration of the animal 169
fluency task was three minutes (Ardila et al., 2006). During this time, participants were 170
required to generate (type) as many animal names as they could, and to continue 171
responding until the time was over. The task was performed with a computer keyboard, 172
using the Enter key to submit responses. 173

Psychology Fluency Task. A psychology fluency task was administered to estimate 174
domain-specific semantic networks, consistent with past work (Siew & Guru, 2022). The 175
task was administered the same way as the animal fluency task, except that participants 176
were required to generate words associated with psychology for the duration of the task, 177
following Siew and Guru (2022). 178

Intro Psych Test. A multiple-choice test was constructed to assess psychology 179
knowledge (see Appendix A). The senior author coordinated with the course instructor, 180
who shared the syllabus and study guides listing the topics covered in the course. The test 181
was administered at the end of the semester to ensure students had been exposed to all 182
topics. A total of 37 questions were developed based on an introductory psychology 183
textbook, including the following topics: biopsychology, development, learning, memory, 184
perception, and social psychology. After completing the test, students were asked to self- 185
report their current grade, using a 9-point Likert scale (i.e., 1=D;2=C-;3=C;4=C+;5= 186
B-; 6 =B;7=B+; 8 = A-; 9 = A); students could skip the question if they did not know their 187
current grade. The purpose of reporting grades was to validate our new Intro Psych Test. 188

2.1.3. Group Construction 189

We constructed group-based semantic memory networks using the psychology (do- 190
main-specific) and animal (domain-general) fluency responses, which require aggregat- 191
ing participants into groups (Christensen & Kenett, 2023). We separated participants into 192
two groups via a median split based on their performance on the Intro Psych Test. Partic- 193
ipants were removed at the median number of correct responses (N = 64) so that the 194
groups would be well defined, ensuring that “boundary” cases would be addressed (i.e., 195
participants with median scores belong to neither the “high” or “low” group; Irwind & 19
McClelland, 2003). We thus retained a high psychology knowledge group (N = 116; 85 197



J. Intell. 2023, x, x FOR PEER REVIEW 5 of 24

females; 29 males; 2 non-binary; M = 19.1 years, SD = 3.05 years) and a low psychology 198
knowledge group (N = 87; 61 females; 24 males; 2 non-binary; M = 18.7 years, SD = .83 199

years) for a comparison of their semantic memory networks. 200
2.1.4. Semantic Memory Network Estimation 201

The SemNA pipeline (Christensen & Kenett, 2023) —an open-access pipeline in R for 202
the estimation and analysis of semantic memory networks from semantic fluency data— 203
was adopted for preprocessing and analysis purposes, using the following steps: 204

Preprocessing. Automatic preprocessing of the semantic fluency data was conducted 205
via two R packages: SemNetDictionaries (version 0.2.0; Christensen, 2019a) and 206
SemNetCleaner (version 1.3.4; Christensen, 2019b). The entire preprocessing procedure 207
was run separately for the animal fluency and the psychology fluency data, taking the 208
same steps for both datasets. First, within-participant repetitions (i.e,, duplicate 209
responses) and non-category members (for the animal fluency task: e.g., dragon, ant 210
colony, moon) were removed from the data. Several other potential issues in the responses 211
were then addressed, such as spelling errors, compound responses, root word variations, 212
and continuous strings. Next, manual spell-checking was run, by psychology experts, 213
over words that were not recognized by the software, which were then corrected 214
accordingly to standard English. 215

A binary response matrix was then generated by transforming the cleaned data, with 216
each unique response given across participants as columns, and individual participants 217
as rows. The frequency of within-participant response occurrence was used to generate 218
the content of the response matrix, with values either 1 (i.e., participant i/ generated exem- 219
plar j) or O (i.e., participant i did not generate exemplar j). Response exemplars included 220
in the response matrix were limited to those that were provided by at least two partici- 221
pants in the overall sample, as this has been shown to allow for better control of confound- 222
ing factors (e.g., differences in the number of nodes and edges between groups; Christen- 223
sen & Kenett, 2023). To further control for the confounding effect of including a different 224
number of nodes between groups (Van Wijk et al., 2010), responses in the binary matrices 225
were then equated across groups, retaining for each group only those responses that were = 226
provided by the other groups. To sum up, all comparisons of semantic memory network 227
structure included in the present study consider only the differences in the organization 228
of the same nodes between the semantic memory networks. 229

Network Construction. We conducted two network analyses between the low and 230
high psychology knowledge groups, separately for the psychology and animal fluency 231
data. Both network analyses were run the same. Association profiles were computed 232
between the fluency responses using the SemNeT (version 1.4.4) package (Christensen & 233
Kenett, 2023) in R (version 4.2.0) using R studio (version 2022.02.3). Network edges were 234
calculated via the cosine similarity function in the SemNeT package which generatesann 235
x n adjacency matrix (i.e., associations between each response) for each group 236
(Christensen & Kenett, 2023). Cosine similarity estimates the co-occurrence probability of 237
two words by calculating the angle between two-word vectors—a commonly used 238
technique in latent semantic analysis of text corpora (Landauer & Dumais, 1997) and 239
related methods of semantic distance computation (Beaty & Johnson, 2021). Cosine 240
similarity values range from 0 to 1, a value of 1 representing two words that always co- 241
occur, while 0 represents two words that never co-occur. 242

Using the SemNeT package, we applied the triangulated maximally filtered graph 243
(TMEG,; Christensen & Kenett, 2023; Massara et al., 2016) to the adjacency matrix of each 244
group. TMFG captures only the most reliable relations within the cosine-determined net- 245
works—preventing spurious associations from being retained in the final networks 246
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(Christensen & Kenett, 2023) —by applying a structural constraint on the association ma- 247
trix, restricting the number of edges which can be retained in the final networks. 248

Network Analysis. Three global network metrics were computed for each network, 249
namely the clustering coefficient (CC), average shortest path length (ASPL), and 250
modularity (Q). The CC of a network is a measure of connectivity, calculated as the extent 251
to which two neighbors of a given node will themselves be neighbors. Higher CC values 252
are associated with a more interconnected semantic memory network (Siew et al., 2019). 253
The ASPL denotes the mean shortest number of edges required to traverse between any 254
two nodes. The magnitude of the ASPL between any two nodes thus refers to the average 255
relatedness of any two concepts within the network (Kenett et al., 2017; Kumar et al., 2020). 256
Finally, Q measures network segregation, calculated as the extent to which a network 257
possesses dense connections within sub-networks and between sub-networks. A higher 258
Q is thus reflective of a higher degree of distinct sub-communities within the network 259
(Fortunato, 2010). 260

Our network analysis compared the network metrics (CC, ASPL, and Q) from the 261
high and low psychology knowledge groups against randomly generated networks. In 262
accordance with established procedures when comparing group-based networks (Chris- 263
tensen & Kenett, 2023), we employed a case-wise bootstrap analysis (Efron, 1979) to ana- 264
lyze any differences in the network structure between-groups. As group-based calcula- 265
tions of network metrics only provide a single value per group and thus cannot be directly 266
compared, bootstrapping serves as a test of significance for the network comparisons. The = 267
SemNeT package in R was employed to run the bootstrapping (Christensen & Kenett, 268
2023), with 1000 iterations. Networks for the resampled groups were generated separately 269
for each network, using with-replacement bootstrapping (Bertail, 1997). Network 270
measures (CC, ASPL, and Q) were then calculated for each resampled group’s network 271
and the two networks were compared by conducting an independent-samples t-test anal- 272
yses for each network metric. 273

2.1.5. Procedure 274

Study 1 was conducted online through Pavlovia (https://pavlovia.org/) and com- 275
pleted by participants on their personal computers. All participants first completed the 276
verbal fluency tasks (psychology and animal), counterbalanced in their order of presenta- 277
tion, and later completed the Intro Psych Test. At the end of the study, participants were 278

asked for self-reported grades and demographic information. 279
2.2. Results 280
2.2.1. Fluency and Descriptives 281

First, we tested whether any group differences exist between fluency scores (i.e, 282
number of responses) on the psychology fluency and the animal fluency tasks, separately 283
(Table 1). Regarding psychology fluency, the low psychology knowledge (M =9.7, SD = 284
4.1) and high psychology knowledge (M = 10.0, SD = 4.0) groups were not significantly 285
different, #(201) = .513, p = .609, d = .001, 95% CI [-.84, 1.44]. Similarly, for animal fluency, 286
we found no difference between the low psychology knowledge (M =16.4, SD =5.6) and 287
high psychology knowledge (M =17.3, SD = 4.8) groups, t(201) = 1.326, p = .19, d = .009, 288
95% CI [-.47, 2.41], indicating comparable fluency performance between the two groups. 289

Next, we aimed to validate the Intro Psych Test with respect to self-reported course 290
grades. We thus computed a Pearson correlation analysis between test performance and 291
self-reported grades. Due to the high positive skew of the self-reported grades, the values 292
were log-transformed before any analysis. We found a moderate positive linear relation- 293
ship between test performance and self-reported grades, r = .30, p < .001, indicating that 294
students who did better on the test tended to do better in the course. For exploratory 295
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purposes, we also computed correlations between test performance and verbal fluency, 29
finding no significant associations (Table 2): students who did better on the test did not 297

produce more psychology concepts or animal names on the fluency tasks. 298
Table 1. Descriptive statistics for the Psychology and Animal Fluency Task 299
Psychology Fluency Task Animal Fluency Task
n (average) n (average)
n n n n
M - M -
Group Range (within) (between) Range (within) (between)
(SD) (SD)
Low 9.7 16.4
2-22 292 150 3-29 178 39
knowledge 4.1) (5.6)
High 10.0 17.3
1-24 343 201 1-31 208 69
knowledge (4.0 (4.8)

Note. n (average) = the average number of responses in each group; n (within) = the total unique 300
number of responses given by individuals within the group; n (between) = the total unique number 301
of responses not given by the other groups. 302

2.2.2. Semantic Memory Networks 303

We next analyzed the semantic memory networks for the low- and high- psychology 304
knowledge groups, separately for the psychology and animal fluency tasks. This led to 305
psychology semantic memory networks with 72 nodes and 205 edges, an average degree 306
of 5.69, density of 0.08, and efficiency of 0.41. Further, animal semantic memory networks 307
possessed 103 nodes and 302 edges, an average degree of 5.86, density of 0.06, and effi- 308
ciency of 0.42. Networks were visualized via Cytoscape 3.9.1 (Figure 1; Shannon et al., 309
2003), by generating 2D representations of unweighted and undirected networks, in 310

which circles represent concepts and lines represent the links between concepts. 311
312
Table 2. Descriptive statistics and correlations for the Intro Psych Test, Self-Reported Grades, Psy- 313
chology Verbal Fluency and Animal Verbal Fluency. 314
M SD NA Min, Max 1 2 3 4
Intro Psych Test 18.03 5.89 0 5,32 1
Self-Reported Grades 6.22 2.12 12 1,9 0.32 1
Psychology Fluency 9.88 4.06 0 1,24 0.05 0.14 1
Animal Fluency 16.92 5.16 0 1,31 0.12 0.18 0.43 1

Note. NA = number of participants who refused to respond. Self-reported grades ranged in 315
values from 1 to 9 and represent alphabetical grades. 10=A+;9=A;8=A-;7=B+6=B;5=B-;4= 316
C+;3=C;2=C-;1=D. Statistically significant Pearson correlations are bolded (p < .05). 317

We tested whether the semantic memory networks of the low- and high- psychology 318
knowledge groups were significantly different from randomly generated networks, 319
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matched by the number of nodes and edges. This random network analysis revealed that 320
for both psychology and animal fluency semantic memory networks, across both groups 321
and for all network metrics (CC, ASPL, & Q), the empirically generated semantic networks 322
were significantly different from randomly generated networks (all p’s <.001). 323

Critically, we then compared whether the low and high psychology knowledge 324
groups were significantly different from each other in the structure of their semantic 325
memory networks for the psychology (Figure 2) and animal (Figure 3) domains, via the 326

bootstrapping approach. 327

328

Figure 1. A 2D visualization of the psychology and animal semantic memory networks of individ- 329

uals with high and low psychology knowledge. 330

Low Psychology High Psychology
Knowledge Group Knowledge Group
Psychology

Fluency
Animal
Fluency

331

Note. Circles represent nodes (i.e., concepts) which are connected by edges based on the strength of 332
the semantic associations between concepts in each group. 333

Psychology Fluency Networks. For the psychology semantic memory networks, an in- 334
dependent-samples t-test revealed that the high psychology knowledge group exhibited 335
a shorter ASPL (M=2.866, SD = 0.202) than the low psychology knowledge group 336
(M=2.884, SD = 0.203), #1998)=-1.99, p = .047, d=.09. Further, the high psychology 337
knowledge group exhibited a significantly higher CC (M =0.715, SD = 0.014) than the low 338
psychology knowledge group (M =0.713, SD =0.017), #(1998) =3.46, p <.001, d=.16. Lastly, 339
the comparison for Q revealed that the high psychology knowledge group (M =0.564, SD 340
= 0.025) did not significantly differ from the low psychology knowledge group (M =0.563, 341
SD = 0.026), t(1998)=0.88, p = .381, d=.04. Altogether, compared to the low psychology 342
knowledge group, the semantic memory network of the high psychology knowledge 343
group was significantly more connected (higher CC) and possessed shorter average paths 344
(lower ASPL), but the networks were similar in terms of communities (Q). 345
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2.89

ASPL

287

2.86

285

0.74

High Knowledge

High Knowledge

Group

Group

Figure 2. Psychology fluency networks metrics (CC/ASPL/Q) for psychology knowledge groups
(High/Low).

0.720 0.566
0.564
o

O 0715

0.562

0.710 0.560

Low Knowledge High Knowledge Low Knowledge High Knowledge Low Knowledge

Group Group

Note. Bootstrapping was run over 1000 iterations. Means of each group are presented for all network
parameters. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity.

Animal Fluency Networks. For the animal semantic memory networks. An independ-
ent-sample t-test revealed that the high psychology knowledge group exhibited a shorter
ASPL (M =2.924, SD = 0.172) than the low psychology knowledge group (M =3.198, SD =
0.187), t(1998) =-34.08, p <.001, d =1.52. Further, the high psychology knowledge group
exhibited a significantly higher CC (M =0.734, SD = 0.009) than the low psychology
knowledge group (M =0.717, SD = 0.010), #(1998) =39.54, p <.001, d =1.77. Lastly, the high
psychology knowledge group exhibited a significantly lower Q (M =0.588, SD = 0.023)
than the low psychology knowledge group (M=0.625, SD = 0.021), #(1998)=-37.74,
p<.001, d=1.69. Taking together, compared to the low psychology knowledge group, the
semantic memory network of the high psychology knowledge group was significantly
more connected (higher CC), with shorter average paths (lower ASPL) and fewer commu-
nities (lower Q).

Figure 3. Animal fluency networks metrics (CC/ASPL/Q) for psychology knowledge groups
(High/Low).

3.3
0.63

3.2 0.62

31 0.61

ASPL

30 0.60

0.59
29

0.58

Low Knowledge High Knowledge Low Knowledge High Knowledge Low Knowledge

Group Group

Note. Bootstrapping was run over 1000 iterations. Means of each group are presented for all network
parameters. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity.

2.3. Discussion

Evidence indicates that more experienced university students possess a more small-
worlded (i.e., higher clustering and shorter paths between concepts) semantic memory
structure than less experienced high-school students (Siew & Guru, 2022). However, given
the confounding effect of age, the link between learning and semantic memory structure
remains unclear. Study 1 addressed this limitation, by comparing age-matched groups of
university students with low- and high-psychology knowledge. Students in the high-
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psychology knowledge group were found to possess more small-worlded semantic 376
memory networks for both the animal and psychology domains. This finding is consistent 377
with the work from Siew and Guru (2022), pointing to a link between learning and more 378
efficient semantic memory structures. However, for the domain-specific networks, we ob- 379
served the opposite effect with regards to Q, a measure of network communities. We spec- 380
ulate that this inconsistency relates to the effect of age on Q, with older individuals display- 381
ing more modular semantic memory structures (Cosgrove et al., 2023). 382

3. Study 2 383

In Study 1, we observed how the semantic memory structure of students enrolled in 384
an introductory psychology course depended on their learning. In Study 2, we sought to 385
confirm this finding, by including a longitudinal component to our measurements. This 386
longitudinal approach allowed us to study—for the first time —how semantic networks 387
change over time in students who learn more and less course knowledge. Further, we 388
administered a secondary multiple-choice psychology assessment, the psychology 389
knowledge test (PsyKT). The PsyKT was taken from Kunina et al. (2007) and was included 390

to determine the construct validity of our Intro Psych Test. 391
3.1. Materials and Methods 392
3.1.1. Participants 393

We recruited a total of 145 participants (128 females; 16 males; 1 non-binary; M = 394
18.42 years, SD = 0.78 years) enrolled in an undergraduate introductory psychology class 395
at -—-. Testing was conducted at two timepoints, once at the start of the academic semester 396
(i.e., timepoint 1; T1) and again near the end (i.e., timepoint 2; T2). Participants completed 397
an online battery of cognitive tasks lasting 1 hour at each timepoint. A series of creativity 398
tasks and a language learning task were included at both timepoints. These tasks were 399
performed after the verbal fluency tasks, the Intro Psych Test, and the Psychology 400
Knowledge Test (PsyKT), and were not analyzed for the purposes of this study. The study 401
was approved by the PSU IRB. 402

3.1.2. Materials 403

PsyKT. In addition to the Intro Psych Test from study 1 (see Appendix), we 404
administered a second, established assessment of psychological knowledge, the PsyKT, to 405
test the construct validity of our Intro Psych Test. The assessment was extracted from a 406
previous study which extensively validated its use in research with undergraduate 407
psychology students (Kunina et al., 2007). The assessment contains 50 multiple choice 408
questions on a variety of topics which fall within the umbrella of psychology. The 409
assessment was originally devised in German, so it was translated into English for the 410
purposes of this study. 411

3.1.3. Group Construction 412

Based on their performance on the Intro Psych Test completed at T1, participants 413
were separated into two groups via a median split. After removing participants at the 414
median (N = 11), we retained a high psychology knowledge (N = 72; 60 females; 11 males; 415
1 non-binary; M = 18.47 years, SD = 0.92 years) and a low psychology knowledge group 416
(N = 62; 57 females; 5 males; M = 18.34 years, SD = 0.57 years). Group-based semantic 417
memory networks were then constructed separately for fluency responses collected at T1 ~ 418
and T2, for both psychology and animal fluency data, leading to 4 semantic memory net- 419
works being generated from each fluency task (high-knowledge T1/high-knowledge 420
T2/low-knowledge T1/low-knowledge T2). 421
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3.1.4. Semantic Memory Network Estimation 422

Like in study 1, we followed the SemNA pipeline for preprocessing and analysis of 423
networks (Christensen & Kenett, 2023). Statistical analysis also followed a similar proce- 424
dure, with the exception of two sets of ANOV As, run separately for psychology and ani- 425
mal networks. All ANOVAs included knowledge (high/low) and timepoint (T1/T2) as 426
predictor variables, and included either CC, ASPL, or Q as predicted variables. 427

3.1.5. Procedure 428

Online data collection was conducted through Pavlovia (https://pavlovia.org/) and 429
completed on the participants’ personal computers. Participants first completed the verbal 430
fluency tasks (psychology and animal), counterbalanced for order of presentation, before 431
completing our Intro Psych Test and the PsyKT. Finally, participants responded to a series 432

of questions relating to self-reported grades and demographics. 433
3.2. Results 434
3.2.1. Fluency and Descriptives 435

We began by testing whether any differences in fluency existed between knowledge 436
groups at any timepoint, separately analyzing the psychology fluency and the animal flu- 437
ency tasks. For psychology fluency collected at T1, the low psychology knowledge (M = 438
11.9, SD = 3.7) and high psychology knowledge (M =12.2, SD = 3.2) groups were not sig- 439
nificantly different, t(127) = .514, p = .608, d = .002, 95% CI [-1.53, 0.9]. The same was true 440
at T2, where the low psychology knowledge (M = 13.3, SD = 3.8) and high psychology 441
knowledge (M =13.5, SD =4.1) groups were not significantly different in their psychology 442
fluency, £(126) = 0.285, p = .776, d = .001, 95% CI [-1.18, 1.58]. For animal fluency, at T1, we 443
observed no significant difference between the low psychology knowledge (M =18.6, SD 444
= 4) and high psychology knowledge (M =19.3, SD = 3.6) groups, #(126) =1.122, p=.26,d 445
=.01, 95% CI [-2.1, 0.58]. For T2 there was also no difference in animal fluency between 446
the low psychology knowledge (M =19.2, SD = 3.5) and high psychology knowledge (M= 447
20, SD = 3.8) groups, t(125) =1.227, p = .22, d = .01, 95% CI [-2.1, 0.49]. The results replicate 448
Study 1, indicating no verbal fluency differences between the two groups for the domain- 449
specific and domain-general categories used to estimate semantic memory networks. 450

We then tested whether any fluency differences existed between timepoints, for any 451
group, separately for psychology and animal fluency. For the high psychology knowledge 452
group, we observed no significant difference in psychology fluency between T1 (M =122, 453
SD =3.2) and T2 M =13.3, SD = 3.8), t(139) = 1.728, p = .09, d = .021, 95% CI [-0.15, 2.21]. 454
We then observed a significant difference in psychology fluency between T1 (M =11.9,SD 455
=3.7) and T2 (M =13.5, SD = 4.1) for the low psychology knowledge group, t(114) =2.130, 456
p=.04,d=.04,95% CI [0.11, 2.98]. For animal fluency, instead, we observed no significant 457
difference between T1 (M =19.3, SD =3.6) and T2 (M = 20, SD = 3.8) for the high psychology 458
knowledge group, #(136) =1.035, p =.03, d =.008, 95% CI [-0.6, 1.91]. For the low psychol- 459
ogy knowledge group there was also no difference in animal fluency between T1 (M = 460
18.6, SD =4) and T2 M =19.2, SD = 3.5), #(115) = 0.879, p = .38, d = .007, 95% CI [-0.77, 2]. 461
Thus, verbal fluency remained mostly stable over time, with the exception of the low- 462
knowledge showing a slight increase in psychology fluency from T1 to T2. 463

Next, we validated the Intro Psych Test with the self-reported course grades, and the 464
PsyKT. Due to a high positive skew in the self-reported grades, log-transformation was 465
applied before any analysis, like Study 1. We thus computed a Pearson correlation be- 466
tween performance on the Intro Psych Test at T1 and self-reported grades, finding a mod- 467
erate correlation, r = .27, p = .001. We also found a moderate positive linear relationship 468
between test performance at T2 and grades, r =.37, p <.001, indicating that students with 469
better outcomes on the test, at the beginning or end of the course, tended to do better in 470
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the course overall. We then tested whether the Intro Psych Test, separately for T1 and T2,
correlated with the PsyKT. We observed moderate correlations between the two scales at
both T1, r = .4, p <.001, and T2, r = .55, p < .001, providing evidence of the psychometric
properties of our Intro Psych Test.

Then, we tested whether any learning had occurred between T1 and T2 by running
paired samples t-tests on the Intro Psych Test performance, for the low-psychology
knowledge and high-psychology knowledge groups, separately. We found the perfor-
mance of the low-knowledge group increased between T1 (M =15.1, SD =2.5) and T2 (M
=19.8, SD =4.7), (58) =-8.82, p < .001, d = -1.25, 95% CI [-5.82, -3.67]. We similarly found
that performance of the high-knowledge group was better at T1 (M = 23, SD =2.5) and T2
(M =24.4,SD=4.6), t(71)=-3.06, p=.003, d =-0.37, 95% CI [-2.27, -0.48]. Thus, as expected,
students learned more about psychology concepts over time, and students with less initial
knowledge learned the most.

We further explored our data by computing correlations between various descriptive
variables (Table 3). Interestingly, we found positive linear relationships between perfor-
mance on the Intro Psych Test and animal verbal fluency, indicating that students with
better broad retrieval abilities performed better overall on our psychology multiple-choice
test.

Table 3. Descriptive statistics and correlations for the Intro Psych Test at T1 and T2, the PsyKT, Self-
Reported Grades, Psychology Verbal Fluency and Animal Verbal Fluency.

M SD NA Min, Max 1 2 3 4 5 6 7
Intro Psych Test T1 19.32 4.54 0 9,30
Intro Psych Test T2 22.26 5.02 0 11, 34 .61
PsyKT 18.9 4.47 0 9,29 4 .55
Self-Reported Grades 8.71 1.73 5 2,10 27 37 .21
Psychology Fluenc
Y &Y Y 12.14 3.83 0 4,26 .05 .02  .006 .07
T1
Psychology Fluenc
Y &Y Y 13.45 4.45 2 3,29 -.005 .07 .04 .06 .56
T2
Animal Fluency T1 18.89 4.32 0 6,31 .18 24 1 .19 43 23
Animal Fluency T2 19.16 451 1 6,29 15 17 .05 15 47 49 54

Note. NA = number of participants who refused to respond. Self-reported grades ranged in values
from 1 to 9 and represent alphabetical grades. 10=A+;9=A;8=A-;7=B+6=B;5=B-;4=C+;3=
C;2=C-;1=D. Statistically significant Pearson correlations are bolded (p <.05).

3.2.2. Semantic Memory Networks

We analyzed the semantic memory networks for the low- and high- psychology
knowledge groups at T1 and T2, separately for the psychology and animal fluency tasks.
Psychology semantic memory networks contained 40 nodes and 114 edges, an average
degree of 5.7, density of 0.14, and efficiency of 0.5 (Figure 4). Further, animal semantic
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memory networks had 80 nodes and 234 edges, an average degree of 5.85, density of 0.07, 501
and efficiency of 0.46 (Figure 6). 502

We tested whether semantic memory networks of the high and low psychology 503
knowledge groups, at both T1 and T2, were significantly different from random networks. 504
This random network analysis revealed that the empirically generated networks for both 505
groups, at both timepoints and for all network metrics (CC, ASPL, & Q), were significantly 506
different from randomly generated networks (all p’s <.001). We then ran two sets of ANO- 507
VAs, separately for psychology and animal semantic memory networks. 508

Psychology Fluency Networks. First, we ran three separate ANOVAs for each of the 509
network metrics of the psychology knowledge networks (CC, ASPL, & Q), with 510
knowledge and timepoint as predictor variables. For our first ANOVA, we observed a 511
significant interaction effect of knowledge and timepoint on CC, F(3996) =81.968, p <.001, 512
n2 = .02. We then found a significant main effect of knowledge on CC, F(3996) =7.303, p 513
=.007, n2 = .002, 95% CI [-0.007, -0.005], and a non-significant main effect of timepoint, 514
F(3996) = 3.282, p = .07, n2 = .001, 95% CI [-.004, -.002]. Then, we ran a series of pairwise 515
comparisons to investigate the source of the interaction. We first computed two paired 516
samples t-tests, separately for the high- and low-psychology knowledge groups, to deter- 517
mine whether any changes in CC existed between T1 and T2. This revealed that only the 518

519

Figure 4. A 2D visualization of the psychology semantic memory networks of individuals with high 520

and low psychology knowledge at timepoints 1 & 2. 521
Timepoint 1 Timepoint 2

Low Psychology
Knowledge Group

High Psychology
Knowledge Group

Note. Circles represent nodes (i.e., concepts) which are connected by edges based on the strength of 522
the semantic associations between concepts in each group. 523
524
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low-knowledge group displayed a significant decrease in CC from T1 to T2, £(999) =-11.25,
p < .001, while the CC for the high-knowledge group did not differ between T1 and T2,
£(999) = -1.89, p = .059. We computed two more paired samples t-tests, separately for T1
and T2, to determine whether there were any differences in CC between the low- and high-
psychology knowledge groups. We found the high-knowledge group possessed a higher
CC, both at T1, £(999) =2.5, p = .01, and T2, £(999) = 18.3, p < .001.

Next, we ran an ANOVA with ASPL as a predicted variable, revealing a significant
interaction effect of knowledge and timepoint, F(3996) = 221.827, p <.001, n2 =.05. We also
observed significant main effects of knowledge F(3996) = 8.378, p = .004, 2 = .002, 95% CI
[0.077, 0.095], and of timepoint, F(1999) = 29.063, p < .001, n2 =.007, 95% CI [0.024, 0.042],
on ASPL. We next ran two paired samples t-tests, for the high- and low-psychology
knowledge groups, to test any differences between T1 and T2. The low-knowledge group
displayed a significant increase in ASPL from T1 to T2, £(999) = -18.33, p < .001, while the
high-knowledge group showed a decrease in ASPL, #(999) = 7.05, p < .001. We then ran
two paired samples t-tests, for T1 and T2, to test for any differences between the low- and
high-psychology knowledge groups. The high psychology knowledge group was found
to possess a lower ASPL at both T1, £(999) =-3.64, p <.001, and T2, #(999) = -28.25, p <.001.

Finally, for our ANOVA with Q as a predicted variable, we observed a significant
interaction effect of knowledge and timepoint, F(3996) = 191.896, p < .001, n2 = .05, and
non-significant main effects of both knowledge, F(3996) = 0.167, p =.683, n2 <.001, 95% CI
[0.014, 0.018], and of timepoint, F(3996) = 1.593, p = .207, n2 < .001, 95% CI [0.012, 0.016].
We ran paired samples t-tests for the high- and low-psychology knowledge groups to in-
vestigate any differences between T1 and T2. While the low-knowledge group displayed
a significant increase in Q from T1 to T2, #(999) =-22.4, p <.001, the high-knowledge group
showed no difference between T1 and T2, #(999) = 1.61, p = .11. Finally, we ran paired
samples t-tests to test whether the low- and high-psychology knowledge groups differed

Figure 5. Psychology fluency networks metrics (CC/ASPL/Q), spanning knowledge (High/Low) and
timepoint (T1/T2).
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Note. Bootstrapping was run over 1000 iterations. Means for each group and timepoint are presented
for all network parameters. ASPL, average shortest path length; CC, clustering coefficient; Q, mod-
ularity.

at either T1 or T2. The high psychology knowledge group was found to possess a lower Q
only at T2, #(999) = -25.06, p < .001, but not T1, £(999) = -0.53, p = .59. Thus, the low-
knowledge group showed significantly reduced connectivity (lower CC) and longer aver-
age paths (higher ASPL) from T1 to T2, despite demonstrating improvements in learning.
This is visually evidenced by the nodes getting further apart, as well as an increase in the
amount of isolated nodes from T1 to T2. In contrast, for the high-knowledge group, aver-
age paths got shorter between T1 and T2. Further, for the high-knowledge group, connec-
tivity remained higher and average paths shorter at both T1 and T2 when compared to the
low-knowledge group. Visually, this can be observed in the increased closeness of nodes
from T1 to T2, as well as a reduction in the number of isolated nodes from T1 to T2, for the
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high-knowledge group. For instance, looking at the central node of the high-knowledge 569
network, there is a visually noticeable increase in the number of connections to the concept 570
of “brain” between T1 and T2. In contrast, the network of the low-knowledge group dis- 571
plays a noticeable decrease in connections to this same node from T1 to T2, denoting a 572
reduction in the clustering of the network. 573

Animal Fluency Networks. We then ran three ANOVAs for the network metrics (CC, 574
ASPL, Q) of the animal knowledge networks for both groups across both time groups. We 575
observed a significant interaction effect of knowledge and timepoint on CC, F(3996) = 576
23.902, p <.001, n2 = .006. We also found significant main effects of knowledge, F(3996) 577
=298.796, p < .001, n2 = .07, 95% CI [-0.009, -0.007], and timepoint, F(3996) = 213.998, p < 578
.001, n2 = .05, 95% CI [0.004, 0.005], on CC. We then computed a series of paired samples 579
t-tests to investigate the effects. We first ran two paired t-test, separately for the high- and 580
low-psychology knowledge groups, to determine whether there was any difference be- 581
tween T1 and T2. It was revealed that both the low-knowledge group, £(999) =-7.61, p< 582
.001, and high-knowledge group showed an increase in CC from T1 to T2, #(999) =-15.6,p 583
< .001. We then computed two more paired samples t-tests for T1 and T2 to determine 584
whether there is any difference in the CC of the low- and high-psychology knowledge 585
groups. The high psychology knowledge group was found to possess a higher CC, both 586

at T1, £(999) =17.7, p < .001, and T2, £(999) = 24.1, p < .001. 587

588

Figure 6. A 2D visualization of the animal semantic memory networks of individuals with highand 589

low psychology knowledge at timepoints 1 & 2. 590
Timepoint 1 Timepoint 2

Low Psychology
Knowledge Group .-

High Psychology A
Knowledge Group E

Note. Circles represent nodes (i.e., concepts) which are connected by edges based on the strength of 591
the semantic associations between concepts in each group. 592

593

For ASPL, we observed a non-significant interaction effect of knowledge and 594
timepoint, F(3996) = 0.596, p = .44, n2 < .001. We then observed significant main effects of = 595
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knowledge, F(3996) = 308.637, p <.001, n2=.07, 95% CI [0.1, 0.12], and of timepoint, F(3996)
=130.150, p <.001, n2 = .03, 95% CI [-0.09, -0.07], on ASPL. Next, we computed a series of
paired samples t-tests. We first ran two paired t-test to determine whether there was any
difference between T1 and T2 for the high- and low-psychology knowledge groups. Both
the low-knowledge group, #(999) = 12.49, p < .001, and high-knowledge group showed a
decrease in ASPL from T1 to T2, £(999) =13.55, p <.001. We next ran paired samples t-tests
for T1 and T2 to determine whether the low- and high-psychology knowledge groups
differ in their ASPL. The high psychology knowledge group had a shorter ASPL at T1,
£(999) =-18.06, p <.001, and T2, £(999) = -17.77, p < .001.

Then, for Q, we observed a significant interaction effect of knowledge and timepoint,
F(3996) = 5.777, p = .016, 2 = .001. Again, for Q, we observed significant main effects of
knowledge, F(3996) = 341.166, p < .001, n2 = .08, 95% CI [0.021, 0.024], and of timepoint,
F(3996) = 142.882, p <.001, n2 = .04, 95% CI [-0.013, -0.009]. We then ran pairwise compar-
isons between networks, starting with two paired t-test to reveal any difference between
T1 and T2 for the high- and low-psychology knowledge groups. Both the low-knowledge
group, £(999) =9.2, p <.001, and high-knowledge group, £(999) =12.98, p <.001, displayed
lower Q at T2 compared to T1. Finally, we ran paired samples t-tests, separately for T1
and T2, to reveal whether the low- and high-psychology knowledge groups differed in
their Q. The high psychology knowledge group possessed a lower Q at T1, £(999) =-20.89,
p <.001, and T2, £(999) = -22.66, p < .001. We thus revealed a similar effect of time for both
the low- and high-knowledge groups, across all network metrics. Both groups demon-
strated significantly increased connectivity (higher CC), shortened average paths (lower
ASPL), and fewer communities (lower Q) from T1 to T2. This is visually evidenced by an
increased closeness of nodes and a reduction in the number of isolated nodes from T1 to
T2, for both groups.

Figure 7. Animal fluency networks metrics (CC/ASPL/Q), spanning knowledge (High/Low) and
timepoint (T1/T2).
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Note. Bootstrapping was run over 1000 iterations. Means for each group and timepoint are presented
for all network parameters. ASPL, average shortest path length; CC, clustering coefficient; Q, mod-
ularity.

3.3. Discussion

The goal for Study 2 was to replicate and extend Study 1 via a longitudinal investiga-
tion of student learning and memory structure. Study 2 directly replicated Study 1: when
tested near the end of the academic semester, at T2, students with higher psychology
knowledge possessed more small-world knowledge structures (i.e., higher clustering and
shorter paths between concepts). Furthermore, longitudinal analysis showed that the se-
mantic networks of high-knowledge students became even more interconnected over the
course of the semester, leading to larger effect sizes at T2. Despite the low-knowledge stu-
dents showing substantial learning over time, their networks became less interconnected,
and thus less similar to high-knowledge students. These findings confirm past evidence
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indicating that learning is related to semantic memory structure, by demonstrating that 639
learning is accompanied by structural reorganizations of semantic memory (Siew, 2020; 640
Siew & Guru, 2022). Further, we provide evidence that students who possess more efficient 641
semantic memory structures are more likely to succeed in a university level course, as indi- 642
cated by stronger learning and higher expected grades. 643

4. General Discussion 644

Typical educational assessments are commonly used by educators to measure stu- 645
dent learning, but they can only evaluate surface-level knowledge (Siew & Guru, 2022). 646
To gain deeper insights into student learning, researchers have begun to examine how 647
students organize knowledge using cognitive network science, which offers a viable, 648
valid, and complementary approach to traditional educational assessments (Disessa & 649
Sherin, 1998; Siew, 2020). In the present research, we used cognitive network science meth- 650
ods to model the knowledge organization of students who learned more and less in an 651
introductory psychology course. In Study 1, students were only tested near the end of the 652
academic semester, while in Study 2 they were tested both near the start (T1) and end (T2) 653
of the semester. Students were separated into a low and a high psychology knowledge 654
group based on their performance on a psychology multiple-choice test, the Intro Psych 655
Test. We estimated domain-specific (psychology concepts) and domain-general (animal) 656
semantic memory networks for each group using verbal fluency responses. 657

In Study 1, we found that the high-knowledge group exhibited a more small-worlded 658
semantic memory structure—marked by shorter path distances and higher connectivity 659
between concepts, for both domain-specific and domain-general networks —compared to 660
the low-knowledge group. In Study 2, we directly replicated these findings and further 661
revealed a dynamic interplay between network structure and learning. First, we found 662
that the semantic memory networks of the high-knowledge group, both domain-specific 663
and domain-general, were already more small-worlded at T1. This small-world memory 664
structure of high-knowledge students was further emphasized at T2, both when com- 665
pared to the low-knowledge group and to themselves at T1. These findings extend past 666
research on the relationship between academic expertise and semantic memory structure 667
(Nesbit & Adesope, 2006; Siew, 2000; Siew & Guru, 2022), providing further evidence that 668
semantic memory networks may be predictive of performance in educational contexts. 669

A key finding of Studies 1 and 2 was that the psychology semantic memory network 670
for the high-knowledge group showed shorter paths between concepts than the low- 671
knowledge group. Importantly, shorter path-lengths in has been found to facilitate relat- 672
edness judgments (Kenett et al., 2017; Kumar et al., 2020), as well as word retrieval and 673
selection (Arbesman et al., 2010; Vitevitch et al., 2012). Hence, the knowledge structure of 674
high-knowledge students may play a bottom-up, facilitatory role during memory re- 675
trieval (Siew, 2020). This in turn would plausibly lead to better performance on other 676
learning assessments, which strongly depend on recall and recognition processes, suchas 677
with the Intro Psych Test administered in this study. Our findings are consistent with the 678
recent work of Siew and Guru (2022), finding that the networks of high psychology 679
knowledge students were characterized by shorter ASPL. 680

In both Studies 1 and 2, the domain-general/animal network mirrored the structure 681
of the domain-specific/psychology network, similar to Siew and Guru (2022). This simi- 682
larity cannot be directly accounted for by domain expertise, i.e., performance on the Intro 683
Psych Test. One possibility is that students in the high-knowledge group had a cognitive 684
advantage that predisposed them towards developing more efficient domain-specific 685
memory structures, such as higher levels of pre-existing domain-general knowledge (i.e., 686
crystallized intelligence) or stronger reasoning abilities that facilitate learning (i.e., fluid 687
intelligence). This is supported by findings from Study 2, indicating that high-knowledge 688
students possessed more small-worlded memory structures early in the semester, and 689
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these networks became even more small-worlded with learning. Both high fluid and crys- 690
tallized intelligence have been shown to facilitate learning and academic achievement in = 691
an academic setting (e.g., Deary et al., 2007). While higher fluid intelligence has been 692
linked to a more structured semantic memory network (Kenett, 2024; Rastelli et al., 2020), 693
crystallized intelligence has instead been linked with more flexible memory, such as that 694
of high psychology knowledge students in our study (Li et al., 2024). Other cognitive abil- 695
ities associated with crystallized intelligence, such as verbal creativity, have also been as- 696
sociated with less structured networks (He et al., 2021; Kenett, 2024; Luchini et al., 2023), 697
consistent with the present work. Further, prior work on language acquisition found that 698
newly learned concepts are integrated in a network via a preferential attachment to more 699
central nodes—those possessing a higher degree of connections (Steyvers & Tenenbaum, 700
2005) —potentially benefiting students with more clustered semantic memory networks 701
that may have more “hooks” to integrate new concepts. 702

Interestingly, in Study 1 we found no difference in the Q metric on the domain-spe- 703
cific/psychology networks, although this difference was present for the domain-gen- 704
eral/animal network. This was partially replicated in Study 2, as we saw no difference 705
between knowledge groups at T1 but found that low-knowledge students developed a 706
more modular network at T2. Our general findings are only partly in line with Siew and 707
Guru (2022), who reported higher levels of Q for both domain-general and domain-spe- 708
cific memory networks of high school students compared to college students. One possi- 709
bility for this discrepancy might be that groups in the present study were matched on age, 710
whilst in the Siew and Guru (2022) study they were generated by contrasting high-school 711
and university students. Research on aging has shown that older adults tend to possess 712
semantic memory structures that are more modular, possibly because of increasing vo- 713
cabulary knowledge (Cosgrove et al., 2023). Curiously, the findings of Siew and Guru 714
(2022) point toward more experienced, and older, students possessing less modular do- 715
main-general and domain-specific networks. It must be noted that the age difference be- 716
tween participants in Cosgrove et al. (2023) was much larger than that in Siew and Guru 717
(2022), which only compared high-school and university students. It may thus be that the 718
relationship between modularity and age is a non-linear one, such that modularity de- 719
creases when developing into young adulthood, before increasing again into older adult- 720
hood. It might then be that for Sudy 2, the increase in modularity for the domain-specific 721
and domain-general networks of low-knowledge students is indicative of a deviation 722
from typical developmental trends. Thus, the findings of Siew and Guru (2022) may in 723
part be driven by an effect of age and vocabulary knowledge, beyond mere education. 724

4.1. Limitations and Future Directions 725

Despite the strengths of the current study, a few limitations should be mentioned. It 726
is important to emphasize that the present work is correlational, leaving open the question 727
of directionality. It remains unclear whether efficient learning engenders these character- 728
istic memory structures associated with higher knowledge, or vice versa. It is also worth 729
noting that semantic memory networks may also depend on executive abilities, such that 730
what may appear to be a distinct memory structure could also be explainable by memory 731
search processes (Siew et al., 2019). Moreover, we did not include measure of fluid or 732
crystallized intelligence in this study, which have been found to be strongly associated 733
with academic performance (Deary et al., 2007; Soares et al., 2015) and semantic memory 734
structure (Kenett, 2024; Li et al., 2024). Further studies are therefore needed to determine 735
whether fluid intelligence has any clear moderating effect between learning and semantic 736
memory network restructuring. 737

Another limitation is the use of a group-based network estimation method. We 738
adopted the verbal fluency task as it is currently the most common and easily replicable 739
approach to estimate semantic memory networks (Zemla et al, 2020). Recent 740
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methodological advancements have been made in modeling individual-based semantic 741
memory networks (Benedek et al., 2017; Morais et al., 2013; Wulff et al., 2022; Zemla & 742
Austerweil, 2018). These approaches do not require a dichotomization of the grouping 743
variable, preventing issues that may arise from reduced granularity, such as loss of power 744
or effect sizes (MacCallum et al., 2002). It is possible that the present approach of dichot- 745
omizing the grouping variable may have led to an underestimation of this effect. Further, 746
the approach of dichotomizing the grouping variable led to unequal sample sizes between 747
the low and high psychology knowledge groups, potentially affecting the results. Future 748
studies are thus required to replicate the present work by employing continuously esti- 749
mated networks, particularly to determine the degree to which the ASPL of domain-spe- 750
cific semantic memory networks may depend on expertise. Despite these limitations, our 751
findings offer important new insights into how knowledge is organized in the semantic 752
memory of students with more or less course knowledge. 753

5. Conclusions 754

The present work replicates and extends past findings indicating that student 755
knowledge can be accurately measured via network science approaches (Siew & Guru, 756
2022). Crucially, this is the longitudinal first evidence that the memory structure of stu- 757
dents enrolled in the same course can be quantitatively analyzed and related to their per- 758
formance in the course. These findings inform further work investigating how memory 759
structure relates to specific learning outcomes in students. This line of research may ulti- 760
mately lead to the development of novel quantitative approaches for the measurement of 761
student learning, the identification of gaps in learning, and the facilitation of teaching 762
practices. 763
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The cerebellum is primarily involved in directing

The frontal lobes primary role is in supporting

The hippocampus is a part of the

Neuroplasticity refers to how the nervous system can

The function of neurotransmitters in the nervous system is that of

The process of inputting information into the memory system is called
The memory store for personal life events is

Recognition specifically refers to the ability of

Retrieval specifically refers to the ability of

. Semantic memory primarily stores information about

. Altruism is a form of prosocial behavior that is motivated by

. Conformity refers to the

. Empathy refers to the ability to

. If group members modify their opinions to align with a perceived group con-

sensus, this is an example of

A set of group expectations for appropriate thoughts and behaviors of its
members is called

The emotional bond between an infant and parent that affects the infant’s
sense of security is

Cognitive development primarily concerns the strengthening of

The idea that even if something is out of sight, it still exists is called

An example of the sensitive period is the

Temperament is thought of as

Binocular vision requires

A blind spot is understood to be

An example of a gestalt principle is the

Inattentional blindness is thought of as

Perceptual constancy of shapes, brightness and size refers to the
Associative learning occurs when an individual

When a stimulus or experience occurs before a behavior that it gets paired
with what occurs is

Observational learning is thought to largely derive from

Operant conditioning is a form of learning where

Taking away a pleasant stimulus to stop a behavior is an example of

The ability to self-monitor in social situations will especially depend on the
A lesion to the hippocampus would render an individual entirely unable to
Associative learning mostly relies on

What is likely to play the largest role in determining recognition performance
on a cognitive task?

What kind of memory is impacted by infantile amnesia?

Social norms will typically be stored in

The development of secure attachment will crucially depend on the caregiver
demonstrating high levels of
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