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Gc, Creativity, and Semantic Memory Networks

Abstract

Crystallized intelligence (Gc)—knowledge acquired through education and experience—
supports creativity. Yet whether Gc contributes to creativity beyond providing access to
more knowledge, remains unclear. We explore the role of a “flexible” semantic memory
network structure as a potential shared mechanism of Gc and creativity. Across two studies
(N =506 and N = 161) participants completed Gc tests of vocabulary knowledge and were
divided into low, medium, and high Gc¢ groups. They also completed two alternate uses
tasks, to assess verbal creativity, and a semantic fluency task, to estimate semantic memory
networks. Across both studies, the semantic memory network structure of the high Gc group
was more flexible—Iess structured, more clustered, and more interconnected—than that of
the low Gc group. The high Gc group also outperformed the low Gc group on the creativity
tasks. Our results suggest that flexible access to semantic memory supports both verbal

intelligence and creativity.

Keywords: crystallized intelligence, divergent thinking, knowledge, semantic network,

verbal creativity
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Educational relevance statement

Crystallized intelligence (Gc)—knowledge acquired through education and experience—
supports creativity, yet whether Gc contributes to creativity beyond providing access to more
knowledge (semantic memory), remains unclear. In this two-part study, we find that
individuals with higher Gc tended to have a more flexible semantic memory structure, which
in turn supported greater verbal creativity. This finding suggests that building students'
vocabulary knowledge and verbal skills may not just expand their knowledge base, but also
increase creativity through enabling more flexible access to that knowledge. If supported by
further research, this could mean educational interventions targeting growth in Ge and
semantic flexibility may foster students' creative capacities beyond just improving content
mastery. Overall, this research highlights the interplay between building domain knowledge
and cultivating creative thinking, suggesting educators should aim to develop both abilities in

tandem rather than treating them separately.
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1. Introduction

As a primary component of human intelligence, crystallized intelligence (Gc) refers to
the ability to learn, retain, structure and apply acquired knowledge to solve real-life problems
(Cattell, 1963). Gc is developed through education and experience across the lifespan, and it
is often measured by tests of vocabulary knowledge (Kan et al., 2011; Schipolowski et al.,
2014). Gc has repeatedly been shown to positively correlate with another important ability—
creative thinking (Cho et al., 2010; Frith et al., 2021; Runco & Acar, 2010; Shi et al., 2017;
Silvia, 2015; Sligh et al., 2005)—ostensibly by providing access to more information (i.e., the
quantity of knowledge) that can be combined in new ways to solve problems. In the present
research, we explore another potential mechanism underlying Gc’s association with creative
thinking: the organization of concepts in semantic memory, which plays an important role in
facilitating memory retrieval and has been linked to higher creative ability (Benedek et al.,
2023). We thus aim to understand how semantic memory network structure relates to Gc and

whether any differences may explain Gc’s association with creative thinking.

1.1. Knowledge and Creativity

Decades of factor analytic research has linked Gc to semantic memory, particularly
broad retrieval ability (Gr), i.e., the ability to efficiently retrieve information from long-term
memory (Carroll, 1993) and knowledge (Beauducel & Kersting, 2002). Perhaps
unsurprisingly, Gc and Gr are strongly correlated: people who know the meaning of more
concepts tend to be better able to retrieve more concepts when asked to do so (Beauducel &
Kersting, 2002; Carroll, 1993). A recent meta-analysis also found broad retrieval ability
moderately correlated with divergent thinking (r = .48; Miroshnik et al., 2023). Both

intelligence facets have also been associated with creativity, such as divergent thinking (e.g.,
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Benedek et al., 2012; Forthmann et al., 2019; Silvia et al., 2013; Sligh et al., 2005), creative
writing (Avitia & Kaufman, 2014; Tan & Grigorenko, 2013; Taylor & Barbot, 2021), and
metaphor production (Beaty & Silvia, 2013; Kenett et al., 2018; Stamenkovic & Holyoak,
2018). Yet how Gc and Gr contribute to creativity, beyond simply providing access to more

knowledge, remains unclear.

Researchers have long explored the question of how concepts in semantic memory are
interconnected, activated, and retrieved (Collins & Loftus, 1975; Kumar, 2021). Two classic
models of semantic processing are the complexity model and the connectivity model
(Klimesch, 1987; Kroll & Klimesch, 1992). At the core of both models is the assumption that
meaning is represented by a set or network of semantic features (Kintsch, 1980).

A controversial issue between the two theories arises when considering how individual
features, or entire networks, may influence processing speeds and memory performance. On
one hand, the complexity model assumes that processing capacity is limited. As such, with
more semantic components to be processed—as with high Ge—memory load should
increase, thus slowing overall processing time (Gentner, 1981). In contrast, the connectivity
model places more emphasis on the underlying memory structure, and holds that indirect
activation will become increasingly effective as the number of interconnected nodes (higher
Gc) increases (Klimesch, 1987). Indeed, concepts with more features are judged faster than
those with only a few (Klimesch, 1987; Kroll & Klimesch, 1992).

The spread of information across a highly interconnected semantic memory structure
should thus be more efficient under the connection model rather than the complexity model.
Yet, empirically testing these competing models has been challenging, due to challenges in
quantifying semantic memory (Kumar, 2021; Kumar et al., 2022). Recently, the application

of computational network science methods (Hills & Kenett, 2022; Siew et al., 2019) to study
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cognition allows modelling semantic memory as networks, and assess how variation in

semantic organization relates to higher cognitive abilities, such as intelligence and creativity.

1.2 Mapping Knowledge Organization Using Computational Network Science Methods

Advances in network science methodologies have allowed researchers to quantitatively
examine the organization of different knowledge structures (e.g., semantic memory; Hills &
Kenett, 2022; Siew et al., 2019). Network science is based on graph theory, offering
quantitative methods for the representation of complex systems (e.g., semantic memory) as
networks (Siew et al., 2019). A network is made up of nodes (e.g., individual concepts or

representations), and edges that signify the relations between them (e.g., semantic similarity).

Semantic memory network modelling has provided insight into language and memory
structure (Siew et al., 2019), cognition across clinical populations (Castro, 2022), aging
(Cosgrove et al., 2023; Cosgrove et al., 2021; Wulff et al., 2019), memory restructuring and
development (Bieth et al., 2021; Kenett & Thompson-Schill, 2020), language development
(Hills et al., 2009a, 2009b), bilingualism (Borodkin et al., 2016; Ferndndez-Fontecha &

Kenett, 2022), and creativity (Kenett & Faust, 2019).

To study semantic memory as a network, researchers commonly administer verbal
fluency tasks (e.g., listing as many animals as possible in 1-2 minutes; Ardila et al., 2006),
and use the responses to estimate memory structure across groups (e.g., high and low creative
individuals; Kenett, Beaty, et al., 2016). Several widely adopted methods have been proposed
to analyze semantic fluency data as group-based semantic memory networks (Christensen &
Kenett, 2023; Zemla & Austerweil, 2018). More recently, other methods have also been
proposed that can estimate individual-based semantic memory networks (Wulff et al., 2022).

One such approach is based on semantic relatedness judgments, combining a series of
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pairwise judgments of semantic relatedness between words to represent ones’ organization of
concepts in memory (Benedek et al., 2017; He et al., 2021; Ovando-Tellez, Kenett, et al.,

2022).

Common network measures include the clustering coefficient (CC), average shortest path
length (ASPL), and modularity (Q). CC refers to the extent that two neighbors of a node will
themselves be neighbors (i.e., a neighbor is a node i that is connected through an edge to node
Jj), averaged across all nodes in the network. A higher CC relates to greater overall
connectivity in the network. In semantic memory networks, such connectivity denotes the
similarity between concepts (nodes) and has been related to creativity (Kenett & Faust,

2019). ASPL refers to the average shortest number of steps (i.e., traversed edges) required to
travel between any pair of nodes, thus marking the overall spread of a network. In semantic
memory networks, ASPL is correlated with a participants’ judgment on the degree of
relatedness between two concepts, with more closely related concepts associated with a lower
ASPL (Kenett et al., 2017; Kumar et al., 2020). Q measures the degree to which a network
breaks apart into smaller clusters or communities, with a higher Q denoting more distinct and
separate communities in a network (Fortunato, 2010; Newman, 2006); thus, communities will
often represent specific semantic categories (e.g., fruits and vegetables, animals, buildings).
In semantic memory networks, higher Q has been related to higher structure and rigidity
(Kenett, Beaty, et al., 2016; Kenett, Gold, et al., 2016). Critically, the larger the CC, and the
smaller the Q and ASPL, the more flexible and efficient the semantic memory network is,
which facilitates information processing and cognitive operations in the network (Kenett et

al., 2014; Kenett, Beaty, et al., 2016; Kenett & Faust, 2019).
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Within the creativity domain, Kenett et al. (2014) examined semantic memory networks
of individuals with lower and higher levels of verbal creative ability. More creative
individuals were found to exhibit a more flexible, clustered, and condensed semantic memory
network (higher CC, lower Q and ASPL) compared to lower creative individuals—a finding
that replicated using continuous, individual-based semantic memory networks methodology
(Benedek et al., 2017; He et al., 2021; Ovando-Tellez, Kenett, et al., 2022). More recently, Li
et al. (2021) found that individuals producing more highly original metaphors possessed more

clustered and interconnected semantic networks.

Studies have also applied semantic memory network modeling to examine the link
between intelligence and creativity. Kenett, Beaty et al. (2016) explored how fluid
intelligence (Gf) and creative achievement relate to the structure of semantic memory
networks. High Gf'was associated with more “rigid” semantic memory networks (i.e., highly
structured networks with lower CC, higher Q and ASPL), while high creative achievement
was associated with more “flexible” semantic memory networks (higher CC, lower Q and
ASPL). These results were replicated in children by Rastelli et al. (2020), who found a
similar pattern in children who showed high levels of intelligence and divergent thinking

ability.

Together, these studies suggest that intelligence and creativity may differ at the level of
semantic memory networks, with intelligence (especially Gf) related to more structured
networks and creativity related to less structured networks. Yet whether this finding extends
to Ge—which relates to the volume of knowledge and may thus be even more relevant to

understanding knowledge organization—remains unknown.
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1.3 The Current Study

In the current study, we conducted two studies (Study 1 n = 506; Study 2 n = 161) to test
whether Gc relates to variation in the organization of concepts within semantic memory
networks, as well as individual differences in creative thinking ability (assessed via divergent
thinking tasks). We predict that high Gc individuals, who have more knowledge to retrieve,
will show a more flexible, interconnected, and clustered semantic memory network (higher
CC, lower ASPL and Q; Hypothesis 1), consistent with past research on creative thinking
ability (Kenett & Faust, 2019). Furthermore, we predict that high Gc¢ individuals will show
higher divergent thinking scores (Hypothesis 2), replicating past work (Cho et al., 2010; Sligh

et al., 2005).

2. Study 1

In Study 1, we reanalyzed existing data to test for differences in the structure of
semantic memory networks of individuals varying in Gc. In addition, we examined whether
these individuals also vary in their creative thinking abilities, assessed via the alternate uses
task (AUT)—a typical task used to assess divergent thinking (Acar & Runco, 2019).
Participants completed two tests of vocabulary knowledge to assess Gc, and a semantic
fluency task for the estimation of their group-based semantic memory networks; only a subset
of participants in this dataset completed the AUT. Gc scores were then used to separate
participants into low, medium, and high Gc¢ groups to compare their semantic memory
networks. Considering past research that has shown that flexible semantic memory network
structure is related to creativity, we expected the same for Ge. We further expected to
replicate past work pointing to a relation between Gc and creativity (e.g., Cho et al., 2010;

Gerver et al., 2023; Sligh et al., 2005).
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2.1. Materials and Methods

2.1.1. Participants

Participants (N = 506, 402 women, mean age = 19.86 years, SD = 3.87 years) were
recruited from various studies conducted at the MASKED University. All participants
provided written informed consent prior to the data collection. This study was approved by

the MASKED Institutional Review Board.

Our aim was to estimate group-based semantic memory networks, which requires
splitting participants into groups for network estimation (Christensen & Kenett, 2023).
Participants were thus divided into three groups in accordance with their Ge scores
(Christensen et al., 2018), to assess a linear relationship between Gc¢ and semantic memory
network organization (compared to extreme low vs. high groups). This was done by dividing
the sample into three thirds, according to their Gc¢ score distribution (lower, middle, and top
third; Altman & Bland, 1994). We conducted a one-way ANOVA on the Gc scores of
participants in low, medium, and high Gc groups (Table 1) and confirmed that the groups

were significantly different from each other.

Table 1. Descriptive statistics for the three Gc groups.

Ge AUT
Group Ge_ Ge_ R
Age N Adv  Extend Gc Age N Fluency Originality
Low 879 U572 694 1266 2160 . 637 134
(1.82) (175 (2.02) (239)  (3.70) 231)  (.19)
1941 751 1025 1776 20.61 8.55 1.52
Medium =, o0 168 164y (154) (1260 @67y 1 378 (26)
. 2137 1022 1358 2380  22.96 8.94 1.61
High 543 1 0o01) 41) (346) 618) O @6l) (33
19.86 782 1026 1808  22.15 8.57 1.56
Full 560 306 050y (338) (522) (527) P @25 (31

Notes. Ge_Adv represents the score of advanced vocabulary test; Gc Extend represents the
score of extended range vocabulary test. Ge: Crystallized intelligence. Gc represents the total
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score of the two Gc tasks (advanced vocabulary test and extended range vocabulary test). AUT
= alternate uses task; N = the number of subjects in the sample; The data in parentheses
represents the square deviation.

2.1.2 Materials

2.1.2.1. Gc Assessment

All participants completed two widely used tests of vocabulary knowledge (Kan et al., 2011):
the advanced vocabulary test (18 items) and the extended range vocabulary test (24 items;
ETS Kit of Factor-Referenced Cognitive Tests; Ekstrom et al., 1976). In each task,
participants were asked to select the synonym of a target word from a list of possible
answers. Participants had eight minutes to complete both tasks and instructed that only the
correct responses would count towards the final score. The total score of the two tests was

computed. The Cronbach alpha value for Gc in this Study was found to be of 0.685.

2.1.2.2. Semantic Fluency Task

All participants completed a classic categorical verbal fluency task: animal fluency,
requiring them to list as many animals as possible in 60 seconds. We used the animal
category for its high cross-cultural and cross-linguistic reliability. This task has been shown
to effectively reflect people’s ability to retrieve semantic information from long-term
memory (Ardila et al., 2006; Gofii et al., 2011), and has been widely adopted for the
modelling of group-based semantic memory networks (Siew et al., 2019; Zemla &

Austerweil, 2018).

2.1.2.3. Creative Thinking Assessment

A subset of participants (N = 145; 106 females; mean age = 22.15 years, SD = 5.27

years) completed the Alternative Uses Task (AUT; Guilford et al., 1978)—a widely adopted
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task for the assessment of creative thinking—to evaluate the verbal creative ability of
participants. Participants were given three minutes to type as many creative uses as they
could think of for each of two common objects (“box’ and “rope”). Their answers were
recorded via MediaLab and were later scored in terms of their originality, a critical measure
of divergent thinking ability. A subjective scoring approach (Silvia et al., 2008) was adopted,
with four trained raters providing originality scores on a Likert scale ranging from 1 (not at
all creative) to 5 (very creative; Silvia et al., 2008) to all responses. For each AUT response,
fluency and originality were calculated. Fluency refers to the average number of answers
generated by participants for the two objects. The originality score was calculated by
averaging the averaged originality scores for both objects. These two indicators of creativity
are commonly used in creativity research (Beaty et al., 2018; Silvia et al., 2008). Raters had a
high inter-rater agreement (ICC = .81), which meets the high level (ICC > 0.7) of reliability

as per the standard outlined by Hinton et al. (2004).

2.1.3 Network Analysis

Semantic fluency data from the three Ge groups was analyzed via a group-based
semantic memory network approach (Borodkin et al., 2016; Kenett et al., 2013). Here, each
node represents a category exemplar (e.g., cat) and edges quantitatively represent the
associations between two exemplars. These associations are computed as the tendency of the
sample to generate exemplar b (e.g., fish) when exemplar a (e.g., cat) was also generated. All
network analyses were performed in R (3.6.1). The pipeline that was adopted for the network

analysis of semantic fluency data was reproduced from Christensen and Kenett (2023).
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2.1.3.1. Network estimation

First, the R packages of SemNetDictionaries (Christensen, 2019b) and SemNetCleaner
(Christensen, 2019a) were used to preprocess participants’ verbal fluency data. Repetitions
(i.e., responses given more than once by the same participant) and non-category members
(e.g., for the animal category: carrot, tree, toy) were removed in this phase. Typing errors
were also corrected, including spelling errors (e.g., dig to dog), word root variations (e.g.,
cats to cat), and continuous strings (i.e., multiple responses entered as a single response).
Next, the data was transformed into a verb response matrix, where columns represented the
different unique verbal fluency exemplars, and rows represented all the participants. The
response matrix was then transformed into a binary response matrix, with each cell
containing the values 1 or 0. A 1 indicates that a participant generated the specific exemplar,

while 0 indicates that the exemplar was not generated by the participant.

The SemNetCleaner package (Christensen, 2019a) was used to further process the binary
response matrix into a finalized format for network estimation, as well as to control for
possible confounding factors when comparing networks. To exclude spurious associations,
only responses that were given by at least two participants in each group were included in the
binary response matrix (Christensen et al., 2018; Kenett et al., 2013). Furthermore, responses
in the binary matrix were equated to ensure that the networks of all groups were compared
using an equal number of nodes (van Wijk et al., 2010). A total of 20, 39, and 89 nodes were
excluded from the low, medium, and high Gc groups respectively. This left 116 matched
nodes in each group for the subsequent network analysis. Next, the SemNeT package
(Christensen & Kenett, 2023) was used to compute the association profiles of verbal fluency
responses. Network estimation was accomplished via a correlation-based approach,
specifically by approximating how responses co-occur across each group.

13
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The word similarity matrix was then transformed into an n x n weighted and undirected
adjacency matrix, where each word represents a node and the edge between two nodes is the
similarity between them. The triangulated maximally filtered graph (Christensen et al., 2018;
Massara et al., 2016) was then used to minimize spurious relations between nodes in the
network, via the NetworkToolbox package (Christensen, 2018) in R (3.6.1). An equal number
of edges was left across all groups to avoid comparing networks with different structures
(Christensen, 2018; van Wijk et al., 2010). To examine the structure of the networks, the
edges were binarized so that they were all converted to a uniform weight (i.e., 1). All
networks were analyzed as unweighted (i.e., all weights are treated as being equal) and
undirected (i.e. bidirectional relations are assumed between all nodes) networks (Christensen,

2018; Christensen et al., 2018).

2.1.3.2. Network analysis

We used the NetworkToolbox package (Christensen, 2018; Christensen et al., 2018) to
analyze global network properties and computed the CC, ASPL, and Q of the networks of the
three groups. Two complementary approaches were used to statistically examine the validity
of the results. We first simulated a set of random networks for each Gc group, allowing us to
test whether the network measures could be owed to the null hypothesis, i.e., whether the
network parameters observed across the three Ge groups differ from a random network with
an equal number of nodes and edges (Beckage et al., 2011; Steyvers & Tenenbaum, 2005).
To this end, Erdés-Rényi random networks were simulated with a fixed edge probability and
equal number of nodes and edges (Erdos & Rényi, 1960). The global network measures (i.e.,
CC, ASPL, and Q) were then computed for each random network, resulting in separate

sampling distributions. Each empirical network measure was then compared to its reference

14



Gc, Creativity, and Semantic Memory Networks

distribution to evaluate the statistical significance, assessed via a one-sample Z-test for each

network parameter.

Next, to allow for the statistical comparison of any two networks, a bootstrapping
approach (Efron, 1979) was used to simulate and compare partial semantic memory networks
for the three groups. This method involves the random selection of a subset of nodes in the
semantic network (Borodkin et al., 2016) for the construction of distinct partial networks for
each group. In this study, partial semantic networks were generated by sampling 50% of the
total nodes in a single semantic network. The CC, ASPL, and Q measures were then
computed for each partial network. This procedure was repeated with 1,000 iterations for
each partial bootstrapping analysis, leading to a distribution of values for each network
measure. A between-subject ANOVA was then conducted to compare differences in the
measures across the three groups. Additionally, Tukey’s HSD pairwise comparison was
conducted for post-hoc multiple comparisons. Figures corresponding to the bootstrapping

approach were generated using the SemNetCleaner package in R (Christensen, 2019a).

2.1.4 Procedure

Participants completed all tasks on computers using MediaLab. After signing the
informed consent, they were instructed how to complete the cognitive tasks, and they
received research credit or money for their participation after the test. The first subsample of
participants (n = 356) completed Gc tests (the advanced vocabulary test and the extended
range vocabulary test) and the semantic fluency task (listing animals). The second subsample

(n=145) completed the Gc tasks, the semantic fluency task, and the AUT.
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2.2. Results

Before estimating semantic memory networks, we first examined the uniqueness and
number of responses in the semantic fluency task across the three groups (Table 2). A one-
way ANOVA was conducted to examine the effect of Gc on fluency, revealing a significant
main effect of Ge group, F (2, 503) =20.243, p <.001, 5> = .075: individuals with higher Gc
produced more responses, as expected. A post hoc #-test analyses was then conducted,
exposing significant differences between all group pairings, all p’s <.05 (Table 2).
McNemar’s chi-square tests were applied to test the differences of the number of the unique
responses between two of the three groups and were all found to be significant (Table 2).
These results show that higher Gc participants produced more (and more unique) verbal
fluency responses.

Table 2. Descriptive statistics and analysis of the average and unique responses data for the

three Gc groups.

n (average) n n 2

: %
Groups (SD)  Range t a p d (to)tal (ulgqu N af=1 P 4
Low 3o 326 203 37

(4.03 3437 335 001 374 266 625 012 224
Medium (075 728 229 63
Low — Gon 326 3 203 28 3
| (403 5897 336 5, 642 346 76 o5 249
High — (fgp) 234 318 143
Medium (708 728 29 3 <

(403 2723 335 007 297 350 5061 5, 231
High — (3gp) 234 318 121 :

Notes: n (average) = mean average and range of the number of responses in each group; n

(total) = total number of unique responses; n (unique) = the number of unique responses in

each group; n = the number of unique responses from the total not given by the other group.

i* refers to the McNemar’s test; ¢ is the effect size of the McNemar’s test.

16



Gc, Creativity, and Semantic Memory Networks

We then estimated and compared the semantic memory networks constructed from the
animal category responses of the low, medium, and high Gc groups. The network measures
(CC, ASPL, and Q) for these three networks were computed (Table 3) with R (Christensen &
Kenett, 2023) and the semantic memory networks of the three groups were visualized
(Figure 1) via the force-directed layout of the Cytoscape software (Fruchterman & Reingold,
1991; Shannon et al., 2003). In these 2D visualizations, the nodes represent the examples
given by participants and edges convey symmetrical (i.e., bidirectional) similarities between

two nodes because these networks are undirected and unweighted.

Figure 1. A 2D visualization of the semantic memory networks for the three Gc groups.

Low Medium High

Notes. Nodes denote the matched animal names generated by all three groups. Edges
denote binary, symmetrical relations between nodes.

Upon visual inspection of the networks, the semantic memory network of the high Ge
group appears more condensed than that of the medium and low Gc groups. This observation
is consistent with the network measures presented in Table 3, with the high Gc group
showing a higher CC, and lower ASPL and Q, compared to the networks of the medium and

low Gc groups.
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Table 2. Network measures for each of the three Gc groups

Groups CC ASPL Q

Low 75 2.78 .60
Medium .76 2.78 .59
High 77 2.47 52

Notes. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity.

To exclude the possibility that the network differences between the three groups derive
from a null model, we conducted a simulated random network analysis (Christensen &
Kenett, 2023). This analysis revealed that all empirical network measures for the low,
medium, and high Gc groups were significantly different from their random counterparts (all

p’s <.001), thus yielding a rejection of the null hypothesis.

Next, we conducted the bootstrapping analysis to examine the statistical significance of
the differences found in the network measures across the three groups. Half of the total nodes
within each network were selected for the bootstrapping partial networks analysis (58 out of
116 nodes). A one-way ANOVA analysis was conducted on the effect of group on each of

the partial networks’ measures.

Post-hoc Tukey’s HSD pairwise comparison revealed significant differences between the
network measures in the three groups (all p’s <.001; Table 4). Consistent with our
Hypothesis 1, ASPL and Q were significantly smaller for partial networks of the high Gc
group compared to the other two groups. In contrast, CC was significantly larger for partial
networks of the high Gc¢ group compared to the low and medium Ge groups (Figure 2).
These results indicate that the semantic memory networks of participants in the high Gc
group are characterized by higher connectivity (higher CC), shorter paths (lower ASPL), and

lower modularity (lower Q; Figure 2).
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Table 3. One-way ANOVA on the partial networks bootstrap analyses.

F Contrast HSD
Group M SD 5 1997y P P2 Groups P Results
CcC low 758 .01  206.83 <.001 .121 low-high <.001 low <high
. 764 .01 medium- medium <
medium high <.001 high
high 766 .01 medium- < 001 medium >
low low
ASPL low 2346 .13 98.638 <.001 .062 low-high <.001 low > high
) 2298 .12 medium- medium >
medium high <.001 high
high 2272 .11 medium- < 001 medium <
low low
Q low 473 .03 139.79 <.001 .085 low-high <.001 low > high
) 457 .03 medium- medium >
medium high <.01 high
high 453 .03 medium- < 001 medium <
low low

Notes. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity.

Figure 2. Means for the Gc groups on CC, ASPL, and Q.
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Note - The data represents 50% of selected nodes. Error bar represents SE.

2.2.1 Creative thinking

Due to the low sample of participants who completed the AUT in the low Gc group, as

well as the samples of the three Gc groups being of unequal sizes, we conducted a series tests

of normality. A Kolmogorov-Smirnov test of normality revealed that the high Gc group was

not normally distributed (p = .008). We thus used a one-way Kruskal-Wallis test, which does
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not assume equal sample sizes between groups, to assess the differences of fluency and
originality between the low, medium, and high Gc groups.

This analysis revealed that there was no significant difference in fluency between the
three groups, W = 5.187, p =.075. However, in terms of originality, significant differences
were observed among the three groups, W= 11.239, p = .004. The comparative analyses
showed that the scores for the high Gc group (M = 1.61, SD = .33) were significantly higher
than that of the low Gc group (M =1.34, SD =.19), W =3.219, p <.001, d = 1.002, as
predicted by Hypothesis 2. Similarly, the medium Gc group exhibited significantly higher
scores (M =1.52, SD = .26) compared to the low Gc group, W = 1.975, p = .048, d = .790.
The scores for the medium Gc group were not significantly different compared to the high Ge
group, W =-1.602, p = .109, d =.303 (Figure 3).

Figure 3. The differences in fluency and originality of AUT scores for the three Gc groups.
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Note. Error bar represents SE.
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Furthermore, the relation between Gc¢ and DT were examined via Pearson’s correlation

analysis (Table 5). The results showed significant correlation between Gc¢ and originality.

Table 5. Pearson's correlations of Gc and originality in study 1

Variable Gc Adv  Gce Extend Gc Fluency Originality
Gc Adv Pearson's r —
p-value —
N 506
Gc_Extend  Pearson'sr S521%* —
p-value <.000 —
N 506 506
Ge Pearson's r .8337#* 906** —
p-value <.000 <.000 —
N 506 506 506
Fluency Pearson's r .014 .067 .048 —
p-value .869 425 .563 —
N 145 145 145 145
Originality ~ Pearson's r 279%* 350%*  364%* -.226%* —
p-value .001 <.000 <.000 .006 —
N 145 145 145 145 145

Notes: * - p <.05; ** - p <.01. Gec_Adv represents the score of advanced vocabulary test;
Gc_Extend represents the score of extended range vocabulary test. Ge¢ means the sum of
Gc_Adv and Ge_Extend. Fluency refers to the average number of answers generated by
participants for the two objects. The originality score was calculated by averaging the averaged
originality scores for both objects.

2.3. Discussion

Study 1 examined whether Gc relates to the underlying organization of concepts within
semantic memory networks. Our Hypothesis 1 was confirmed: the high Gc group exhibited a
more flexible, interconnected, and clustered semantic memory network, and also a
significantly higher originality score on the verbal creative thinking task (AUT), replicating
past work (e.g., Cho et al., 2010; Sligh et al., 2005). These results indicate that a flexible

semantic memory network structure may be a shared mechanism underlying verbal
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intelligence and verbal creativity. However, the limited sample of participants across the
three groups that also completed the AUT, particularly in the low Gc group, requires

replication to test the robustness of our findings. This was the aim of Study 2.

3. Study 2

In Study 2, we aimed to replicate and extend Study 1 in a new sample. Most notably, all
participants in Study 2 completed the AUT, unlike the smaller subset of participants in Study
1. Additionally, we separated participants into equally sized groups, whereas Study 1 had
unequal groups. Thus, although Study 1 supported our hypotheses, we conducted a second
study to ensure that the results were stable in a new sample with complete data. Given that Gf
and Gc are strongly correlated (Stamenkovic & Holyoak, 2018), Study 2 further aimed to
replicate the findings of Study 1 after controlling for a possible confound effect of Gf on Gec.
To do so, in Study 2 we also collected Gf data via the series completion task (Cattell &

Cattell, 1961/2008).

3.1. Materials and Methods

3.1.1 Participants

One hundred sixty-one participants (94 female; Mage = 19.02 years, SD = 2.49 years)
were recruited from MASKED University. All participants provided written informed
consent prior to the data collection. The study was approved by MASKED Institutional

Review Board.
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Participants were divided into three groups based on the Gc values (Christensen et al.,
2018). One-way ANOV A were conducted on the Gc scores of participants in the low,
medium, and high groups, F (2, 158) = 264.023, p <.001, 5,> = .770, confirming the

appropriateness of the groups (Table 6).

Table 6. Descriptive statistics for age, number of subjects, Gc and AUT scores across the
three groups.

Group Age N  Gc_Adv Gce Extend Gce Fluency AUgriginali ty
Low (108_'8607) 54 813 5.83 (123 :5916) (;gg) 2.05(.17)
Medium 1(89%5 sS4 11.26 8.02 (119"2298) (;g?) 2.12(.22)
High (149_'1535) 53 1447 1015 (2;'9470) (?f?ég) 2.15(.18)
Full (129_4092) 161 11.27 7.99 (149..8262) (3:2‘6‘) 2.10(.19)

Notes. AUT = alternate uses task; Gc: Crystallized intelligence. N = the number of subjects in
the sample. Gc represents the total scores of the two Ge tasks (advanced vocabulary test and
the extended range vocabulary test).

3.1.2. Materials

The same tasks from Study 1 were administered in Study 2: Gc¢ (vocabulary tests),
semantic fluency task (animals), and AUT creative thinking task (box and rope). The
Cronbach alpha value for Gc in this study was found to be 0.402. The subjective scoring
approach (Silvia et al., 2008) was adopted for AUT, with three trained raters providing
originality scores on a Likert scale ranging from 1 (not at all creative) to 5 (Extremely creative;
Silvia et al., 2008). Participants’ AUT originality score was computed similarly as in Study 1.
AUT Raters had a high inter-rater agreement (ICC = .72), which meets the high level (ICC >
0.7) of reliability as per the standard outlined by Hinton et al. (2004). Gf score was assessed via

the series completion task, which was adopted from Cattell’s Culture Fair Intelligence Test
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(Cattell & Cattell, 1961/2008). Participants were presented a series of images drawn within
small boxes that changed in succession: they had to discover the rule guiding the changing
images and determine the next item in the series (13 items, 3 min). Gf was calculated by

summing up the number of correct responses.

3.1.3. Procedure

All participants completed the tasks online using Pavlovia. They received research credit

their participation after the test.

3.2 Results

As in Study 1, we began by comparing the uniqueness and number of responses in the
semantic fluency task across the three Gc groups (Table 7). A one-way ANOVA between Ge
and fluency exposed significant differences in fluency between the three groups, F' (2, 158) =
7.424, p < .001, n,° = .086. The post hoc t-test analyses revealed significant differences
between two of the three groups, p’s < .05 (see Table 7 for detailed results). Further, the
McNemar’s chi-square tests showed the unique responses between two of the three groups
were all significant (Table 7). These results replicate Study 1: higher Gc¢ participants

produced more (and more unique) verbal fluency responses.
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Table 7. Descriptive statistics and analysis of the average and unique responses data for the
three Gc groups.

n (average) n n 2

Groups  rsp) Ramge ¢ F P 4 (ea (‘l‘l‘;‘l nogi=1 PP
Low 21.87 1-38 201 43

(10.91) 2947 106 004 567 259 1.941  .164 240
Medium  27.59 (9.20)  3-47 216 58
Low 21.87 1-38 201 28 <

(10.91) 3447 105 001 668 282 24807 oo, 211
High  28.23(7.00) 1-43 254 81 :
Medium  27.59 (9.20)  3-47 216 38

3633 (700) 14y 382 105 703 642 292 12.009 .001 229

High

254 76

Notes. n (average) = mean average and range of the number of responses in each group; n
(total) = total number of unique responses; n (unique) = the number of unique responses in
each group; n = the number of unique responses from the total not given by the other group.
2* refers to the McNemar’s test; ¢ is the effect size of the McNemar’s test.

Next, we estimated and compared the semantic memory networks of the three groups. A
total of 24, 45, and 58 nodes were excluded from the low, medium, and high G¢ groups
respectively. This left 105 matched nodes in each group for the subsequent network analysis.

The networks were visualized (Figure 4) and the network measures (CC, ASPL, and Q) for

these three networks were computed (Table 8) with R (Christensen & Kenett, 2023).
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Figure 4. A 2D visualization of the semantic networks for the low, medium, and high Gc

groups.

Low Medium High

Note. Nodes denote the matched animal names generated by all three groups. Edges denote
binary, symmetrical relations between nodes.

Upon visual inspection, the semantic memory network of the high Gc group appears
more condensed than that of the medium and low Gc groups. This observation is consistent
with Study 1 and the network measures presented in Table 8, with the high Gc group
showing a higher CC, and lower ASPL and Q, compared to the networks of the medium and

low Gc groups.

Table 8. Network measures for each of the three Gc groups

Groups CC ASPL Q

Low 742 2.989 611
Medium 744 2.839 .626
High 756 2.798 .605

Notes. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity.

Similarly, the simulated random network analysis revealed that all empirical network
measures for the low, medium, and high Ge groups were significantly different from their

random counterparts (all p’s <.001).
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Finally, we conducted the partial-network bootstrapping analysis. Half of the total nodes
within each network were selected for bootstrapping partial networks analysis (52 out of 105
nodes). A one-way ANOVA analysis exposed significant differences between the three
groups on the partial network measures. Tukey’s HSD pairwise comparison showed
significant differences between the three groups (all p’s < .001; detailed in Table 9).
Consistent with our Hypothesis 1 and Study 1, the high Gc group showed significantly
smaller ASPL and Q for partial networks compared to the other two groups. In contrast, CC
was significantly larger for partial networks of the high G¢ group compared to the low and

medium Gc groups (Figure 5).

Table 9. One-way ANOVA on the partial networks’ bootstrap analyses.

Group M SD g 2007 P wp2 g‘r’:)‘:lrpa:t p HSD Results
CC low 750 .01 305431 <.001 .169  low-high <.001 low <high
medium 755 .01 medium-high  <.001 medium < high
high 159 .01 medium-low  <.001 medium > low
ASPL  low 2.425 .10 205.896 <.001 .121 low-high <.001 low > high
medium  2.394 .09 medium-high  <.001 medium > high
high 2341 .09 medium-low  <.001 medium < low
Q low 488 .03 185223 <.001 .110  low-high <.001 low > high
medium 476 .02 medium-high  <.001 medium > high
high 466 .03 medium-low  <.001 medium <low

Notes. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity.

Figure 5. Means for the Gc groups on CC, ASPL, and Q
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Note. The data represents 50% of selected nodes. Error bar represents SE.
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3.2.1 Creative Thinking

Finally, we concocted separate one-way ANOVA’s to examine the effect of Gc group
AUT fluency and originality. This analysis revealed that there was no significant difference
in fluency between the three groups, F (2, 158) = 2.065, p = .130, #,° = .025. Due to the lack
of significant differences observed among the samples in the overall test, multiple
comparisons were not performed. However, in terms of originality, the one-way ANOVA
revealed a significant main effect of Group, F (2, 158) =3.914, p = .022, 5,° = .047. Tukey-
HSD post-hoc test exposed significantly higher originality scores for the high Gc group (M =
2.15, 8D = .18) compared to the low Gc group (M = 2.05, SD = .17), t (105) = 2.964, p = .019,
d=.571, as predicted by Hypothesis 2. The differences of originality scores between the
medium Gc group (M =2.12, SD = .22) and high Gc group were not significant ¢ (105) = -.850,
p =.648, d = .149. Similarly, there were no significant differences observed between the

medium group and the low Gc group, ¢ (106) = 1.813, p = .154, d = .170 (Figure 6).

Figure 6. The differences in fluency and originality of AUT scores between the Gc groups.
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Note. Error bar represents SE.
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Finally, to account for the possible confound of Gf, we conducted an ANCOVA with Gf

as a covariate, Gc Group as the independent variable, and AUT originality as the dependent

variable. This analysis revealed that even after controlling for Gf, the effect of Ge Group on

AUT originality remains significant, F (2, 1ss) = 3.062, p = .049, 5,> = .038. This suggests that

the effects observed in this study are primarily specific to Gc.

Furthermore, the relation between Gc and DT were examined via Pearson’s correlation

analysis (Table 10). The results revealed significant correlation between Gc and originality.

Table 10. Pearson's correlations of Ge and originality in study 2

Variable Gc Adv  Gc Extend GC  Fluency Originality
Gc_Adv Pearson's r —
p-value —
N 161
Gc_Extend Pearson's r 235%* —
p-value .003 —
N 161 161
Gce Pearson's r .859 699%* —
p-value .000 .000 —
N 161 161 161
Fluency Pearson's r 110 139 154 —
p-value 165 079 .051 —
N 161 161 161 161
Originality Pearson's r 221%* 126 220%* .092 —
p-value .005 A11 .004 247 —
N 161 161 161 161 161

Notes. * - p <.05; ** - p <.01. Gc_Adv represents the score of advanced vocabulary test;
Gc_Extend represents the score of extended range vocabulary test. Ge¢ means the sum of
Gc_Adv and Ge_Extend. Fluency means the number of the alternate uses task answers
generated by participants. The originality means the sum of the originality scores for both

objects.
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3.3. Discussion

Study 2 replicated the results of Study 1: the semantic memory network of the high Gc
group is more flexible, interconnected, and clustered. In addition, we found that the higher

the Gc, the higher the verbal creativity.

4. General Discussion

Across two studies, we examined whether Gce relates to the structure of semantic memory
networks and verbal creativity. Consistent results from both samples showed that the high Ge
group exhibited a more flexible semantic memory network, characterized by less structure,
greater clustering, and increased interconnectedness, in comparison to the low Gc group.
Moreover, the high Gc group outperformed the low Gc group on verbal creativity, providing
a robust replication of prior work. These findings suggest that the structure of semantic
memory supports both verbal intelligence and creative ability, suggesting that a shared

mechanism may underlie these two cognitive abilities.

4.1 Gc and Semantic Memory Networks

We found that high Gc individuals have a more efficient, flexible, clustered, and
interconnected semantic memory network (reflected by a higher CC, and smaller ASPL and
Q) than low Gc individuals. A shorter ASPL implies that, on average, fewer steps are
required to travel between any two nodes in a network (Latora & Marchiori, 2001). A smaller
Q reflects the presence of highly interconnected communities, and indicates a higher
efficiency for long-range network communication (Fortunato, 2010). CC measures the extent

to which the nodes of a network cluster together (Siew et al., 2019). Within semantic memory
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networks, a higher CC has been related to stronger associative abilities like associational

fluency and associational flexibility (He et al., 2021).

Altogether, the present study suggests that a highly interconnected semantic memory
network is beneficial for verbal intelligence, supporting the classic connectivity model of
semantic processing (Klimesch, 1987). One possibility is that the more interconnected
semantic memory network of high Gc individuals may facilitate searching through indirect
pathways, thus improving their overall search efficiency on verbal intelligence and creativity
tasks (see also Marko & Riecansky, 2021; Michalko et al., 2023). This network structure may
increase the possibility of finding both correct and creative solutions, depending on the task,
rather than fixating on non-related information. Conversely, our results do not seem to
support the complexity model (Gentner, 1981), which holds that the processing capacity for
accessing and comparing features is limited, and that, with increased semantic components,

memory load will in turn increase, slowing processing efficiency and thus task performance.

High Gc individuals may also be able to better connect different branches or
communities, evidenced by a lower Q in the high Gc network. In other words, having less
overall structure in a network, as quantified by Q, may make it easier to navigate and connect
different subcategories in the network (e.g., farm animals vs. marine animals; Michalko et al.,
2023). This finding is notable, however, as one might expect high Gc individuals to have
more structured networks, with discrete clusters for semantic subcategories (e.g., Cosgrove et
al., 2023)—which has also been shown for high fluid intelligence (Kenett, Beaty, et al.,
2016). Yet this structure is consistent with research on creativity, which consistently shows
less structure in the semantic memory networks of highly creative groups (Benedek et al.,

2017; Kenett et al., 2014; Li et al., 2021). These results provide additional theoretical support
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for the connectivity model of semantic processing (Klimesch, 1987), as processing efficiency

does not seem to decrease with an increase in semantic complexity.

4.2 Gc, Creativity, and Semantic Memory Networks

Compared to the other groups, the high Gc individuals showed the highest creative
abilities, consistent with past research reporting correlations between these two cognitive
abilities (e.g., Cho et al., 2010; Gerver et al., 2023; Sligh et al., 2005). But why do high Gc
individuals tend to be more creative? High Gc reflects a more unique knowledge base, i.e.,
having a richer vocabulary obtained through education and experience (Beauducel &
Kersting, 2002). Further, a previous study found personal and social experience explained
65% of originality scores for alternative uses tasks (Runco & Acar, 2010), which supported

the claim that divergent thinking tests may depend heavily on experience.

Here, we show that high Gc is also related to a more flexible, clustered, and
interconnected semantic memory network—a semantic structure associated with high
creative thinking ability across a range of tasks, including divergent thinking (Benedek et al.,
2017; He et al., 2021; Ovando-Tellez, Kenett, et al., 2022), convergent thinking (Luchini et
al., 2023), and novel metaphor production (Beaty & Silvia, 2013; Li et al., 2021). Moreover,
the present research demonstrates that increased semantic memory network flexibility, across
the three Gc groups, is accompanied by increased verbal creativity. We thus suggest that a
flexible semantic memory network helps to explain why high Gc individuals are more
creative: both verbal intelligence and creative thinking ability are characterized by a flexible

organization of semantic memory.
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Moreover, considering the CHC theory of intelligence, which posits that intelligence
includes Gf, Gc, Glr (long-term retrieval), and other abilities (Horn & Blankson, 2005), Both
Gc and semantic memory (retrieval ability) are integral components of general intelligence
(2). While semantic memory may statistically mediate the relationship between Gc and DT,
both Gc¢ and semantic memory contribute to the generation of unique ideas in distinct ways.
For example, high Gc reflects a wealth of information retrieval, while a more flexible
semantic memory network may enhance retrieval efficiency and offer greater potential to
generate original or novel ideas by identifying weaker connections within the network.
Besides, the ANCOVA conducted in Study 2 showed that when Gf was controlled, the effect
of Gc on originality is still significant, which indicates that the effects observed in this study

are primarily specific to Gc.

Interestingly, high Gc individuals also produced more unique verbal fluency responses,
which may also help to explain Gc¢’s link to creativity. Although Gc is robustly related to
verbal fluency, i.e., producing more responses (Silvia et al., 2013), to our knowledge, the
present study is the first demonstration that high Gc individuals produce more unique
responses. This finding makes intuitive sense: knowing more words (high Gc¢) should
increase the likelihood of producing more unique words on a fluency task. Yet, the semantic
memory network analysis provides additional insight: high Gc individuals have a more
flexible semantic memory network structure, which may facilitate search processes when
retrieving (uncommon) words on a verbal fluency task—even when they are not instructed to
do so (Ovando-Tellez, Benedek, et al., 2022). Indeed, highly creative individuals produce
more unique responses on verbal fluency tasks (Kenett et al., 2014), and they show a similar
memory structure. This result provides another angle for understanding the interrelations

among verbal intelligence, verbal ability, and the organization of the semantic system.

33



Gc, Creativity, and Semantic Memory Networks

4.3. Limitations and Future Directions

A few limitations exist in our study. First, our creativity and semantic fluency tasks were
“domain general” and did not evaluate individuals on a specific domain (e.g., creative
writing). Thus, future studies are encouraged to extend these results in specific domains (e.g.,
Merseal et al., 2023). Second, our sample predominantly includes undergraduate students,
who may not represent a larger population of domain experts or the general population. Our
participants were all younger adults, which makes it challenging to generalize findings to
older adults, who are likely to possess a broader vocabulary and semantic knowledge base
(Cosgrove et al., 2023; Cosgrove et al., 2021). Future studies should extend the current
investigation to address the issues of age and expertise, examining whether differences in
domain knowledge and experience relate to differences in creative abilities and the

underlying semantic network.

Additionally, the present research analyzed group differences by dichotomizing a
continuous variable (i.e., vocabulary knowledge). This is a necessary procedure that is widely
used to estimate group-based semantic memory networks when using the verbal fluency task
(Christensen & Kenett, 2023; Zemla & Austerweil, 2018). Future studies should aim to
replicate and extend our findings by using a semantic relatedness judgment task (Benedek et
al., 2017; He et al., 2021; Ovando-Tellez, Kenett, et al., 2022) to construct individual-based
semantic memory networks, which could elucidate the effects of individual differences in
semantic memory network structure on both Gc¢ and creativity. Importantly, our research was
limited in its ability to triangulate the relationships between all three variables: Gc, creative
ability, and semantic memory networks. Nevertheless, given prior work separately linking
these three systems, we expect that analyzing individual-based semantic memory networks

will replicate the group findings reported in this work. Importantly, such a future study
34



Gc, Creativity, and Semantic Memory Networks

examining the relation between individual-based semantic memory networks, Gc, and DT,
will allow a mediation analysis to be conducted, testing the mediating effect of semantic

memory on the relation between Gc and DT.

4.5. Conclusion

In summary, the current study quantitatively investigated the semantic memory network
structure of people with different levels of Gc and explored how it may underly the
relationship between Gc and verbal creativity. The novelty of our study lies in the outcomes
that we obtained via a computational network science approach and the significance of these
findings in relation to existing theories. In particular, our study applies computational
network science methods to empirically and directly examine the support for either the

complexity model or the connectivity model.

Our findings suggest that individuals with high Gc possess more efficient semantic
memory networks that are less segregated into distinct communities, exhibiting greater
flexibility in the semantic system. Additionally, the high Gc group showed higher creative
abilities than the low Gc group. Our results offer preliminary evidence to suggest that a rich
and flexible semantic memory network could form the foundation for understanding the link
between verbal intelligence and creativity. This study provides the first empirical evidence
supporting the classic connectivity model of semantic processing with computational network

science methods.
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