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Abstract 

Crystallized intelligence (Gc)—knowledge acquired through education and experience—

supports creativity. Yet whether Gc contributes to creativity beyond providing access to 

more knowledge, remains unclear. We explore the role of a “flexible” semantic memory 

network structure as a potential shared mechanism of Gc and creativity. Across two studies 

(N = 506 and N = 161) participants completed Gc tests of vocabulary knowledge and were 

divided into low, medium, and high Gc groups. They also completed two alternate uses 

tasks, to assess verbal creativity, and a semantic fluency task, to estimate semantic memory 

networks. Across both studies, the semantic memory network structure of the high Gc group 

was more flexible—less structured, more clustered, and more interconnected—than that of 

the low Gc group. The high Gc group also outperformed the low Gc group on the creativity 

tasks. Our results suggest that flexible access to semantic memory supports both verbal 

intelligence and creativity. 

 

Keywords: crystallized intelligence, divergent thinking, knowledge, semantic network, 

verbal creativity 
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Educational relevance statement 

Crystallized intelligence (Gc)—knowledge acquired through education and experience—

supports creativity, yet whether Gc contributes to creativity beyond providing access to more 

knowledge (semantic memory), remains unclear. In this two-part study, we find that 

individuals with higher Gc tended to have a more flexible semantic memory structure, which 

in turn supported greater verbal creativity. This finding suggests that building students' 

vocabulary knowledge and verbal skills may not just expand their knowledge base, but also 

increase creativity through enabling more flexible access to that knowledge. If supported by 

further research, this could mean educational interventions targeting growth in Gc and 

semantic flexibility may foster students' creative capacities beyond just improving content 

mastery.  Overall, this research highlights the interplay between building domain knowledge 

and cultivating creative thinking, suggesting educators should aim to develop both abilities in 

tandem rather than treating them separately.  
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1. Introduction 

As a primary component of human intelligence, crystallized intelligence (Gc) refers to 

the ability to learn, retain, structure and apply acquired knowledge to solve real-life problems 

(Cattell, 1963). Gc is developed through education and experience across the lifespan, and it 

is often measured by tests of vocabulary knowledge (Kan et al., 2011; Schipolowski et al., 

2014). Gc has repeatedly been shown to positively correlate with another important ability—

creative thinking (Cho et al., 2010; Frith et al., 2021; Runco & Acar, 2010; Shi et al., 2017; 

Silvia, 2015; Sligh et al., 2005)—ostensibly by providing access to more information (i.e., the 

quantity of knowledge) that can be combined in new ways to solve problems. In the present 

research, we explore another potential mechanism underlying Gc’s association with creative 

thinking: the organization of concepts in semantic memory, which plays an important role in 

facilitating memory retrieval and has been linked to higher creative ability (Benedek et al., 

2023). We thus aim to understand how semantic memory network structure relates to Gc and 

whether any differences may explain Gc’s association with creative thinking.  

1.1. Knowledge and Creativity 

Decades of factor analytic research has linked Gc to semantic memory, particularly 

broad retrieval ability (Gr), i.e., the ability to efficiently retrieve information from long-term 

memory (Carroll, 1993) and knowledge (Beauducel & Kersting, 2002). Perhaps 

unsurprisingly, Gc and Gr are strongly correlated: people who know the meaning of more 

concepts tend to be better able to retrieve more concepts when asked to do so (Beauducel & 

Kersting, 2002; Carroll, 1993). A recent meta-analysis also found broad retrieval ability 

moderately correlated with divergent thinking (r = .48; Miroshnik et al., 2023). Both 

intelligence facets have also been associated with creativity, such as divergent thinking (e.g., 
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Benedek et al., 2012; Forthmann et al., 2019; Silvia et al., 2013; Sligh et al., 2005), creative 

writing (Avitia & Kaufman, 2014; Tan & Grigorenko, 2013; Taylor & Barbot, 2021), and 

metaphor production (Beaty & Silvia, 2013; Kenett et al., 2018; Stamenkovic & Holyoak, 

2018). Yet how Gc and Gr contribute to creativity, beyond simply providing access to more 

knowledge, remains unclear.  

Researchers have long explored the question of how concepts in semantic memory are 

interconnected, activated, and retrieved (Collins & Loftus, 1975; Kumar, 2021). Two classic 

models of semantic processing are the complexity model and the connectivity model 

(Klimesch, 1987; Kroll & Klimesch, 1992). At the core of both models is the assumption that 

meaning is represented by a set or network of semantic features (Kintsch, 1980).  

A controversial issue between the two theories arises when considering how individual 

features, or entire networks, may influence processing speeds and memory performance. On 

one hand, the complexity model assumes that processing capacity is limited. As such, with 

more semantic components to be processed—as with high Gc—memory load should 

increase, thus slowing overall processing time (Gentner, 1981). In contrast, the connectivity 

model places more emphasis on the underlying memory structure, and holds that indirect 

activation will become increasingly effective as the number of interconnected nodes (higher 

Gc) increases (Klimesch, 1987). Indeed, concepts with more features are judged faster than 

those with only a few (Klimesch, 1987; Kroll & Klimesch, 1992).  

The spread of information across a highly interconnected semantic memory structure 

should thus be more efficient under the connection model rather than the complexity model. 

Yet, empirically testing these competing models has been challenging, due to challenges in 

quantifying semantic memory (Kumar, 2021; Kumar et al., 2022). Recently, the application 

of computational network science methods (Hills & Kenett, 2022; Siew et al., 2019) to study 
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cognition allows modelling semantic memory as networks, and assess how variation in 

semantic organization relates to higher cognitive abilities, such as intelligence and creativity. 

1.2 Mapping Knowledge Organization Using Computational Network Science Methods 

Advances in network science methodologies have allowed researchers to quantitatively 

examine the organization of different knowledge structures (e.g., semantic memory; Hills & 

Kenett, 2022; Siew et al., 2019). Network science is based on graph theory, offering 

quantitative methods for the representation of complex systems (e.g., semantic memory) as 

networks (Siew et al., 2019). A network is made up of nodes (e.g., individual concepts or 

representations), and edges that signify the relations between them (e.g., semantic similarity).  

Semantic memory network modelling has provided insight into language and memory 

structure (Siew et al., 2019), cognition across clinical populations (Castro, 2022), aging 

(Cosgrove et al., 2023; Cosgrove et al., 2021; Wulff et al., 2019), memory restructuring and 

development (Bieth et al., 2021; Kenett & Thompson-Schill, 2020), language development 

(Hills et al., 2009a, 2009b), bilingualism (Borodkin et al., 2016; Fernández-Fontecha & 

Kenett, 2022), and creativity (Kenett & Faust, 2019). 

To study semantic memory as a network, researchers commonly administer verbal 

fluency tasks (e.g., listing as many animals as possible in 1-2 minutes; Ardila et al., 2006), 

and use the responses to estimate memory structure across groups (e.g., high and low creative 

individuals; Kenett, Beaty, et al., 2016). Several widely adopted methods have been proposed 

to analyze semantic fluency data as group-based semantic memory networks (Christensen & 

Kenett, 2023; Zemla & Austerweil, 2018). More recently, other methods have also been 

proposed that can estimate individual-based semantic memory networks (Wulff et al., 2022). 

One such approach is based on semantic relatedness judgments, combining a series of 
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pairwise judgments of semantic relatedness between words to represent ones’ organization of 

concepts in memory (Benedek et al., 2017; He et al., 2021; Ovando-Tellez, Kenett, et al., 

2022).  

Common network measures include the clustering coefficient (CC), average shortest path 

length (ASPL), and modularity (Q). CC refers to the extent that two neighbors of a node will 

themselves be neighbors (i.e., a neighbor is a node i that is connected through an edge to node 

j), averaged across all nodes in the network. A higher CC relates to greater overall 

connectivity in the network. In semantic memory networks, such connectivity denotes the 

similarity between concepts (nodes) and has been related to creativity (Kenett & Faust, 

2019). ASPL refers to the average shortest number of steps (i.e., traversed edges) required to 

travel between any pair of nodes, thus marking the overall spread of a network. In semantic 

memory networks, ASPL is correlated with a participants’ judgment on the degree of 

relatedness between two concepts, with more closely related concepts associated with a lower 

ASPL (Kenett et al., 2017; Kumar et al., 2020). Q measures the degree to which a network 

breaks apart into smaller clusters or communities, with a higher Q denoting more distinct and 

separate communities in a network (Fortunato, 2010; Newman, 2006); thus, communities will 

often represent specific semantic categories (e.g., fruits and vegetables, animals, buildings). 

In semantic memory networks, higher Q has been related to higher structure and rigidity 

(Kenett, Beaty, et al., 2016; Kenett, Gold, et al., 2016). Critically, the larger the CC, and the 

smaller the Q and ASPL, the more flexible and efficient the semantic memory network is, 

which facilitates information processing and cognitive operations in the network (Kenett et 

al., 2014; Kenett, Beaty, et al., 2016; Kenett & Faust, 2019). 
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Within the creativity domain, Kenett et al. (2014) examined semantic memory networks 

of individuals with lower and higher levels of verbal creative ability. More creative 

individuals were found to exhibit a more flexible, clustered, and condensed semantic memory 

network (higher CC, lower Q and ASPL) compared to lower creative individuals—a finding 

that replicated using continuous, individual-based semantic memory networks methodology 

(Benedek et al., 2017; He et al., 2021; Ovando-Tellez, Kenett, et al., 2022). More recently, Li 

et al. (2021) found that individuals producing more highly original metaphors possessed more 

clustered and interconnected semantic networks. 

Studies have also applied semantic memory network modeling to examine the link 

between intelligence and creativity. Kenett, Beaty et al. (2016) explored how fluid 

intelligence (Gf) and creative achievement relate to the structure of semantic memory 

networks. High Gf was associated with more “rigid” semantic memory networks (i.e., highly 

structured networks with lower CC, higher Q and ASPL), while high creative achievement 

was associated with more “flexible” semantic memory networks (higher CC, lower Q and 

ASPL). These results were replicated in children by Rastelli et al. (2020), who found a 

similar pattern in children who showed high levels of intelligence and divergent thinking 

ability.  

Together, these studies suggest that intelligence and creativity may differ at the level of 

semantic memory networks, with intelligence (especially Gf) related to more structured 

networks and creativity related to less structured networks. Yet whether this finding extends 

to Gc—which relates to the volume of knowledge and may thus be even more relevant to 

understanding knowledge organization—remains unknown.  
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1.3 The Current Study 

In the current study, we conducted two studies (Study 1 n = 506; Study 2 n = 161) to test 

whether Gc relates to variation in the organization of concepts within semantic memory 

networks, as well as individual differences in creative thinking ability (assessed via divergent 

thinking tasks). We predict that high Gc individuals, who have more knowledge to retrieve, 

will show a more flexible, interconnected, and clustered semantic memory network (higher 

CC, lower ASPL and Q; Hypothesis 1), consistent with past research on creative thinking 

ability (Kenett & Faust, 2019). Furthermore, we predict that high Gc individuals will show 

higher divergent thinking scores (Hypothesis 2), replicating past work (Cho et al., 2010; Sligh 

et al., 2005).  

 2. Study 1 

In Study 1, we reanalyzed existing data to test for differences in the structure of 

semantic memory networks of individuals varying in Gc. In addition, we examined whether 

these individuals also vary in their creative thinking abilities, assessed via the alternate uses 

task (AUT)—a typical task used to assess divergent thinking (Acar & Runco, 2019). 

Participants completed two tests of vocabulary knowledge to assess Gc, and a semantic 

fluency task for the estimation of their group-based semantic memory networks; only a subset 

of participants in this dataset completed the AUT. Gc scores were then used to separate 

participants into low, medium, and high Gc groups to compare their semantic memory 

networks. Considering past research that has shown that flexible semantic memory network 

structure is related to creativity, we expected the same for Gc. We further expected to 

replicate past work pointing to a relation between Gc and creativity (e.g., Cho et al., 2010; 

Gerver et al., 2023; Sligh et al., 2005). 
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2.1. Materials and Methods 

2.1.1. Participants 

Participants (N = 506, 402 women, mean age = 19.86 years, SD = 3.87 years) were 

recruited from various studies conducted at the MASKED University. All participants 

provided written informed consent prior to the data collection. This study was approved by 

the MASKED Institutional Review Board.  

Our aim was to estimate group-based semantic memory networks, which requires 

splitting participants into groups for network estimation (Christensen & Kenett, 2023). 

Participants were thus divided into three groups in accordance with their Gc scores 

(Christensen et al., 2018), to assess a linear relationship between Gc and semantic memory 

network organization (compared to extreme low vs. high groups). This was done by dividing 

the sample into three thirds, according to their Gc score distribution (lower, middle, and top 

third; Altman & Bland, 1994). We conducted a one-way ANOVA on the Gc scores of 

participants in low, medium, and high Gc groups (Table 1) and confirmed that the groups 

were significantly different from each other.  

Table 1. Descriptive statistics for the three Gc groups. 

Group 

Gc AUT 

Age N 
Gc_ 

Adv 

Gc_ 

Extend 
Gc  Age N Fluency Originality 

Low 
18.79 

(1.82) 
169 

5.72 

(1.75) 

6.94 

(2.02) 

12.66 

(2.39) 
 

21.60 

(3.70) 
15 

6.37 

(2.31) 

1.34 

( .19) 

Medium 
19.41 

(2.94) 
168 

7.51 

(1.64) 

10.25 

(1.54) 

17.76 

(1.26) 
 

20.61 

(2.67) 
41 

8.55 

(3.78) 

1.52  

( .26) 

High 
21.37 

(5.43) 
169 

10.22 

(2.01) 

13.58 

(2.41) 

23.80 

(3.46) 
 

22.96 

(6.18) 
89 

8.94 

(4.61) 

1.61 

( .33) 

Full 
19.86 

(3.87) 
506 

7.82 

(2.59) 

10.26 

(3.38) 

18.08 

(5.22) 
 

22.15 

(5.27) 
145 

8.57 

(4.25) 

1.56  

( .31) 

Notes. Gc_Adv represents the score of advanced vocabulary test; Gc_Extend represents the 

score of extended range vocabulary test. Gc: Crystallized intelligence. Gc represents the total 
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score of the two Gc tasks (advanced vocabulary test and extended range vocabulary test). AUT 

= alternate uses task; N = the number of subjects in the sample; The data in parentheses 

represents the square deviation. 

 

2.1.2 Materials  

2.1.2.1. Gc Assessment  

All participants completed two widely used tests of vocabulary knowledge (Kan et al., 2011): 

the advanced vocabulary test (18 items) and the extended range vocabulary test (24 items; 

ETS Kit of Factor-Referenced Cognitive Tests; Ekstrom et al., 1976). In each task, 

participants were asked to select the synonym of a target word from a list of possible 

answers. Participants had eight minutes to complete both tasks and instructed that only the 

correct responses would count towards the final score. The total score of the two tests was 

computed. The Cronbach alpha value for Gc in this Study was found to be of 0.685. 

2.1.2.2. Semantic Fluency Task 

All participants completed a classic categorical verbal fluency task: animal fluency, 

requiring them to list as many animals as possible in 60 seconds. We used the animal 

category for its high cross-cultural and cross-linguistic reliability. This task has been shown 

to effectively reflect people’s ability to retrieve semantic information from long-term 

memory (Ardila et al., 2006; Goñi et al., 2011), and has been widely adopted for the 

modelling of group-based semantic memory networks (Siew et al., 2019; Zemla & 

Austerweil, 2018).  

2.1.2.3. Creative Thinking Assessment  

A subset of participants (N = 145; 106 females; mean age = 22.15 years, SD = 5.27 

years) completed the Alternative Uses Task (AUT; Guilford et al., 1978)—a widely adopted 
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task for the assessment of creative thinking—to evaluate the verbal creative ability of 

participants. Participants were given three minutes to type as many creative uses as they 

could think of for each of two common objects (“box” and “rope”). Their answers were 

recorded via MediaLab and were later scored in terms of their originality, a critical measure 

of divergent thinking ability. A subjective scoring approach (Silvia et al., 2008) was adopted, 

with four trained raters providing originality scores on a Likert scale ranging from 1 (not at 

all creative) to 5 (very creative; Silvia et al., 2008) to all responses. For each AUT response, 

fluency and originality were calculated. Fluency refers to the average number of answers 

generated by participants for the two objects. The originality score was calculated by 

averaging the averaged originality scores for both objects. These two indicators of creativity 

are commonly used in creativity research (Beaty et al., 2018; Silvia et al., 2008). Raters had a 

high inter-rater agreement (ICC = .81), which meets the high level (ICC > 0.7) of reliability 

as per the standard outlined by Hinton et al. (2004).  

2.1.3 Network Analysis 

Semantic fluency data from the three Gc groups was analyzed via a group-based 

semantic memory network approach (Borodkin et al., 2016; Kenett et al., 2013). Here, each 

node represents a category exemplar (e.g., cat) and edges quantitatively represent the 

associations between two exemplars. These associations are computed as the tendency of the 

sample to generate exemplar b (e.g., fish) when exemplar a (e.g., cat) was also generated. All 

network analyses were performed in R (3.6.1). The pipeline that was adopted for the network 

analysis of semantic fluency data was reproduced from Christensen and Kenett (2023). 
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2.1.3.1. Network estimation 

First, the R packages of SemNetDictionaries (Christensen, 2019b) and SemNetCleaner 

(Christensen, 2019a) were used to preprocess participants’ verbal fluency data. Repetitions 

(i.e., responses given more than once by the same participant) and non-category members 

(e.g., for the animal category: carrot, tree, toy) were removed in this phase. Typing errors 

were also corrected, including spelling errors (e.g., dig to dog), word root variations (e.g., 

cats to cat), and continuous strings (i.e., multiple responses entered as a single response). 

Next, the data was transformed into a verb response matrix, where columns represented the 

different unique verbal fluency exemplars, and rows represented all the participants. The 

response matrix was then transformed into a binary response matrix, with each cell 

containing the values 1 or 0. A 1 indicates that a participant generated the specific exemplar, 

while 0 indicates that the exemplar was not generated by the participant. 

The SemNetCleaner package (Christensen, 2019a) was used to further process the binary 

response matrix into a finalized format for network estimation, as well as to control for 

possible confounding factors when comparing networks. To exclude spurious associations, 

only responses that were given by at least two participants in each group were included in the 

binary response matrix (Christensen et al., 2018; Kenett et al., 2013). Furthermore, responses 

in the binary matrix were equated to ensure that the networks of all groups were compared 

using an equal number of nodes (van Wijk et al., 2010). A total of 20, 39, and 89 nodes were 

excluded from the low, medium, and high Gc groups respectively. This left 116 matched 

nodes in each group for the subsequent network analysis. Next, the SemNeT package 

(Christensen & Kenett, 2023) was used to compute the association profiles of verbal fluency 

responses. Network estimation was accomplished via a correlation-based approach, 

specifically by approximating how responses co-occur across each group. 
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The word similarity matrix was then transformed into an n x n weighted and undirected 

adjacency matrix, where each word represents a node and the edge between two nodes is the 

similarity between them. The triangulated maximally filtered graph (Christensen et al., 2018; 

Massara et al., 2016) was then used to minimize spurious relations between nodes in the 

network, via the NetworkToolbox package (Christensen, 2018) in R (3.6.1). An equal number 

of edges was left across all groups to avoid comparing networks with different structures 

(Christensen, 2018; van Wijk et al., 2010). To examine the structure of the networks, the 

edges were binarized so that they were all converted to a uniform weight (i.e., 1). All 

networks were analyzed as unweighted (i.e., all weights are treated as being equal) and 

undirected (i.e. bidirectional relations are assumed between all nodes) networks (Christensen, 

2018; Christensen et al., 2018). 

2.1.3.2. Network analysis 

We used the NetworkToolbox package (Christensen, 2018; Christensen et al., 2018) to 

analyze global network properties and computed the CC, ASPL, and Q of the networks of the 

three groups. Two complementary approaches were used to statistically examine the validity 

of the results. We first simulated a set of random networks for each Gc group, allowing us to 

test whether the network measures could be owed to the null hypothesis, i.e., whether the 

network parameters observed across the three Gc groups differ from a random network with 

an equal number of nodes and edges (Beckage et al., 2011; Steyvers & Tenenbaum, 2005). 

To this end, Erdős-Rényi random networks were simulated with a fixed edge probability and 

equal number of nodes and edges (Erdös & Rényi, 1960). The global network measures (i.e., 

CC, ASPL, and Q) were then computed for each random network, resulting in separate 

sampling distributions. Each empirical network measure was then compared to its reference 
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distribution to evaluate the statistical significance, assessed via a one-sample Z-test for each 

network parameter. 

Next, to allow for the statistical comparison of any two networks, a bootstrapping 

approach (Efron, 1979) was used to simulate and compare partial semantic memory networks 

for the three groups. This method involves the random selection of a subset of nodes in the 

semantic network (Borodkin et al., 2016) for the construction of distinct partial networks for 

each group. In this study, partial semantic networks were generated by sampling 50% of the 

total nodes in a single semantic network. The CC, ASPL, and Q measures were then 

computed for each partial network. This procedure was repeated with 1,000 iterations for 

each partial bootstrapping analysis, leading to a distribution of values for each network 

measure. A between-subject ANOVA was then conducted to compare differences in the 

measures across the three groups. Additionally, Tukey’s HSD pairwise comparison was 

conducted for post-hoc multiple comparisons. Figures corresponding to the bootstrapping 

approach were generated using the SemNetCleaner package in R (Christensen, 2019a). 

2.1.4 Procedure 

Participants completed all tasks on computers using MediaLab. After signing the 

informed consent, they were instructed how to complete the cognitive tasks, and they 

received research credit or money for their participation after the test. The first subsample of 

participants (n = 356) completed Gc tests (the advanced vocabulary test and the extended 

range vocabulary test) and the semantic fluency task (listing animals). The second subsample 

(n = 145) completed the Gc tasks, the semantic fluency task, and the AUT. 
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2.2. Results 

Before estimating semantic memory networks, we first examined the uniqueness and 

number of responses in the semantic fluency task across the three groups (Table 2). A one-

way ANOVA was conducted to examine the effect of Gc on fluency, revealing a significant 

main effect of Gc group, F (2, 503) = 20.243, p < .001, ηp
2 = .075: individuals with higher Gc 

produced more responses, as expected. A post hoc t-test analyses was then conducted, 

exposing significant differences between all group pairings, all p’s < .05 (Table 2). 

McNemar’s chi-square tests were applied to test the differences of the number of the unique 

responses between two of the three groups and were all found to be significant (Table 2). 

These results show that higher Gc participants produced more (and more unique) verbal 

fluency responses. 

Table 2. Descriptive statistics and analysis of the average and unique responses data for the 

three Gc groups. 

Notes: n (average) = mean average and range of the number of responses in each group; n 

(total) = total number of unique responses; n (unique) = the number of unique responses in 

each group; n = the number of unique responses from the total not given by the other group. 

χ2 refers to the McNemar’s test; φ is the effect size of the McNemar’s test. 

Groups 
n (average) 

t df p d 
n 

(total
) 

n 
(uniqu

e) 
N 

χ2 
df = 1 

p φ 
M (SD) Range 

Low 
15.25 
(4.03) 

3-26 
-3.437 335 .001 .374 266 

203 37 
6.25 .012 .224 

Medium 
16.76 
(4.03) 

7-28 229 63 

             

Low 
15.25 
(4.03) 

3-26 
-5.897 336 

<  
.001 

.642 346 
203 28 

76 
<  

.001 
.249 

High 
18.05 
(4.69) 

2-34 318 143 

             

Medium 
16.76 
(4.03) 

7-28 
-2.723 335 .007 .297 350 

229 32 
50.61 

<  
.001 

.231 
High 

18.05 
(4.69) 

2-34 318 121 
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We then estimated and compared the semantic memory networks constructed from the 

animal category responses of the low, medium, and high Gc groups. The network measures 

(CC, ASPL, and Q) for these three networks were computed (Table 3) with R (Christensen & 

Kenett, 2023) and the semantic memory networks of the three groups were visualized 

(Figure 1) via the force-directed layout of the Cytoscape software (Fruchterman & Reingold, 

1991; Shannon et al., 2003). In these 2D visualizations, the nodes represent the examples 

given by participants and edges convey symmetrical (i.e., bidirectional) similarities between 

two nodes because these networks are undirected and unweighted.  

Figure 1. A 2D visualization of the semantic memory networks for the three Gc groups. 

 

Notes. Nodes denote the matched animal names generated by all three groups. Edges 

denote binary, symmetrical relations between nodes. 

 

Upon visual inspection of the networks, the semantic memory network of the high Gc 

group appears more condensed than that of the medium and low Gc groups. This observation 

is consistent with the network measures presented in Table 3, with the high Gc group 

showing a higher CC, and lower ASPL and Q, compared to the networks of the medium and 

low Gc groups. 

 



Gc, Creativity, and Semantic Memory Networks 

 

   

 

18 

Table 2. Network measures for each of the three Gc groups  

Groups CC ASPL Q 

Low .75 2.78 .60 

Medium .76 2.78 .59 

High .77 2.47 .52 

Notes. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity. 

To exclude the possibility that the network differences between the three groups derive 

from a null model, we conducted a simulated random network analysis (Christensen & 

Kenett, 2023). This analysis revealed that all empirical network measures for the low, 

medium, and high Gc groups were significantly different from their random counterparts (all 

p’s < .001), thus yielding a rejection of the null hypothesis. 

Next, we conducted the bootstrapping analysis to examine the statistical significance of 

the differences found in the network measures across the three groups. Half of the total nodes 

within each network were selected for the bootstrapping partial networks analysis (58 out of 

116 nodes). A one-way ANOVA analysis was conducted on the effect of group on each of 

the partial networks’ measures.  

Post-hoc Tukey’s HSD pairwise comparison revealed significant differences between the 

network measures in the three groups (all p’s < .001; Table 4). Consistent with our 

Hypothesis 1, ASPL and Q were significantly smaller for partial networks of the high Gc 

group compared to the other two groups. In contrast, CC was significantly larger for partial 

networks of the high Gc group compared to the low and medium Gc groups (Figure 2). 

These results indicate that the semantic memory networks of participants in the high Gc 

group are characterized by higher connectivity (higher CC), shorter paths (lower ASPL), and 

lower modularity (lower Q; Figure 2). 
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Table 3. One-way ANOVA on the partial networks bootstrap analyses.  

 Group M SD 
F  

(2, 2997) 
P ηp2 

Contrast 

Groups 
p 

HSD 

Results 

CC low .758 .01 206.83 < .001 .121 low-high < .001 low < high 

medium 
.764 .01 

   
medium-

high 
< .001 

medium < 

high 

high 
.766 .01 

   
medium-

low 
< .001 

medium > 

low 

ASPL low 2.346 .13 98.638 < .001 .062 low-high < .001 low > high 

medium 
2.298 .12 

   
medium-

high 
< .001 

medium > 

high 

high 
2.272 .11 

   
medium-

low 
< .001 

medium < 

low 

Q low .473 .03 139.79 < .001 .085 low-high < .001 low > high 

medium 
.457 .03 

   
medium-

high 
< .01 

medium > 

high 

high 
.453 .03    medium-

low 
< .001 

medium < 

low 

Notes. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity. 

 

Figure 2. Means for the Gc groups on CC, ASPL, and Q.  

 

Note - The data represents 50% of selected nodes. Error bar represents SE. 

2.2.1 Creative thinking  

Due to the low sample of participants who completed the AUT in the low Gc group, as 

well as the samples of the three Gc groups being of unequal sizes, we conducted a series tests 

of normality. A Kolmogorov-Smirnov test of normality revealed that the high Gc group was 

not normally distributed (p = .008). We thus used a one-way Kruskal-Wallis test, which does 
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not assume equal sample sizes between groups, to assess the differences of fluency and 

originality between the low, medium, and high Gc groups.  

This analysis revealed that there was no significant difference in fluency between the 

three groups, W = 5.187, p =.075. However, in terms of originality, significant differences 

were observed among the three groups, W = 11.239, p = .004. The comparative analyses 

showed that the scores for the high Gc group (M = 1.61, SD = .33) were significantly higher 

than that of the low Gc group (M = 1.34, SD = .19), W = 3.219, p < .001, d = 1.002, as 

predicted by Hypothesis 2. Similarly, the medium Gc group exhibited significantly higher 

scores (M = 1.52, SD = .26) compared to the low Gc group, W = 1.975, p = .048, d = .790. 

The scores for the medium Gc group were not significantly different compared to the high Gc 

group, W = -1.602, p = .109, d =.303 (Figure 3).  

Figure 3. The differences in fluency and originality of AUT scores for the three Gc groups. 

 

 

 

Note. Error bar represents SE. 
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Furthermore, the relation between Gc and DT were examined via Pearson’s correlation 

analysis (Table 5). The results showed significant correlation between Gc and originality.  

Table 5. Pearson's correlations of Gc and originality in study 1 

Variable  Gc_Adv Gc_Extend Gc Fluency Originality 

Gc_Adv Pearson's r —     

 p-value —     

 N 506     

Gc_Extend Pearson's r .521** —    

 p-value < .000 —    

 N 506 506    

Gc Pearson's r .833** .906** —   

 p-value < .000 < .000 —   

 N 506 506 506   

Fluency Pearson's r .014 .067 .048 —  

 p-value .869 .425 .563 —  

 N 145 145 145 145  

Originality Pearson's r .279** .350** .364** -.226** — 
 p-value .001 < .000 < .000 .006 — 

 N 145 145 145 145 145 

Notes: * - p < .05; ** - p < .01. Gc_Adv represents the score of advanced vocabulary test; 

Gc_Extend represents the score of extended range vocabulary test. Gc means the sum of 

Gc_Adv and Gc_Extend. Fluency refers to the average number of answers generated by 

participants for the two objects. The originality score was calculated by averaging the averaged 

originality scores for both objects. 

2.3. Discussion 

Study 1 examined whether Gc relates to the underlying organization of concepts within 

semantic memory networks. Our Hypothesis 1 was confirmed: the high Gc group exhibited a 

more flexible, interconnected, and clustered semantic memory network, and also a 

significantly higher originality score on the verbal creative thinking task (AUT), replicating 

past work (e.g., Cho et al., 2010; Sligh et al., 2005). These results indicate that a flexible 

semantic memory network structure may be a shared mechanism underlying verbal 
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intelligence and verbal creativity. However, the limited sample of participants across the 

three groups that also completed the AUT, particularly in the low Gc group, requires 

replication to test the robustness of our findings. This was the aim of Study 2. 

3. Study 2 

In Study 2, we aimed to replicate and extend Study 1 in a new sample. Most notably, all 

participants in Study 2 completed the AUT, unlike the smaller subset of participants in Study 

1. Additionally, we separated participants into equally sized groups, whereas Study 1 had 

unequal groups. Thus, although Study 1 supported our hypotheses, we conducted a second 

study to ensure that the results were stable in a new sample with complete data. Given that Gf 

and Gc are strongly correlated (Stamenkovic & Holyoak, 2018), Study 2 further aimed to 

replicate the findings of Study 1 after controlling for a possible confound effect of Gf on Gc. 

To do so, in Study 2 we also collected Gf data via the series completion task (Cattell & 

Cattell, 1961/2008). 

3.1. Materials and Methods 

3.1.1 Participants 

One hundred sixty-one participants (94 female; Mage = 19.02 years, SD = 2.49 years) 

were recruited from MASKED University. All participants provided written informed 

consent prior to the data collection. The study was approved by MASKED Institutional 

Review Board.  
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Participants were divided into three groups based on the Gc values (Christensen et al., 

2018). One-way ANOVA were conducted on the Gc scores of participants in the low, 

medium, and high groups, F (2, 158) = 264.023, p < .001, ηp
2 = .770, confirming the 

appropriateness of the groups (Table 6).  

Table 6. Descriptive statistics for age, number of subjects, Gc and AUT scores across the 

three groups.  

Group Age N Gc_Adv Gc_Extend Gc 
AUT 

Fluency Originality 

Low 
18.67 

(0.80) 
54 8.13 5.83 

13.96 

(2.51) 

7.50 

(2.54) 
2.05 ( .17) 

Medium 
18.85 

(.92) 
54 11.26 8.02 

19.28 

(1.29) 

7.69 

(2.31) 
2.12 ( .22) 

High 
19.55 

(4.13) 
53 14.47 10.15 

24.40 

(2.97) 

8.34 

(1.80) 
2.15 ( .18) 

Full 
19.02 

(2.49) 
161 11.27 7.99 

19.22 

(4.86) 

7.84 

(2.26) 
2.10 ( .19) 

Notes. AUT = alternate uses task; Gc: Crystallized intelligence. N = the number of subjects in 

the sample. Gc represents the total scores of the two Gc tasks (advanced vocabulary test and 

the extended range vocabulary test).  

3.1.2. Materials  

The same tasks from Study 1 were administered in Study 2: Gc (vocabulary tests), 

semantic fluency task (animals), and AUT creative thinking task (box and rope). The 

Cronbach alpha value for Gc in this study was found to be 0.402. The subjective scoring 

approach (Silvia et al., 2008) was adopted for AUT, with three trained raters providing 

originality scores on a Likert scale ranging from 1 (not at all creative) to 5 (Extremely creative; 

Silvia et al., 2008). Participants’ AUT originality score was computed similarly as in Study 1. 

AUT Raters had a high inter-rater agreement (ICC = .72), which meets the high level (ICC > 

0.7) of reliability as per the standard outlined by Hinton et al. (2004). Gf score was assessed via 

the series completion task, which was adopted from Cattell’s Culture Fair Intelligence Test 
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(Cattell & Cattell, 1961/2008). Participants were presented a series of images drawn within 

small boxes that changed in succession: they had to discover the rule guiding the changing 

images and determine the next item in the series (13 items, 3 min). Gf was calculated by 

summing up the number of correct responses. 

3.1.3. Procedure 

All participants completed the tasks online using Pavlovia. They received research credit 

their participation after the test.  

3.2 Results 

As in Study 1, we began by comparing the uniqueness and number of responses in the 

semantic fluency task across the three Gc groups (Table 7). A one-way ANOVA between Gc 

and fluency exposed significant differences in fluency between the three groups, F (2, 158) = 

7.424, p < .001, ηp
2 = .086. The post hoc t-test analyses revealed significant differences 

between two of the three groups, p’s < .05 (see Table 7 for detailed results). Further, the 

McNemar’s chi-square tests showed the unique responses between two of the three groups 

were all significant (Table 7). These results replicate Study 1: higher Gc participants 

produced more (and more unique) verbal fluency responses. 
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Table 7. Descriptive statistics and analysis of the average and unique responses data for the 

three Gc groups. 

Notes. n (average) = mean average and range of the number of responses in each group; n 

(total) = total number of unique responses; n (unique) = the number of unique responses in 

each group; n = the number of unique responses from the total not given by the other group. 

χ2 refers to the McNemar’s test; φ is the effect size of the McNemar’s test.  

 

Next, we estimated and compared the semantic memory networks of the three groups. A 

total of 24, 45, and 58 nodes were excluded from the low, medium, and high Gc groups 

respectively. This left 105 matched nodes in each group for the subsequent network analysis. 

The networks were visualized (Figure 4) and the network measures (CC, ASPL, and Q) for 

these three networks were computed (Table 8) with R (Christensen & Kenett, 2023).  

 

 

 

 

 

 

Groups 
n (average) 

t Df p d 
n 

(total) 

n 
(uniq
ue) 

n 
χ2 

df = 1 
p φ 

M (SD) Range 

Low 
21.87 

(10.91) 
1-38 

-2.947 106 .004 .567 259 
201 43 

1.941 .164 .240 
Medium 27.59 (9.20) 3-47 216 58 
             

Low 
21.87 

(10.91) 
1-38 

-3.447 105 .001 .668 282 
201 28 

24.807 
< 

.001 
.211 

High 28.23 (7.90) 1-43 254 81 
             
Medium 27.59 (9.20) 3-47 

-.382 105 .703 .642 292 
216 38 

12.009 .001 .229 
High 28.23 (7.90) 1-43 254 76 
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Figure 4. A 2D visualization of the semantic networks for the low, medium, and high Gc 

groups. 

 

Note. Nodes denote the matched animal names generated by all three groups. Edges denote 

binary, symmetrical relations between nodes. 

 

Upon visual inspection, the semantic memory network of the high Gc group appears 

more condensed than that of the medium and low Gc groups. This observation is consistent 

with Study 1 and the network measures presented in Table 8, with the high Gc group 

showing a higher CC, and lower ASPL and Q, compared to the networks of the medium and 

low Gc groups. 

Table 8. Network measures for each of the three Gc groups 

Groups CC ASPL Q 

Low .742 2.989 .611 

Medium .744 2.839 .626 

High .756 2.798 .605 

Notes. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity. 

 

Similarly, the simulated random network analysis revealed that all empirical network 

measures for the low, medium, and high Gc groups were significantly different from their 

random counterparts (all p’s < .001).  
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Finally, we conducted the partial-network bootstrapping analysis. Half of the total nodes 

within each network were selected for bootstrapping partial networks analysis (52 out of 105 

nodes). A one-way ANOVA analysis exposed significant differences between the three 

groups on the partial network measures. Tukey’s HSD pairwise comparison showed 

significant differences between the three groups (all p’s < .001; detailed in Table 9). 

Consistent with our Hypothesis 1 and Study 1, the high Gc group showed significantly 

smaller ASPL and Q for partial networks compared to the other two groups. In contrast, CC 

was significantly larger for partial networks of the high Gc group compared to the low and 

medium Gc groups (Figure 5).  

Table 9. One-way ANOVA on the partial networks’ bootstrap analyses.  

 Group M SD 
F  

(2, 2997) 
P ηp2 

Contrast 

Groups 
p HSD Results 

CC low .750  .01  305.431 < .001 .169  low-high < .001 low < high 

medium .755  .01     medium-high < .001 medium < high 

high .759  .01     medium-low < .001 medium > low 

ASPL low 2.425  .10  205.896 < .001 .121  low-high < .001 low > high 

medium 2.394  .09     medium-high < .001 medium > high 

high 2.341  .09     medium-low < .001 medium < low 

Q low .488  .03  185.223 < .001 .110  low-high < .001 low > high 

medium .476  .02     medium-high < .001 medium > high 

high .466  .03     medium-low < .001 medium < low 

Notes. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity. 

Figure 5. Means for the Gc groups on CC, ASPL, and Q 

 

Note. The data represents 50% of selected nodes. Error bar represents SE. 
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3.2.1 Creative Thinking 

Finally, we concocted separate one-way ANOVA’s to examine the effect of Gc group 

AUT fluency and originality. This analysis revealed that there was no significant difference 

in fluency between the three groups, F (2, 158) = 2.065, p = .130, ηp
2 = .025. Due to the lack 

of significant differences observed among the samples in the overall test, multiple 

comparisons were not performed. However, in terms of originality, the one-way ANOVA 

revealed a significant main effect of Group, F (2, 158) = 3.914, p = .022, ηp
2 = .047. Tukey-

HSD post-hoc test exposed significantly higher originality scores for the high Gc group (M = 

2.15, SD = .18) compared to the low Gc group (M = 2.05, SD = .17), t (105) = 2.964, p = .019, 

d = .571, as predicted by Hypothesis 2. The differences of originality scores between the 

medium Gc group (M = 2.12, SD = .22) and high Gc group were not significant t (105) = -.850, 

p = .648, d = .149. Similarly, there were no significant differences observed between the 

medium group and the low Gc group, t (106) = 1.813, p = .154, d = .170 (Figure 6). 

 

Figure 6. The differences in fluency and originality of AUT scores between the Gc groups. 

 

Note. Error bar represents SE. 
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Finally, to account for the possible confound of Gf, we conducted an ANCOVA with Gf 

as a covariate, Gc Group as the independent variable, and AUT originality as the dependent 

variable. This analysis revealed that even after controlling for Gf, the effect of Gc Group on 

AUT originality remains significant, F (2, 158) = 3.062, p = .049, ηp
2 = .038. This suggests that 

the effects observed in this study are primarily specific to Gc. 

Furthermore, the relation between Gc and DT were examined via Pearson’s correlation 

analysis (Table 10). The results revealed significant correlation between Gc and originality.  

 

Table 10. Pearson's correlations of Gc and originality in study 2 

Variable  Gc_Adv Gc_Extend GC Fluency Originality 

Gc_Adv Pearson's r —     

 p-value —     

 N 161     

Gc_Extend Pearson's r .235** —    

 p-value .003 —    

 N 161 161    

Gc Pearson's r .859 .699** —   

 p-value .000 .000 —   

 N 161 161 161   

Fluency Pearson's r .110 .139 .154 —  

 p-value .165 .079 .051 —  

 N 161 161 161 161  

Originality Pearson's r .221** .126 .229** .092 — 
 p-value .005 .111 .004 .247 — 

 N 161 161 161 161 161 

Notes. * - p < .05; ** - p < .01. Gc_Adv represents the score of advanced vocabulary test; 

Gc_Extend represents the score of extended range vocabulary test. Gc means the sum of 

Gc_Adv and Gc_Extend. Fluency means the number of the alternate uses task answers 

generated by participants. The originality means the sum of the originality scores for both 

objects. 
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3.3. Discussion 

Study 2 replicated the results of Study 1: the semantic memory network of the high Gc 

group is more flexible, interconnected, and clustered. In addition, we found that the higher 

the Gc, the higher the verbal creativity. 

4. General Discussion 

Across two studies, we examined whether Gc relates to the structure of semantic memory 

networks and verbal creativity. Consistent results from both samples showed that the high Gc 

group exhibited a more flexible semantic memory network, characterized by less structure, 

greater clustering, and increased interconnectedness, in comparison to the low Gc group. 

Moreover, the high Gc group outperformed the low Gc group on verbal creativity, providing 

a robust replication of prior work. These findings suggest that the structure of semantic 

memory supports both verbal intelligence and creative ability, suggesting that a shared 

mechanism may underlie these two cognitive abilities. 

4.1 Gc and Semantic Memory Networks 

We found that high Gc individuals have a more efficient, flexible, clustered, and 

interconnected semantic memory network (reflected by a higher CC, and smaller ASPL and 

Q) than low Gc individuals. A shorter ASPL implies that, on average, fewer steps are 

required to travel between any two nodes in a network (Latora & Marchiori, 2001). A smaller 

Q reflects the presence of highly interconnected communities, and indicates a higher 

efficiency for long-range network communication (Fortunato, 2010). CC measures the extent 

to which the nodes of a network cluster together (Siew et al., 2019). Within semantic memory 
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networks, a higher CC has been related to stronger associative abilities like associational 

fluency and associational flexibility (He et al., 2021).  

Altogether, the present study suggests that a highly interconnected semantic memory 

network is beneficial for verbal intelligence, supporting the classic connectivity model of 

semantic processing (Klimesch, 1987). One possibility is that the more interconnected 

semantic memory network of high Gc individuals may facilitate searching through indirect 

pathways, thus improving their overall search efficiency on verbal intelligence and creativity 

tasks (see also Marko & Riečanský, 2021; Michalko et al., 2023). This network structure may 

increase the possibility of finding both correct and creative solutions, depending on the task, 

rather than fixating on non-related information. Conversely, our results do not seem to 

support the complexity model (Gentner, 1981), which holds that the processing capacity for 

accessing and comparing features is limited, and that, with increased semantic components, 

memory load will in turn increase, slowing processing efficiency and thus task performance. 

High Gc individuals may also be able to better connect different branches or 

communities, evidenced by a lower Q in the high Gc network. In other words, having less 

overall structure in a network, as quantified by Q, may make it easier to navigate and connect 

different subcategories in the network (e.g., farm animals vs. marine animals; Michalko et al., 

2023). This finding is notable, however, as one might expect high Gc individuals to have 

more structured networks, with discrete clusters for semantic subcategories (e.g., Cosgrove et 

al., 2023)—which has also been shown for high fluid intelligence (Kenett, Beaty, et al., 

2016). Yet this structure is consistent with research on creativity, which consistently shows 

less structure in the semantic memory networks of highly creative groups (Benedek et al., 

2017; Kenett et al., 2014; Li et al., 2021). These results provide additional theoretical support 
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for the connectivity model of semantic processing (Klimesch, 1987), as processing efficiency 

does not seem to decrease with an increase in semantic complexity.  

4.2 Gc, Creativity, and Semantic Memory Networks  

Compared to the other groups, the high Gc individuals showed the highest creative 

abilities, consistent with past research reporting correlations between these two cognitive 

abilities (e.g., Cho et al., 2010; Gerver et al., 2023; Sligh et al., 2005). But why do high Gc 

individuals tend to be more creative? High Gc reflects a more unique knowledge base, i.e., 

having a richer vocabulary obtained through education and experience (Beauducel & 

Kersting, 2002). Further, a previous study found personal and social experience explained 

65% of originality scores for alternative uses tasks (Runco & Acar, 2010), which supported 

the claim that divergent thinking tests may depend heavily on experience. 

Here, we show that high Gc is also related to a more flexible, clustered, and 

interconnected semantic memory network—a semantic structure associated with high 

creative thinking ability across a range of tasks, including divergent thinking (Benedek et al., 

2017; He et al., 2021; Ovando-Tellez, Kenett, et al., 2022), convergent thinking (Luchini et 

al., 2023), and novel metaphor production (Beaty & Silvia, 2013; Li et al., 2021). Moreover, 

the present research demonstrates that increased semantic memory network flexibility, across 

the three Gc groups, is accompanied by increased verbal creativity. We thus suggest that a 

flexible semantic memory network helps to explain why high Gc individuals are more 

creative: both verbal intelligence and creative thinking ability are characterized by a flexible 

organization of semantic memory.  
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Moreover, considering the CHC theory of intelligence, which posits that intelligence 

includes Gf, Gc, Glr (long-term retrieval), and other abilities (Horn & Blankson, 2005), Both 

Gc and semantic memory (retrieval ability) are integral components of general intelligence 

(g). While semantic memory may statistically mediate the relationship between Gc and DT, 

both Gc and semantic memory contribute to the generation of unique ideas in distinct ways. 

For example, high Gc reflects a wealth of information retrieval, while a more flexible 

semantic memory network may enhance retrieval efficiency and offer greater potential to 

generate original or novel ideas by identifying weaker connections within the network. 

Besides, the ANCOVA conducted in Study 2 showed that when Gf was controlled, the effect 

of Gc on originality is still significant, which indicates that the effects observed in this study 

are primarily specific to Gc. 

Interestingly, high Gc individuals also produced more unique verbal fluency responses, 

which may also help to explain Gc’s link to creativity. Although Gc is robustly related to 

verbal fluency, i.e., producing more responses (Silvia et al., 2013), to our knowledge, the 

present study is the first demonstration that high Gc individuals produce more unique 

responses. This finding makes intuitive sense: knowing more words (high Gc) should 

increase the likelihood of producing more unique words on a fluency task. Yet, the semantic 

memory network analysis provides additional insight: high Gc individuals have a more 

flexible semantic memory network structure, which may facilitate search processes when 

retrieving (uncommon) words on a verbal fluency task—even when they are not instructed to 

do so (Ovando-Tellez, Benedek, et al., 2022). Indeed, highly creative individuals produce 

more unique responses on verbal fluency tasks (Kenett et al., 2014), and they show a similar 

memory structure. This result provides another angle for understanding the interrelations 

among verbal intelligence, verbal ability, and the organization of the semantic system.  
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4.3. Limitations and Future Directions 

A few limitations exist in our study. First, our creativity and semantic fluency tasks were 

“domain general” and did not evaluate individuals on a specific domain (e.g., creative 

writing). Thus, future studies are encouraged to extend these results in specific domains (e.g., 

Merseal et al., 2023). Second, our sample predominantly includes undergraduate students, 

who may not represent a larger population of domain experts or the general population. Our 

participants were all younger adults, which makes it challenging to generalize findings to 

older adults, who are likely to possess a broader vocabulary and semantic knowledge base 

(Cosgrove et al., 2023; Cosgrove et al., 2021). Future studies should extend the current 

investigation to address the issues of age and expertise, examining whether differences in 

domain knowledge and experience relate to differences in creative abilities and the 

underlying semantic network.  

Additionally, the present research analyzed group differences by dichotomizing a 

continuous variable (i.e., vocabulary knowledge). This is a necessary procedure that is widely 

used to estimate group-based semantic memory networks when using the verbal fluency task 

(Christensen & Kenett, 2023; Zemla & Austerweil, 2018). Future studies should aim to 

replicate and extend our findings by using a semantic relatedness judgment task (Benedek et 

al., 2017; He et al., 2021; Ovando-Tellez, Kenett, et al., 2022) to construct individual-based 

semantic memory networks, which could elucidate the effects of individual differences in 

semantic memory network structure on both Gc and creativity. Importantly, our research was 

limited in its ability to triangulate the relationships between all three variables: Gc, creative 

ability, and semantic memory networks. Nevertheless, given prior work separately linking 

these three systems, we expect that analyzing individual-based semantic memory networks 

will replicate the group findings reported in this work. Importantly, such a future study 
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examining the relation between individual-based semantic memory networks, Gc, and DT, 

will allow a mediation analysis to be conducted, testing the mediating effect of semantic 

memory on the relation between Gc and DT. 

4.5. Conclusion 

In summary, the current study quantitatively investigated the semantic memory network 

structure of people with different levels of Gc and explored how it may underly the 

relationship between Gc and verbal creativity. The novelty of our study lies in the outcomes 

that we obtained via a computational network science approach and the significance of these 

findings in relation to existing theories. In particular, our study applies computational 

network science methods to empirically and directly examine the support for either the 

complexity model or the connectivity model. 

Our findings suggest that individuals with high Gc possess more efficient semantic 

memory networks that are less segregated into distinct communities, exhibiting greater 

flexibility in the semantic system. Additionally, the high Gc group showed higher creative 

abilities than the low Gc group. Our results offer preliminary evidence to suggest that a rich 

and flexible semantic memory network could form the foundation for understanding the link 

between verbal intelligence and creativity. This study provides the first empirical evidence 

supporting the classic connectivity model of semantic processing with computational network 

science methods.   
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