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Abstract: Standard learning assessments like multiple-choice questions measure what students 11 
know but not how their knowledge is organized. Recent advances in cognitive network science pro- 12 
vide quantitative tools for modeling the structure of semantic memory, revealing key learning 13 
mechanisms. In two studies, we examined the semantic memory networks of undergraduate stu- 14 
dents enrolled in an introductory psychology course. In study 1, we administered a cumulative 15 
multiple-choice test of psychology knowledge, the Intro Psych Test, at the end of the course. To 16 
estimate semantic memory networks, we administered two verbal fluency tasks: domain-specific 17 
fluency (naming psychology concepts) and domain-general fluency (naming animals). Based on 18 
their performance on the Intro Psych Test, we categorized students into a high-knowledge or low- 19 
knowledge group, and compared their semantic memory networks. Study 1 (N = 213) found that 20 
the high-knowledge group had semantic memory networks that were more clustered, with shorter 21 
distances between concepts—across both the domain-specific (psychology) and domain-general 22 
(animal) categories—compared to the low-knowledge group. In Study 2 (n = 145), we replicated and 23 
extended these findings in a longitudinal study, collecting data near the start and end of the semes- 24 
ter. In addition to replicating Study 1, we found the semantic memory networks of high-knowledge 25 
students became more interconnected over time, across both domain-general and domain-specific 26 
categories. These findings suggest successful learners show a distinct semantic memory organiza- 27 
tion—characterized by high connectivity and short path distances between concepts—highlighting 28 
the utility of cognitive network science for studying variation in student learning. 29 

Keywords: cognitive network science, educational assessment, expertise, knowledge, semantic 30 
memory, undergraduate education 31 

1. Introduction 32 

Psychologists have long been interested in studying the relationship between learning 33 
and memory, a link that is of considerable importance for informing modern educational 34 
practices (Anderson, 2000). To evaluate student learning, educators often employ assess- 35 
ments such as multiple-choice quizzes or short-answer questions (Becker & Watts, 2001). 36 
Despite their popularity, such assessments can only evaluate what students know on a sur- 37 
face level. To provide a deeper understanding of student learning, researchers have recently 38 
employed methods from cognitive network science that can model (latent) knowledge 39 
structures. Network science quantifies the relationships between units in a complex sys- 40 
tem—such as words in a semantic memory network—providing powerful tools for under- 41 
standing how students represent and retrieve knowledge to facilitate successful learning 42 
and academic performance (Nesbit & Adesope, 2006; Siew, 2020). Previous cross-sectional 43 
research has found that older students have different knowledge structures compared to 44 
younger students across a variety of academic subjects (Siew et al., 2022). To date, no study 45 
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has employed network science to compare the knowledge structures of more and less 46 
knowledgeable students taking the same academic course. In the present research, we ad- 47 
dress this gap by examining the knowledge structures of students with higher levels of 48 
course knowledge, investigating whether their representation of concepts differs from stu- 49 
dents who learn less course knowledge. 50 

Assessing student learning is of vital importance in education, as it provides a means 51 
to identify gaps in knowledge, provide directed feedback, as well as determine academic 52 
achievement (Suskie, 2018). Since the popularization of pen-and-paper examinations in the 53 
1920s, student learning has often been evaluated in terms of raw information retention on 54 
multiple-choice quizzes (Stiggins, 1991). Despite certain advantages, such as quick grading, 55 
such assessments have been criticized for their poor effectiveness at measuring a students’ 56 
understanding of a topic (Biggs, 1973; Entwistle & Entwistle, 1992). Other assessments 57 
which favor concept understanding come then in the form of constructed responses such as 58 
short answer questions (Martinez, 1999). Although constructed responses allow for a more 59 
nuanced measurement of student learning, they carry their own downsides such as long 60 
grading times (Simkin & Kuelcher, 2005). Of note, neither multiple-choice nor constructed 61 
responses are able to tap into the hidden mental structures formed by learned concepts 62 
(Siew & Guru, 2022). These memory structures have been shown to allow for a unique eval- 63 
uation of a student’s understanding of concepts and problems within a domain, distinguish- 64 
ing more from less experienced students, and may ultimately serve as a valid complemen- 65 
tary tool to traditional learning assessments (Chi et al., 1981; Siew, 2019).   66 

A common way of measuring student knowledge structures has been concept maps— 67 
diagrams representing the relationships shared by concepts or ideas (Novak, 2010; Novak 68 
& Cañas, 2007). Concept maps are typically evaluated in terms of their visual properties, by 69 
judging the unique shape of each map and drawing qualitative conclusions as to the 70 
memory structure that they reflect. In these terms, more experienced students tend to draw 71 
concept maps that are more “net-like”, with more connections between concepts, than the 72 
more “chain-like” concept maps drawn by less experienced students (Kinchin et al., 2000; 73 
Lavigne, 2005). These kinds of conclusions have been regarded to be distinct from those 74 
allowed by typical educational assessments, given that concept maps may expose infor- 75 
mation on the nature of learned concepts, such as the relationships shared between them in 76 
long-term memory (Siew & Guru, 2022). Concept maps have also proven to be a more ef- 77 
fective tool than grades for measuring subject knowledge in students in low-income and 78 
culturally diverse schools (Maker & Zimmerman, 2020). However, a major challenge of us- 79 
ing concept maps in education or research is quantifying their structural properties so that 80 
learning may be clearly measured and compared across students (Rittle-Johnson & Schnei- 81 
der, 2015; Ruiz-Primo, & Shavelson, 1996).  82 

One potential solution has emerged from the use of network science to analyze concept 83 
maps as mathematical graphs (Koponen & Nousiainen, 2014; Koponen & Pehkonen, 2010; 84 
Siew, 2019). Mathematical graph theory involves the representation of complex systems as 85 
graphs or networks (e.g., Börner et al., 2008; Newman et al., 2006). Networks are made up 86 
of nodes (e.g., an idea or concept) which are connected to each other via edges (e.g., the 87 
similarity between two edges). In the study of human cognition, there has been a growing 88 
interest in using network science methodologies (Baronchelli et al., 2013; Siew et al., 2019). 89 
This trend is mainly due to the availability of quantitative tools for modelling semantic 90 
memory—consistent with longstanding theoretical accounts which posit that semantic 91 
memory is structured as a network (Collins & Loftus, 1975; Smith et al., 1974). For instance, 92 
network science allowed researchers to demonstrate that a Montessori school curriculum, 93 
compared to a traditional one, promoted more “flexible” memory structures in children, 94 
with higher connectivity and shorter paths between concepts (Denervaud et al., 2021). Sim- 95 
ilar research has shown how creativity relates to second language learning, exhibited via 96 
more “flexible” semantic memory structures of the learned language (Kenett, 2024). This 97 
structure is conducive to connecting concepts in semantic memory networks, and has 98 
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previously been associated with higher cognitive abilities, including creative thinking (He 99 
et al., 2021; Kenett, 2024).  100 

Network science has also been employed for the quantitative analysis of concept maps 101 
drawn by university students enrolled in an introductory psychology course (Siew, 2019). 102 
Concept maps were drawn based on topics covered in a psychology textbook chapter (i.e., 103 
neuroscience), which were included on a later quiz. Students who scored higher on the quiz 104 
also exhibited longer paths between concepts in their maps, indicating that higher content 105 
knowledge was associated with representing concepts further apart from each other. This 106 
finding may appear counterintuitive when considering that networks with shorter paths 107 
and higher clustering of nodes, also known as “small-world” networks, have consistently 108 
been associated with higher processing efficiency (He et al., 2021; Watts & Strogatz, 1998), 109 
flexibility (Kenett et al., 2018), and creative thinking (Kenett, 2024). However, higher fluid 110 
intelligence has been related to longer paths between concepts, alongside more compart- 111 
mentalized semantic memory networks, that exhibit more discrete conceptual subcategories 112 
(e.g., types of animals in the animal category), suggesting that a well-structured semantic 113 
memory network may facilitate memory search and retrieval (Kenett, 2024). Thus, a critical 114 
question for the current research is whether students’ effective learning is reflected in more 115 
structured or more flexible semantic memory networks.  116 

Recently, Siew and Guru (2022) adopted the verbal fluency task—which involves gen- 117 
erating words based on an initial prompt word—to model semantic memory networks of 118 
university and high school students. One version of this task, the animal fluency task, is 119 
widely used to measure domain-general semantic memory, i.e., general knowledge catego- 120 
ries, as the animal category has been found to be the most stable across cultures and lan- 121 
guages (Ardila et al., 2006). Verbal fluency data is typically analyzed via group-based net- 122 
works that require the aggregation of participants into discrete groups (Christensen & 123 
Kenett, 2023; Zemla & Austerweil, 2018). Siew and Guru (2022) compared both domain- 124 
general (animal, fruit) and domain-specific (psychology, biology) semantic memory net- 125 
works of university students and novice high-school students. The authors found that uni- 126 
versity students had memory structures that were more small-worlded, across both do- 127 
main-general and domain-specific categories compared to novice high-school students, sup- 128 
porting the view that domain knowledge is linked with more flexible/less structured 129 
memory structures.   130 

1.2 The Present Research 131 

The investigation by Siew and Guru (2022) shed light on the relationship between a 132 
student’s learning and knowledge structure. However, comparing groups of different ages 133 
can make it difficult to disentangle whether group differences are related to domain 134 
knowledge or cognitive development, i.e., whether students differ in their knowledge struc- 135 
tures due to learning or age-related changes in the semantic system. Besides, measuring stu- 136 
dents at a single timepoint makes it hard to disentangle learning from other factors that may 137 
influence domain expertise, such as individual differences in cognitive ability. The present 138 
paper thus aims to build upon these findings by comparing age-matched students with var- 139 
ying levels of domain-specific expertise (Study 1). Further, we test students at two separate 140 
timepoints in the academic semester and compare whether any changes in knowledge struc- 141 
ture are associated with learning (Study 2). 142 

2. Study 1 143 

In Study 1, we aimed to test whether learning was associated with structural differ- 144 
ences in the semantic memory of students. To measure domain-general and domain-specific 145 
memory structures, we employed the verbal fluency task, which is commonly used to esti- 146 
mate semantic memory networks (Christensen & Kenett, 2023). Undergraduate students 147 
were separated into a high-knowledge or low-knowledge group based on their scores on a 148 
cumulative psychology test at the end of the course. We hypothesized that higher psychol- 149 
ogy knowledge would be related to more interconnected semantic memory networks for 150 
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psychology (i.e., domain-specific networks), with psychology concepts being more richly 151 
connected to each-other, consistent with past work using different experimental designs 152 
(e.g., Kinchin et al., 2000; Lavigne, 2005; Siew et al., 2022). Given past work linking expertise 153 
and general semantic memory structure, we further expected that higher psychology 154 
knowledge would lead to domain-general semantic memory networks that would be more 155 
interconnected and less modular (Siew & Guru, 2022). 156 

2.1. Materials and Methods 157 

2.1.1. Participants 158 

A total of 267 (184 females; 79 males; 4 non-binary; M = 18.97 years, SD = 2.73 years) 159 
participants who were enrolled in an undergraduate introductory psychology class were 160 
recruited from The Pennsylvania State University (PSU). Participants were tested, near 161 
the end of the academic semester, on an online battery of cognitive tasks lasting 1 hour. 162 
Beyond the tasks reported in the following analyses, the battery also included a series of 163 
creativity tasks that were completed after the verbal fluency tasks and the Intro Psych 164 
Test. The study was approved by the PSU Institutional Review Board.  165 

2.1.2. Materials 166 

Animal Fluency Task. The animal fluency task was administered to estimate domain- 167 
general semantic networks—the most commonly used task for estimating group-based 168 
semantic memory networks (Christensen & Kenett, 2023). The duration of the animal 169 
fluency task was three minutes (Ardila et al., 2006). During this time, participants were 170 
required to generate (type) as many animal names as they could, and to continue 171 
responding until the time was over. The task was performed with a computer keyboard, 172 
using the Enter key to submit responses.  173 

Psychology Fluency Task. A psychology fluency task was administered to estimate 174 
domain-specific semantic networks, consistent with past work (Siew & Guru, 2022). The 175 
task was administered the same way as the animal fluency task, except that participants 176 
were required to generate words associated with psychology for the duration of the task, 177 
following Siew and Guru (2022). 178 

Intro Psych Test. A multiple-choice test was constructed to assess psychology 179 
knowledge (see Appendix A). The senior author coordinated with the course instructor, 180 
who shared the syllabus and study guides listing the topics covered in the course. The test 181 
was administered at the end of the semester to ensure students had been exposed to all 182 
topics. A total of 37 questions were developed based on an introductory psychology 183 
textbook, including the following topics: biopsychology, development, learning, memory, 184 
perception, and social psychology. After completing the test, students were asked to self- 185 
report their current grade, using a 9-point Likert scale (i.e., 1 = D; 2 = C-; 3 = C; 4 = C+; 5 = 186 
B-; 6 = B; 7 = B+; 8 = A-; 9 = A); students could skip the question if they did not know their 187 
current grade. The purpose of reporting grades was to validate our new Intro Psych Test.  188 

2.1.3. Group Construction 189 

We constructed group-based semantic memory networks using the psychology (do- 190 
main-specific) and animal (domain-general) fluency responses, which require aggregat- 191 
ing participants into groups (Christensen & Kenett, 2023). We separated participants into 192 
two groups via a median split based on their performance on the Intro Psych Test. Partic- 193 
ipants were removed at the median number of correct responses (N = 64) so that the 194 
groups would be well defined, ensuring that “boundary” cases would be addressed (i.e., 195 
participants with median scores belong to neither the “high” or “low” group; Irwind & 196 
McClelland, 2003). We thus retained a high psychology knowledge group (N = 116; 85 197 



J. Intell. 2023, x, x FOR PEER REVIEW 5 of 24 
 

 

females; 29 males; 2 non-binary; M = 19.1 years, SD = 3.05 years) and a low psychology 198 
knowledge group (N = 87; 61 females; 24 males; 2 non-binary; M = 18.7 years, SD = .83 199 
years) for a comparison of their semantic memory networks. 200 

2.1.4. Semantic Memory Network Estimation 201 

The SemNA pipeline (Christensen & Kenett, 2023)—an open-access pipeline in R for 202 
the estimation and analysis of semantic memory networks from semantic fluency data— 203 
was adopted for preprocessing and analysis purposes, using the following steps: 204 

Preprocessing. Automatic preprocessing of the semantic fluency data was conducted 205 
via two R packages: SemNetDictionaries (version 0.2.0; Christensen, 2019a) and 206 
SemNetCleaner (version 1.3.4; Christensen, 2019b). The entire preprocessing procedure 207 
was run separately for the animal fluency and the psychology fluency data, taking the 208 
same steps for both datasets. First, within-participant repetitions (i.e., duplicate 209 
responses) and non-category members (for the animal fluency task: e.g., dragon, ant 210 
colony, moon) were removed from the data. Several other potential issues in the responses 211 
were then addressed, such as spelling errors, compound responses, root word variations, 212 
and continuous strings. Next, manual spell-checking was run, by psychology experts, 213 
over words that were not recognized by the software, which were then corrected 214 
accordingly to standard English.  215 

A binary response matrix was then generated by transforming the cleaned data, with 216 
each unique response given across participants as columns, and individual participants 217 
as rows. The frequency of within-participant response occurrence was used to generate 218 
the content of the response matrix, with values either 1 (i.e., participant i generated exem- 219 
plar j) or 0 (i.e., participant i did not generate exemplar j). Response exemplars included 220 
in the response matrix were limited to those that were provided by at least two partici- 221 
pants in the overall sample, as this has been shown to allow for better control of confound- 222 
ing factors (e.g., differences in the number of nodes and edges between groups; Christen- 223 
sen & Kenett, 2023). To further control for the confounding effect of including a different 224 
number of nodes between groups (Van Wijk et al., 2010), responses in the binary matrices 225 
were then equated across groups, retaining for each group only those responses that were 226 
provided by the other groups. To sum up, all comparisons of semantic memory network 227 
structure included in the present study consider only the differences in the organization 228 
of the same nodes between the semantic memory networks. 229 

Network Construction. We conducted two network analyses between the low and 230 
high psychology knowledge groups, separately for the psychology and animal fluency 231 
data. Both network analyses were run the same. Association profiles were computed 232 
between the fluency responses using the SemNeT (version 1.4.4) package (Christensen & 233 
Kenett, 2023) in R (version 4.2.0) using R studio (version 2022.02.3). Network edges were 234 
calculated via the cosine similarity function in the SemNeT package which generates an n 235 
x n adjacency matrix (i.e., associations between each response) for each group 236 
(Christensen & Kenett, 2023). Cosine similarity estimates the co-occurrence probability of 237 
two words by calculating the angle between two-word vectors—a commonly used 238 
technique in latent semantic analysis of text corpora (Landauer & Dumais, 1997) and 239 
related methods of semantic distance computation (Beaty & Johnson, 2021). Cosine 240 
similarity values range from 0 to 1, a value of 1 representing two words that always co- 241 
occur, while 0 represents two words that never co-occur.  242 

Using the SemNeT package, we applied the triangulated maximally filtered graph 243 
(TMFG; Christensen & Kenett, 2023; Massara et al., 2016) to the adjacency matrix of each 244 
group. TMFG captures only the most reliable relations within the cosine-determined net- 245 
works—preventing spurious associations from being retained in the final networks 246 
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(Christensen & Kenett, 2023)—by applying a structural constraint on the association ma- 247 
trix, restricting the number of edges which can be retained in the final networks. 248 

Network Analysis. Three global network metrics were computed for each network, 249 
namely the clustering coefficient (CC), average shortest path length (ASPL), and 250 
modularity (Q). The CC of a network is a measure of connectivity, calculated as the extent 251 
to which two neighbors of a given node will themselves be neighbors. Higher CC values 252 
are associated with a more interconnected semantic memory network (Siew et al., 2019). 253 
The ASPL denotes the mean shortest number of edges required to traverse between any 254 
two nodes. The magnitude of the ASPL between any two nodes thus refers to the average 255 
relatedness of any two concepts within the network (Kenett et al., 2017; Kumar et al., 2020). 256 
Finally, Q measures network segregation, calculated as the extent to which a network 257 
possesses dense connections within sub-networks and between sub-networks. A higher 258 
Q is thus reflective of a higher degree of distinct sub-communities within the network 259 
(Fortunato, 2010).  260 

Our network analysis compared the network metrics (CC, ASPL, and Q) from the 261 
high and low psychology knowledge groups against randomly generated networks. In 262 
accordance with established procedures when comparing group-based networks (Chris- 263 
tensen & Kenett, 2023), we employed a case-wise bootstrap analysis (Efron, 1979) to ana- 264 
lyze any differences in the network structure between-groups. As group-based calcula- 265 
tions of network metrics only provide a single value per group and thus cannot be directly 266 
compared, bootstrapping serves as a test of significance for the network comparisons. The 267 
SemNeT package in R was employed to run the bootstrapping (Christensen & Kenett, 268 
2023), with 1000 iterations. Networks for the resampled groups were generated separately 269 
for each network, using with-replacement bootstrapping (Bertail, 1997). Network 270 
measures (CC, ASPL, and Q) were then calculated for each resampled group’s network 271 
and the two networks were compared by conducting an independent-samples t-test anal- 272 
yses for each network metric. 273 

2.1.5. Procedure 274 

Study 1 was conducted online through Pavlovia (https://pavlovia.org/) and com- 275 
pleted by participants on their personal computers. All participants first completed the 276 
verbal fluency tasks (psychology and animal), counterbalanced in their order of presenta- 277 
tion, and later completed the Intro Psych Test. At the end of the study, participants were 278 
asked for self-reported grades and demographic information. 279 

2.2. Results 280 

2.2.1. Fluency and Descriptives 281 

First, we tested whether any group differences exist between fluency scores (i.e., 282 
number of responses) on the psychology fluency and the animal fluency tasks, separately 283 
(Table 1). Regarding psychology fluency, the low psychology knowledge (M = 9.7, SD = 284 
4.1) and high psychology knowledge (M = 10.0, SD = 4.0) groups were not significantly 285 
different, t(201) = .513, p = .609, d = .001, 95% CI [-.84, 1.44]. Similarly, for animal fluency, 286 
we found no difference between the low psychology knowledge (M = 16.4, SD = 5.6) and 287 
high psychology knowledge (M = 17.3, SD = 4.8) groups, t(201) = 1.326, p = .19, d = .009, 288 
95% CI [-.47, 2.41], indicating comparable fluency performance between the two groups. 289 

Next, we aimed to validate the Intro Psych Test with respect to self-reported course 290 
grades. We thus computed a Pearson correlation analysis between test performance and 291 
self-reported grades. Due to the high positive skew of the self-reported grades, the values 292 
were log-transformed before any analysis. We found a moderate positive linear relation- 293 
ship between test performance and self-reported grades, r = .30, p < .001, indicating that 294 
students who did better on the test tended to do better in the course. For exploratory 295 
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purposes, we also computed correlations between test performance and verbal fluency, 296 
finding no significant associations (Table 2): students who did better on the test did not 297 
produce more psychology concepts or animal names on the fluency tasks. 298 

Table 1. Descriptive statistics for the Psychology and Animal Fluency Task 299 

Note. n (average) = the average number of responses in each group; n (within) = the total unique 300 
number of responses given by individuals within the group; n (between) = the total unique number 301 
of responses not given by the other groups. 302 

2.2.2. Semantic Memory Networks 303 

We next analyzed the semantic memory networks for the low- and high- psychology 304 
knowledge groups, separately for the psychology and animal fluency tasks. This led to 305 
psychology semantic memory networks with 72 nodes and 205 edges, an average degree 306 
of 5.69, density of 0.08, and efficiency of 0.41. Further, animal semantic memory networks 307 
possessed 103 nodes and 302 edges, an average degree of 5.86, density of 0.06, and effi- 308 
ciency of 0.42. Networks were visualized via Cytoscape 3.9.1 (Figure 1; Shannon et al., 309 
2003), by generating 2D representations of unweighted and undirected networks, in 310 
which circles represent concepts and lines represent the links between concepts.  311 

 312 

Table 2. Descriptive statistics and correlations for the Intro Psych Test, Self-Reported Grades, Psy- 313 
chology Verbal Fluency and Animal Verbal Fluency. 314 

 M SD NA Min, Max 1 2 3 4 

Intro Psych Test 18.03 5.89 0 5, 32 1   

 

 

Self-Reported Grades 6.22 2.12 12 1, 9 0.32 1   

Psychology Fluency 9.88 4.06 0 1, 24 0.05 0.14 1  

Animal Fluency 16.92 5.16 0 1, 31 0.12 0.18 0.43 1 

Note. NA = number of participants who refused to respond. Self-reported grades ranged in 315 
values from 1 to 9 and represent alphabetical grades. 10 = A+; 9 = A; 8 = A-; 7 = B+; 6 = B; 5 = B-; 4 = 316 
C+; 3 = C; 2 = C-; 1 = D. Statistically significant Pearson correlations are bolded (p < .05). 317 

We tested whether the semantic memory networks of the low- and high- psychology 318 
knowledge groups were significantly different from randomly generated networks, 319 

 Psychology Fluency Task Animal Fluency Task 

 n (average) 

n 

(within) 

n 

(between) 

n (average) 

n 

(within) 

n 

(between) Group 
M 

(SD) 
Range 

M 

(SD) 
Range 

Low 

knowledge 

9.7 

(4.1) 
2-22 292 150 

16.4 

(5.6) 
3-29 178 39 

High 

knowledge 

10.0 

(4.0) 
1-24 343 201 

17.3 

(4.8) 
1-31 208 69 
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matched by the number of nodes and edges. This random network analysis revealed that 320 
for both psychology and animal fluency semantic memory networks, across both groups 321 
and for all network metrics (CC, ASPL, & Q), the empirically generated semantic networks 322 
were significantly different from randomly generated networks (all p’s < .001).  323 

Critically, we then compared whether the low and high psychology knowledge 324 
groups were significantly different from each other in the structure of their semantic 325 
memory networks for the psychology (Figure 2) and animal (Figure 3) domains, via the 326 
bootstrapping approach.  327 

 328 

Figure 1. A 2D visualization of the psychology and animal semantic memory networks of individ- 329 
uals with high and low psychology knowledge. 330 

 331 
Note. Circles represent nodes (i.e., concepts) which are connected by edges based on the strength of 332 
the semantic associations between concepts in each group. 333 

Psychology Fluency Networks. For the psychology semantic memory networks, an in- 334 
dependent-samples t-test revealed that the high psychology knowledge group exhibited 335 
a shorter ASPL (M = 2.866, SD = 0.202) than the low psychology knowledge group 336 
(M = 2.884, SD = 0.203), t(1998) = -1.99, p = .047, d = .09. Further, the high psychology 337 
knowledge group exhibited a significantly higher CC (M = 0.715, SD = 0.014) than the low 338 
psychology knowledge group (M = 0.713, SD = 0.017), t(1998) = 3.46, p < .001, d = .16. Lastly, 339 
the comparison for Q revealed that the high psychology knowledge group (M = 0.564, SD 340 
= 0.025) did not significantly differ from the low psychology knowledge group (M = 0.563, 341 
SD = 0.026), t(1998) = 0.88, p = .381, d = .04. Altogether, compared to the low psychology 342 
knowledge group, the semantic memory network of the high psychology knowledge 343 
group was significantly more connected (higher CC) and possessed shorter average paths 344 
(lower ASPL), but the networks were similar in terms of communities (Q).  345 
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Figure 2. Psychology fluency networks metrics (CC/ASPL/Q) for psychology knowledge groups 346 
(High/Low). 347 

 348 

Note. Bootstrapping was run over 1000 iterations. Means of each group are presented for all network 349 
parameters. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity. 350 

 351 
Animal Fluency Networks. For the animal semantic memory networks. An independ- 352 

ent-sample t-test revealed that the high psychology knowledge group exhibited a shorter 353 
ASPL (M = 2.924, SD = 0.172) than the low psychology knowledge group (M = 3.198, SD = 354 
0.187), t(1998) = -34.08, p < .001, d = 1.52. Further, the high psychology knowledge group 355 
exhibited a significantly higher CC (M = 0.734, SD = 0.009) than the low psychology 356 
knowledge group (M = 0.717, SD = 0.010), t(1998) = 39.54, p < .001, d = 1.77. Lastly, the high 357 
psychology knowledge group exhibited a significantly lower Q (M = 0.588, SD = 0.023) 358 
than the low psychology knowledge group (M = 0.625, SD = 0.021), t(1998) = -37.74, 359 
p < .001, d = 1.69. Taking together, compared to the low psychology knowledge group, the 360 
semantic memory network of the high psychology knowledge group was significantly 361 
more connected (higher CC), with shorter average paths (lower ASPL) and fewer commu- 362 
nities (lower Q). 363 

Figure 3. Animal fluency networks metrics (CC/ASPL/Q) for psychology knowledge groups 364 
(High/Low). 365 

 366 
Note. Bootstrapping was run over 1000 iterations. Means of each group are presented for all network 367 
parameters. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity. 368 

2.3. Discussion 369 

Evidence indicates that more experienced university students possess a more small- 370 
worlded (i.e., higher clustering and shorter paths between concepts) semantic memory 371 
structure than less experienced high-school students (Siew & Guru, 2022). However, given 372 
the confounding effect of age, the link between learning and semantic memory structure 373 
remains unclear. Study 1 addressed this limitation, by comparing age-matched groups of 374 
university students with low- and high-psychology knowledge. Students in the high- 375 
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psychology knowledge group were found to possess more small-worlded semantic 376 
memory networks for both the animal and psychology domains. This finding is consistent 377 
with the work from Siew and Guru (2022), pointing to a link between learning and more 378 
efficient semantic memory structures. However, for the domain-specific networks, we ob- 379 
served the opposite effect with regards to Q, a measure of network communities. We spec- 380 
ulate that this inconsistency relates to the effect of age on Q, with older individuals display- 381 
ing more modular semantic memory structures (Cosgrove et al., 2023). 382 

3. Study 2 383 

In Study 1, we observed how the semantic memory structure of students enrolled in 384 
an introductory psychology course depended on their learning. In Study 2, we sought to 385 
confirm this finding, by including a longitudinal component to our measurements. This 386 
longitudinal approach allowed us to study—for the first time—how semantic networks 387 
change over time in students who learn more and less course knowledge. Further, we 388 
administered a secondary multiple-choice psychology assessment, the psychology 389 
knowledge test (PsyKT). The PsyKT was taken from Kunina et al. (2007) and was included 390 
to determine the construct validity of our Intro Psych Test.  391 

3.1. Materials and Methods 392 

3.1.1. Participants 393 

We recruited a total of 145 participants (128 females; 16 males; 1 non-binary; M = 394 
18.42 years, SD = 0.78 years) enrolled in an undergraduate introductory psychology class 395 
at ---. Testing was conducted at two timepoints, once at the start of the academic semester 396 
(i.e., timepoint 1; T1) and again near the end (i.e., timepoint 2; T2). Participants completed 397 
an online battery of cognitive tasks lasting 1 hour at each timepoint. A series of creativity 398 
tasks and a language learning task were included at both timepoints. These tasks were 399 
performed after the verbal fluency tasks, the Intro Psych Test, and the Psychology 400 
Knowledge Test (PsyKT), and were not analyzed for the purposes of this study. The study 401 
was approved by the PSU IRB. 402 

3.1.2. Materials 403 

PsyKT. In addition to the Intro Psych Test from study 1 (see Appendix), we 404 
administered a second, established assessment of psychological knowledge, the PsyKT, to 405 
test the construct validity of our Intro Psych Test. The assessment was extracted from a 406 
previous study which extensively validated its use in research with undergraduate 407 
psychology students (Kunina et al., 2007). The assessment contains 50 multiple choice 408 
questions on a variety of topics which fall within the umbrella of psychology. The 409 
assessment was originally devised in German, so it was translated into English for the 410 
purposes of this study. 411 

3.1.3. Group Construction 412 

Based on their performance on the Intro Psych Test completed at T1, participants 413 
were separated into two groups via a median split. After removing participants at the 414 
median (N = 11), we retained a high psychology knowledge (N = 72; 60 females; 11 males; 415 
1 non-binary; M = 18.47 years, SD = 0.92 years) and a low psychology knowledge group 416 
(N = 62; 57 females; 5 males; M = 18.34 years, SD = 0.57 years). Group-based semantic 417 
memory networks were then constructed separately for fluency responses collected at T1 418 
and T2, for both psychology and animal fluency data, leading to 4 semantic memory net- 419 
works being generated from each fluency task (high-knowledge T1/high-knowledge 420 
T2/low-knowledge T1/low-knowledge T2). 421 
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3.1.4. Semantic Memory Network Estimation 422 

Like in study 1, we followed the SemNA pipeline for preprocessing and analysis of 423 
networks (Christensen & Kenett, 2023). Statistical analysis also followed a similar proce- 424 
dure, with the exception of two sets of ANOVAs, run separately for psychology and ani- 425 
mal networks. All ANOVAs included knowledge (high/low) and timepoint (T1/T2) as 426 
predictor variables, and included either CC, ASPL, or Q as predicted variables.  427 

3.1.5. Procedure 428 

Online data collection was conducted through Pavlovia (https://pavlovia.org/) and 429 
completed on the participants’ personal computers. Participants first completed the verbal 430 
fluency tasks (psychology and animal), counterbalanced for order of presentation, before 431 
completing our Intro Psych Test and the PsyKT. Finally, participants responded to a series 432 
of questions relating to self-reported grades and demographics.  433 

3.2. Results 434 

3.2.1. Fluency and Descriptives 435 

We began by testing whether any differences in fluency existed between knowledge 436 
groups at any timepoint, separately analyzing the psychology fluency and the animal flu- 437 
ency tasks. For psychology fluency collected at T1, the low psychology knowledge (M = 438 
11.9, SD = 3.7) and high psychology knowledge (M = 12.2, SD = 3.2) groups were not sig- 439 
nificantly different, t(127) = .514, p = .608, d = .002, 95% CI [-1.53, 0.9]. The same was true 440 
at T2, where the low psychology knowledge (M = 13.3, SD = 3.8) and high psychology 441 
knowledge (M = 13.5, SD = 4.1) groups were not significantly different in their psychology 442 
fluency, t(126) = 0.285, p = .776, d = .001, 95% CI [-1.18, 1.58]. For animal fluency, at T1, we 443 
observed no significant difference between the low psychology knowledge (M = 18.6, SD 444 
= 4) and high psychology knowledge (M = 19.3, SD = 3.6) groups, t(126) = 1.122, p = .26, d 445 
= .01, 95% CI [-2.1, 0.58]. For T2 there was also no difference in animal fluency between 446 
the low psychology knowledge (M = 19.2, SD = 3.5) and high psychology knowledge (M = 447 
20, SD = 3.8) groups, t(125) = 1.227, p = .22, d = .01, 95% CI [-2.1, 0.49]. The results replicate 448 
Study 1, indicating no verbal fluency differences between the two groups for the domain- 449 
specific and domain-general categories used to estimate semantic memory networks.  450 

We then tested whether any fluency differences existed between timepoints, for any 451 
group, separately for psychology and animal fluency. For the high psychology knowledge 452 
group, we observed no significant difference in psychology fluency between T1 (M = 12.2, 453 
SD = 3.2) and T2 (M = 13.3, SD = 3.8), t(139) = 1.728, p = .09, d = .021, 95% CI [-0.15, 2.21]. 454 
We then observed a significant difference in psychology fluency between T1 (M = 11.9, SD 455 
= 3.7) and T2 (M = 13.5, SD = 4.1) for the low psychology knowledge group, t(114) = 2.130, 456 
p = .04, d = .04, 95% CI [0.11, 2.98]. For animal fluency, instead, we observed no significant 457 
difference between T1 (M = 19.3, SD = 3.6) and T2 (M = 20, SD = 3.8) for the high psychology 458 
knowledge group, t(136) = 1.035, p = .03, d = .008, 95% CI [-0.6, 1.91]. For the low psychol- 459 
ogy knowledge group there was also no difference in animal fluency between T1 (M = 460 
18.6, SD = 4) and T2 (M = 19.2, SD = 3.5), t(115) = 0.879, p = .38, d = .007, 95% CI [-0.77, 2]. 461 
Thus, verbal fluency remained mostly stable over time, with the exception of the low- 462 
knowledge showing a slight increase in psychology fluency from T1 to T2. 463 

Next, we validated the Intro Psych Test with the self-reported course grades, and the 464 
PsyKT. Due to a high positive skew in the self-reported grades, log-transformation was 465 
applied before any analysis, like Study 1. We thus computed a Pearson correlation be- 466 
tween performance on the Intro Psych Test at T1 and self-reported grades, finding a mod- 467 
erate correlation, r = .27, p = .001. We also found a moderate positive linear relationship 468 
between test performance at T2 and grades, r = .37, p < .001, indicating that students with 469 
better outcomes on the test, at the beginning or end of the course, tended to do better in 470 

https://protect.checkpoint.com/v2/___https:/pavlovia.org/___.YzJlOnRlY2huaW9uOmM6bzo5ZWQ3MDU5NzM5NDMyNzYzMWJiNDFhZDdkNDgwZWJjMDo2OjQ0MTY6YzBiMWYzYzNjODhlNTJkOTM5ZDg3ODc4Nzk2NTMxOTEwMWExMTI0M2UyYWY1ZTZmY2IzYzkwNWJiYTY1ZDNlZDpwOlQ
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the course overall. We then tested whether the Intro Psych Test, separately for T1 and T2, 471 
correlated with the PsyKT. We observed moderate correlations between the two scales at 472 
both T1, r = .4, p < .001, and T2, r = .55, p < .001, providing evidence of the psychometric 473 
properties of our Intro Psych Test.  474 

Then, we tested whether any learning had occurred between T1 and T2 by running 475 
paired samples t-tests on the Intro Psych Test performance, for the low-psychology 476 
knowledge and high-psychology knowledge groups, separately. We found the perfor- 477 
mance of the low-knowledge group increased between T1 (M = 15.1, SD = 2.5) and T2 (M 478 
= 19.8, SD = 4.7), t(58) = -8.82, p < .001, d = -1.25, 95% CI [-5.82, -3.67]. We similarly found 479 
that performance of the high-knowledge group was better at T1 (M = 23, SD = 2.5) and T2 480 
(M = 24.4, SD = 4.6), t(71) = -3.06, p = .003, d = -0.37, 95% CI [-2.27, -0.48]. Thus, as expected, 481 
students learned more about psychology concepts over time, and students with less initial 482 
knowledge learned the most.  483 

We further explored our data by computing correlations between various descriptive 484 
variables (Table 3). Interestingly, we found positive linear relationships between perfor- 485 
mance on the Intro Psych Test and animal verbal fluency, indicating that students with 486 
better broad retrieval abilities performed better overall on our psychology multiple-choice 487 
test.  488 

 489 

Table 3. Descriptive statistics and correlations for the Intro Psych Test at T1 and T2, the PsyKT, Self- 490 
Reported Grades, Psychology Verbal Fluency and Animal Verbal Fluency. 491 

 M SD NA Min, Max 1 2 3 4 5 6 7 

Intro Psych Test T1 19.32 4.54 0 9, 30        

Intro Psych Test T2 22.26 5.02 0 11, 34 .61       

PsyKT 18.9 4.47 0 9, 29 .4 .55      

Self-Reported Grades 8.71 1.73 5 2, 10 .27 .37 .21     

Psychology Fluency 

T1 
12.14 3.83 0 4, 26 .05 .02 .006 .07    

Psychology Fluency 

T2 
13.45 4.45 2 3, 29 -.005 .07 .04 .06 .56   

Animal Fluency T1 18.89 4.32 0 6, 31 .18 .24 .1 .19 .43 .23  

Animal Fluency T2 19.16 4.51 1 6, 29 .15 .17 .05 15 .47 .49 .54 

 492 
Note. NA = number of participants who refused to respond. Self-reported grades ranged in values 493 
from 1 to 9 and represent alphabetical grades. 10 = A+; 9 = A; 8 = A-; 7 = B+; 6 = B; 5 = B-; 4 = C+; 3 = 494 
C; 2 = C-; 1 = D. Statistically significant Pearson correlations are bolded (p < .05). 495 

3.2.2. Semantic Memory Networks 496 

We analyzed the semantic memory networks for the low- and high- psychology 497 
knowledge groups at T1 and T2, separately for the psychology and animal fluency tasks. 498 
Psychology semantic memory networks contained 40 nodes and 114 edges, an average 499 
degree of 5.7, density of 0.14, and efficiency of 0.5 (Figure 4). Further, animal semantic 500 
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memory networks had 80 nodes and 234 edges, an average degree of 5.85, density of 0.07, 501 
and efficiency of 0.46 (Figure 6). 502 

We tested whether semantic memory networks of the high and low psychology 503 
knowledge groups, at both T1 and T2, were significantly different from random networks. 504 
This random network analysis revealed that the empirically generated networks for both 505 
groups, at both timepoints and for all network metrics (CC, ASPL, & Q), were significantly 506 
different from randomly generated networks (all p’s < .001). We then ran two sets of ANO- 507 
VAs, separately for psychology and animal semantic memory networks. 508 

Psychology Fluency Networks. First, we ran three separate ANOVAs for each of the 509 
network metrics of the psychology knowledge networks (CC, ASPL, & Q), with 510 
knowledge and timepoint as predictor variables. For our first ANOVA, we observed a 511 
significant interaction effect of knowledge and timepoint on CC, F(3996) = 81.968, p < .001, 512 
η2 = .02. We then found a significant main effect of knowledge on CC, F(3996) = 7.303, p 513 
= .007, η2 = .002, 95% CI [-0.007, -0.005], and a non-significant main effect of timepoint, 514 
F(3996) = 3.282, p = .07, η2 = .001, 95% CI [-.004, -.002]. Then, we ran a series of pairwise 515 
comparisons to investigate the source of the interaction. We first computed two paired 516 
samples t-tests, separately for the high- and low-psychology knowledge groups, to deter- 517 
mine whether any changes in CC existed between T1 and T2. This revealed that only the 518 

 519 

Figure 4. A 2D visualization of the psychology semantic memory networks of individuals with high 520 
and low psychology knowledge at timepoints 1 & 2. 521 

Note. Circles represent nodes (i.e., concepts) which are connected by edges based on the strength of 522 
the semantic associations between concepts in each group. 523 

 524 
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low-knowledge group displayed a significant decrease in CC from T1 to T2, t(999) = -11.25, 525 
p < .001, while the CC for the high-knowledge group did not differ between T1 and T2, 526 
t(999) = -1.89, p = .059. We computed two more paired samples t-tests, separately for T1 527 
and T2, to determine whether there were any differences in CC between the low- and high- 528 
psychology knowledge groups. We found the high-knowledge group possessed a higher 529 
CC, both at T1, t(999) = 2.5, p = .01, and T2, t(999) = 18.3, p < .001. 530 

Next, we ran an ANOVA with ASPL as a predicted variable, revealing a significant 531 
interaction effect of knowledge and timepoint, F(3996) = 221.827, p < .001, η2 = .05. We also 532 
observed significant main effects of knowledge F(3996) = 8.378, p = .004, η2 = .002, 95% CI 533 
[0.077, 0.095], and of timepoint, F(1999) = 29.063, p < .001, η2 = .007, 95% CI [0.024, 0.042], 534 
on ASPL. We next ran two paired samples t-tests, for the high- and low-psychology 535 
knowledge groups, to test any differences between T1 and T2. The low-knowledge group 536 
displayed a significant increase in ASPL from T1 to T2, t(999) = -18.33, p < .001, while the 537 
high-knowledge group showed a decrease in ASPL, t(999) = 7.05, p < .001. We then ran 538 
two paired samples t-tests, for T1 and T2, to test for any differences between the low- and 539 
high-psychology knowledge groups. The high psychology knowledge group was found 540 
to possess a lower ASPL at both T1, t(999) = -3.64, p < .001, and T2, t(999) = -28.25, p < .001. 541 

Finally, for our ANOVA with Q as a predicted variable, we observed a significant 542 
interaction effect of knowledge and timepoint, F(3996) = 191.896, p < .001, η2 = .05, and 543 
non-significant main effects of both knowledge, F(3996) = 0.167, p = .683, η2 < .001, 95% CI 544 
[0.014, 0.018], and of timepoint, F(3996) = 1.593, p = .207, η2 < .001, 95% CI [0.012, 0.016]. 545 
We ran paired samples t-tests for the high- and low-psychology knowledge groups to in- 546 
vestigate any differences between T1 and T2. While the low-knowledge group displayed 547 
a significant increase in Q from T1 to T2, t(999) = -22.4, p < .001, the high-knowledge group 548 
showed no difference between T1 and T2 , t(999) = 1.61, p = .11. Finally, we ran paired 549 
samples t-tests to test whether the low- and high-psychology knowledge groups differed  550 
 551 
Figure 5. Psychology fluency networks metrics (CC/ASPL/Q), spanning knowledge (High/Low) and 552 
timepoint (T1/T2). 553 

 554 
Note. Bootstrapping was run over 1000 iterations. Means for each group and timepoint are presented 555 
for all network parameters. ASPL, average shortest path length; CC, clustering coefficient; Q, mod- 556 
ularity. 557 

 558 

at either T1 or T2. The high psychology knowledge group was found to possess a lower Q 559 
only at T2, t(999) = -25.06, p < .001, but not T1, t(999) = -0.53, p = .59. Thus, the low- 560 
knowledge group showed significantly reduced connectivity (lower CC) and longer aver- 561 
age paths (higher ASPL) from T1 to T2, despite demonstrating improvements in learning. 562 
This is visually evidenced by the nodes getting further apart, as well as an increase in the 563 
amount of isolated nodes from T1 to T2. In contrast, for the high-knowledge group, aver- 564 
age paths got shorter between T1 and T2. Further, for the high-knowledge group, connec- 565 
tivity remained higher and average paths shorter at both T1 and T2 when compared to the 566 
low-knowledge group. Visually, this can be observed in the increased closeness of nodes 567 
from T1 to T2, as well as a reduction in the number of isolated nodes from T1 to T2, for the 568 
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high-knowledge group. For instance, looking at the central node of the high-knowledge 569 
network, there is a visually noticeable increase in the number of connections to the concept 570 
of “brain” between T1 and T2. In contrast, the network of the low-knowledge group dis- 571 
plays a noticeable decrease in connections to this same node from T1 to T2, denoting a 572 
reduction in the clustering of the network. 573 

Animal Fluency Networks. We then ran three ANOVAs for the network metrics (CC, 574 
ASPL, Q) of the animal knowledge networks for both groups across both time groups. We 575 
observed a significant interaction effect of knowledge and timepoint on CC, F(3996) = 576 
23.902, p < .001, η2 = .006. We also found significant main effects of knowledge, F(3996) 577 
=298.796, p < .001, η2 = .07, 95% CI [-0.009, -0.007], and timepoint, F(3996) = 213.998, p < 578 
.001, η2 = .05, 95% CI [0.004, 0.005], on CC. We then computed a series of paired samples 579 
t-tests to investigate the effects. We first ran two paired t-test, separately for the high- and 580 
low-psychology knowledge groups, to determine whether there was any difference be- 581 
tween T1 and T2. It was revealed that both the low-knowledge group, t(999) = -7.61, p < 582 
.001, and high-knowledge group showed an increase in CC from T1 to T2, t(999) = -15.6, p 583 
< .001. We then computed two more paired samples t-tests for T1 and T2 to determine 584 
whether there is any difference in the CC of the low- and high-psychology knowledge 585 
groups. The high psychology knowledge group was found to possess a higher CC, both 586 
at T1, t(999) = 17.7, p < .001, and T2, t(999) = 24.1, p < .001. 587 
 588 

Figure 6. A 2D visualization of the animal semantic memory networks of individuals with high and 589 
low psychology knowledge at timepoints 1 & 2. 590 

Note. Circles represent nodes (i.e., concepts) which are connected by edges based on the strength of 591 
the semantic associations between concepts in each group. 592 

 593 

For ASPL, we observed a non-significant interaction effect of knowledge and 594 
timepoint, F(3996) = 0.596, p = .44, η2 < .001. We then observed significant main effects of 595 
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knowledge, F(3996) = 308.637, p < .001, η2 = .07, 95% CI [0.1, 0.12], and of timepoint, F(3996) 596 
= 130.150, p < .001, η2 = .03, 95% CI [-0.09, -0.07], on ASPL. Next, we computed a series of 597 
paired samples t-tests. We first ran two paired t-test to determine whether there was any 598 
difference between T1 and T2 for the high- and low-psychology knowledge groups. Both 599 
the low-knowledge group, t(999) = 12.49, p < .001, and high-knowledge group showed a 600 
decrease in ASPL from T1 to T2, t(999) = 13.55, p < .001. We next ran paired samples t-tests 601 
for T1 and T2 to determine whether the low- and high-psychology knowledge groups 602 
differ in their ASPL. The high psychology knowledge group had a shorter ASPL at T1, 603 
t(999) = -18.06, p < .001, and T2, t(999) = -17.77, p < .001. 604 

Then, for Q, we observed a significant interaction effect of knowledge and timepoint, 605 
F(3996) = 5.777, p = .016, η2 = .001. Again, for Q, we observed significant main effects of 606 
knowledge, F(3996) = 341.166, p < .001, η2 = .08, 95% CI [0.021, 0.024], and of timepoint, 607 
F(3996) = 142.882, p < .001, η2 = .04, 95% CI [-0.013, -0.009]. We then ran pairwise compar- 608 
isons between networks, starting with two paired t-test to reveal any difference between 609 
T1 and T2 for the high- and low-psychology knowledge groups. Both the low-knowledge 610 
group, t(999) = 9.2, p < .001, and high-knowledge group, t(999) = 12.98, p < .001, displayed 611 
lower Q at T2 compared to T1. Finally, we ran paired samples t-tests, separately for T1 612 
and T2, to reveal whether the low- and high-psychology knowledge groups differed in 613 
their Q. The high psychology knowledge group possessed a lower Q at T1, t(999) = -20.89, 614 
p < .001, and T2, t(999) = -22.66, p < .001. We thus revealed a similar effect of time for both 615 
the low- and high-knowledge groups, across all network metrics. Both groups demon- 616 
strated significantly increased connectivity (higher CC), shortened average paths (lower 617 
ASPL), and fewer communities (lower Q) from T1 to T2. This is visually evidenced by an 618 
increased closeness of nodes and a reduction in the number of isolated nodes from T1 to 619 
T2, for both groups. 620 

 621 
Figure 7. Animal fluency networks metrics (CC/ASPL/Q), spanning knowledge (High/Low) and 622 
timepoint (T1/T2). 623 

 624 
Note. Bootstrapping was run over 1000 iterations. Means for each group and timepoint are presented 625 
for all network parameters. ASPL, average shortest path length; CC, clustering coefficient; Q, mod- 626 
ularity. 627 
 628 

3.3. Discussion 629 

The goal for Study 2 was to replicate and extend Study 1 via a longitudinal investiga- 630 
tion of student learning and memory structure. Study 2 directly replicated Study 1: when 631 
tested near the end of the academic semester, at T2, students with higher psychology 632 
knowledge possessed more small-world knowledge structures (i.e., higher clustering and 633 
shorter paths between concepts). Furthermore, longitudinal analysis showed that the se- 634 
mantic networks of high-knowledge students became even more interconnected over the 635 
course of the semester, leading to larger effect sizes at T2. Despite the low-knowledge stu- 636 
dents showing substantial learning over time, their networks became less interconnected, 637 
and thus less similar to high-knowledge students. These findings confirm past evidence 638 
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indicating that learning is related to semantic memory structure, by demonstrating that 639 
learning is accompanied by structural reorganizations of semantic memory (Siew, 2020; 640 
Siew & Guru, 2022). Further, we provide evidence that students who possess more efficient 641 
semantic memory structures are more likely to succeed in a university level course, as indi- 642 
cated by stronger learning and higher expected grades.   643 

4. General Discussion 644 

Typical educational assessments are commonly used by educators to measure stu- 645 
dent learning, but they can only evaluate surface-level knowledge (Siew & Guru, 2022). 646 
To gain deeper insights into student learning, researchers have begun to examine how 647 
students organize knowledge using cognitive network science, which offers a viable, 648 
valid, and complementary approach to traditional educational assessments (Disessa & 649 
Sherin, 1998; Siew, 2020). In the present research, we used cognitive network science meth- 650 
ods to model the knowledge organization of students who learned more and less in an 651 
introductory psychology course. In Study 1, students were only tested near the end of the 652 
academic semester, while in Study 2 they were tested both near the start (T1) and end (T2) 653 
of the semester. Students were separated into a low and a high psychology knowledge 654 
group based on their performance on a psychology multiple-choice test, the Intro Psych 655 
Test. We estimated domain-specific (psychology concepts) and domain-general (animal) 656 
semantic memory networks for each group using verbal fluency responses.  657 

In Study 1, we found that the high-knowledge group exhibited a more small-worlded 658 
semantic memory structure—marked by shorter path distances and higher connectivity 659 
between concepts, for both domain-specific and domain-general networks—compared to 660 
the low-knowledge group. In Study 2, we directly replicated these findings and further 661 
revealed a dynamic interplay between network structure and learning. First, we found 662 
that the semantic memory networks of the high-knowledge group, both domain-specific 663 
and domain-general, were already more small-worlded at T1. This small-world memory 664 
structure of high-knowledge students was further emphasized at T2, both when com- 665 
pared to the low-knowledge group and to themselves at T1. These findings extend past 666 
research on the relationship between academic expertise and semantic memory structure 667 
(Nesbit & Adesope, 2006; Siew, 2000; Siew & Guru, 2022), providing further evidence that 668 
semantic memory networks may be predictive of performance in educational contexts. 669 

A key finding of Studies 1 and 2 was that the psychology semantic memory network 670 
for the high-knowledge group showed shorter paths between concepts than the low- 671 
knowledge group. Importantly, shorter path-lengths in has been found to facilitate relat- 672 
edness judgments (Kenett et al., 2017; Kumar et al., 2020), as well as word retrieval and 673 
selection (Arbesman et al., 2010; Vitevitch et al., 2012). Hence, the knowledge structure of 674 
high-knowledge students may play a bottom-up, facilitatory role during memory re- 675 
trieval (Siew, 2020). This in turn would plausibly lead to better performance on other 676 
learning assessments, which strongly depend on recall and recognition processes, such as 677 
with the Intro Psych Test administered in this study. Our findings are consistent with the 678 
recent work of Siew and Guru (2022), finding that the networks of high psychology 679 
knowledge students were characterized by shorter ASPL. 680 

In both Studies 1 and 2, the domain-general/animal network mirrored the structure 681 
of the domain-specific/psychology network, similar to Siew and Guru (2022). This simi- 682 
larity cannot be directly accounted for by domain expertise, i.e., performance on the Intro 683 
Psych Test. One possibility is that students in the high-knowledge group had a cognitive 684 
advantage that predisposed them towards developing more efficient domain-specific 685 
memory structures, such as higher levels of pre-existing domain-general knowledge (i.e., 686 
crystallized intelligence) or stronger reasoning abilities that facilitate learning (i.e., fluid 687 
intelligence). This is supported by findings from Study 2, indicating that high-knowledge 688 
students possessed more small-worlded memory structures early in the semester, and 689 
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these networks became even more small-worlded with learning. Both high fluid and crys- 690 
tallized intelligence have been shown to facilitate learning and academic achievement in 691 
an academic setting (e.g., Deary et al., 2007). While higher fluid intelligence has been 692 
linked to a more structured semantic memory network (Kenett, 2024; Rastelli et al., 2020), 693 
crystallized intelligence has instead been linked with more flexible memory, such as that 694 
of high psychology knowledge students in our study (Li et al., 2024). Other cognitive abil- 695 
ities associated with crystallized intelligence, such as verbal creativity, have also been as- 696 
sociated with less structured networks (He et al., 2021; Kenett, 2024; Luchini et al., 2023), 697 
consistent with the present work. Further, prior work on language acquisition found that 698 
newly learned concepts are integrated in a network via a preferential attachment to more 699 
central nodes—those possessing a higher degree of connections (Steyvers & Tenenbaum, 700 
2005)—potentially benefiting students with more clustered semantic memory networks 701 
that may have more “hooks” to integrate new concepts.  702 

Interestingly, in Study 1 we found no difference in the Q metric on the domain-spe- 703 
cific/psychology networks, although this difference was present for the domain-gen- 704 
eral/animal network. This was partially replicated in Study 2, as we saw no difference 705 
between knowledge groups at T1 but found that low-knowledge students developed a 706 
more modular network at T2. Our general findings are only partly in line with Siew and 707 
Guru (2022), who reported higher levels of Q for both domain-general and domain-spe- 708 
cific memory networks of high school students compared to college students. One possi- 709 
bility for this discrepancy might be that groups in the present study were matched on age, 710 
whilst in the Siew and Guru (2022) study they were generated by contrasting high-school 711 
and university students. Research on aging has shown that older adults tend to possess 712 
semantic memory structures that are more modular, possibly because of increasing vo- 713 
cabulary knowledge (Cosgrove et al., 2023). Curiously, the findings of Siew and Guru 714 
(2022) point toward more experienced, and older, students possessing less modular do- 715 
main-general and domain-specific networks. It must be noted that the age difference be- 716 
tween participants in Cosgrove et al. (2023) was much larger than that in Siew and Guru 717 
(2022), which only compared high-school and university students. It may thus be that the 718 
relationship between modularity and age is a non-linear one, such that modularity de- 719 
creases when developing into young adulthood, before increasing again into older adult- 720 
hood. It might then be that for Sudy 2, the increase in modularity for the domain-specific 721 
and domain-general networks of low-knowledge students is indicative of a deviation 722 
from typical developmental trends. Thus, the findings of Siew and Guru (2022) may in 723 
part be driven by an effect of age and vocabulary knowledge, beyond mere education.  724 

4.1. Limitations and Future Directions 725 

Despite the strengths of the current study, a few limitations should be mentioned. It 726 
is important to emphasize that the present work is correlational, leaving open the question 727 
of directionality. It remains unclear whether efficient learning engenders these character- 728 
istic memory structures associated with higher knowledge, or vice versa. It is also worth 729 
noting that semantic memory networks may also depend on executive abilities, such that 730 
what may appear to be a distinct memory structure could also be explainable by memory 731 
search processes (Siew et al., 2019). Moreover, we did not include measure of fluid or 732 
crystallized intelligence in this study, which have been found to be strongly associated 733 
with academic performance (Deary et al., 2007; Soares et al., 2015) and semantic memory 734 
structure (Kenett, 2024; Li et al., 2024). Further studies are therefore needed to determine 735 
whether fluid intelligence has any clear moderating effect between learning and semantic 736 
memory network restructuring.  737 

Another limitation is the use of a group-based network estimation method. We 738 
adopted the verbal fluency task as it is currently the most common and easily replicable 739 
approach to estimate semantic memory networks (Zemla et al., 2020). Recent 740 
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methodological advancements have been made in modeling individual-based semantic 741 
memory networks (Benedek et al., 2017; Morais et al., 2013; Wulff et al., 2022; Zemla & 742 
Austerweil, 2018). These approaches do not require a dichotomization of the grouping 743 
variable, preventing issues that may arise from reduced granularity, such as loss of power 744 
or effect sizes (MacCallum et al., 2002). It is possible that the present approach of dichot- 745 
omizing the grouping variable may have led to an underestimation of this effect. Further, 746 
the approach of dichotomizing the grouping variable led to unequal sample sizes between 747 
the low and high psychology knowledge groups, potentially affecting the results. Future 748 
studies are thus required to replicate the present work by employing continuously esti- 749 
mated networks, particularly to determine the degree to which the ASPL of domain-spe- 750 
cific semantic memory networks may depend on expertise. Despite these limitations, our 751 
findings offer important new insights into how knowledge is organized in the semantic 752 
memory of students with more or less course knowledge. 753 

5. Conclusions 754 

The present work replicates and extends past findings indicating that student 755 
knowledge can be accurately measured via network science approaches (Siew & Guru, 756 
2022). Crucially, this is the longitudinal first evidence that the memory structure of stu- 757 
dents enrolled in the same course can be quantitatively analyzed and related to their per- 758 
formance in the course. These findings inform further work investigating how memory 759 
structure relates to specific learning outcomes in students. This line of research may ulti- 760 
mately lead to the development of novel quantitative approaches for the measurement of 761 
student learning, the identification of gaps in learning, and the facilitation of teaching 762 
practices.   763 

 764 

Data Availability Statement: All data used in this study is openly available on OSF:  765 
https://osf.io/gycs6/?view_only=3d101511551e407b9bd9d38151ba1608 766 

Author Contributions: Conceptualization, S.L. and R.E.B.; methodology, S.L., Y.N.K. and R.E.B.; 767 
software, S.L., S.W. and Y.N.K.; formal analysis, S.L. and S.W.; investigation, S.L. and R.E.B.; re- 768 
sources, R.E.B.; data curation, S.L.; writing—original draft preparation, S.L. and R.E.B.; writing— 769 
review and editing, S.L., Y.N.K., S.W. and R.E.B.; visualization, S.L. and Y.N.K.; supervision, S.L. 770 
and R.E.B.; project administration, S.L. and R.E.B.; funding acquisition, R.E.B. All authors have read 771 
and agreed to the published version of the manuscript. 772 

Funding: R.E.B. is supported by grants from the National Science Foundation [DRL-1920653; DUE- 773 
2155070]. This work was partially supported by the US-Israel Binational Science Fund (BSF) grant 774 
(number 2021040) to R.E.B and Y.N.K. 775 

Institutional Review Board Statement: The study was approved by the Institutional Review Board 776 
of The Pennsylvania State University (code 00019378; accepted 06/30/2022). 777 

 778 



J. Intell. 2023, x, x FOR PEER REVIEW 20 of 24 
 

 

Appendix 779 

Intro Psych Test 780 

 781 
1. The cerebellum is primarily involved in directing 782 
2. The frontal lobes primary role is in supporting 783 
3. The hippocampus is a part of the  784 
4. Neuroplasticity refers to how the nervous system can 785 
5. The function of neurotransmitters in the nervous system is that of 786 
6. The process of inputting information into the memory system is called 787 
7. The memory store for personal life events is 788 
8. Recognition specifically refers to the ability of 789 
9. Retrieval specifically refers to the ability of 790 
10. Semantic memory primarily stores information about 791 
11. Altruism is a form of prosocial behavior that is motivated by 792 
12. Conformity refers to the 793 
13. Empathy refers to the ability to 794 
14. If group members modify their opinions to align with a perceived group con- 795 

sensus, this is an example of 796 
15. A set of group expectations for appropriate thoughts and behaviors of its 797 

members is called 798 
16. The emotional bond between an infant and parent that affects the infant’s 799 

sense of security is 800 
17. Cognitive development primarily concerns the strengthening of 801 
18. The idea that even if something is out of sight, it still exists is called 802 
19. An example of the sensitive period is the 803 
20. Temperament is thought of as 804 
21. Binocular vision requires 805 
22. A blind spot is understood to be  806 
23. An example of a gestalt principle is the 807 
24. Inattentional blindness is thought of as 808 
25. Perceptual constancy of shapes, brightness and size refers to the 809 
26. Associative learning occurs when an individual 810 
27. When a stimulus or experience occurs before a behavior that it gets paired 811 

with what occurs is  812 
28. Observational learning is thought to largely derive from 813 
29. Operant conditioning is a form of learning where 814 
30. Taking away a pleasant stimulus to stop a behavior is an example of  815 
31. The ability to self-monitor in social situations will especially depend on the  816 
32. A lesion to the hippocampus would render an individual entirely unable to 817 
33. Associative learning mostly relies on 818 
34. What is likely to play the largest role in determining recognition performance 819 

on a cognitive task? 820 
35. What kind of memory is impacted by infantile amnesia? 821 
36. Social norms will typically be stored in 822 
37. The development of secure attachment will crucially depend on the caregiver 823 

demonstrating high levels of   824 
  825 
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