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Abstract. Intelligent Tutoring Systems (ITSs) leverage Al to adapt to
individual students, and many ITSs employ pedagogical policies to de-
cide what instructional action to take next in the face of alternatives. A
number of researchers applied Reinforcement Learning (RL) and Deep
RL (DRL) to induce effective pedagogical policies. Much of prior work,
however, has been developed independently for a specific ITS and can-
not directly be applied to another. In this work, we propose a Multi-
Task Learning framework that combines Deep BlIsimulation Metrics
and DRL, named MTL-BIM, to induce a unified pedagogical policies
for two different ITSs across different domains: logic and probability.
Based on empirical classroom results, our unified RL policy performed
significantly better than the expert-crafted policies and independently
induced DQN policies on both ITSs.

Keywords: Deep Reinforcement Learning - Pedagogical Policy.

1 Introduction

Intelligent Tutoring Systems (IT'Ss) are interactive e-learning environments that
support students’ learning by providing individualized instruction, scaffolded
practice, and on-demand help; and have shown to be highly effective [16,38]. In
order to design an effective ITS, developers must determine how to teach the
desired content. Pedagogical policies are the decision-making policies inside
an ITS that decide what action to take next in the face of alternatives. While
many I'TSs exist for STEM domains, the pedagogical policies are often purposely
built for a single ITS in a single domain, and cannot work across ITSs.

A number of researchers have studied Reinforcement Learning (RL) [36,2]
and Deep RL (DRL) for pedagogical policy induction [18]. Prior work has also
studied the impact of hierarchical RL policies, to adapt to the varying granularity
of some tutoring systems [12]. The sequential decision-making nature of RL and
DRL, combined with its ability to learn from a reward function, makes it a perfect
fit to induce pedagogical policies for ITSs and optimize the learning process for
each student individually. In particular, Batch RL methods can be used to train
an RL agent on historical logs of student-tutor interactions, rather than on
simulated versions of students. Batch RL methods avoid a source of error that
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arises from trying to simulate a complex system such as the behavior of humans
while interacting with ITSs. While most of the prior work has mainly focused
on inducing effective pedagogical policy using historical interaction logs collected
from an individual ITS, as far as we know, no prior work has investigated building
robust and unified pedagogical policy induction models across different ITSs.

In this work, we propose a general Multi-Task Learning framework using
Deep BlIsimulation Metrics and DRL (MTL-BIM) to induce unified pedagog-
ical policies across multiple ITSs. OQur MTL-BIM allows us to combine different
training datasets so the RL agent can train a more robust pedagogical policy
through a greater range of experience. Since ITSs are often designed to teach
different subjects and therefore involve different infrastructures, instructional
interventions, processes, and different learning objectives, interaction logs often
differ dramatically across I'TSs. ITSs can also differ significantly in the level of
granularity of their interventions: problem-level, step-level, or even micro-step.
Such differences make it very challenging for RL-induced policies to be effective
across multiple levels of granularity. On the other hand, Domain Adapta-
tion (DA) [28] and Multi-Task Learning (MTL) [37,26] has emerged as a
promising research direction for learning across different relevant domains. DA
is a sub-category of Transfer Learning in which the learning is performed using
a source domain and the goal is to perform well on a different yet related target
domain. DA has been shown to enhance performance in a range of fields includ-
ing ITSs by sharing feature representations across different domains, wherein
training data are obtained from multiple domains [35,31]. In this work, we focus
on MTL, which refers to the problem of learning several tasks simultaneously
and achieving better results than if those tasks were learned separately.

Our MTL-BIM combines batch DRL with deep bisimulation metrics to learn
a shared latent state representation across tasks, which can then be used by a
single shared policy to act on multiple I'TSs. It allows ITS researchers to combine
multiple learning systems and their respective datasets to train a single, unified
pedagogical policy, even when the granularity of the problems in the ITS is dif-
ferent. To evaluate MTL-BIM, we utilize two ITSs, named ITS1 and ITS2 (real
names hidden for anonymity), that teach how to solve logic proofs and prob-
ability, respectively. ITS1 has a problem-level (high level) granularity, where
the agent needs to take a decision for the entire problem. However, ITS2 has
problem-level (high level) and step-level (low level) granularities, which allow a
hierarchical agent to make decisions in two levels. The empirical results demon-
strate the ability of our single policy to improve student learning across both
tutors, showing that the students who used our pedagogical policy learned more
effectively and efficiently than those who used an expert-designed policy tailored
to each tutor separately. Our contributions can be summarized as follows:

— To the best of our knowledge, MTL-BIM is the first work to unify the ped-
agogical policy induction across two different ITSs in different domains.

— MTL-BIM can unify two ITSs with different levels of decision-making gran-
ularity into a single pedagogical policy.
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— As far as we know, this is the first work that combines deep bisimulation
metrics with model-based DRL for Multi-Task Learning.

— We empirically demonstrate that our MTL-BIM framework can be more ef-
fective at improving student learning than expert-designed pedagogical poli-
cies, in two different real-world tasks with limited data, using a single, shared
policy.

2 MTL-BIM

Problem Setup: In accordance with Domain Adaption terminology, we rep-
resent I'TSs as domains; and assume two domains: D; and Do, and the inter-
actions in each domain can be modeled by a Markov Decision Process (MDP),
described by the 4-tuple (S,.A,P,R) where S is the state space, A is the ac-
tion space, P(s'|s,a) is the transition function, and R(s) is the reward func-
tion. The goal of an RL agent is to learn a policy 7 that selects the action
a; at time step t, which will maximize the expected sum of future rewards:
maa:wE[ZtT,:t A" ~'R(sy, ay)], where T indicates the final time step.
Model-Based Reinforcement Learning: In model-based RL [32], the agent
explicitly learns the dynamics of the environment. This is achieved by learning
the transition probabilities (P(s'|s,a)) and reward functions R(s) in the MDP.
Our framework is motivated by [8]. In their work, they use a Recurrent State
Space Model (RSSM [9]) to learn a latent representation that can be used to
plan purely in latent space. Furthermore, they use an “imagined" latent space
to simulate the environment and learn the Value and Policy functions.
Bisimulation: Following the notion used in [34], we define bisimulation as a
state abstraction defined for MDPs to combine states into clusters with similar
properties. Intuitively, two states are bisimilar and can be grouped into the same
cluster, if they share the same reward function, and if the distribution of the next
bisimilar states are equivalent.

Definition 1 (Bisimulation Relation). An equivalence relation B is a bisim-
ulation relation if, for all states s;,s; € S that are equivalent under B (de-
noted s; =p s;) the following conditions hold: R(s;,a) = R(sj,a), Ya € A.
P(G|si,a) = P(Gls;,a), VYa € A, VG € Sg. Here, Sp is the partition of S
under the relation B (the set of all groups G of equivalent states) and P(G|s,a) =
Y vea P(s']s,a).

The main drawback of bisimulation is that it is a very strict criterion for state
aggregation. If the reward or transition functions are just slightly different, even
an infinitesimal difference, then two states will not be considered bisimilar. For
this reason, [23] introduced bisimulation metrics. Bisimulation metrics define a
pseudo-metric space (S, d), where a distance function d : S x § — R is used
to measure how behaviorally similar two states are.

Definition 2 (Bisimulation Metrics). From Theorem 2.6 in [253] with dis-
count factor ¢ € [0,1], and the Wasserstein metric Wy, the bisimulation metric
is defined as: d(s;,sj) = maxeea(l —c) - [Rg, — RS | +c- Wi(Pg,, Py i d).
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Fig. 1. MTL-BIM Framework and architecture. Left: general architecture. Right: Ar-
chitecture of our framework for unifying two policies into a single system.

In summary, bisimulation is a notion of how “behaviorally similar” two states

are in a transition system (such as an MDP). Bisimulation metrics extend and
generalize this binary definition to a continuous pseudo-metric. They measure
how behaviorally similar two states are using a distance metric. The smaller this
value is, the more similar the two states are.
Our Method: Our goal is to unify the states from the two different ITS domains
(D; and D,) into a shared latent space, and make their distance in latent space
be the same as their bisimulation metric distance, thus making behaviorally
similar states be closer to one another in latent space, while making dissimilar
states be far away from each other. Our work is inspired by the works of [3] and
[24]. In the first work, they use a convenient form of the Wasserstein distance to
be able to incorporate the bisimulation metrics into a loss function, and learn
an effective representation for RL using the bisimulation metric distance. In the
second work, they used bisimulation to perform RL policy transfer inside simple
MDPs. In our work, we incorporate deep bisimulation metrics into a model-
based DRL algorithms to build a unified framework for pedagogical policy that
can improve student learning across two different ITSs.

Fig. 1 (left) shows the general architecture of MTL-BIM, and how we combine
a model-based DRL algorithm with bisimulation metrics, to learn a shared latent
space that will be used as input for DRL. MTL-BIM can be divided into two
main parts: 1) A Variational Auto-Encoder (VAE) [33] based representation
learning network, combined with bisimulation metrics, which learns a shared
latent representation across the two tasks. 2) A model-based RL algorithm that
gets the latent state from part 1 as input, and takes an action in the environment.

For part 1), we use two VAEs, one for each domain, and the latent space
size must be the same for both VAEs, so the output layer of the encoder must
have the same output size. At any given time step t in a domain D, the encoder
converts the observation space into a stochastic latent state, s® ~ enc(oP);
while the decoder reconstructs the original observation given the latent state,
of = dec(sP). The VAE loss is formulated as: Lv ap = —E, g, (2|2)[l0g pg (2]2)]+
KL(go(z|x)||p(2)). During training, we sample a batch of trajectories from each
dataset, and we calculate the bisimulation metric between each pair of examples.
We define the loss function used to train the encoder using bisimulation metrics
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Problem

Given event A and B with p(A}=0.4, p(BJ=0.5, and p(~A N ~B)=0.2. Determine p(A N B)

Fig. 2. Left: UI for ITS1 . Right: UI for ITS2 .

as Lyisim = ||sP1 —sP2||1 —d(sP1, sP2). To train our encoders to learn the desired
representation, we make the L1 distance between every two latent states be the
same as their bisimulation metric distance, similar to [3]. This way, two states
with a very small bisimulation metric distance will be very close to one another
in the latent space, while two states with a large bisimulation metric distance will
be far apart. The rewards used to calculate the bisimulation metric on definition
2 (R¢,) come from the dataset directly, while the transition dynamics (Pfjj) come
from the transition function learned by the model-based RL algorithm.

Fig. 1 (right) shows all the neural networks in the model. At any given time
step, the VAE encodes the observation for both D; and Ds, and the bisimulation
metrics are used to learn the shared latent space. Then the latent states are
passed to the model-based DRL part of the algorithm, which follows a similar
architecture to that of DREAMER [8], with a Recurrent State Space Model
(RSSM) architecture. It trains neural networks to learn a reward function (r; ~
p(r¢|he, s¢)), a deterministic state model that predicts the next deterministic
state (hey1 = f(he, St,a¢)), a stochastic state model (s; ~ p(s¢|he)), a value
function (vy = V(st)), and a policy function (@ ~ m(a¢|s:)). The reward loss
(Lr = %Hr(st) — R(s4)||?), transition loss (Lp = %||st+1 — P(sp41]s8,a0)|?),
value loss (Lv = $[|v(s¢) — V(s;)|[?), and policy loss (L, = —E( i:f[ V(st)))
in the DREAMER architecture are trained jointly with the bisimulation loss
and the VAE loss. Intuitively, by training these losses jointly, we are forcing
the encoder network to learn a representation that can learn to maximize the
rewards, as well as to ensure that the latent space of the two environments
preserves relative distances, according to the the bisimulation metrics.

3 Domains & Policy Induction

Domain D;: Figure 2 (left) shows the User Interface (UI) for ITS1 (D), which
is a data-driven, graph-based ITS for multi-step propositional logic problems,
that uses pedagogical policies induced via DRL [27,18]. ITS1 decides whether
to present each problem as a Problem Solving (PS) or Worked Examples (WE).
In PS, students construct logic proofs in the left workspace by clicking on nodes
and the central rule buttons to derive new nodes until the conclusion is reached
[19]. In WE, students simply observe how the tutor solves the problem.
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D; Training Corpus: 786 historical student-ITS trajectory interactions. Each
trajectory was collected by students going through the standard pretest, train-
ing (20 problems), posttest procedure on ITS1 . Our state is comprised of the
142 features used in [27,18], including 10 student autonomy features, 29 tem-
poral features, 35 problem-solving skills, 57 general performance, and 11 hint
usage features. The goal of our DRL-induced pedagogical policy is to improve
student Learning Gain while minimizing training time. Therefore, the reward is
calculated as the difference between the posttest and the pretest scores, divided
by the training time. This metric is named learning efficiency. The reward is
normalized to a range of [—1, +1] during training,.

Domain Ds: ITS2 (UI shown in Fig. 2 (right)), is a text-based ITS that teaches
students how to solve probability problems using 10 major principles, such as
the Complement Theorem and Bayes’ Rule. ITS2 makes decisions in two differ-
ent granularity levels: problem-level (high level) and step-level (low level). The
former dictates whether the student sees the problem as a PS or a WE, but it
can also decide to provide a Faded WE or FWE. This means that the student
and the agent will collaborate when solving the problem, alternating between
student-made and tutor-made steps.

D5’s Training Corpus: contains a total of 1148 student interaction logs. Stu-
dents go through a standard pretest-training-posttest. Our state is represented
by 142 features while these features are related to their ITS1 counterparts, but
the way they are calculated is different, which makes the state spaces very dif-
ferent in practice. For ITS2 ;| the reward function is the Normalized Learning

Gain (NLG), NLG = %\/;—f‘:ﬁ, where pretest and posttest represent the
student pretest and posttest scores. NLG measures student improvement from

the pretest to the posttest, and is normalized to a range of [—1, +1].

Pedagogical Policy Induction: Our goal in this work is to learn a single,
unified DRL policy that can work across both ITSs. To induce the shared policy,
we trained our neural network by sampling a batch of 32 trajectories from each
dataset (ITS1 and ITS2 ), and pass the data to each encoder separately. We
trained the model for 10 epochs of each dataset, with Adam as an optimizer and
a learning rate of 1074

4 Empirical Evaluation

We performed empirical classroom experiments with students from a large uni-
versity in the USA. Our goal is to determine whether our unified pedagogical
policy can be effective in teaching students the content of each tutor. For this,
students in the Discrete Mathematics course had to use both ITS1 and ITS2 , as
graded homework assignments. From this point forward, we will refer to these
two studies as the IT'S1 and ITS2 studies.

ITS1 Study Procedure and Participants: When training on ITS1 , all stu-
dents go through a pretest, a training phase, and a posttest. The pretest contains
four problems to evaluate students’ incoming knowledge. The training phase
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contains five levels, with four problems per level, where the pedagogical policy
decides whether to show PS or WE to each student. Finally, the posttest consists
of six problems. In Fall of 2020, we conducted an empirical study to evaluate
MTL-BIM against a baseline policy that always provides PS, referred to as PS-
Only since most of ITSs are PS only by default. 114 students finished ITS1
with a stratified random assignment: 59 were assigned to PS-Only and 55 were
assigned to MTL-BIM. Furthermore, MTL-BIM is also compared against two
policies that were carried out in the Spring of 2019 (S19): 23 students trained
with a human-crafted Ezpert policy designed by an expert with over 15 years of
experience and 30 students trained with an RL-based DQN [30] policy.

ITS2 Study Procedure and Participants: All students went through the
same four phases: 1) textbook, 2) pretest, 3) training on the ITS, and 4) posttest.
The only difference among them was how the pedagogical decisions were made.
During textbook, all students read a general description of each principle, re-
viewed some examples, and solved some training problems. The students then
took a pretest which contained a total of 14 single- and multiple-principle prob-
lems. Students were not given feedback on their answers, nor were they allowed to
go back to earlier questions (this was also true for the posttest). During training,
both conditions received the same 12 problems in the same order. Each domain
principle was applied at least twice. Finally, all students took the 20-problem
posttest: 14 of the problems were isomorphic to the pretest, and the remainders
were non-isomorphic, multiple-principle problems. All of the tests were graded in
a double-blind manner by a single experienced grader. For comparison purposes,
all test scores were normalized to the range of [0, 1]. In Fall 2020, we empirically
compare our MTL-BIM policy against a hierarchical control Fxpert-designed
policy (default setting). A total of 98 students were randomly assigned to the
two conditions: 49 Fapert and 49 MTL-BIM. We also compared our MTL-BIM
policy against an RL-based DQN [30] policy with 45 students, which was carried
out during the Fall of 2018.

5 Results

ITS1 Results: We have four groups: MTL-BIM (N = 55) and PS-only (N =
59) from Fall 2020, and Expert (N = 23) and DQN (N = 30) from Spring 2019.
A one-way ANOVA test showed a marginal difference in the pretest scores among
the four: F'(3,163) = 2.24,p = 0.09. DQN scored higher than other groups on the
pretest: Expert (M = 0.67,5D = 0.27), DQN (M = 0.74,5SD = 0.23), PS-Only
(M = 0.62,SD = 0.20), and MTL-BIM (M = 0.63,SD = 0.19). A one-way
ANOVA test showed no significant difference in the amount of training time
on ITS1 : F(3,163) = 1.47,p = 0.23 with MTL-BIM (M = 61.9,5SD = 35.8)
minutes, PS-only (M = 78.0,SD = 43.7), Expert (M = 65.9,SD = 87.7),
and DOQN (M = 93.1,SD = 109.7). For learning performance, we leverage
posttest scores for how well the students perform after using the ITS, and learning
efficiency, which divides the posttest scores by the training time. Note that
learning efficiency is used as the reward function for our RL agents.



8 Anonymous

(=]

o

&

—
—

=}
N
©

14
Y
o

Learning Efficiency

Post-Test Score
°
«
@
—

0.20
0.50 “V 0.18

0.16

Expert DQN PS Only MTL-BIM Expert DQN PS Only MTL-BIM

Fig. 3. ITSI results. posttest (Left): MTL-BIM, PS-Only > DQN, Expert. Learn-
ing Efficiency (Right): MTL-BIM > PS-Only.

Fig. 3 (Left) shows the mean and standard error of the students’ posttest
scores. A one-way ANCOVA test using the condition as a factor and the pretest
score as a covariate showed a significant difference:: F'(3,162) = 22.32, p < 0.001.
Subsequent contrasts analyses showed MTL-BIM scored significantly higher
than Ezpert (t(75) = 5.235,p < 0.0001) and DQN ( ¢(82) = 4.528,p < 0.001).
Similarly, PS-Only scored significantly higher than Ezpert (¢(79) = 6.852,p <
0.001) and DQN (¢(86) = 6.389,p < 0.0001). No significant difference was found
between MTL-BIM and PS-Only, nor between Fzxpert and D@QN.

Fig. 3 (Right) shows the mean and standard error of the four conditions’
learning efficiency. A one-way ANCOVA test using condition as a factor and the
pretest efficiency as a covariate showed no significant difference in the learning
efficiency: F'(3,162) = 1.857,p = 0.139. Subsequent contrasts analyses showed a
significant difference in the learning efficiency scores between the MTL-BIM and
the PS-Only conditions (¢(111) = 2.537,p = 0.012) in that the former scored
significantly higher than the latter.

In short, our MTL-BIM framework can induce pedagogical policies that are

not only more efficient than the PS-Only policy (learning efficiency) but also
more effective than the Expert and DQN policies (posttest scores).
ITS2 Results: In the ITS2 study, we compared the performance of our MTL-
BIM policy against an FExpert policy in Fall 2020. We also compared our policy
against a DQN based policy, which was carried out during the Fall of 2018.
A one-way ANOVA test showed no significant difference in the pretest scores
among them: F'(2,140) = 1.622,p = 0.201. A one-way ANOVA test showed no
significant difference in the amount of training time spent on the tutor among
them: F'(2,140) = 1.41,p = 0.25 with MTL-BIM (M = 121.3,SD = 47.1 mins),
Ezxpert (M =118.3,5D = 29.8), and DQN (M = 108.6,SD = 34.8).

For ITS2 , NLG is our reward function to train our RL policies. Figure 4
shows the NLG (Left), and the Isomorphic NLG (Right) across the three condi-
tions. A one-way ANOVA test using the condition as a factor showed a signifi-
cant difference in the NLG: F(2,140) = 3.319, p = 0.039. Subsequent contrasts
analyses showed that MTL-BIM scored significantly higher than both Expert



RL for Pedagogical Policy with Deep Bisimulation Metrics 9

0.8
0.4
0.2 [ 0.6 I
0.0 + 0.4
-0.2
9 0.2 L
-
G-0a 2 |
z o
2 o.
-0.6
-0.8 -0.2
-1.0 —oa
-1.2
DON Expert MTL-BIM —0.6 DON Expert MTL-BIM

Fig.4. ITS2 results. NLG (Left): MTL-BIM > DQN, Expert. Isomorphic NLG
(Right): MTL-BIM > DQN, Expert.

Table 1. ITS2 results.

pretest posttest Iso  posttest NLG Iso NLG
DQN (F18) 0.73 (0.13) 0.85 (0.13) 0.74 (0.14) 0.21 (0.24) -0.02 (0.29)
Expert (F20) 0.78 (0.13) 0.85 (0.11) 0.78 (0.14) -0.15 (2.30) -0.72 (3.20)
MTL-BIM (F20) | 0.73 (0.20) 0.88 (0.15) 0.81 (0.18) 0.58 (0.39)  0.24 (0.51)

(t(96) = 2.073,p = 0.040) and DQN (t(92) = 3.002,p = 0.003). However, no
significant difference was found between the Ezpert and DQN conditions. Sim-
ilarly, a one-way ANOVA test using the condition as a factor showed a signifi-
cant difference in the isomorphic NLG: F(2,140) = 3.47,p = 0.034. Subsequent
contrasts analyses showed MTL-BIM significantly outperformed both FExpert
(t(96) = 2.190,p = 0.031) and DQN (t(92) = 5.480,p < 0.001) and no signifi-
cant difference was found between the Ezpert and DQN conditions. In summary,
after spending similar amounts of time on the ITS2 |, our MTL-BIM policy is
more effective than Expert and the individually trained DQN policies, as shown
by the NLG and Isomorphic NLG scores.

Analysis of MTL-BIM Policy Actions: We performed a simple log anal-
ysis for our Fall 2020 study, to understand how the "unified" MTL-BIM policy
behaved across the two different I'TSs. Table 2 shows the number of pedagogical
decisions that MTL-BIM made on each tutor. Note that two problem levels de-
cisions, WE and PS, are made on ITS1 while three hierarchical decisions, WE;,
PS, and FWE are made on ITS2 . Overall, MTL-BIM made very different pat-
terns of pedagogical decisions across the two ITSs. For ITS1 , the MTL-BIM
policy decided to show PS 66% of the time, and WE 34% of the time, while for
ITS2 , the MTL-BIM policy provided PS 20% of the time, WE 0.2% of the time,
and FWE 78.8% of the time. That is, our proposed MTL-BIM framework can
adapt from a non-hierarchical system with two actions (ITS1 ) to a hierarchical
system with three actions (IT'S2 ), and learn to be effective at improving student
learning in both of them.
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Table 2. Comparison of MTL-BIM policy actions between ITS1 and ITS2 .

PS Count WE Count FWE Count
ITS1 | 10.27 (1.35) 5.09 (0.67) -
ITS2 | 2.08 (2.5) 0.02 (0.14)  7.89 (2.56)

6 Related Work

Prior work has investigated using RL techniques to learn pedagogical policies
for ITSs with different goals in mind. For instance, [4] used Q-learning to induce
policies for efficient student learning. More recently, [36] applied a Partially Ob-
servable Markov Decision Process (POMDP) to train online policies for faster
training. [21] employed offline policy iteration to induce a policy that improves
learning gains. Lately, DRL algorithms have also been used with similar pur-
pose, enabling the policy to scale to continuous, high dimensional state- and
action-spaces, and to larger datasets. [18] trained an offline DRL algorithm to
learn a pedagogical policy that improves student learning when compared to an
expert-crafted policy. The attempts to unify multiple ITSs have been very lim-
ited. [1] tried to merge the pedagogical policies for two different tutors, but did
not use an RL-based approach. The work by [20] managed to combine different
sub-tasks in an educational game using MTL, and managed to more accurately
predict posttest scores.

Improving generalization in Machine Learning algorithms is a very active
area of research. Transfer Learning, Domain Adaptation, Multi-Task Learning,
Meta-Learning, or Multi-Domain Learning have been some of the solutions that
have been developed to try to solve the generalization problem. Domain adapta-
tion (DA) approaches have shown great promise. These approaches aim to find
a common space between domains to generate domain-invariant representations
[28,22,11,14,17]. In RL, the generalization ability of agents has been widely stud-
ied through Multi-Task RL approaches [37,5,6,26,13|. [15] studied the general-
ization ability of RL agents and proposed a method that improves generalization
by training the agent on a mixture of observations, which acts as regularization.
[25] proposed a Multi-Task Reinforcement Learning approach with explicit soft
modularization, to improve the optimization process of learning several tasks
while sharing parameters across tasks. The work by [29] presents an approach
to Multi-Task Deep RL using attention to automatically learn the relationships
between tasks. Finally, prior work has addressed the Multi-Task RL problem by
learning a shared representation across tasks, which is what we have done in
this work. The work by [10] learns a shared latent representation of the state-
action space across all the tasks. [7] also learned a shared representation across
tasks that allow them to outperform the single-task versions of the algorithms
in standard RL benchmarks.
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7 Conclusion and Discussion

Our goal in this work is to build a robust and unified pedagogical policy across
different ITSs. We developed MTL-BIM, a framework to learn a shared la-
tent state representation using deep bisimulation metrics, in combination with
a model-based Deep Reinforcement Learning algorithm, and used it to induce
a unified pedagogical policy for two different ITSs. We showed that MTL-BIM
can learn to act effectively in both ITSs, and learn a unified policy by combining
both training datasets. Our results show that, in ITS1 | the students who used
our MTL-BIM policy learned more than the students who used both the Expert
and the DQN policies, and they also learned more efficiently than the students
assigned to the PS-Only policy. In ITS2 | our results show that the MTL-BIM
students improved significantly more than the students in both the Expert and
the DQN policies, both in terms of general NLG and isomorphic NLG. We be-
lieve this work provides a step forward in learning shared pedagogical policies
across multiple ITSs. This method allows a single policy to learn from multiple
datasets at the same time, to then optimize student learning across both tutors.
However, we believe more testing is required and our method should be further
evaluated on other I'TSs.
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