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Abstract

An autonomous, environmentally-synchronizable circadian rhythm is a ubiquitous feature of
life on Earth. In multicellular organisms, this rhythm is generated by a transcription—translation
feedback loop present in nearly every cell that drives daily expression of thousands of genes in a
tissue-dependent manner. Identifying the genes that are under circadian control can elucidate the
mechanisms by which physiological processes are coordinated in multicellular organisms. Today,
transcriptomic profiling at the single-cell level provides an unprecedented opportunity to under-
stand the function of cell-level clocks. However, while many cycling detection algorithms have been
developed to identify genes under circadian control in bulk transcriptomic data, it is not known
how best to adapt these algorithms to single-cell RNAseq data. Here, we benchmark commonly
used circadian detection methods on their reliability and efficiency when applied to single cell
RNAseq data. Our results provide guidance on adapting existing cycling detection methods to the
single-cell domain, and elucidate opportunities for more robust and efficient rhythm detection in
single-cell data. We also propose a subsampling procedure combined with harmonic regression as
an efficient, reliable strategy to detect circadian genes in the single—cell setting.

1 Introduction

The circadian rhythm is an approximate 24-hour oscillation of physiology, metabolism and behaviour
that enables organisms to adapt to a changing daily environment [1, 2, 3]. At the cellular level,
autonomous molecular oscillations are generated by a transcription-translation feedback loop. In
drosophila, for example, the CLOCK/CYCLE (CLK/CYC) heterodimer binds to the E-box to activate
gene expression of period (per) and timeless (tim); the PER and TIM proteins then dimerize in the
cytoplasm and translocate to the nucleus to inhibit the DNA binding activity of CLK/CYC [4]. This
core clock circuit in turn drives circadian oscillations of hundreds of downstream targets. It has been
reported that ~40% of all protein coding genes may exhibit circadian oscillations in a tissue—specific
manner [5], underscoring the role of the circadian rhythm in orchestrating physiological processes in
multicellular organisms.

Proper temporal coordination requires synchronization of tissue—specific rhythms, which in turn
requires synchronization of cell-level clocks. Loss of synchrony between organ systems and dampening
of circadian rhythms has been implicated in aging and disease [6]. In older mice, for example, it has
been reported that the flattened amplitude of circadian oscillation is related to deficits in long-term
spatial memory due to impaired sleep [7]. Even within the same tissue, it was recently observed that
the number of detectably cycling genes decreases as the animal gets older [8]. Such dampening may
be due to an overall loss of amplitude, or a loss of synchrony between cells that leads to no discernible
rhythm at the tissue level.

Today, single cell RNAseq profiling provides an opportunity to examine this coordination by inves-
tigating cell type-specific transcriptomic cycling. Circadian transcriptomic timeseries data (both bulk
and single-cell) typically comprises samples taken every 2—4 hours over a 24-48 hour period, potentially
with replicates [9]. The goal of such studies is to identify genes that are under circadian control in
different conditions, providing insights into how the circadian rhythm orchestrates cellular physiology.
Because these data are noisy, sparsely sampled in time, and high dimensional in the number genes, sta-
tistical tests for evidence of cycling and differential cycling remain an area of active research [10, 11, 12].
To date, however, all proposed methods were developed in the context of bulk RNAseq data, leaving
open the question of how best to analyze circadian single-cell data. Single cell RNAseq measurements
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yield many more observations than bulk data (one per cell), but are much noisier due to stochastic
gene expression and drop-outs; in consequence, methods designed for bulk RNAseq may not translate
well to the single cell context. Below, we briefly review state-of-the-art methods for cycling detection in
bulk transcriptomic data, and highlight the opportunities and challenges posed by single-cell RNAseq
profiling.

Perhaps the simplest form of cycling detection is harmonic regression, in which a 24 h sinusoidal
curve is fit to the data and goodness-of-fit statistics serve as an assessment of cycling. However, the
noisiness of the data and the low number of replicates per timepoint in bulk transcriptomic data mean
that a single outlying observation can produce a significant “cycling” component, leading to a large
number of false positives when applied to bulk transcriptomic data. To overcome this challenge, AR-
SER [13] removes linear trends in the data and smooths the data using a fourth-order Savitzky-Golay
filter before the harmonic regression. In addition, there are methods that rely on Fourier analy-
sis [14, 15], essentially conducting a discrete Fourier transform and assessing the statistical significance
of the peak corresponding to a period close to 24 hours [16]. Like harmonic regression, Fourier-based
methods also have inaccuracies [17, 18] due to insufficient temporal sampling (frequency and duration).

Because it has been observed that cycling genes may exhibit sharply peaked or asymmetric wave-
forms, non-parametric approaches have been developed to test for evidence of cycling without assuming
sinusoidality [17, 18, 19, 20]. JTK-cycle [17] employs the Jonckheere-Terpstra trend test/Kendall’s 7
rank correlation to look for monotonic patterns of rising and falling in a 24-hour window. Here, the
observed pattern of gene expression is compared to template waveforms of different phases and asym-
metries (e.g. a longer rising interval than falling interval). Because corrections need to be made for the
multiplicity of templates considered, JTK-cycle can lose power as the number of patterns of interest
increases. To circumvent the need for predetermined waveforms, RAIN [18] was developed using the
general umbrella test, a statistical test for an umbrella shape with a flexible inflection point, allowing
it to accommodate to asymmetric waveforms automatically. Two alternative methods, SW1PerS [21]
and TimeCycle [12], use techniques from topological data analysis to nonparametrically quantify the
cyclicity of observed expression profiles. In the context of bulk transcriptomic data, these nonpara-
metric approaches generally outperform parametric ones. Nevertheless, it has also been shown that
no cycling detection method is universally optimal, and that the best analysis method depends on
both the study design (i.e. the frequency of sampling, number of periods sampled, and replicates per
timepoint) and the shape of the waveforms of interest [9].

Analysis of single-cell RNAseq data presents new opportunities and challenges. The large number
of cells assayed at each timepoint opens the possibility of regarding them as many replicate samples (in
contrast to bulk RNAseq studies, which often have only two or three), enabling the variance between
cells to inform the analysis. However, the number of cells is very large, and may vary from timepoint to
timepoint. As a result, analysis methods that require a regular number of samples per timepoint (such
as ARSER [13]) or those that scale poorly with the number of replicates may not be directly applicable
to single—cell data. As an alternative, one can consider averaging expression levels across all cells of
the same type. Methods developed for bulk transcriptomic data may then be applied to the resulting
“pseudo-bulk” data. In support of this approach, it was reported that considering cells as replicates
for differential expression analysis can result in a large number of false positives due to systematic
correlations between the cells of a given sample [22]. There, the authors found that pseudobulking
yields more reproducible results in tests of differential expression than treating cells as independent
observations. However, it is not known to what degree pseudobulking may enhance the specificity of
cycling detection (by reducing false positives) vs. reducing its sensitivity (by lowering the number of
replicates), and there remains no guidance on the best way to analyze single-cell circadian timeseries
data.

The goal of this work is to evaluate the performance of various existing approaches applied to a
circadian timecourse single-cell RN Aseq dataset of drosophila brain tissue [23]. We compared a number
of different methods (including JTK-cycle and RAIN) as well as a variety of application approaches (i.e.,
treating cells as distinct samples or averaging to create a pseudobulk) and assessed the computational
efficiency, reproducibility, and robustness to noise of the algorithms. Our results suggest that methods
designed for circadian detection in bulk RNAseq data may not be optimal for single-cell data, and
suggest opportunities for new approaches.
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2 Materials and Methods

2.1 Data acquisition

We use publicly available single—cell RNAseq data from Ma et al.[23] in our study. The data comprise
four circadian time-series of fly brains, with two time-series collected under each of two conditions (12h
light /dark [LD] and dark/dark [DD]). Each series comprises six samples collected every four hours. In
total, 4671 cells were assayed. Transcriptomic data was obtained as a Seurat object [24, 25] containing
all relevant metadata. The original authors annotated these into 39 clusters, of which 17 were assigned
to known cell types. In the analyses that follow, we used the normalized counts (kindly provided by
the authors) of the LD cells as input to the cycling detection algorithms. Details of the preprocessing
may be found in the Supplement.

2.2 Creation of pseudo-bulk expression profiles

In addition to considering single cells as individual observations, we also constructed pseudo-bulk ex-
pression profiles for each cell type (cluster). Pseudo-bulk profiles were constructed from the normalized
expression matrix X € R9”¢ where g denotes the number of genes and ¢ the number of cells for the
cell-type of interest. Each column in X corresponds to a cell with a time stamp ¢; € {t}, where {t} is
the set of sampling times. The pseudo-bulk expression profile for gene g at time ¢ is the average across
the cells in a given cell type with timestamp t; = t,

:%gu):cit S X, (1)

k:tp=t

where ¢; denotes the number of cells sampled at time ¢t. Pseudobulk temporal profiles were calculated
per Eq. 1 for the four largest clusters (Figure 4).

2.3 Application of cycling detection algorithms

JTK-cycle [17], RAIN [18], and harmonic regression were applied to single cell data using the rec-
ommended parameter settings (see Supplement), treating each cell as an independent sample. Ad-
ditionally, we applied JTK-cycle, RAIN, harmonic regression, and ARSER [13] to the pseudobulk
data. ARSER, harmonic regression, RAIN and JTK-cycle were all implemented using their respective
R packages [17, 26, 18, 27]. We excluded from our analysis SW1PerS [21], which does not return a
p-value, and TimeCycle [12], which requires at least 18 time points to construct the cycle.

2.4 Synthetic data contamination

In addition to testing the performance of the algorithms against the original data, we wanted to
explore whether a systematic artefact affecting a single time-point would generate false—positive results.
In [22], it was demonstrated that differential expression analysis is prone to false positives when cells
are considered replicates due to the fact that a small artefact would be amplified by the large number
of cells. Would the same hold true for cycling detection?

To examine this possibility, we identified genes that showed no evidence of cycling, and systemati-
cally contaminated the data by elevating the expression level of genes at specific timepoints to explore
whether the algorithms would erroneously identify it as cycling. We restricted this analysis to the
largest cell cluster (1:DN1p CNMa) collected under the LD condition. At a given timepoint, we in-
creased the expression level for each gene by an amount proportional to its mean expression over all
cells (in that cluster at all timepoints. For each round of analysis, we only increased the expression
level of cells collected in a single time point and replicate, mimicking an artifact affecting a single
scRNA-seq collection. That is, for each gene X measured in cell ¢(t) at timepoint ¢, we increase its
expression to

Xty = Xery + MX ety ert » (2)

where Xc(t) (Xc@)) denotes the contaminated (original) normalized count for gene X in cell ¢, (-)c
denotes an average over all cells (from the same cell type) at all timepoints, and X is a parameter that
controls the extent of the noise contamination. Non-cycling genes selected for synthetic contamination
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were chosen as those that were detectably expressed in at least half of the cells and had a harmonic
regression p > 0.9 (treating cells as replicates). This yielded 59 “non-cycling” genes.

3 Results

3.1 A framework for evaluating cycling detection reproducibility in single-
cell RN Aseq datasets

The large number of observations (cells) obtained at each timepoint in a single-cell RN Aseq experiment
permits a novel approach for evaluating the reliability of cycling detection methods. The approach is
based on the following conjecture: if a gene is truly under circadian control in a certain cell type, it
should be detected as cycling reliably even when considering only a subset of the cells at each timepoint.
We note that for most cell-type clusters, even taking half of the observed cells yields more replicates
than are typically found in bulk circadian transcriptomics studies (where there are commonly <3
observations per timepoint). We thus compute the reliability of a cycling detection method as follows.
For each cell-type at each timepoint, we select at random half of the cells as “sub-experiment” 1, and
consider the rest as “sub-experiment” 2. We then apply the cycling detection algorithm to both sub-
experiments, yielding for each sub-experiment the genes detected as cycling. Ideally, the intersection of
those sets should be complete, with the same genes detected as cycling (or not) in each sub-experiment.
We use the size of the intersection N over the number of cyclers detected when all cells are used Ngy
as a measure of reliability. The choice of developing this measure rather than using existing measures
such as the Jaccard index (Nn /Ny, where Ny is the union of the cyclers in the two sub-experiments)
is that the union of the cyclers detected in the two sub-experiments N are only a small fraction of the
cyclers detected when all cells are used (Ny<Ngy1). Since typical analysis of single—cell data would
use all cells, we wanted N, to be the basis for comparison. The same procedure can also be used with
pseudo-bulk data; in this case, division into the two sub-experiments is done before Eq.1 is calculated.

In our tests, we performed 10 random splits of the data into the two sub-experiments to gather
statistics for Nn. Higher Nn/Ngy indicates greater reproducibility of the cycling detection, even when
the data are subsampled.

3.2 Computational efficiency

We first tested how run-time scales with the total sample size, ranging from ~10 to 200 cells, when
treating each cell as an independent observation (i.e. without pseudo-bulking). We focused on three
methods—JTK-cycle [17], RAIN [18], and harmonic regression [27]—chosen because of their popularity
and their ability to handle uneven replicates. The latter is a crucial feature, since the number of cells is
likely to vary per time-point in single-cell data; as a result, we exclude methods (such as ARSER) that
require a consistent number of observations at each timepoint. We then considered the computational
cost of running these algorithms without pseudo-bulking.

In contrast to what was previously reported [20], we observed that RAIN can actually be faster
than JTK-cycle when the sample size (i.e. number of cells) is small (Figure S1). However, as sample
size increases, RAIN becomes slower than JTK-cycle as expected. These differences in efficiency are
likely due to implementation details, rather than the complexity of the underlying test; we derived the
theoretical scaling relationship as having O(m?) computational complexity in the number of samples
m in both cases (see Supplementary Information). However, we observe empirically that the measured
run time for both JTK-cycle and RAIN deviates considerably from the estimated quadratic complexity
(Figure 1). Our empirical benchmarking suggests that for a moderate single cell dataset with only
1000 cells, JTK-cycle (RAIN) will take at least seven hours (sixteen days) to complete on a MacBook
Pro with 2.9GHz dual-core Intel Core i5 and 8G memory. In particular, both implementations appear
to scale exponentially, which may make them unfeasible for application to single-cell data without
pseudo-bulking. The discrepancy between the theoretical computational complexity and the empirical
performance also suggests that these algorithms efficiency may still be improved. Harmonic regression,
as expected, scales linearly in the number of observations, and takes < 10s to compute even for very
large clusters.
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Figure 1: Scaling relationship between the number of samples and run time for (A) JTK-cycle, (B)
RAIN, and (C) harmonic regression. Trend-lines were fitted for linear (solid), quadratic (dotted) and
exponential (dashed) computational complexities. Note the difference in y-axis scales.

3.3 Reliability of cycling detection in single-cell data

We next explored the reliability of cycling detection in sc-RNAseq data using the concordance frame-
work described above. As in the previous section, we applied JTK-cycle, RAIN and harmonic regression
to eight cell types within the Ma data that contained at least two cells at each time point, and which
were sufficiently small to analyze given the efficiency attributes noted above. Our choice of methods
is motivated both by their popularity [28, 8, 23, 29| and their ability to handle replicates and run
efficiently when sample size is low [20]. For all methods tested, we consider a gene to be cycling if
the p-value is less than 0.05. We compared how these three methods differed in the number of cycling
genes detected and in their subsample concordance. Figure 2 shows the number of genes detected as
cycling when no sub-sampling is done (N, panel A); the number of genes in the intersection of two
sub-experiments when subsampling is done (Nn, panel B); and their ratio (panel C).

Interestingly, while it has been reported that RAIN is less conservative than JTK-cycle in bulk
data [9, 18], we observe that the number of detected cycling genes by these two methods tend to
be similar when cells were considered as replicates (Figure 2). We then conducted subsampling (as
described above) to examine the reproducibility of genes detected as cycling in both subsamples.
Interestingly, though harmonic regression considered more genes to be cycling compared to JTK-cycle
and RAIN; all the obtained N, tended to be similar (Figure 2). Lastly, we looked at the ratio between
Nn and Ngy) and observed that RAIN had the highest subsample concordance in all tested cases,
around two times greater than that from both JTK-cycle and harmonic regression.

We note that the above analysis used unadjusted p-values. To examine if adjusting p-values for
multiple hypotheses increases subsample concordance, we repeated above analysis using FDR values
computed with the Benjamini-Hochberg method, setting FF DR < 0.05 as the cycling detection thresh-
old. Interestingly, we observed a general decrease of subsample concordance (Figure S2) with this more
stringent criterion, suggesting that using the FDR is insufficient to robustly identify circadian genes.

We then examined whether the various methods identified the same genes as cycling both across
subsamples and across methods (Figure 3 and Supplemental figures S5, S6). Harmonic regression,
which is known to have a high false-positive rate, yielded many subsample-specific cyclers (i.e. genes
detected as cycling in one but not the other of N1, N2, shown as the first two sets in the upset plot),
confirming that the harmonic regression p-value alone may generate a large amount of false positive
cyclers. However, considering the overlap in the sub-experiments mitigates this issue. For the genes
detected by harmonic regression in both sub-experiments N1 and N2 (ie, sets with overlap in HR-N1,
HR-N2 in Figure 3), the majority are also identified by RAIN and JTK-cycle as well. Additionally,
we again observed that adjusting p-values does not increase the agreement between each experiment
(Figure 3). Importantly, this suggests that looking for genes consistently detected as cycling across two
sub-samples using a fast algorithm (harmonic regression) may be a reliable and efficient alternative to
more computationally intensive methods.
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Figure 2: A: The number of cycling genes detected using all cells, Ngy. B: The average number of
cyclers detected in both subsamples across 10 trials, Nn. C: The ratio of Nn to Ny, the proportion of
consistently—detected sub-sample cyclers relative to those found using all cells. Tests were conducted
in the largest eight labeled cell clusters that RAIN can handle. JTK-cycle and harmonic regression
were run in parallel. Error bars indicate standard deviation across the 10 subsamplings.

3.4 Cycling detection using pseudo-bulk data

The problems of large run-times and uneven replicates can also be circumvented by first averaging
across cells of a given cell type within each timepoint, yielding a single “pseudo-bulk” gene expression
value for each cell type at each timepoint. Cycling detection may then be applied to the resulting
pseudo-bulk data, as was done in a dataset of mouse SCN neurons [29]. To examine how pseudo-
bulking affects cycling detection, we applied JTK-cycle and harmonic regression to pseudo-bulk data
and compared it against the results obtained using cells as replicates. As an additional comparison,
we also conducted cycling detection on pseudo-bulk data using ARSER (which cannot handle uneven
replicates) and RAIN (which is computationally inefficient in the non-pseudo-bulk setting, Figure 1B).
We observed that the number of cycling genes (Ny,;;) detected using pseudo-bulk data was similar for
JTK-cycle and ARSER. RAIN identified the largest amount of rhythmic transcripts, approximately
twice that of JTK-cycle and ARSER, and slightly more than that of harmonic regression (Figure 4A).
This is expected from previous studies that also noted RAIN’s permissiveness. For JTK-cycle and
harmonic regression, where we can directly compare the outcome of treating cells as replicates or as
a pseudo-bulk tissue, we observed that both methods detected more cycling genes when cells were
treated as replicates, which points out the intuitive fact that a larger number of replicates can help
the identification of less obvious cyclers(Figure 4A, Figure S3, S4).

In addition, we split our data into two subsamples as described previously, both containing cells
collected at all of the time points as required by JTK-cycle and RAIN. With this, we conducted both
the pseudo-bulking and the subsequent cycling detection using all samples (“full” data), as well as
the first and second subsample separately. We then counted the number of genes in the intersection
of those considered cycling in both subsamples (Nn), and quantified Nn/Ny,; as a measure of the
concordance. From our analysis, we observed the lowest subsample concordance when JTK-cycle was
applied to the pseudo-bulk (Figure 4B,C).
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Figure 4: A: the number of cycling genes detected using each method. B: the number of genes detected
as cycling in both samples in each method. C: subsample concordance of each method.

3.5 Impact of systematic contamination

While we have shown that considering cells as replicates can reliably detect more cyclers than pseudo-
bulking, it has been reported that methods designed to conduct single cell differential expression analy-
sis where cells were considered as replicates tend to overestimate the number of differentially expressed
genes, due to the fact that the cells from a given sample are not truly independent observations [22].
To test whether the same idea holds true for circadian detection algorithms, we first synthetically
increased the expression of genes that are considered not cyclic at individual timepoints (see Mate-
rials and Methods) and applied harmonic regression on data with and without pseudo-bulking. As
expected, the estimated phase of these non-cyclic gene converged to the time of elevated expression
(Figure 5A). Additionally, we observed that p-value decreases as the magnitude of gene expression el-
evation increases; consequently, a gene will have a higher chance of being a false positive when noise is
high. Though p-value decreases with or without pseudo-bulking, we observed zero false positive cyclers
when pseudobulked data is used, suggesting that pseudo-bulking is robust to elevating expression at a
single time point (Figure 5A).

We next examined the effect of elevating the expression of all genes including those considered
cycling using the DN1p CNMa cells as an example. In general, we observed that the number of
detected cyclers increases as a function of the magnitude of contamination for methods that consider
each cell as a single replicate (JTK-cycle and harmonic regression) (Figure 5C). As expected, the
number of detected cyclers did not increase indefinitely for JTK-cycle as it only depends on the rank
order of gene expression, which eventually stops changing and does not impact the outcome of the
cycling detection algorithm any further. For methods where pseudo-bulk data was used as input, we
observed a decreasing number of detected cyclers as a function of contamination, where ARSER and
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harmonic regression experienced the greatest amount of loss of detected cyclers (Figure 5 A). Closer
inspection revealed interesting connection between the methods. When looking at how the number of
total detected cycling genes changed as a function of noise magnitude and the affected time-point, we
observed that JTK-cycle and RAIN, both using the Jonckheere-Terpstra test, behaved similarly when
applied to pseudo-bulked data (Figure S7, S8). Similar observations were also made when harmonic
regression and ARSER were applied to pseudo-bulked data (Figure S9, S10) and when harmonic
regression and JTK-cycle were applied considering each cell as a replicate (Figure S11, S12).

In total, we observe that considering cells as replicates can give rise to false positive cyclers in
the presence of strong experimental artifacts. In contrast, pseudo-bulking affords protection from this
effect, but at the cost of detecting fewer true positives.

4 Discussion

We evaluated the performance of four circadian detection algorithms on single cell transcriptomic
timeseries data, with and without pseudobulking. Our analysis indicates that existing cycling detection
algorithms scale poorly with replicate size, and showed low subsample concordance in general.

While the problem of long run times can be circumvented by pseudo-bulking, we find that cycling
detection on pseudo-bulked data identifies fewer cycling genes in comparison to treating each cell
as a replicate. To test whether this increase in the number of cyclers is meaningful, we proposed
and conducted subsample concordance analysis by splitting the data into two subsamples to see how
the number of cycling genes detected in the full data compares to that of the intersection of the
two subsamples. By conducting this analysis on four major clock neuron clusters, we observed that

pseudobulking significantly reduced J;’ o, with greater N when using cells-as-replicates. This suggests

Ny
that the cyclers detected after pseudobulking may be less reproducible (more differences between sub-
experiments) than those detected when treating cells as replicates.

Our analysis also points to a simple method to address the problem of long run times while treat-

ing cell as replicates to maintain high NN e specifically, using the fast (but suboptimal) harmonic

regression on two randomly selected subsets of cells, and then considering the overlap of the results.
Considering the overlap of the subsets mitigates the false—positive issues that affect harmonic regres-
sion. In Fig 3, we demonstrate that using this overlap yields the same genes as would be detected via
other methods.

However, care should still be taken when treating cells as replicates. In single cell differential
expression analysis, it has been shown that treating cells as replicate can lead to false positives. To
investigate whether the same happens in circadian detection algorithms, we artificially contaminated
our data by elevating the expression at a single time point, mimicking what might happen if a single
sample in a circadian time-series was affected by a systematic artefact. We then compared how
pseudobulking impacts the outcome of commonly used circadian detection algorithms. When all genes
(both cycling and non-cycling in the original data) were contaminated by a systematic offset of one
time—point, we found that the number of detected cyclers increased with the amount of contamination
when cells were considered as replicates, suggesting that treating cells as replicates may result in false
positives due to experimental artefacts. On the other hand, the number of cycling genes decreased
with the amount of contamination when pseudobulk data was used, suggesting that pseudobulking
may provide protection from false detection of cyclers, albeit at the expense of detecting fewer true
cyclers.

Finally, our analysis highlights the importance of computing subsample concordance. By looking at
the agreement between detected cyclers from two subsamples, we noted poor subsample concordance
from all tested methods. This provides an opportunity for designing and evaluating new methods for
cycling detection designed specifically for single cell datasets.
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6 Supplemental material

6.1 Data preprocessing and clustering

Preprocessed data and cell type information was contained within the Seurat object provided by Ma et
al [23]. Single cell data from six time points (two experimental replicates, hence twelve in total) were
processed by Ma et al., who integrated the data on a per time point basis using Seurat with genes that
identified by Seurat as highly variable across all time points. Integrated data were then reduced to 2D
using t-SNE, from which cluster identities were assigned. For all of our analysis, we used normalized
counts kindly shared my Ma et al. to ensure correspondence with results reported in [23].

6.2 Cycling detection

Given the two experimental replicates from Ma et al., were collected consecutively, the data were
concatenated to a time series with twelve time points. Consequently, the pseudobulked time series
also consist of twelve data points, and similarly for the subsampled data (constructed such that each
subexperiment has at least one sample from each one of the twelve time points).

We applied four cycling detection methods:

e JTK-cycle is implemented using JTK CYCLEv3.1.R. The period was set to 6 and the sampling
interval was set to 4 to match the experimental procedure. When considering single cells as
replicates, we also supplied the number of samples for each time point.

e Harmonic regression is implemented using the harmonicRegression package in R [27] inputting
only time and the expression matrix.

e RAIN is implemented in the R package [18]. It takes as input the expression matrix ordered by
sampling time and the sampling interval deltat, set to 4 to match the experimental design.

e ARSER is implemented using the metacycle package in R [26], whose only required input is the
expression matrix and sampling time.

For the purpose of our analysis, a gene is considered to be cycling if its raw p-value is less than 0.05.
We also repeat the analysis using FDR—adjusted p-values.

6.3 Derivation of theoretical computational complexity
6.3.1 Mann-Whitney U Statistics

Both JTK cycle and RAIN are non-parametric methods that are built upon the Mann-Whitney U
statistics. Let (Xi1,-..,X1m), - (X71,-..,X1m) be a set of T time-associated observations fol-
lowing probability distributions Pj(x), ..., Pr(x) for timepoints 1-T. For the purpose of deriving
computational complexity, we have assumed that each time point contains the same number of cells
m without loss of generality. The Mann-Whitney test tests the null hypothesis that P; = P;(i # j) by
computing the U statistic between sample ¢ and sample j as

Ui7j = H(Xik < le) (3)

It is easy enough to see that U; ; should have a computational complexity of O(m?) and therefore the
computational complexity of U = (Uy2,...,Ur—1 1) should be approximately (Q(T2 X m2). Since in
real datasets T' < m and the number of time points do not change from one cluster to another, our
expected observed computational complexity, when changing sample size, should also be O(m?).

6.3.2 Jonckheere-Terpstra Test

JTK cycle employs the Jonckheere-Terpstra test, which is an extension of the Mann-Whitney U statis-
tics to the case of having more than two samples. It tests for the presence of monotonic trend with
the test statistics s, defined as

T-1 T
S = Z Z Ui,j (4)
i=1 j=i+1
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Again, it is clear that the computational complexity for s should be O(m? + T?). When the number
of time points is fixed, the computational complexity scales quadratically with sample size.

In JTK cycle, the rising and falling part of the oscillation is tested for each a pre-determined
waveform (e.g., sine waves of differing phases), resulting in a complexity of O(km?), where k is the
number of templates. As k is fixed and k < m, the complexity will scale approximately O(m?).

6.3.3 General Umbrella

To overcome the JTK-cycle’s loss of power when considering multiple waveforms, RAIN uses a variation
of the general umbrella which tests for the presence of an umbrella shape, which can be formally written

as
H1l: P (2) < Py(z) <...P(x)>---> Pr(x) (5)

Here, t is a predetermined inflection point. The test statistics of the general umbrella is the sum of
two Jonckheere-Terpstra statistics

t—1 ¢ T-1 T
szz Z Ui,j+z Z Uj,i (6)
i1 j=it1 it j=it1

RAIN tests for all potential inflection points 7', yielding a computational complexity O(T'm?). Since
T is fixed by the experimental design, the complexity scales with the squared number of cells.
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Figure S1: Run time for JTK cycle, RAIN and harmonic regression on multiple cell types.

14


https://doi.org/10.1101/2023.12.07.570691
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570691; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Method JTK harmonic regression . rain
400
300
3
2 200
- . . . I
. — -
25:_LNv 20:DN3 15:DN1p_CNMa 12:LNd 9:LNd_NPF 4:DN1p 8:LN_ITP 5:LNd_Trissin
40
3 I
z
20 ra I
I I I
e i i I
0 - o m e =T
25:_LNv 20:DN3 15:DN1p_CNMa 9:LNd_NPF 12:LNd 8ILN_ITP 4:DN1p 5:LNd_Trissin
0.15 + 5
o] 5010 :ﬁ- *
z|3 - . E=cs - ==
0.05 . $ L
== . .
—_—— =
12:LNd 8ILN_ITP 4:DN1p 5:LNd_Trissin

25:1_LNv 20:DN3 15:DN1p_CNMa 9:LNd_NPF

Figure S2: Top: The number of cycling genes detected using all cells, Ngy. Middle: The average
number of cyclers detected in both subsamples across 10 trials, Nn. Bottom: The ratio of Nn to Ny,
the proportion of consistently—detected sub-sample cyclers relative to those found using all cells. Error
bars indicate standard deviation across the 10 subsamplings. A gene is considered cycling if its BH

corrected p-value (i.e., FDR) is less than 0.05.

15


https://doi.org/10.1101/2023.12.07.570691
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570691; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Fur1 Eip63F-1 comm

2.5 °
5 | 5° - ¢ 5
‘B 1.5 @ ‘@ 10
(%] 0] 0]
o o L0 1
g 10 g 1 g y <ﬁ>
3 o 3 3 T

05 <ﬁzﬁ> (ﬁ> 05

00 " S¥ o O<> @Q 0.0 e | o

0 10 20 30 40 10 20 0 10 20 30 40
time t|me time
ATPsynCF6 jdp CG15236
N 25
3
c y c C2.O
2 ) ° °
% .%2 ° 5 % 15 [ )

o o o ) .
2 ® S, <é><é> ﬁ%} <é>@<$> %;o - ¢re
. o 5

0O e [} 0 [} [ N ] [ ] 0.0 <-> ﬂ> Q
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
time time time
CNMa CG17777 Tango13
) 5
3 3 4 ° ©
5 ® 5 . || 5 g
B 2 ? 2 2 3
(0] 2 (0] (0]
5 v °* & & 5 2 i
5 a§1 5 b
: ° <$> 1 é
o loo! 118 & Q 0 1
0 10 20 30 40 10 20 0 10 20
time t|me time
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Figure S8: Effect of systematic contamination when using RAIN with pseudobulking. Each panel
shows how the number of detected cyclers Np,; varies as function of the magnitude of noise injected
at a single time-point.
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Figure S9: Effect of systematic contamination when using ARSER with pseudobulking. Each panel
shows how the number of detected cyclers Np,; varies as function of the magnitude of noise injected
at a single time-point. The time-point contaminated by noise is given at the top of each panel.
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harmonic regression with pseudobulking

2 6 10

Ny

- > > -

3 ] > 3 ~
/ / 2

34 38 42 46

/
/

0.5 1 2

o

0.1 0.5 1 2 5 0.1 0.5 1 2 5 0.1 0.5 1 2
noise magnitude

o
°

Figure S10: Effect of systematic contamination when using harmonic regression with pseudobulking.
Each panel shows how the number of detected cyclers Ng, varies as function of the magnitude of noise
injected at a single time-point. The time-point contaminated by noise is given at the top of each panel.
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harmonic regression with cells as replicates
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Figure S11: Effect of systematic contamination when using harmonic regression with cells as replicates.
Each panel shows how the number of detected cyclers Ng, varies as function of the magnitude of noise
injected at a single time-point. The time-point contaminated by noise is given at the top of each panel.
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JTK with cells as replicates
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Figure S12: Effect of systematic contamination when using JTK-cycle with cells as replicates. Each
panel shows how the number of detected cyclers Np, varies as function of the magnitude of noise
injected at a single time-point. The time-point contaminated by noise is given at the top of each
panel.
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