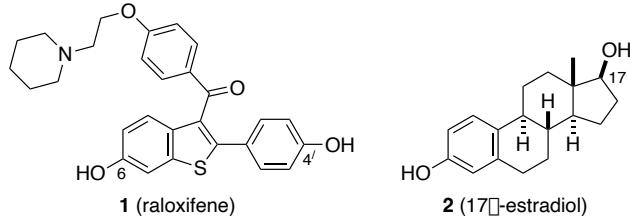


Synthesis Studies and the Evaluation of C₆ Raloxifene Derivatives

David R. Williams,^{*a} Levin Taylor, IV,^{a†} Gabriel A. Miter,^{a‡} Johnathan L. Sheiman,^a Joseph M. Wallace,^{*b} Matthew R. Allen,^c Rachel Kohler,^b Claudia Medeiros,^b

^a Department of Chemistry, Indiana University, Bloomington, IN 47405, USA

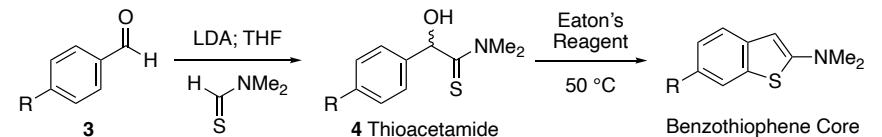

^b Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA

^c Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202 USA

ABSTRACT: Methodology is described for synthesis of C₆ derivatives of raloxifene, a prescribed drug for the treatment and prevention of osteoporosis. Studies explore the incorporation of electron-withdrawing substituents at C₆ of the benzothiophene core. Efficient processes are also examined to introduce hydrogen bond donor and acceptor functionality. Raloxifene derivatives are evaluated with *in vitro* testing to determine estrogen receptor (ER) binding affinity and gene expression in MC3T3 cells.

KEYWORDS: raloxifene derivatives, synthesis, methodology, estrogen binding affinity, bone properties

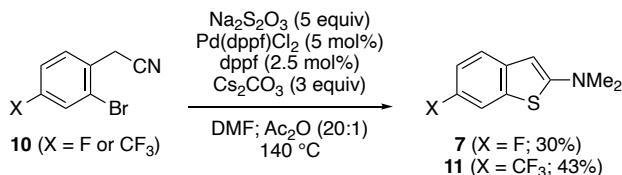
Raloxifene (**1**) is a selective estrogen receptor modulator (SERM) first developed by the Lilly Research Laboratories.^{1,2,3} As the FDA-approved drug, Evista®, raloxifene is used to reduce osteoporotic fractures by decreasing bone resorption and increasing bone mineral density (BMD).^{4,5} However, the efficacy of **1** is far greater than what is predicted based solely on its effect on BMD.^{6,7,8} Since raloxifene has high affinity for binding to the estrogen receptor (ER), it exhibits prominent side effects associated with hormone therapy.^{9,10} As a result, safeguard limitations have been placed on the use of this prescribed medicine. In fact, several laboratories have presented crystallographic studies of human estrogen receptor with bound SERM derivatives^{11,12,13} to identify favorable interactions for treatment of breast cancer. Recent studies have indicated that raloxifene may induce a cell-independent mechanism that leads to improved collagen quality. Collagen plays a key role in establishing the material and mechanical properties of bone that are essential to fracture resistance.^{14,15} Studies have shown that the 6-hydroxy and, to a lesser extent, the 4'-hydroxy substituents of **1** are important for ER binding. These groups appear to mimic the 3- and 17 β -hydroxy substituents of 17 β -estradiol (17 β e) (**2**). Thus, our studies have examined alterations of C₆ functionality in an effort to minimize the hormonal side effects while maintaining positive outcomes for bone strength.¹⁶


Figure 1. Raloxifene (**1**) and 17 β -estradiol (**2**).

Approximately one hundred derivatives of raloxifene have been prepared by studies in a number of laboratories in search of improved efficacy.^{17,18,19,20} In addition, recent studies have

investigated dual use properties of raloxifene analogs in a variety of diseases.^{21,22} Over 90% of these variants contained C₆-OH, C₆-OCH₃, or C₆-H substitution. A large portion of this library has focused on modifications within the 2-aryl substituent attached to the core benzothiophene.²³ This letter explores the preparation and reactivity of raloxifene derivatives which incorporate C₆ substitution unavailable using the established synthetic procedures. One important goal of our studies was to replace the C₆-OH of raloxifene (**1**) with functionality which would participate in binding as hydrogen bond acceptor or donor sites, albeit with reduced affinity for the estrogen receptor. These preliminary results outline promising synthesis methods worthy of incorporation in an expanded investigation. Selected raloxifene derivatives have been examined with an *in vitro* ER binding assay for competitive displacement of 17 β e (**2**) and with C3 gene expression in MC3T3 cells.

Initial efforts have explored the incorporation of electron-withdrawing groups and nitrogen-containing functionality at C₆ of the benzothiophene core **5** (Table 1). Although intermediate thioamides **4** are generally prepared in good yields, the cyclization to the benzothiophene **5** is adversely affected by the electronic withdrawing properties of C₆ substituents. Thus, the desired cyclization fails completely using the standard conditions of catalytic methanesulfonic acid in CH₂Cl₂ at 0 °C.^{24,25,26} In fact, in these experiments, no reaction is observed at reflux, indicating decreased stability in the formation of the benzylic carbocation as a prerequisite for cyclization. Several attempts to improve the leaving group capability in **4** were unsuccessful.²⁷ To this end, we have identified vigorous conditions using Eaton's reagent (methanesulfonic acid with P₂O₅ (10% by weight)), which has afforded modest yields of purified benzothiophenes **5** (72%), **6** (63%), **7** (24%), and **9** (53%). Reduced yields of **8** were attributed to electronic factors induced by protonation of the C₆-pyridyl product **4d**. While complete failure was observed in the attempted cyclization of **4f**, an alternative method pioneered by Yang, et al.²⁸ was employed to obtain the trifluoromethyl derivative **11** from the nitrile **10**, as well

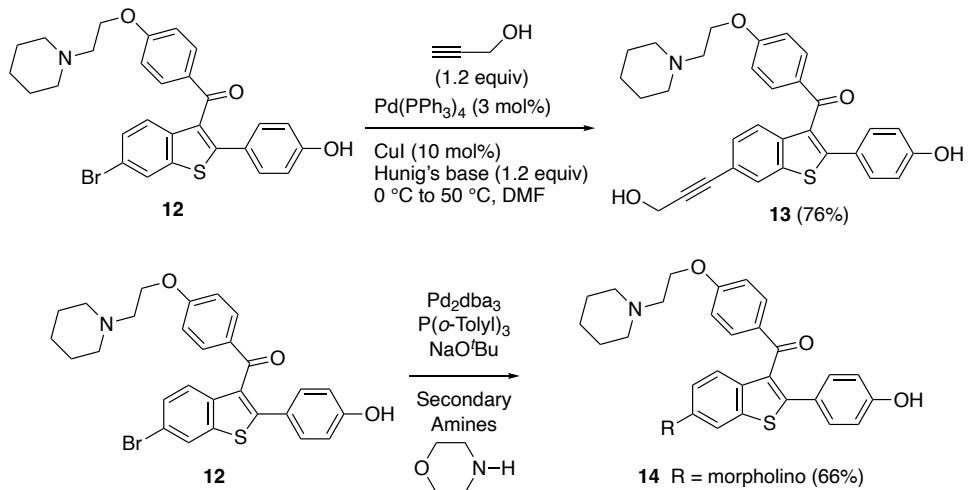

Table 1. Preparation of Thioacetamides and the Benzothiophene Core

Entry	Benzaldehyde	R	Thioacetamide ^a (% yield)	Benzothiophene ^b (% yield)
1	3a		4a (80)	5 (72)
2	3b		4b (77)	6 (63)
3	3c		4c (79)	7 (24)
4	3d		4d (72)	8 (10)
5	3e		4e (70)	9 (53)
6	3f		4f (67)	Failed

^a Conditions: 1.1 equiv LDA, 1 equiv aldehyde (3), 1 equiv thioformamide, -78 °C to r.t., 4 h

^b Conditions: 0.5M in Eaton's Reagent, 30 min

Figure 2. Palladium induced formation of the benzothiophene core.


as the problematic C₆ fluoro analog **7** (of Table 1). While the latter procedure afforded access to these electron-deficient derivatives, the expense of the starting nitriles (**10**) is prohibitive for large-scale synthesis of these particular analogs.

The C₆-bromide **6** (Table 1) is a high-value product for further elaboration as the presence of the bromide facilitates a variety of cross coupling processes. For example, Sonogashira cross couplings of **12** are generally successful and provide products as exemplified by **13** (76%). Furthermore, Buchwald—Hartwig cross couplings with cyclic secondary amines afford new C₆ derivatives such as the C₆ morpholino **14** in multigram scale reactions. Raloxifene triflates have been reported via low-yielding reactions of **1**, and these triflates also undergo Stille cross-coupling reactions in moderate yields.²⁹ An issue for polar amines, such as **14**, is the coelution of a persistent impurity which may hamper the isolation of highly purified quantities (>99% pure) necessary for biological evaluations. In addition to these standard techniques, the 6-bromo-benzothiophene **6** (from Table 1) readily undergoes halogen-metal exchange to provide the corresponding lithium reagent for introduction of a host of electrophiles. Table 2 illustrates four standard reactions with aldehydes,

ketones, and acyl chlorides as demonstrated by the formation of **15**, **16**, **17**, and **18**.

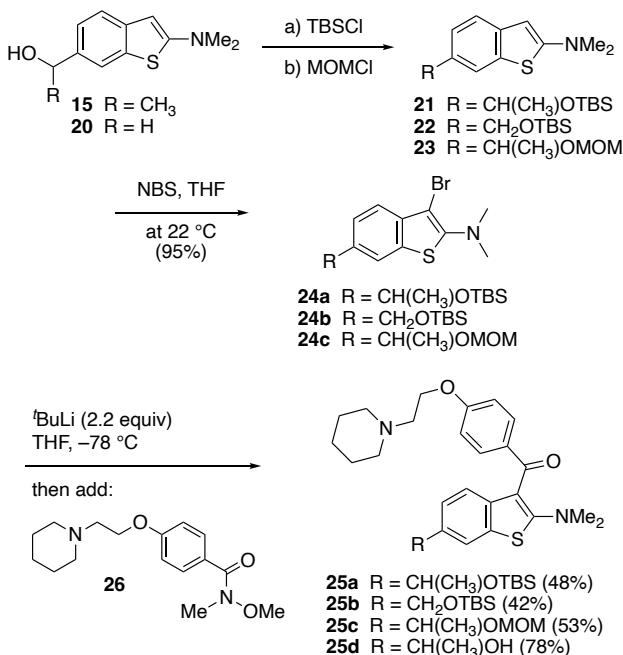
In the cases of C₆ acylation (entries 3 and 4), the reactive lithio species from **6** leads to small amounts of ketone **19** as a byproduct (10%) which is readily separated by flash chromatography. The hydride reduction (LiAlH₄, THF at 0 °C) of the ethyl ester **17** leads to the corresponding primary benzylic alcohol **20** (82%) of Scheme 1. The benzylic alcohols of **15** and **20** are protected as the corresponding *tert*-butyldimethylsilyl (TBS) ether **21** and **22** in excellent yield (TBSCl, imidazole, CH₂Cl₂, r.t., 90% yield). Similarly, we have prepared the corresponding methoxymethyl (MOM) ether **23** under standard conditions.

The search for a mild acylation method has led to an alternative process that offers opportunities for broad applications via low temperature lithiation at C₃. A general and high-yielding process for C₃ bromination of the benzothiophene core is exemplified by the examples of **21**, **22**, and **23** (Scheme 1). The purified bromides **24abc** are subsequently used for halogen-metal exchange at -78 °C to give a reactive lithio species which provides the ketones **25abc** upon reaction with the Weinreb amide **26**. Furthermore, the alcohol **25d** was also readily available via the treatment of **25a** with TBAF for deprotection of the silyl ether (95% yield). The preparation and introduction of **26** offers an important advantage since it is readily purified by flash chromatography and avoids use of the acid chloride salt which has been used in previously published acylation procedures. In these cases, the acid chloride salt consumes one equivalent of lithium reagent. Based on 2:1 stoichiometry of the aryl lithium and the acylation reagent, we observed complete consumption of the starting bromides **24abc** and often recovered 15%–20% of **26**. Yields of the

Figure 3. Examples of cross-coupling reactions of the C₆-bromide **12**.

Table 2. The synthesis of 6-substituted benzothiophenes *via* halogen-metal exchange.

Entry	Electrophile	R	Product (% yield)
1	O=C	HO	15 (71)
2	O=C	MOMO	16 (43)
3	O=C	OEt	17 (63)
4	O=C	NMe ₂	18 (68)


^a Conditions: 1 equiv thiophene, 2.2 equiv ^tBuLi, 0.1M in THF, -78 °C then add electrophile (excess) at -78 °C.

ketones **25abc** generally ranged from 44% to 60% with isolation of as much as 30% of the reduced benzothiophene. Prolonged reaction times and high temperatures failed to provide improved yields of product. When these reactions were quenched with D₂O, no evidence of deuterium incorporation was found. In fact, we have measured approximately 70% deuterium incorporation after directly quenching the halogen-metal exchange with D₂O. The choice of solvent is significant as THF led to increased amounts of reduced benzothiophene, whereas pentane in ether (60:40 by volume) led to the best results for deuterium incorporation. While the aryl lithium may have limited stability in anhydrous THF, the amide **26** was insoluble in pentane/ether, and further attempts to improve the stability of the C₃ lithio species by addition of TMEDA, DMPU, or HMPA in THF solutions also led to reduced yields. These experiments have demonstrated great

potential for the use of two sequential lithiations at C₆ and C₃ of the core benzothiophene to construct a wide variety of raloxifene derivatives, and therefore, we continue to examine alternative solvents to gain better overall yields.

Our studies have also examined the Friedel-Crafts acylation of novel C₆-substituted benzothiophenes from Tables 1 and 2 enroute to raloxifene analogs.^{30,31} We have prepared the acid chloride salt **27** of Table 3 by treatment of the known carboxylic acid³² with oxalyl chloride in CH₂Cl₂ solution containing small amounts of DMF. The resulting hydrochloride salt **27** is filtered and triturated with small amounts of solvent. As a white powder, it is easily stored at room temperature under argon to maintain an anhydrous condition. Unfortunately, electron-withdrawing groups at C₆ of the benzothiophene dramatically reduce the reactivity of the enamine moiety. While the solid **27** is readily measured and introduced into these

Scheme 1. An alternative acylation procedure via C3 bromination.

reactions, it shows low solubility in most organic solvents. As shown by the examples of Table 3, acylations using the chloride **27** require prolonged reaction times and higher

temperatures (140 °C) as compared to the usual published procedures. In the presence of catalytic 4-dimethylaminopyridine (DMAP), the desired ketones **28** through **34** (Table 3) are obtained in 53% to 72% yields. As expected, derivatives **21**, **22**, and **23** from Scheme 1 were not amenable to these robust acylation conditions.

Our preliminary studies have demonstrated the synthesis of novel raloxifene derivatives via the installation of the 2-aryl component upon 1,4-conjugate addition of 4-(*tert*-butyldimethylsiloxy)phenyl magnesium bromide reagent with our enamide acylation products. Five representative examples illustrate the formation of novel raloxifenes **35** through **39**. These derivatives have not been readily accessible via standard protocols. Flash silica gel chromatography of the crude reaction mixture following the Grignard addition has directly led to TBS silyl ether cleavage using *tert*-*n*-butylammonium fluoride (TBAF). The final products are obtained by flash chromatography to derive C₆-substituted raloxifenes in >96% purity for biological evaluations.

To verify that our analogs had reduced ER binding affinity, fluorescence polarization (FP) tests were performed, where selected derivatives **13**, **35**, **36**, **37**, and **39**, were compared to 17 β e (**2**) using an ER-alpha-competitor assay kit (PolarScreenTM ER Alpha Competitor Assay Green, Thermo Fisher). FP of fluorochrome tracers bound to ER was measured (EnVision 2102 Multilabel Plate Reader, Perkin Elmer) in 8 triplicate serial dilutions of compound concentrations

Table 3. Friedel-Crafts acylation of benzothiophenes at 140 °C.

Reagents:
 Benzothiophenes
 27 (HCl salt)
 chlorobenzene,
 140 °C
 cat. DMAP
 9-12 hrs

Acylation Product

Entry	Benzothiophene	R	Acylation Product (% yield)
1	5	$\text{F}_3\text{CO}-\text{C}\equiv\text{C}-$	28 (71)
2	6	$\text{Br}-\text{C}\equiv\text{C}-$	29 (70)
3	7	$\text{F}-\text{C}\equiv\text{C}-$	30 (65)
4	8		31 (53)
5	9		32 (72)
6	17		33 (67)
7	18		34 (63)

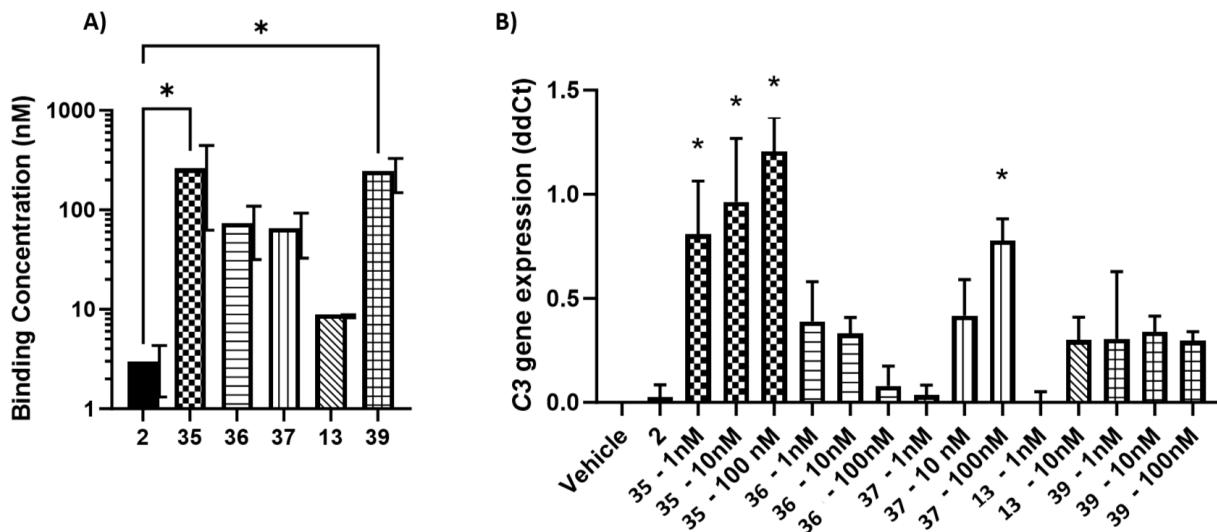
^a Conditions: 1 equiv thiophene **5**, 1.1 equiv HCl salt **40**, cat. DMAP, 1M in chlorobenzene, 140 °C for 9–12 hours.

ranging from 10^{-10} to 10^{-6} M. The output degree of light polarization for each well was plotted versus compound concentration and fit to a nonlinear curve in GraphPad PRISM (9.5.1) to produce an IC₅₀ value for each compound (half of the maximal concentration required to reduce tracer displacement due to binding). Results indicated that analogs **35** and **39** had significantly lower ER binding affinity compared to 17β e (**2**), as shown by the high compound concentration needed to detect a change in tracer binding (Figure 4). We also sought confirmation of these results by assessing *in vivo* effects, C3 gene expression was analyzed in MC3T3-E1 Subclone 4 (ATCC® CRL-2593; Manassas, VA) murine pre-osteoblasts fed media dosed with analog treatments or DMSO at concentrations of 1, 10, and 100 nM for each treatment, with 2 replicates. RNA extractions were performed after 2 days of growth using BioLine kit without Trizol (High Capacity RNA to cDNA synthesis kit 4387406). Gene expression was performed, with all samples assessed in triplicates (Life Technologies Taqman Fast Advanced Buffer and Assay Mm00437838, assessed in a QuantStudio 3 Real-Time PCR), and qPCR data was analyzed using the Livak method. C3 expression was not significantly upregulated in most analogs compared to controls (Figure 4), further indicating that ER binding affinity was successfully reduced.

Table 4. Grignard reactions for the formation of raloxifene derivatives.

Enamide Acylation Product

1) $\text{BrMg}-\text{C}_6\text{H}_5-\text{OTBS}$
THF, 0 °C \rightarrow r.t.


2) TBAF
THF at r.t.

C₆-Raloxifene Derivative

Entry	Enamide (R)	C ₆ -Raloxifene Derivative (% yield)
1	28 R = OCF_3	35 R = OCF_3 (75)
2	29 R = Br	36 R = Br (73)
3	30 R = F	37 R = F (73)
4	25d R = $\text{CH}(\text{CH}_3)\text{OH}$	38 R = $\text{CH}(\text{CH}_3)\text{OH}$ (44)
5	34 R = $\text{C}(\text{O})\text{NMe}_2$	39 R = $\text{C}(\text{O})\text{NMe}_2$ (70)

The goal of our studies is to identify raloxifene analogs with little or no estrogen receptor (ER) signaling while modulating bone quality and mechanical properties. Preliminary efforts selected compound **39** for these investigations. The G610C mouse model of osteogenesis imperfecta (OI) was used in these *in vivo* studies, and mice were bred in-house with wildtype (WT) females to produce G610C and WT offspring. A description of the data and methodology from the *in vivo* studies is too extensive to include in this letter, but it appears in a separate publication.³³ The proof of concept shows that **39** has low ER affinity and positive impacts on the ability of OI bone to resist fracture at the expense of reduced pre-yield mechanical behavior. In fact, treatment with **39** did not improve pre-yield mechanical properties, but post-yield and total displacement were significantly increased. Analog **39**, together with loading, increased 4-pt bending displacement, strain, and toughness of G610C bone. The strongest effects were apparent in loaded bone where treatment with **39** is combined with a bone anabolic stimulus. Our findings suggest that toughness of *de novo* bone tissue may be positively impacted by treatment with **39**. This communication details procedures that offer a robust protocol for the evaluation of a wide variety of derivatives made available by our investigation.

Figure 4. *Analog characterization and in vitro testing.* Solutions (nM) of derivatives were prepared in the buffered medium supplied in the commercial test kits. **A)** IC₅₀ values from repeated fluorescence polarization tests indicating estrogen-binding affinity. P-values from one-way ANOVA-post hoc shown with * for p<0.05. **B)** C3 gene expression in MC3T3 cells treated with various analog concentrations, normalized by GAPDH. P-values from one-way ANOVA post hoc shown with * indicating p<0.0001.

In conclusion, this study has examined new opportunities for the preparation of raloxifene derivatives. Specifically, the scope of C₆ substitution has been limited in the prior art. In this preliminary study, synthesis methods and techniques have been devised to expand the scope of available compounds. Substitution at C₆ has addressed the preparation of benzothiophenes which provide reduced binding affinity for the ER receptor. Results also outline pathways for the introduction of various hydrogen bond donor and acceptor functionality at C₆ of the raloxifene core. Further studies to assess the biology of C₆ raloxifene derivatives is currently in progress.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acsmedchemlett.X.XXXXX>

Experimental procedures; full characterization data for all final products; characterizations of intermediates in the synthesis sequence listed as compounds **4a**, **5**, **4b**, **6**, **4c**, **7**, **4d**, **8**, **4e**, **9**, **4f**, **11**, **13**, **14**, **15–18**, **20–26**, and **28–39**; HPLC proof of purity for products **13**, **35**, **36**, **37**, **38**, and **39** (PDF).

AUTHOR INFORMATION

Corresponding Authors

***David R Williams** – Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, U.S.A.;

ORCID: orcid.org/0000-0003-1499-3333;

Email: williamd@indiana.edu

***Joseph M. Wallace** – Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN 46202 U.S.A.; Email: jmwalla@iupui.edu

Authors

Levin Taylor, IV – Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, U.S.A.;

Gabriel A. Miter – Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, U.S.A.;

Johnathan L. Sheiman, – Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, U.S.A.;

Matthew R. Allen – Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A.;

Rachel Kohler – Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, U.S.A.;

Claudia Medeiros – Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, U.S.A.

Present Addresses

†**Levin Taylor, IV** – Momentive Performance Materials, Sisterville Site, 10851 Energy Highway, Friendly, WV 26146

‡**Gabriel A. Miter**, – U.S. Army, Building 10230 North Riva Ridge Loop, Fort Drum, NY 13602, U.S.A.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding Sources

This project was partially supported by the Indiana Clinical and Translational Sciences Institute funded by Grant Number UL1TR002529 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. The content is solely the responsibility

of the authors and does not necessarily represent the official views of the National Institutes of Health. (DRW, JMW, MRA) Partial support was provided by Indiana University (Vice Provost for Research through the Research Equipment Fund). (DRW) This material is based upon work supported in part by the National Science Foundation under Grant CHE2102587. (DRW). Partial support was provided by the National Institutes of Health (NIH R01: AR072609). (JMW)

Notes

REFERENCES

- 1 Seeman, E. Raloxifene, *J. Bone Miner. Metab.* **2001**, *19*, 65–75, <https://doi.org/10.1007%2Fs007740170043>.
- 2 Weatherman, R. V.; Clegg, N. J.; Scanlan, T. S. Differential SERM Activation of the Estrogen Receptors (ERalpha and ERbeta) at AP-1 Sites, *Chemistry & Biology* **2001**, *8*, 427–436, <https://doi.org/10.1016%2FS1074-5521%2801%2900025-4>.
- 3 Gizzo, S.; Saccardi, C.; Patrilli, T. S.; Berretta, R.; Capobianco, G.; Di Gangi, S.; Vacilotto, A.; Bertocco, A.; Noventa, M.; Ancona, E.; D'Antona, D.; Nardelli, G. B., Update on Raloxifene: Mechanism of Action, Clinical Efficacy, Adverse Effects, and Contraindications, *Obstet. Gynecol. Surv.* **2013**, *68*, 467–481, <https://doi.org/10.1097%2FOGX.0b013e31828baef9>.
- 4 (a) Gallant, M. A.; Brown, D. M.; Hammond, M.; Wallace, J. M.; Du, J.; Deymier-Black, A. C.; Almer, J. D.; Stock, S. R.; Allen, M. R.; Burr, D. B., Bone Cell-Independent Benefits of Raloxifene on the Skeleton: A Novel Mechanism for Improving Bone Material Properties, *Bone* **2014**, *61*, 191–200, <https://doi.org/10.1016/j.bone.2014.01.009>.
- 5 Delmas, P. D.; Bjarnason, N. H.; Mitlak, B. H.; Ravoux, A.-C.; Shah, A. S.; Huster, W. J.; Draper, M.; Christiansen, C., Effects of Raloxifene on Bone Mineral Density, Serum Cholesterol Concentrations, and Uterine Endometrium in Postmenopausal Women, *N. Engl. J. Med.* **1997**, *337*, 1641–1647, <http://doi.org/10.1056/NEJM199712043372301>.
- 6 (a) Bivi, N.; Hu, H.; Chavali, B.; Chalmers, M. J.; Reutter, C. T.; Durst, G. L.; Riley, A.; Sato, M.; Allen, M. R.; Burr, D. B.; Dodge, J. A. Structural Features Underlying Raloxifene's Biophysical Interaction with Bone Matrix, *Bioorg. Med. Chem.* **2016**, *24*, 759–767, <http://doi.org/10.1016/j.bmc.2015.12.045>.
- 7 Riggs, B. L.; Melton, III, C. J.; Bone Turnover Matters: The Raloxifene Treatment Paradox of Dramatic Decreases in Vertebral Fractures Without Commensurate Increases in Bone Density, *J. Bone Miner. Res.* **2002**, *17*, 11–14, <https://doi.org/10.1359/jbmr.2002.17.1.11>.
- 8 Sarkar, S.; Mitlak, B. H.; Wong, M.; Stock, J. L.; Black, D. M.; Harper, K. D. Relationships Between Bone Mineral Density and Incident Vertebral Fracture Risk with Raloxifene Therapy, *J. Bone Miner. Res.* **2002**, *17*, 1–10, <https://doi.org/10.1359/jbmr.2002.17.1.1>.
- 9 ER-agonism in the uterus predominantly determines the safety profile of SERMs: Pinkerton, J.V.; Thomas, S., Use of SERMs for Treatment in Postmenopausal Women, *J. Steroid Biochem. Mol. Biol.* **2014**, *142*, 142–154, <https://doi.org/10.1016/j.jsbmb.2013.12.011>.
- 10 Wardell, S. E.; Nelson, E. R.; McDonnell, D. P. From Empirical to Mechanism-Based Discovery of Clinically Useful Selective Estrogen Receptor Modulators (SERMs), *Steroids* **2014**, *90*, 30–38, <https://doi.org/10.1016/j.steroids.2014.07.013>.
- 11 Sodero, A. C. R.; Romeiro, N. C.; da Cunha, E. F. F.; Magalhães, U. d. O.; de Alencastro, R. B.; Rodrigues, C. R.; Cabral, L. M.; Castro, H. C.; Albuquerque, M. G., Application of 4D-QSAR Studies to a Series of Raloxifene Analogs and Design of Potential Selective Estrogen Receptor Modulators, *Molecules*, **2012**, *17*, 7415–7439, <https://doi.org/10.3390/molecules17067415>.
- 12 Vajdos, F. F.; Hoth, L. R.; Geoghegan, K. F.; Simons, S. P.; Lemotte, P. K.; Danley, D. E. Ammirati, M. J.; Pandit, J., The 2.0 Å Crystal Structure of the ER α Ligand-Binding Domain Complexed with Lasofoxifene, *Protein Sci.* **2007**, *16*, 897–905, <https://doi.org/10.1110/ps.062729207>.
- 13 Hosfield, D. J.; Weber, S.; Li, N.-S.; Sauvage, M.; Joiner, C. F.; Hancock, G. R.; Sullivan, E. A.; Ndukwe, E.; Han, R.; Cush, S.; Lainé, M.; Mader, S. C.; Greene, G. L.; Fanning, S. W., Stereospecific Lasofoxifene Derivatives Reveal the Interplay Between Estrogen Receptor Alpha Stability and Antagonistic Activity in *ESR1* Mutant Breast Cancer Cells, *eLife*, **2022**, *11*:e72512 (1–27), <https://doi.org/10.7554/eLife.72512>.
- 14 Wang, X.; Shen, X.; Li, X.; Agrawal, C. M., Age-Related Changes in the Collagen Network and Toughness of Bone, *Bone* **2002**, *31*, 1–7, [https://doi.org/10.1016/S8756-3282\(01\)00697-4](https://doi.org/10.1016/S8756-3282(01)00697-4).
- 15 Boskey, A. L.; Wright, T. M.; Blank, R.D., Collagen and Bone Strength, *J. Bone Miner. Res.* **1999**, *14*, 330–335, <https://doi.org/10.1359/jbmr.1999.14.3.330>.
- 16 Powell, K. M.; Brown, A. P.; Skaggs, C. G.; Pulliam, A. N.; Berman, A. G.; Deosthale, P.; Plotkin, L. I.; Allen, M. R.; Williams, D. R., 6'-Methoxy Raloxifene-Analog Enhances Mouse Bone Properties with Reduced Estrogen Receptor Binding, *Bone Rep.* **2020**, *12*, 100246 (1–9), <https://doi.org/10.1016/j.bonr.2020.100246>.
- 17 For a recent review: Dadiboyna, S. Recent Advances in the Synthesis of Raloxifene: A Selective Estrogen Receptor Modulator, *Eur. J. Med. Chem.* **2012**, *51*, 17–34, <https://doi.org/10.1016/j.ejmech.2012.02.021>.
- 18 Lambrinidis, G.; Gouedard, C.; Stasinopoulou, S.; Angelopoulou, A.; Ganou, V.; Meligova, A. K.; Mitsiou, D.; Marakos, P.; Pouli, N.; Mikros, E.; Alexis, M. N. Design, Synthesis, and Biological Evaluation of New Raloxifene Analogues of Improved Antagonist Activity and Endometrial Safety, *Bioorg. Chem.* **2021**, *106*, 104482 (1–10), <https://doi.org/10.1016/j.bioorg.2020.104482>.
- 19 Shoda, T.; Kato, M.; Fujisato, T.; Misawa, T.; Demizu, Y.; Inoue, H.; Naito, M.; Kurihara, M. Synthesis and Evaluation of Raloxifene Derivatives as a Selective Estrogen Receptor Down-Regulator, *Bioorg. Med. Chem.* **2016**, *24*, 2914–2919, <http://doi.org/10.1016/j.bmc.2016.04.068>.
- 20 Umezawa, Y.; Horiyama, E.; Nakai, Y.; Ninomiya, M.; Nishina, A.; Koketsu, M. Synthesis of Raloxifene-Like Quinoxaline Derivatives by Intramolecular Electrophilic Cyclization with Disulfides, *Bioorg. Med. Chem. Lett.* **2023**, *92*, 129415 (1–6), <https://doi.org/10.1016/j.bmcl.2023.129415>.
- 21 (a) Allegretti, M.; Candida Cesta, M.; Zippoli, M.; Beccari, A.; Talarico, C.; Mantelli, F.; Bucci, E. M.; Scorzolini, L.; Nicastri, E. Repurposing the Estrogen Receptor Modulator Raloxifene to Treat SARS-CoV-2 Infection, *Cell Death & Differentiation*, **2022**, *29*, 156–166, <https://doi.org/10.1038/s41418-021-00844-6>.
- 22 Barrett-Connor, E.; Mosca, L.; Collins, P.; Geiger, M. J.; Grady, D.; Kornitzer, M.; McNabb, M. A.; Wenger, N. K.; Effects of Raloxifene on Cardiovascular Events and Breast Cancer in Post-

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

ABBREVIATIONS

ER – estrogen binding; SERM – selective estrogen receptor modulator; BMD – bone mineral density; 17 β e – 17 β -estradiol

Menopausal Women, *N. Engl. J. Med.* **2006**, *355*, 125–137, <https://doi.org/10.1056/NEJMoa062462>.

23 Lee, K. C.; Moon, B. S.; Lee, J. H.; Chung, K.-H.; Katzenellenbogen, J. A.; Chi, D. Y. Synthesis and Binding Affinities of Fluoro-alkylated Raloxifenes, *Bioorg. & Med. Chem.* **2003**, *11*, 3649–3658, [https://doi.org/10.1016/S0968-0896\(03\)00362-6](https://doi.org/10.1016/S0968-0896(03)00362-6).

24 (a) Grese, T. A.; Cho, S.; Finley, D. R.; Godfrey, A. G.; Jones, C. D.; Lugar, III, C. W.; Martin, M. J.; Matsumoto, K.; Pennington, L. D.; Winter, M. A.; Adrian, M. D.; Cole, H. W.; Magee, D. E.; Phillips, D. L.; Rowley, E. R.; Short, L. L.; Glasebrook, A. L.; Bryant, H. U. Structure-Activity Relationships of Selective Estrogen Receptor Modulators: Modifications to the 2-Arylbenzothiophene Core of Raloxifene, *J. Med. Chem.* **1997**, *40*, 146–167, <https://doi.org/10.1021/jm9606352>.

25 Sandeep, M.; Gaddameedhi, P. R.; Mohan, G. M.; Reddy, K.; Bathini, P. K.; Kommareddy, V. R. Preparation of Raloxifene and Its Salts, U.S. Patent WO2011029088A2, March 10, 2011.

26 Yang, Y.; Zhang, T.; Huang, W.; Shen, Z. Piperidine Nucleophilic Substitution Without Solvent: An Efficient Synthesis of Raloxifene, *Syn. Commun.* **2014**, *44*, 3271–3276, <https://doi.org/10.1080/00397911.2014.943348>.

27 Ablenas, F. J.; George, B. E.; Maleki, M.; Jain, R.; Hopkinson, A. C.; Lee-Ruff, E., Destabilized Carbocations. Nuclear Magnetic Resonance Detection and Reactivities of Aryl α -Thioformamidyl Cations, *Can. J. Chem.* **1987**, *65*, 1800–1803, <https://doi.org/10.1139/v87-302>.

28 Hou, C.; He, Q.; Yang, Chunhao, Direct Synthesis of Diverse 2-Aminobenzo[b]thiophenes via Palladium-Catalyzed Carbon-Sulfur Bond Formation Using $\text{Na}_2\text{S}_2\text{O}_3$ as the Sulfur Source, *Org. Lett.* **2014**, *16*, 5040–5043, <https://doi.org/10.1021/ol502381e>.

29 Martin, M. J.; Grese, T. A.; Glasebrook, A. L.; Matsumoto, K.; Pennington, L. D.; Phillips, D. L.; Short, L. L. Versatile Raloxifene Triflates, *Bioorg. & Med. Chem. Lett.* **1997**, *7*, 887–892, [https://doi.org/10.1016/S0960-894X\(97\)00130-3](https://doi.org/10.1016/S0960-894X(97)00130-3).

30 (a) Bradley, D. A.; Godfrey, A. G.; Schmid, C. R. Synergistic Methodologies for the Synthesis of 3-Aroyl-2-arylbenzo[b]thiophene-based Selective Estrogen Receptor Modulators. Two Concise Syntheses of Raloxifene, *Tetrahedron Lett.* **1999**, *40*, 5155–5159, [https://doi.org/10.1016/S0040-4039\(99\)00955-7](https://doi.org/10.1016/S0040-4039(99)00955-7).

31 Schmid, C. R.; Sluka, J. P.; Duke, K. M. Nucleophilic Aromatic Substitution on 3-Aroyl-2-Arylbenzothiophenes. Rapid Access to Raloxifene and Other Selective Estrogen Receptor Modulators, *Tetrahedron Lett.* **1999**, *40*, 675–678, [https://doi.org/10.1016/S0040-4039\(98\)02533-7](https://doi.org/10.1016/S0040-4039(98)02533-7).

32 Jones, C. D.; Jevnikar, M. G.; Pike, A. J.; Peters, M. K.; Black, L. J.; Thompson, A. R.; Falcone, J. F.; Clemens, J. A. Antiestrogens. 2. Structure-Activity Studies in a Series of 3-Aroyl-2-arylbenzo[b]thiophene Derivatives Leading to [6-Hydroxy-2-(4-hydroxy-phenyl)benzo[b]thien-3-yl][4-[2-(1-piperidinyl)ethoxy]-phenyl]methanone Hydrochloride (LY156758), a Remarkably Effective Estrogen Antagonist with Only Minimal Intrinsic Estrogenicity, *J. Med. Chem.* **1984**, *27*, 1057–1066, <https://doi.org/10.1021/jm00374a021>.

33 Kohler, R.; Creecy, A.; Williams, D. R.; Allen, M. R.; Wallace, J. M. Effects of Novel Raloxifene Analogs Alone or in Combination with Mechanical Loading in the Col1a2G610c/+ Murine Model of Osteogenesis Imperfecta, *Bone*, **2024**, *179*, 116970 (1–7), <https://doi.org/10.1016/j.bone.2023.116970>.