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Smooth Crack Band Model—A
Computational Paragon Based
on Unorthodox Continuum
Homogenization
The crack band model, which was shown to provide a superior computational representa-
tion of fracture of quasibrittle materials (in this journal, May 2022), still suffers from three
limitations: (1) The material damage is forced to be uniform across a one-element wide
band because of unrestricted strain localization instability; (2) the width of the fracture
process zone is fixed as the width of a single element; and (3) cracks inclined to rectangular
mesh lines are represented by a rough zig-zag damage band. Presented is a generalization
that overcomes all three, by enforcing a variable multi-element width of the crack band front
controlled by a material characteristic length l0. This is achieved by introducing a homog-
enized localization energy density that increases, after a certain threshold, as a function of
an invariant of the third-order tensor of second gradient of the displacement vector, called
the sprain tensor η, representing (in isotropic materials) the magnitude of its Laplacian (not
expressible as a strain-gradient tensor). The continuum free energy density must be aug-
mented by additional sprain energy Φ(l0η), which affects only the postpeak softening
damage. In finite element discretization, the localization resistance is effected by applying
triplets of self-equilibrated in-plane nodal forces, which follow as partial derivatives of
Φ(l0η). The force triplets enforce a variable multi-element crack band width. The
damage distribution across the fracture process zone is non-uniform but smoothed. The
standard boundary conditions of the finite element method apply. Numerical simulations
document that the crack band propagates through regular rectangular meshes with virtu-
ally no directional bias. [DOI: 10.1115/1.4056324]
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1 Introduction and Basic Idea

The fracture process zone (FPZ) at the front of propagating crack
always has a finite width, and a distinct line crack appears only
behind the crack front. The importance of a finite front width was
recently highlighted by the gap test [1–3], which revealed an enor-
mous effect of crack-parallel stresses on the material fracture
energy. This effect cannot be realistically captured by the line
crack models, such as the linear elastic fracture mechanics, the vol-
umetric damage (Mazars) model [4], cohesive crack models [5–9],
and phase-field models [10–14] in their current concept. Remedy
might be sought in making the fracture energy dependent on crack-
parallel stress, but this is insufficient since the dependence is
strongly history dependent. It requires modeling fracture as a
band of triaxial damage with a front of finite width. This is the hall-
mark of the crack band model (CBM) [15–18], for which a realistic
damage constitutive model, such as the microplane model M7 for
concrete or shale [19–22], is required (M7 subroutine can be
freely downloaded from Ref. [23]).
An important advantage of the CBM [15,16,21] over other exist-

ing fracture models with distributed damage has been that it can
describe the boundary and crack face conditions correctly because

these conditions are the same as those of the finite element
method. A superior performance of CBM compared to peridy-
namics and phase-field models was recently documented by exten-
sive comparisons to 11 distinctive fracture tests important for
practical applications [22,24]. The CBM, however, has three
limitations:

• The main one is that the single-element width of the band
requires the damage to be uniform across the band.

• The second is that the width of the FPZ cannot vary, being
fixed to a single-element width.

• The third is that, in a regular rectangular mesh, the single-
element width leads to a zig-zag crack band when the propaga-
tion direction forms an angle with the mesh lines (although the
overall propagation path, whose direction is controlled by the
maximization of energy release rate, is still approximately
correct in large specimens).

In contrast to the strongly nonlocal integral-type models [25] and
to the weakly nonlocal gradient-type models (as well as to peridy-
namics), the CBM has two advantages:

(1) The main one is that the boundary conditions are clear and
physically justified. This is particularly important for the
crack faces and the interface of the FPZ.

(2) Another advantage is the tensorial character of material
damage in the crack band, which is essential for taking into
account the enormous effect of the nonsingular crack-parallel
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stresses on the material fracture energy and on the FPZ
width.

The bias of propagation direction in the CBM is a significant
problem only for a regular rectagular mesh. Random meshes,
including the Voronoi mesh, and even meshes of squares consisting
of four triangles, largely overcome this bias; see the crack band
simulation of a curved crack in Fig. 5(b) of [24], in which a crack
band with rugged interfaces was shown to approximate the
curved, experimentally documented, crack path quite well. The
strain-gradient model for softening damage in concrete developed
by Cusatis et al. [26,27] has recently been shown to provide a
good continuum representation of the lattice discrete particle
model (LDPM). The LDPM has been very successful in discrete
simulation of fracture in the microstructure of quasibrittle materials
such as concrete.
Proposed here is a smooth crack band model (sCBM) which

overcomes all the three limitations. Its basic idea is that the crack
front width must be controlled by the localization-resisting energy
characterized by the third-order tensor, η, of the second gradient
(i.e., gradient of gradient or second derivative) of the displacement
vector. This tensor, and the energy density, Φ, associated with it, is
a new kind of localization limiter, which needs to be distinguished
from the strain-gradient tensor, μ, and from the strain energy
density, Ψ. Therefore, we will call it briefly the sprain tensor, η,
and sprain energy density, Φ. Tensor η will be used to limit the
localization of damage strain and to force it to be distributed over
a certain material characteristic length l0, just like in medicine
where the sprain of a ligament is not a rupture but the damage
that is spread over a certain length of the ligament. In the same
spirit, the sprain tensor is here employed only for
softening damage to ensure that there are several finite elements
with varying degrees of damage across the crack band width,
making the crack front “smooth.” The sprain tensor is used to
limit excessive damage localization only after a certain threshold,
C, has been exceeded. The threshold is set so that no appreciable
“sprain” could occur during elastic and inelastic-hardening
deformations.

1.1 The Concept of Homogenization of Damage
and Localization-Resisting Energy Governed by “Sprain”
Tensor. In standard continuum mechanics, the homogenized free

energy density, �Ψ, is assumed to depend solely on the change of
length of infinitesimal line segments of the material, Fig. 1(a).

From this, it inevitably follows that �Ψ is a function of, and only
of, the strain tensor, ε.
But for softening damage, this is insufficient. To explain it, con-

sider first, for simplicity, the uniaxial deformation of a statistically
heterogeneous bar shown in Fig. 1(c), with axial coordinate x, and
consider the change of gradient u′ = du/dx from u′1 to u

′
2. In the case

of damage in heterogeneous material, e.g., a particulate composite
such as concrete, the change of in-line gradient characterizing mate-
rial damage, Δu′ = u′2 − u′1 (pictured in Fig. 1(b) as a change of
slope), cannot be point-wise. Rather, it must be spread out over a
certain material characteristic length l0, because the material hetero-
geneity in a bar under tension causes the microscale damage to be
distributed over a certain material characteristic length l0, i.e.,
does not allow the damage to localize immediately into a line
across the bar thickness. Consequently, we must set Δu′ = l0u

′ ′.
This is similar to ligament sprain in medicine, which is the term
for a ligament damage distributed over a certain length of the liga-
ment, to be distinguished from ligament rupture. Note also that u′ ′

cannot be generalized to 3D as the gradient of strain rather than dis-
placement. Indeed, the change Δux,y= l0ux,yx of the y-derivative of
the x-displacement over length l0 cannot be expressed as the
change of shear strain.
It is thus clear that the density of energy, Φ, resisting the locali-

zation is not a function of the displacement gradient, u′. Instead, it
must depend on its change, Δu′. Furthermore, while in one

dimension, u′ ′ coincides with the strain-gradient ε′, it does not in
two or three dimensions as discussed later.
Consequently, as our basic hypothesis for the modeling of dis-

tributed softening damage and fracture, we postulate that the total
homogenized Helmholtz free energy density of the material, �Ψ,
must be a sum of two terms:

�Ψ( ε, l0η) = Ψ(ε) +Φ(l0η) (1)

Here, ε is the strain tensor, and Φ(l0η) is the localization-resisting
energy density, which does not exist in the continuum mechanics
yet. Its absence is acceptable in all situations except softening
damage mechanics (or quasibrittle fracture mechanics). Tensor η
is a third-order tensor of Cartesian components ηijk= uk,ij. It repre-
sents the third-order tensor of the second gradient of displacement
vector uk (subscripts k= 1, 2, 3 label the Cartesian coordinates xk,
and the summation rule is implied). For the sake of brevity, η will
be called the sprain tensor (according to the previous comment
on ligament sprain in medicine). This tensor characterizes the
gradual change of displacement gradient in any direction. Like
Ψ(ε), Φ(l0η) will later have to be expressed in two or three dimen-
sions as a tensorial invariant (i.e., independent of coordinate rota-
tions). We will see that η behaves differently than the
strain-gradient tensor μ, with components μkij = εij,k (where, for

small strains, εij = (ui,j + uj,i)/2 = linearized strain tensor).

Fig. 1 (a) If free energy density Φ depends on the change of
length of infinitesimal line segment only, it must be a function
of strain tensor only, (b) if free energy density Φ also depends
on the change of displacement gradient u′, it must also depend
on the second displacement gradient u′′, (c) the change of displa-
cement u′′ must be distributed over a finite material length l0
characterizing heterogeneity (the same applies in 2D to duy/dx),
and (d ) a simple example of spatial periodic strain distribution
in an elastic bar
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In continuum mechanics of statistically heterogeneous materials
(or quasibrittle fracture mechanics), the continuum strain is
defined by homogenization. It is now proposed that, in damage
mechanics, two different kinds of homogenization must be
distinguished:

(1) Stiffness-based homogenization: So far, material homogeni-
zation has generally been based on the equivalence of mate-
rial stiffness and has typically been obtained variationally on
the basis of the principle of virtual work, enforcing equilib-
rium while heeding the kinematic compatibility require-
ments. These homogenization methods include, for
example, Voigt [28], Reuss [29] and Hashin–
Shtrickman bounds [30]; Eshelby [31], Hashin [32], Hill’s
self-consistent [33], Mori–Tanaka [34], Eringen [35,36],
Bažant [37,38], Christensen’s composite spheres [39,40],
and Dvorak methods [41]. Accordingly, the standard contin-
uum thermodynamics of heterogenous materials is based on
the free energy density Ψ that is a function of the strain of the
continuum homogenized by stiffness only.

(2) Energy-based homogenization: As already pointed out, in
heterogeneous materials exhibiting distributed damage, the
stiffness-based homogenization misses the part of the
homogenized Helmholtz free energy density, Φ, which is
due to the resistance of damage localization in a heteroge-
neous microstructure. This part cannot be obtained by stiff-
ness homogenization, even though it may be obtained by
minimization of the total Helmholtz free energy of the
system. It represents an energy-based homogenization,
which is here achieved via second derivatives of
displacements.

To clarify the difference in a primitive way, consider a spatial
strain distribution ε = εstiffness + a sin(2πx/l) in an elastic bar
(εstiffness, a, l being constant, n= 1, 2, 3, …), see Fig. 1(d ). The
average of strain energy density based on stiffness homogenization
is Ψ(�ε) = (E/2) ε2stiffness (solid horizontal line in Fig. 1(d ). But the
averaging of energy density gives a higher value, �Ψ(ε(x))=
(1/nl)

�nl

0
(E/2) εstiffness+a sin(2πx/l)

( )2
dx= (E/2)ε2stiffness+ (E/4)a2,

which is shown by the dashed line in Fig. 1(d ). The extra energy
density due to energy homogenization is given as follows:

Φ(lu′′) =
E

4
a2 (2)

The energy-based homogenization is characterized by the
third-order tensor, η, of the second gradient of displacement
vector, the sprain tensor. This tensor is necessary only for describ-
ing the excess energy contribution of damage localizations that are
caused by heterogeneity and are limited by it. In contrast to the clas-
sical strain-gradient formulations initiated in 1909 by the Cosserats
[35,37,42–48], the strain-gradient cannot, in the case of softening
damage, serve as a kinematic variable for the standard homogenized
continuum, i.e., for a continuum homogenized in terms of stiffness
only.
The present energy-based homogenization is different from the

highly successful strain-gradient theory of Gao et al. [47]. Their
theory correctly captures the size effect caused by geometrically
necessary dislocations in plastic-hardening metals as shown by
Huang et al. [48] but is not intended to control softening damage
localization.

2 Forces Generated by the Localization-Resisting

Energy

2.1 Softening Damage, “Sprain,” and Rupture in One
Dimension—Simple Illustration. First, we discuss a one-
dimensional (1D) case since it is instructive by its simplicity. Let
us consider the 1D case of strain localization in a heterogeneous
bar in direction x1≡ x. Let u(x) be the axial displacement, and
again letΦ be the excess energy density of the localization-resisting

energy, which we call, for brevity, the “sprain” energy density.
Physically, Φ represents the energy of localized microcracking
and microslips in excess of what is captured by the continuum
homogenized by stiffness. This energy begins to develop only
after the magnitude of l0u

′′ exceeds a certain dimensionless thresh-
old, denoted as C, which must be high enough not to be significantly
exceeded during elastic (or inelastic-hardening) deformations.
Beyond this threshold, we assume the resistance to increase with
the change of displacement gradient linearly, as if the behavior
were elastic. This means that the associated (isothermal) Helmholtz
free energy density, the sprain energy, should increase beyond the
threshold quadratically. Hence, at a point of coordinate x, the
sprain (or localization-resisting) energy density is:

Φ(x) =
κ

2
〈l0|u′′(x)| − C〉2 (3)

where C is the “sprain” threshold, and κ is the localization-resisting
stiffness (or “sprain” stiffness). Its dimension is that of stress (i.e.,
Pa); l0 is the material characteristic length (characterizing in 3D
the effective width of fracture process zone, different from
Irwin’s characteristic length); and 〈X〉=max(X, 0)=Macauley
brackets, which help to introduce the assumption of energy equiv-
alence of positive and negative u′′ (although here we focus on
tensile rupture, Eq. (3) is also valid for localization in compression
if threshold C has a different value).
What is the meaning of the force variable, f, that must be associ-

ated with the excess localization-resisting energy density Φ? One
might be tempted to consider the derivative γ= ∂Φ/∂u′′, which
has the dimension of surface tension, N/m, or fracture energy.
But neither surface tension nor fracture energy has any physical
meaning in the present context since no surface, nor crack, has
yet formed. So, to define f, Φ needs to be discretized first.
Let us introduce a uniform subdivision of coordinate x1≡ x into

line elements of size Δx= h delimited by nodes r= 1, 2, …, N. In
terms of nodal displacement ur, the second displacement gradient,
i.e., the second derivative at node r, [d2u(x)/dx2]r = u′′(xr) = u′′r ,
is approximated by

u′′r ≈
ur+1 − 2ur + ur−1

h2
(4)

Note that we reserve subscripts r, s for the numbering of mesh
nodes, while subscripts i, j, k, m, n will be used as the subscripts
of Cartesian coordinates.
The discrete approximation of the localization-resisting

sprain energy density at node r is:

Φ(xr) =
κ

2

〈

l0
|ur−1 − 2ur + ur+1|

h2
− C

〉2

(5)

Differentiation with respect to the nodal displacements yields the
nodal sprain forces that need to be applied to resist the excess
energy of damage localization, i.e.:

fr = −bth
∂Φ(x)

∂ur
, fr−1 = −bth

∂Φ(x)

∂ur−1
, fr+1 = −bth

∂Φ(x)

∂ur+1
(6)

Here, b and t are the width and thickness, respectively, of the
axially loaded bar subjected to stress in axial direction x.
By carrying out the differentiation in Eq. (6) with Eq. (5), one

gets the scaling rule of the nodal forces:

fr = bt
κl0

h
�f0, fr−1 = fr+1 = −

fr

2
(7)

where �f0 is a dimensionless constant:

�f0 = 2
〈

l0
|ur−1 − 2ur + ur+1|

h2
− C

〉

sgn(u′′) (8)

Here, sgn(u′′) = sign function = 1 if u′ ′ is positive and −1 if it is
negative (threshold C is considered as always positive). Noting that
�f0 is a constant if u

′′ is a constant, we see that the nodal forces frmust

Journal of Applied Mechanics APRIL 2023, Vol. 90 / 041007-3



be increased as 1/h when the steps h are refined. Calculation of �f0,
with u′′ given by Eq. (4), may be described as follows:

for u′′ ≥ 0 : �f0 =max [2(l0u
′′ − C), 0] (9)

for u′′ < 0 : �f0 =min [2(l0u
′′
+ C), 0] (10)

Figure 2 depicts graphically the triplet of axial nodal forces

(fr−1, fr , fr+1) = −
fr

2
, fr , −

fr

2

( )

for all r = 2, 3, 4, . . . , N − 1

(11)

applied at each triplet of nodes. Note that these forces are always
self-equilibrated, i.e.,

fr−1 + fr + fr+1 = 0 (12)

(and so, in 2D or 3D generalization, according to St. Venant princi-
ple, their effect decays exponentially with distance). The adjacent
triplets are overlapping, and the forces from the adjacent triplets
must be superposed and assembled in a way similar to finite
element stiffness matrices. Within intervals of a uniform second
gradient u′ ′, the nodal forces sum up to zero. Further, note that
lim h→0 fr=∞ in 1D (this changes for 2D if the element sizes in
both directions tend to zero, as demonstrated in Sec. 2.3).
No triplet can be centered at the end nodes r= 1 and r=N, since

it would protrude beyond the boundary. This ensures the physically
correct form of boundary conditions.

2.2 Degradation of Sprain (Localization-Resisting) Stiffness
κ. Keeping κ constant is sufficient to handle early postpeak
damage, but not full softening. Under excessive normal strain
ε = u′, the material degrades and κ decreases. So we express κ,
the sprain (localization-resisting) stiffness, as follows:

κ(λ) = λκ0 (13)

where κ0 is a material constant and λ is a stiffness parameter (repre-
senting an internal variable). The simplest realistic evolution law for
λ is expressed as follows:

Δλ = −
2

k2d
λ 〈εΔε〉 (ε = u′) (14)

where kd is a dimensionless material constant. The 〈..〉 ensures that
the damage cannot decrease. For monotonic ε(t) and infinitesimal
Δε � dε, this integrates to yield the bell-shaped curve:

λ = e−(u
′/kd )

2

(15)

which is proportional to the Gaussian probability density function.
Here, by having u′2 in the exponent, we ensure that positive and
negative displacement gradients (strain) cause equal damage.
However, the 1D bar considered is under tension, and thus, a com-
pressive damage does not appear in this example. For concrete, C
would need to be set much larger in compression than in tension.
We may begin with kd≈ 3 ft/E, which gives a rough estimation of
the order of magnitude.
The discrete form of Eq. (14) for loading incrementΔt is given as

follows:

Δλr = −
2

k2d
λr

〈 ur+1 − ur−1

2h

Δur+1 − Δur−1

2h

〉

(16)

For the boundary nodes, the calculation of λr must be omitted.

In step-by-step integration, a simultaneous calculation of new
nodal values of ur and λr in each loading (or time) step would
lead to a nonlinear problem, even for dynamic relaxation. There-
fore, the damage is better delayed by one step, Δt. For diminishing
Δt, the delay error should converge to zero. We evaluate the nodal
values λr at the end of the previous step from Eq. (14), and then use
them as given values in the current step. This way we obtain a
system of linear equations in each loading step.

2.3 Quasibrittle Fracture Propagation in Two or Three
Dimensions. In a planar sheet of thickness t, with Cartesian coor-
dinates x1= x, x2= y, the displacement vector u has Cartesian com-
ponents u1= ux and u2= uy. To generalize the expression (3), we
must replace u′′ by a two-dimensional tensor that represents the
changes of the gradient (or slopes) of the displacements as functions
of x and y.
So, limiting attention to isotropic materials, we must generalize

u′′ by invariant measures of the curvature of the surfaces of the
in-plane displacement vector components ux(x, y) and uy(x, y). In
the case of material isotropy, such measures are the Laplacians.
The Laplacian of displacement vector u is again a vector and thus
not an invariant. The Laplacians ∇2ux = u1,jj and ∇2uy = u2,jj,
which represent the double of the mean curvatures of functions
ux(x, y) and uy (x, y), are vectors (while the mean curvature of
each surface is an invariant, equal to one half of the Laplacian).
To generalize Eq. (3) to 2D (or 3D), one must further realize that,

for tensorial consistency, threshold C must now be replaced by a
vector, Ci, even though, in the case of isotropy, its components
must be equal, i.e., C1=C2=C = constants = dimensionless
thresholds. So, the proper generalization of Eq. (3) giving the
sprain (or localization-resisting) energy density as a tensorial invari-
ant is

Φ(x) =
κ

2
〈−l0ui,jj − Ci〉〈−l0ui,kk − Ci〉 (17)

where i, j, k= 1, 2, 3, x= (x, y, z) in three dimensions, this equa-
tion is valid only for the typical hill-type damage distribution for
which the Laplacians ui,jj are negative for all i; for limitations of

this equation and generalizations (see Comment C1 at the end of
this section regarding certain invariance questions and limita-
tions), and i, j, k = 1, 2, x= (x, y) in two dimensions. Specifically
for two dimensions, Eq. (17) for the sprain energy can be written
as follows:

Φ(x, y) =
κ

2

〈

−l0(ux,xx + ux,yy) − Cx

〉2
+
〈

−l0(uy,xx + uy,yy) − Cy

〉2
[ ]

(18)

=
κ

2

〈

−l0∇
2ux − Cx

〉2
+
〈

−l0∇
2uy − Cy

〉2
( )

=
κ

2
|ξ|2 (19)

where |ξ|2 = ξiξi, ξi = < − l0∇
2ui − Ci> and Cx = Cy = C1 = C2

in case of isotropy.The metric dimensions of Φ and κ are N/m2

(or J/m3). Note again that, despite symmetry with respect to x
and y, Φ(x, y) is not a function of the strain-gradient tensor.
Further note that neither the mixed components (i.e., ux,yy and
uy,xx) nor the Laplacian could be expressed in terms of the strain-
gradient tensor.
It may be noted that the sprain tensor η, which represents the

third-order second-gradient tensor of the displacement vector and
is defined as

ηijk = uk,ij (20)

has five invariants. They have similar forms as the invariants
of the strain-gradient tensor μ with components μkij = εij,k=

(ui,j + u j,i),k/2, identified in [44,50] (see also Eq. (2.5) in

Ref. [46] and Ref. [51]). Here, Eq. (18) is an analog of one of
them. Analogs of the four others are not used for capturing the
effect of the change of gradient of the displacement vector schema-
tically portrayed in Fig. 1(b).

Fig. 2 Triplet forces countering the excessive positive second
displacement gradient u′ ′ at node r in 1D

041007-4 / Vol. 90, APRIL 2023 Transactions of the ASME



For discretization, we consider a planar sheet of thickness t to be
subdivided by a rectangular mesh with uniform steps hx and hy in
coordinate directions x and y, respectively, the nodes being num-
bered as r, s (r= 1, 2, 3,…, s= 1, 2, 3,…) in the x and y directions.
To obtain the nodal forces, we introduce in Eq. (18) the
second-order approximations of the second partial derivatives:

ux ,xx =
(uxr−1,s − 2uxr,s + uxr+1,s)

h2x
,

uy,xx =
(uyr−1,s − 2uyr,s + uyr+1,s)

h2x
(21)

ux ,yy =
(uxr,s−1 − 2uxr,s + uxr,s+1)

h2y
,

uy,yy =
(uyr,s−1 − 2uyr,s + uyr,s+1)

h2y
(22)

where coordinate subscripts preceded by a comma denote deriva-
tives, but not for the nodal indices r and s. The x and y components
of the localization-resisting forces at the five nodes centered around
the node (r, s) are obtained as follows:

fxr,s = −hxhyt
∂Φr,s

∂uxr,s
, fxr−1,s = −hxhyt

∂Φr,s

∂uxr−1,s
,

fxr+1,s = −hxhyt
∂Φr,s

∂uxr+1,s
(23)

fyr,s = −hxhyt
∂Φr,s

∂uyr,s
, fyr−1,s = −hxhyt

∂Φr,s

∂uyr−1,s
,

fyr+1,s = −hxhyt
∂Φr,s

∂uyr+1,s
(24)

fxr,s−1 = −hxhyt
∂Φr,s

∂uxr,s−1
, fxr,s+1 = −hxhyt

∂Φr,s

∂uxr,s+1
(25)

fyr,s−1 = −hxhyt
∂Φr,s

∂uyr,s−1
, fyr,s+1 = −hxhyt

∂Φr,s

∂uyr,s+1
(26)

For the individual nodes, calculation of the derivatives of Laplacian
of ux yields,

∂(∇2ux)

∂(uxr,s)
= −

2

h2x
−

2

h2y
,

∂(∇2ux)

∂(uxr−1,s)
=

∂(∇2ux)

∂(uxr+1,s)
=

1

h2x
,

∂(∇2ux)

∂(uxr,s−1)
=

∂(∇2ux)

∂(uxr,s+1)
=

1

h2y
(27)

For uy, the calculation is similar. Introducing dimensionless
Laplacians,

X = l0|∇2ux|, Y = l0|∇2uy| (28)

we obtain, after rearrangements, the following localization-resisting
in-plane nodal forces in the set of five nodes centered at node (r, s):

fxr,s = −2κ(λ)l0t
hy

hx
+
hx

hy

( )

〈

X − C
〉

= fx (29)

fyr,s = −2κ(λ)l0t
hy

hx
+
hx

hy

( )

〈

Y − C
〉

= fy (30)

fxr−1,s = fxr+1,s = κ(λ)l0t
hy

hx

( )

〈

X − C
〉

(31)

fxr,s−1 = fxr,s+1 = κ(λ)l0t
hx

hy

( )

〈

X − C
〉

(32)

fyr−1,s = fyr+1,s = κ(λ)l0t
hy

hx

( )

〈

Y − C
〉

(33)

fyr,s−1 = fyr,s+1 = κ(λ)l0t
hx

hy

( )

〈

Y − C
〉

(34)

Physically, these forces represent the resultants of localization-
resisting stresses in directions x and y (see Fig. 3).
The scaling rule of nodal forces in 2D is given by Eqs. (29)–(34).

When both steps hx and hy are scaled in proportion, the nodal forces
fx and fy do not change with the step size. When hx is refined while
hy does not change, the fxr,s scales, for small hx/hy, asymptotically in
proportion to 1/hx, the same as in the one-dimensional case, and
asymptotically for large hx/hy in proportion to hx. Similar scaling
properties hold for other components.
It remains to generalize Eq. (14) to two dimensions. The sprain

(localization-resisting) stiffness parameter must be an invariant of
strain εi,j = (ui,j + u j,i)/2. The logical and the simplest is to take
the (linearized) area strain εA = (ε11 + ε22)/2. The degradation
law is again κ(λ)= λκ0 and the 2D evolution law for λ is

Δλ = −
2

k2d
λ 〈εA ΔεA〉 with εA =

1

2
(u1,1 + u2,2) (35)

For monotonic εA(t) and infinitesimal ΔεA � dεA, this integrates
as follows:

λ = e−(εA/kd )
2

(36)

where kd is an empirical dimensionless material constant. The dis-
crete form of Eq. (35) in increment Δt is expressed as follows:

Δλr,s = −
2

k2d
(λr,s)

1

2

〈 ur−1,s − ur+1,s

2hx
+
ur,s−1 − ur,s+1

2hy

( )

·
Δur−1,s − Δur+1,s

2hx
+
Δur,s−1 − Δur,s+1

2hy

( )

〉

(37)

Note that, unlike the compressive volumetric strain, the in-plane
compressive area strain is appropriate for characterizing damage in
the case of plane stress or low confinement in the z-direction
because it allows free expansion in the third direction.
In the numerical algorithm, the area strain is again delayed by one

step. This preserves the linearity of the equation system for nodal
values ur,s to be solved in each step Δt.
In three-dimensional fracture problems, a realistic damage con-

stitutive law such as the microplane model is required, and the fore-
going equations need to be generalized to three dimensions.
Equation (17) is applicable in three dimensions when i, j, k= 1, 2, 3.
Comment C1: Limitations and Generalizations. Applying the

Macauley brackets to the two Laplacians is convenient but
infringes, of course, on the tensorial invariance, if both terms of
the product in Eq. (17) are not positive. Yet this seems to have
little effect on the present simulations, probably because the

Fig. 3 Forces generated by twin triplets with the curvature value
at center node (r, s) in a 2D domain with local coordinate system
(x′, y′) and global coordinate system (x, y)
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Laplacian of uy in the direction of propagation is generally much
smaller than that of ux, and because both terms of the products in
Eq. (17) are positive for the hill-type localization of damage
profile across the crack band. To limit the positive curvature (or
valley-type localization) at the edges of the band would require
introduce a second sprain energy with signs different from Eq.
(17), but practically this does not seem important. Also note that,
in-the case of unloading and reloading, stiffness κ and threshold
C would have to be generalized to a more complex form, possibly
involving convex programming aspects akin to Melan's loading–
unloading (or Karush–Kuhn-Tucker) criteria in the theory of plas-
ticity (see, e.g., Ref. [52] pp. 204 and 244). Note also that the
case of anticlastic curvatures, in which ui,xx and ui,yy have opposite
signs, is here dismissed as likely to be unimportant in practical
situations.

2.4 Anisotropic Generalization and Sprain Tensor. Mate-
rial orthotropy, a special case of anisotropy, may be characterized
by tensor αij. Equation (17) may then be simply generalized as
follows:

Φ(x, y) =
κ

2
〈−l0αijuk,ij − Ck〉〈−l0αmnuk,mn − Ck〉 (38)

where Ck are the thresholds for the orthotropy directions, and the
sprain tensor ηijk= uk,ij is defined by Eq. (20) (we skip discussing
the conversion of κ to general anisotropy).
Material isotropy is the special case for Ci=C and for αij= δij=

Kronecker delta (unit tensor). The associated localization-resisting
energy density, Φ(x, y), may again be succinctly called the sprain

energy.
The strain-gradient tensor may be regarded as a symmetrization

of the sprain tensor, η. Tensor αijηijk is a generalization of the
vector of Laplacian ∇2uk.
It must be emphasized that the need for the sprain tensor ηijk,

along with its associated sprain energy Φ, is limited to postpeak
softening damage. Threshold C (or Ci) must be set such that the
sprain energy does not affect appreciably the elastic and
inelastic-hardening deformations.

2.5 Effective Numerical Treatment of Boundary Conditions
and Element Size Changes. At the mesh boundary, the last force
triplet for the boundary node must be omitted since it may not be
allowed to protrude beyond the boundary, as this would cause the
in-plane corrective forces at the nodes of the boundary element to
be unbalanced and produce spurious damage. The standard bound-
ary conditions of the finite element method apply. Alternatively, it is
possible to superpose at the boundary node the doublet of in-plane
corrective nodal forces ( f,−f ), representing one half of the triplet.
This doublet is also self-balanced.
Often the damage does not extend to the boundary. Then one may

single out a region should to be free of damage—a region whose
boundary is expected to be in the elastic domain, and the original
CBM or regular finite elements analysis is used in this region. In
this region, the finite elements have the full size for a crack band
of single-element width, and the damage development is blocked.
This may be simply achieved by setting the threshold in this
region to be large enough, or sprain (localization-resisting) stiffness
κ to be small enough, or both.
The formulation would become more complicated if the element

sizes were changed within the damage zone. Therefore, it is prefer-
able to use a uniform mesh over the entire damage zone and make
element size changes only in the elastic or hardening inelastic zone,
i.e., outside the damage zone. Note that excessive damage may
appear when small finite elements are used at boundary supports
of small contact areas. At such supports (e.g., in simulations of
the three-point bend test), larger finite elements are preferable.

2.6 Differential Equation of sCBM and Finite Difference
Approach. The differential equation underlying the sCBM can
be derived variationally using the Gauss integral theorem. For the
sake of brevity, a one-dimensional bar is considered here. We
want to minimize the potential energy Π:

Π = bt

∫L

0

∫e=u′

e=0

σ(e)de +
1

2
κ(λ)〈−l0u′′ − C〉2 − pu

[ ]

dx (39)

where L, b, and t are bar length, width, and thickness, respec-
tively, −pu is the potential energy of the axial distributed load
p applied per unit volume of material, u′ = du/dx, and

u′′ = d2u/dx2. Let us restrict ourselves to the case that u′′ <−C/l0
(i.e., to a hill-type profile of u(x)). Consider first that the sprain
(localization-resisting) stiffness, κ(λ), is fixed. We set the variation
of Eq. (39) to zero, so as to ensure equilibrium, and then integrate by
parts twice, so as to eliminate the derivatives of δu. We obtain the
following:

δΠ = bt

∫L

0

σδu′ − κ(λ)〈−l0u′′ − C〉l0δu′′ − pδu
[ ]

dx = 0 (40)

= bt

∫L

0

−σ′δu − κ(λ)l20u
′′′δu′ − pδu

[ ]

dx + [ · · · ]L0 = 0 (41)

= bt

∫L

0

(−σ′ + κ(λ)l20u
IV

− p) δu dx + [ · · · ]L0 = 0 (42)

The boundary terms [ · · · ]L0 stemming from the integration by parts

are omitted since they give the boundary conditions, while we seek
here only the differential equation. Since δΠ must vanish for any
δu, the expression in parenthesis must vanish, too. Thus, we
obtain the differential equation:

κl20
d4u(x)

dx4
= q(x) where q(x) =

dσ(x)

dx
+ p(x) (43)

Interestingly, Eq. (43) is formally identical to the bending equa-

tion for a beam of bending stiffness κl20, under distributed transverse

load q(x).2 This is not surprising since bending stiffness is what pre-
vents localization of curvature. Here, we consider no applied body
forces, and so load q(x)= σ′(x).

Fig. 4 (a) A parabolic displacement profile with a coarse mesh,
(b) a parabolic displacement profile with a fine mesh, (c) first
derivative of displacement in (a), and (d ) first derivative of displa-
cement in (b) showing hill-type localization

2For a solution by finite difference method, one would need to introduce the approx-

imation uIV≈ (ur−2− 4ur−1+ 6ur− 4ur+1+ ur+2)/h
4, but this does not seem to be an

effective approach.
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To obtain the resisting nodal forces fr, Eq. (43) may be rewritten
as uIV = (u′′)′′ = (σ′ + p)/(κl20) = q/(κl20). Then, replacing (·)′′ by its
finite difference approximation at node r, we have

u′′r−1 − 2u′′r + u′′r+1
h2

=
qr

κ(λ)l20
(44)

where qr is the q value at node r. Now, to relate ur to the nodal force,
we take a derivative of Eq. (3) and obtain (for u′′r< 0, hill):

fr = 2bt
κ(λ)l0

h
〈−l0u′′r − C〉 (45)

Then, expressing u′′r and similarly u′′r−1, u
′′
r+1, from this equation,

we obtain, upon substitution into Eq. (44) and after rearrangements:

fr−1 − 2fr + fr+1 = 2hbt qr (46)

This agrees with the scaling rule for the triplet of nodal forces,
which we previously derived more directly by differentiation of
the free energy density with respect to nodal displacements u

instead of u′′. The scaling rule for nodal forces is given by Eq. (7).
Equations (45) and (46) vary in time and from node to node.

Thus, the fourth-order (flexure) differential equation would have
to be solved repeatedly in each subsequent load or time-step Δt,
taking the κ value from the previous step.
The foregoing analysis can be extended to 2D as well as 3D. The

total free energy of a structure of constant thickness t with 2D coor-
dinates x, y may be written as follows:

Π= t

∫∫

Ω

∫

ε

σij(ε)dεij +
κ

2
〈−l0ui,jj −Ci〉〈−l0ui,kk −Ci〉− piui

( )

dxdy

(47)

Calculating the variation δΠ in 2D and using the Gauss integral
theorem, one obtains a fourth-order partial differential equation
that is mathematically analogous to the plate bending equation.

3 Numerical Simulations

In the original CBM, the single-element width of the crack band
is taken equal to the material characteristic length, l0, and the strain,
ε = u′, is uniform across the band. In the present sCBM, l0 is subdi-
vided into several uniform-strain elements of width h. Figure 4
illustrates schematically the parabolas of displacement and the cor-
responding first gradient of displacement profiles meshed with
coarse elements, Figs. 4(a) and 4(c), and fine elements, Figs. 4(b)
and 4(d ).
For the present sCBM, we need first to estimate a suitable value of

threshold C (to be later recalibrated by experiments). We introduce a

subdivision of l0 into many elements. In that case, the distribution of
strain ε = u′ across the band width is smoothed to approach the bell-
shaped function depicted in Fig. 4(d), which can be approximated by
four parabolic arcs. Based on the properties of a parabola, the
maximum slope of this bell-shaped function should be approximately
equal to threshold C, which means that u′′max= u′max/(l0/2)=C. From
this we get the estimate (a crude one):

C ≈
2ft

E
(48)

For tension u′ = ε > 0, threshold Cmay be considered as constant.
For compression, though, the realistic C-value might be different. For
example, in concrete, the uniaxial compressive strength fc is about ten
times higher than the tensile strength ft. Then the C-value for uniaxial
compression would have to be much greater than for tension. With
lateral confinement, or under triaxial compression, C may have to
be much higher still. However, if the C-value is set too high, the soft-
ening behavior and fracture in compression might be excluded from
modeling.

3.1 One-Dimensional Tension Test With a Constant Sprain
(Localization-Resisting) Stiffness. Consider now a one-
dimensional bar of length L= 300 mm subjected to symmetric dis-
placement boundary conditions in Fig. 5(a). The applied displace-
ment u0 is increased linearly with time t and reaches u0max= 4 ×
10−4 L at t/tmax= 1.0 (Fig. 5(b) where the total time tmax= 1.0 s).
The material follows a simple bilinear stress versus strain relation
for an elastic-softening response (Fig. 5(c)). The elastic strain is
given by Hooke’s law with Young’s modulus E= 25 GPa. To initi-
ate localization in the desired place, the material in the segment x∈
[150, 165] mm (1/20 of the total length) is assumed to have a
slightly reduced tensile strength of 0.99 ft, and the material in the
rest of the bar is assumed to be elastic up to a tensile strength ft=
4 MPa. The corresponding strain at the tensile strength limit is
ε0 = ft/E.
Simple linear softening, corresponding to fracture energy Gf=

0.04 N/mm, is assumed after the stress reaches the tensile strength.
The strain after total softening is taken as εc = 2Gf /(l0ft). The mate-
rial characteristic length l0 in Eq. (3) is taken to be the aggregate size
l0= 50 mm, and then, εc/ε0 = 2.5. The problem is static, but the
explicit dynamic relaxation algorithm with artificial mass density
ρ= 2.6 × 10−9 ton/mm3, damping coefficient 10−3 ton/s, and time-
step Δt = 0.8 h/

�����

E/ρ
√

is used for time integration (in which case
the ratio of kinetic energy to strain energy is negligibly small, as
required for quasi-static solution). The parameters for triplet
forces in Eqs. (7) and (8) are material constants consisting of
sprain (localization-resisting) stiffness κ0= 10 MPa in Eq. (13),
second gradient threshold C= 10−3, bar width b= 1 mm, and bar
thickness t= 1 mm.
First, we consider the case of constant sprain (localization-

resisting) stiffness κ with λ= 1.0 in Eq. (13). We divide the bar
into 6, 50, and 150 elements, which correspond to element sizes
h = 50mm, 6mm, and 2mm. The profiles of displacement, strain,
the superposed triplet forces, and the second derivative of displace-
ment of the bar at t= tmax are shown in Fig. 6 for element sizes of 50
mm (h/l0= 1), Fig. 7 for an element size of 6 mm (h/l0= 3/25), and
Fig. 8 for an element size of 2mm (l0/h= 1/25), respectively. Note
that within bar segments of uniform curvature, the superposed
triplet forces cancel each other, and the damage then concentrates
in one element, as shown in Figs. 6(a) and 6(b). Figure 6(c)
shows the second derivative of displacement, which has both a
convex and a concave characters. Figure 6(d ) shows the superposed
triplet forces obtained from u′′ in Fig. 6(c) as an input, Eqs. (3) and
(6). Figure 6(d ) illustrates that superposition of two force triplets of
opposite directions generates a force of larger magnitude. The
deformation at the neighboring nodes is caused by the triplet
forces due to the large u′′ magnitudes at these nodes.
Figure 7 shows that, in contrast to Fig. 6, more elements are

deformed to develop a “failure zone,” which represents the length

Fig. 5 One-dimensional bar under tension. In one portion (1/20
of the total length, indicated by black color), thematerial strength
is 0.99 of that in the rest of the bar: (a) symmetric constant-rate
growth is imposed at both ends, (b) the applied displacement
u0 varies linearly with time t, and (c) bilinear stress versus
strain response of the material of the bar in (a), ending with
σ/ft=2.5 × 10−16 after complete softening
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Fig. 6 Results for one-dimensional bar meshed with elements of size 50mm (h/l0 =1) at
t = tmax in Fig. 5: (a) displacement profile, (b) strain profile, (c) profile of the second
gradient of displacement, and (d ) profile of superposed triplet forces

Fig. 7 Results for a one-dimensional bar meshed with elements of size 6mm
(h/l0 = 3/25) at t= tmax in Fig. 5: (a) displacement profile, (b) strain profile, (c) profile of
the second gradient of displacement, and (d ) profile of superposed triplet forces

041007-8 / Vol. 90, APRIL 2023 Transactions of the ASME



Fig. 8 Results for the one-dimensional barmeshedwith elements of size 2mm (h/l0 = 1/25) at
t= tmax in Fig. 5: (a) displacement profile, (b) strain profile, (c) profile of the second gradient of
displacement, and (d ) profile of superposed triplet forces

Fig. 9 Zoomed-in (a) Fig. 6(b), (b) Fig. 7(b), and (c) Fig. 8(b); a smoothed hill-type localization of damage is demonstrated in (c)

Fig. 10 (a) Diagram of reaction force versus displacement at the right end of the bar with the
boundary condition specified in Fig. 5 and (b) a zoomed-in residual strain profile near the
center of the bar in Fig. 11(e)

Journal of Applied Mechanics APRIL 2023, Vol. 90 / 041007-9



over which the element strains are larger than elsewhere, while the
element size is relatively small (Figs. 7(a) and 7(b)). The profile of
the second derivative of displacement u′′ in Fig. 7(c) is similar to
that in Fig. 6(c) because more nodes lie in the transitional region
between the nodes of maximum convex and maximum concave cur-
vatures of u. Because of the symmetry of the deformation with
respect to the center element, the superposed triplet forces are sig-
nificant only at the places near the nodes with the largest u′′

values. At the remaining nodes, the superposed forces between
those of the largest u′′ magnitude are significant, while the super-
posed triplet forces at nodes regarded as the “strain boundary”
have negligible values, Fig. 6(d ).
Figures 6–8 show that larger l0/h induces damage distribution over

more elements representing the softening “damage zone” (or sprain
zone); see the subfigures (a), (b), and (c) in Figs. 6–8. Across the
“sprain zones,” there is 1 element in Fig. 6(b) with h/l0/= 1; 7 ele-
ments in Fig. 7(b) with h/l0= 3/25; and 25 elements in Fig. 8(b)
with h/l0= 1/25. The corresponding “sprain zone” lengths are 50
mm, 42mm, and 50mm for the bar meshed with the element sizes
of 50mm, 6mm, and 2mm, respectively. These “sprain zone”
lengths approximate the characteristic length l0= 50 mm.
Zoomed-in figures of the corresponding deformation profiles are

plotted in Fig. 9 to show the distributions clearly. The profiles
document that, for various element sizes, the “sprain zone” length
and damage profiles for the same material parameters (the localiza-
tion threshold and the resisting stiffness) are very similar (see
Figs. 6–8). However, when the element size is decreased, the
maximum superposed triplet force values increase, as expected
(see Figs. 6(d ), 7(d ), and 8(d )). According to Eq. (7), when the
element size tends to zero, the triplet forces in one dimension
tend to infinity (not in 2D, though, if hy∝ hx).

3.2 One-Dimensional Tension Test of a Bar With a
Degrading Sprain (Localization-Resisting) Stiffness. The resis-
tance to localization should decrease with increasing damage and
vanish when the material is totally broken. If a constant sprain

stiffness κ is used for postpeak damage, there will be residual stresses
in the bar; see Fig. 17 in Appendix B. Therefore, a constant sprain
(localization-resisting stiffness) κ is usable only for near postpeak
damage. Beyond that, κ must be decreased to cause the triplet
forces to diminish as the damage progresses. Here, we show further
simulations when the triplet force is diminished according to the stiff-
ness parameter, κ(λ), in the evolution equation, Eq. (14).
We repeat the previous calculations except for applying the

dimensionless material constant kd= 2.0 × 10−3. Figure 10(a)
shows the reaction force P at the right end of the bar versus the dis-
placement u at the right end with an element size 2mm (l0/h= 25).
The first row of Fig. 11 shows the profiles of displacement, strain,
and normalized sprain (localization-resisting) stiffness at the
maximum reaction force, marked by a dot in Fig. 10(a). The
dashed line in Fig. 11(b) represents the elastic strain corresponding
to the tensile strength. Thus, only the elements at the center develop
damage, while the remaining elements are still in the elastic range.
The deformations are smaller near the central localization region
due to force reduction in this region at the instant of maximum
load. The sprain (localization-resisting) stiffness κ decreases with
excessive strain, according to the evolution equation, Eq. (16), for
the stiffness parameter λ; see Fig. 11(c).
The second row of Fig. 11 shows the corresponding profiles at t=

tmaxwhen the bar almost breaks. The deformations eventually local-
ize signaling rupture (Figs. 11(d ) and 11(e)). However, a small

Fig. 11 Profiles at maximum reaction force (first row) denoted by the dot in Fig. 10(a) and profiles at t= tmax after rupture
(second row). The element size is 2mm (h/l0 = 1/25): (a) displacement profile at maximum load, (b) strain profile ε at
maximum load, (c) normalized sprain (localization-resisting) stiffness profile at maximum load, (d ) displacement profile at t
= tmax, (e) strain profile ε at t= tmax, and (f ) normalized sprain (localization-resisting) stiffness profile at t= tmax.

Fig. 12 Sketch of three-point bend specimen (with unit thick-
ness). End supports not shown.
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residual deformation still exists around the broken element, as seen
in Fig. 11(e) and the zoomed-in picture in Fig. 10(b). The sprain
(localization-resisting) stiffness κ of the nodes connecting the
broken element at the center becomes zero, while the
nearby nodes still exhibit small κ values due to triplet forces

induced by excessive u′′, while the κ values in the remaining ele-
ments are unchanged (Fig. 11( f )). Since the κ values of the nodes
near the broken elements are diminished, both the triplet forces
and the corresponding residual stresses have negligible values at
t/tmax= 1 (see Fig. 18 in Appendix B). The results for the mesh

Fig. 13 Contours of strain component εxx normal to notch obtained with original CBM for specimens with various
mesh inclination angles: (a) α=0 deg, (b) α=15 deg, (c) α=30 deg, and (d ) α=45 deg. (e), ( f ), (g), and (h) are
zoomed-in plots of (a), (b), (c), and (d ), respectively
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with element size 6mm are similar, showing only a slight quantita-
tive difference.

3.3 Simulation of Three-Point Bend Fracture Test in 2D.
An effective way to measure the fracture properties of quasibrittle

materials, which may be easily generalized to measure the crack-
parallel stress effect [1,2], is the three-point bend test. The specimen
is a notched beam of depth D, width 2L+W, unit thickness t and in
an in-plane stress state (Fig. 12). The aspect ratio L/D= 2.5, and W
denotes the notch width and a0 the initial notch length. For the

Fig. 14 Contours of strain component εxx normal to notch obtained with sCBM for specimens with various mesh
inclination angles: (a) α=0 deg, (b) α=15 deg, (c) α=30 deg, and (d ) α=45 deg. (e), ( f ), (g), and (h) are zoomed-in
plots of (a), (b), (c), and (d ), respectively. Note negligible mesh inclination effect.

041007-12 / Vol. 90, APRIL 2023 Transactions of the ASME



explicit integration, the rate boundary conditions are as follows:

u̇y = u̇ at x = L +W/2, y = D (49a)

u̇x = 0, u̇y = 0 at x = 0, y = 0 (49b)

u̇y = 0 at x = 2L +W , y = 0 (49c)

On the rest of the surface, they are traction free.
The material parameters are Young’s modulus E= 30 GPa, frac-

ture energy Gf = 0.05 N/mm, and tensile strength ft= 4 MPa. The

Fig. 15 Contours of stress component σxx normal to notch obtained with sCBM for specimens with variousmesh
inclination angles: (a) α=0 deg, (b) α=15 deg, (c) α=30 deg, and (d ) α=45 deg. (e), ( f ), (g), and (h) are zoomed-in
plots of (a), (b), (c), and (d ), respectively. Note negligible mesh inclination effect.
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characteristic length l0 in Eq. (17) is taken to be l0= 25 mm. The
parameters for triplet forces in Eqs. (29)–(34) are the sprain
(localization-resisting) stiffness κ= 200 MPa and the localization
threshold C= 10−5. For the simulated fracture to be quasi-static,
we ensure with mass density ρ′ = 2.6 × 10−5 ton/mm3 that the
ratio of kinetic energy to strain energy is less than 10−3 before
and during crack propagation. The damping coefficient and the
formula for correct time-step are the same as in the one-dimensional
example. The finite elements are quadrilateral, with full Gaussian
quadrature.
With the original CBM, the tests terminate when the postpeak

load at the loading point drops to 0.8 of the maximum load value
of the test. Figure 13 shows the contour of strain component εxx cal-
culated with original CBM using finite element meshes rotated by
various inclination angles, while keeping the same element size
within and near the expected damage area. The figure corresponds
to postpeak load drop to 0.8 of the maximum load value.
Figures 13(a)–13(d ) show the full-field results, and Figs. 13(e)–

13(h) show the corresponding zoomed-in plots. The element sizes
within and near of damage zone are the same—5mm for all four
meshes with inclination angles α= 0 deg, 15 deg, 30 deg, and
45 deg. Figures 13(e)–13(h) clearly illustrate the dependence of
propagation path on the mesh inclination. Specifically, the crack
propagates along the vertical mesh line when α= 0 deg in
Fig. 13(e), and along the tilted mesh line when α= 15 deg in
Fig. 13( f ). In Fig. 13(g) for α= 30 deg, the crack propagates verti-
cally, leans slightly to the right and the boundary of the crack band
has a zig-zag shape. In Fig. 13(h) for α= 45 deg, the crack propa-
gates along a vertical line because of the symmetry of the mesh.
The contours of stress component σxx are similar to the contours

of strain component εxx and are shown in Appendix B. Note that the
x and y directions are defined by the fixed Cartesian system and do
not follow the mesh lines when the mesh is rotated.
The deviation of the crack propagation path from the

straight-ahead y direction is physically wrong. It demonstrates the
bias of the original CBM in the case of a regular rectangular
mesh. It is one of the three aforementioned arguments in support
of sCBM. Note, however, that the directional bias of CBM essen-
tially disappears in the case of random mesh, at the penalty of
scatter.
With sCBM, the tests terminate when the prescribed displace-

ment at loading point reaches u= 0.12 mm when t < tmax.
Figure 14 shows the corresponding contours of strain component
εxx calculated with sCBM when u= 0.12 mm. The meshes used
in Fig. 14 with the sCBM are the same as the meshes used
in Fig. 13 with the original CBM. The zoomed-in plots in
Figs. 14(e)–14(h) clearly illustrate that the strain distribution is
independent of the mesh inclination, i.e., the contours of εxx are
similar while the finite element meshes used in the calculations
have various inclination angles α= 0 deg, 15 deg, 30 deg, and
45 deg in Figs. 14(e), 14( f ), 14(g), and 14(h), respectively.
In contrast to the one-element wide crack band generated with the

original CBM, the sCBM generates a crack band with multiple ele-
ments across the band. The width of the crack band is proportional

to the characteristic length l0 and can be numerically controlled by
the values of sprain (localization-resisting) stiffness κ and threshold
C for the triplet forces. The contours of stress component σxx normal
to notch calculated for various mesh inclination angles are also
similar and demonstrate the independence of stress distribution of
the mesh inclination. Full-field contours are shown in
Figs. 15(a)–15(d ), and zoomed-in plots are shown in Figs. 15(e)–
15(h).
Figure 16 shows the curves of load versus displacement of the

loading point at the top of the beam. Figure 16(a) shows the
responses obtained from calculations using original CBM with con-
tours in Figs. 13 and 19. The four curves are indistinguishable
before approaching the maximum load and differ at maximum
load appreciably. The curve with inclination angle α= 0 deg has
the lowest maximum load value.
As the mesh inclination angle increases from 0 deg to 30 deg, the

maximum load value increases, while the crack propagation path
changes from a smooth band to a zig-zag band, as the latter requires
more energy to be dissipated within the same vertical crack length.
The maximum load when α= 30 deg is larger than for the angle α=
45 deg for which the mesh becomes symmetric again. The increase
in maximum load from α= 15 deg to α= 30 deg is more noticeable
than the increase from α= 0 deg to α= 15 deg, and from α= 45 deg
to α= 30 deg.
Figure 16(b) shows the responses calculated using the sCBM.

The four curves are very close, with only a slight difference at the
maximum load value. As expected, the difference between α= 0
deg and α= 45 deg is the least since both meshes are symmetric
with respect to the centerline of the beam. For α= 15 deg and α=

30 deg, the maximum values are only slightly smaller. The
maxima of the load versus displacement curves obtained with
sCBM and original CBM do not differ by much, but the correspond-
ing deflection is appreciably larger for sCBM.

4 Conclusions

(1) The homogenization of heterogenous materials has so far
been conducted on the basis of stiffness (with equilibrium
typically imposed via virtual work). This is exemplified,
for example, by Voigt [28], Reuss [29] and Hashin–
Shtrickman [30] bounds; Eshelby [31], Hashin [32], Hill’s
self-consistent [33], Mori–Tanaka [34], Eringen [35,36],
Bažant [37,38], Christensen’s composite spheres [39,40],
and Dvorak methods [41]. However, the extra energy
density of damage strain localization was not captured by
these methods. It requires an energy-based homogenization
and matters only for softening damage.

(2) In continuum mechanics of damage of quasibrittle materials,

the total energy density, �Ψ, ought to be the sum of (1) the
usual energy density, Ψ, which is a function of the strain
tensor and (2) an additional localization resisting (or
sprain) energy density Φ that is a function of the third-order
tensor of the second gradient of displacement vector (for

Fig. 16 Normalized load P/(ftD
2) versus displacement u/D of the loading point at the top of the

beam in Fig. 12: (a) obtained with original CBM and (b) obtained with sCBM
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brevity called the sprain tensor) multiplied by the material
characteristic length, l0. If the material is isotropic, Φ

becomes a function of the magnitude of the Laplacian of
the displacement vector in excess of a threshold and cannot
be expressed as a function of the strain-gradient tensor.

(3) Below a certain threshold C, the sprain (localization-
resisting) energy Φ vanishes and, above C, it is a function
of the sprain tensor times l0. During the postpeak softening,
the corresponding localization-resisting (or sprain) stiffness,
κ, needs to be reduced as the damage, characterized by vol-
umetric strain, increases.

(4) Differentiating the total energy density of a finite element
system with respect to the nodal displacements yields self-
equilibrated nodal forces resisting localization during post-
peak softening. In one dimension, these are self-equlibrated
force triplets. In two dimensions, these are self-equlibrated
couples of crossing in-plane force triplets.

(5) Finite element calculations document that the sCBM can
simulate propagation of crack band through a regular
square mesh with no noticeable directional bias when the
mesh is inclined.

(6) The crack band front has a multi-element width and thus can
represent a smoothed damage profile. The band width
depends on the characteristic length l0, sprain (or
localization-resisting) stiffness κ, and threshold C. The
band width varies with the overall stress state of a structure.
This is important for the effect of crack-parallel stresses,
recently revealed by the gap test.
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Appendix A: Why Other Invariants of Sprain Tensor

Are Inapplicable

The physical motivation for Φ, used to setup Eq. (17), is that the
3D generalization of curvature is a Laplacian. But it is helpful to
clarify why other invariants of tensor η are not appropriate. This
tensor has five independent invariants listed in Eq. 2.5 of [46]
(and in Eq. 1 of [51]). Equation (17) for the sprain energy corre-
sponds, in its form, to the third of these five, which is ηiikηjjk (also
[51]). To explain why the other four independent invariants of η
are inapplicable, consider the energy densities Φa, …, Φd corre-
sponding to the other four invariants of tensor η:

ηijjηikk ⇒ Φa ∝ 〈−3l0εV ,i − Ci〉〈−3l0εV ,i − Ci〉 (A1)

ηiikηkjj ⇒ Φb ∝ 〈−l0∇2uk − Ck〉〈−3l0εV ,k − Ck〉 (A2)

ηijkηijk ⇒ Φc ∝ 〈−l0uk,ij − Cijk〉〈−l0uk,ij − Cijk〉 (A3)

ηijkηkji ⇒ Φd ∝ 〈−l0uk,ij − Ckij〉〈−l0ui,kj − Cikj〉 (A4)

where εV ,i = (u j,j),i/3 = u j,ji/3 = u j,ij/3, which denotes the gradient

of the volumetric (or hydrostatic) strain and is different from the

Laplacian ∇2ui = ui,jj.

Fig. 17 Profiles of residual stresses in the 1D bar with elements of size (a) 50 mm (h/l0 = 1), (b) 6 mm (h/l0 = 3/25), and (c) 2 mm
(h/l0 = 1/25) if a constant sprain (localization-resisting) stiffness κ is used for postpeak damage

Fig. 18 Profiles at t= tmax after rupture. Note that the residual stress in (c) is negligibly small. The element size is 2mm
(h/l0 = 1/25): (a) profile of superposed triplet forces (zoomed-in plot), (b) second derivative of displacement, and (c) stress.
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Equations (A1) and (A2) use a spread-out change of volumetric
strain, 3l0εV ,i, which cannot capture the spread-out change of
damage in Fig. 1(b). The lack of symmetry of Φb is, for energy,
unacceptable. In Eqs. (A3) and (A4), the physical meaning of the

third-order threshold tensor Cijk is dubious (on the other hand, a
vector threshold Ci in Eq. (17) is physically necessary in the case
of orthotropy). The components such as (u1,2),3 (u2,1),3 in Φd have
questionable interpretation in terms of work. For these reasons,

Fig. 19 Contours of stress component σxx normal to notch obtained with original CBM for specimens with
various mesh inclination angles: (a) α=0 deg, (b) α=15 deg, (c) α=30 deg, and (d ) α=45 deg. (e), (f ), (g), and
(h) are zoomed-in pictures of (a), (b), (c), and (d ), respectively
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no finite element models corresponding to these other four invari-
ants have been attempted.
Comment on Strain Gradient: It has not been checked in detail

whether another one of the invariants of strain gradient or their com-
bination could serve as the energy potential whose derivatives with
respect to the nodal displacements would yield forces resisting exces-
sive localization. But this seems to lead to a much more complicated
nodal force system. A situation where it couldmake a difference is the
hypothetical case of saddle (anticlastic) surfaces of displacement
components with zero Laplacians, in which case one would have
opposite u-curvatures of equal magnitudes in two orthogonal direc-
tions. This would, however, suggest a tensile crack band crossing a
compression fracture band at the tip, which hardly looks as a realistic
case of interest. Also note that the strain gradient tensor cannot, e.g.,
capture the curvatures ux,xy, ux,yx, uy,xy, and uy,yx.

Appendix B: Additional Numerical Results

for 1D and 2D

Some numerical results discussed in previous sections are shown
here. Figure 17 shows the profiles of residual stresses in the 1D bar
if a constant sprain (localization-resisting) stiffness κ is used for
postpeak damage. Figure 18 shows that both the triplet forces and
the corresponding residual stresses have negligible values when
the sprain (localization-resisting) stiffness κ values of the nodes
near the broken elements are diminished at t= tmax. Figure 19
shows the contour of strain component εxx calculated with original
CBM using finite element meshes with various inclination angles
but with the same element size in the vicinity of the potential
damage area when the postpeak load drops to 0.8 of the
maximum load value. Figure 19 illustrates the dependence of
crack propagation path on the finite element mesh inclination
when the original CBM is used. The dependence of crack propaga-
tion path on mesh inclination is not a physical phenomenon and thus
requires the sCBM to address.

Appendix C: Problems With Alternative Formulations

It may be noted that the extra sprain (localization-resisting)
energy Φ, introduced in Eq. (3) for 1D or Eq. (17) for 2D or 3D,
bears partial similarity with the extra energy of geometrically nec-
essary dislocations [49] in flexure and torsion [53], which, aside
from the strain-gradient tensor invariant, was also considered as a
function of the invariant of the material rotation gradient tensor in
3D. In 2D, though, the material rotation vectors are coaxial and
the variation of their magnitude within the plane causes merely a
mismatch of displacement gradient ui,jwhich, in turn, causes depen-
dence on the second gradient tensor, ui,jk. Therefore, there is no
need to complicate the formulation by introducing the tensors of
material rotation gradient.
One might also think of using

Φ =
κ

2
(l20ui,jjui,kk − C2) (C1)

where κ = constant. But then the initial tangential stiffness, κtan,
right after exceeding the threshold C would vary with ui,j rather
than being a constant, and to counter this variability would compli-
cate modeling. This is clear by noting that, in 1D,

κtan =
∂

∂u′′
κ

2
(l20u

′′2
− C2)

[ ]

= κl20u
′′
≠ constant (C2)

Appendix D: Simple Bilinear Elastic-Softening

Constitutive Model

For the two-dimensional case, we consider a strain vector

ε = [εxx, εyy, γxy]
T . The principal direction is given by

θp = (1/2) arctan (γxy/(εxx − εyy)), obtained by setting the principal

shear strain to 0, and the principal strain vector is given by
εp = Qε, where Q is the transformation matrix for rotation of coor-

dinates. For the vector of principal strains εp = [ε′x, ε
′
y, 0]

T , we con-

sider only the positive parts by defining ε+p (i) =max(εp(i), 0), i= 1,

2. Then the effective principal strain is given by εeff =

���������

ε+p
T · ε+p

√

.

Further, we define εpre as the maximum effective strain that has

occurred previously up to the current time during the loading
history. Also we define ξ =max(εeff , εpre). Then the damage param-

eter ω is given by

ω =

1 ξ < ε0
[εc(ξ − ε0)]

[(εc − ε0)ξ]
ε0 ≤ ξ < εthr

[εc(εthr − ε0)]

[(εc − ε0)εthr]
ξ ≥ εthr

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(D1)

The stress vector is calculated as σ = (1 − ω)Dε, where D is the
elastic moduli matrix for 2D plane stress condition. Equation
(D1) gets simplified for the one-dimensional case where only one
strain component is considered.
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