
Fairness of Interaction in Ranking under Position, Selection, and Trust

Bias

ZOHREH OVAISI, University of Illinois Chicago, Chicago, USA

PARSA SAADATPANAH,Meta Inc, Washington DC, USA

SHAHIN SEFATI,Meta Inc, New York, USA

MESROB OHANNESSIAN, University of Illinois Chicago, Chicago, USA

ELENA ZHELEVA, University of Illinois Chicago, Chicago, USA

Ranking algorithms in online platforms serve not only users on the demand side, but also items on the supply side. While

ranking has traditionally presented items in an order that maximizes their utility to users, the uneven interactions that

diferent items receive as a result of such a ranking can pose item fairness concerns. Moreover, interaction is afected by

various forms of bias, two of which have received considerable attention: position bias and selection bias. Position bias occurs

due to lower likelihood of observation for items in lower ranked positions. Selection bias occurs because interaction is not

possible with items below an arbitrary cutof position chosen by the front-end application at deployment time (i.e., showing

only the top-� items). A less studied, third form of bias, trust bias, is equally important, as it makes interaction dependent on

rank even after observation, by inluencing the item’s perceived relevance. To capture interaction disparity in the presence

of all three biases, in this paper we introduce a lexible fairness metric. Using this metric, we develop a post-processing

algorithm that optimizes fairness in ranking through greedy exploration and allows a tradeof between fairness and utility.

Our algorithm outperforms state-of-the-art fair ranking algorithms on several datasets.

Additional Key Words and Phrases: Recommender Systems, Ranking Systems, Fairness, Bias

1 INTRODUCTION

Ranking algorithms used in recommender system platforms connect users on the demand side to ranked items
on the supply side. With the expansion of online marketplaces, these algorithms have become central not only to
users seeking to ind their desirable items (e.g., rentals, movies, job applicants), but also to items seeking to get
enough visibility and interaction by users. Thus, ranking algorithms have an impact on both user satisfaction
and the amount of interaction each ranked item receives. Traditionally, the main focus of ranking algorithms has
been to rank items in decreasing order of their relevance to users, with the aim of maximizing user satisfaction.
However, naïvely ranking items based on their relevance scores may lead to unfairness to some items. This
is because user interaction with items is heavily inluenced by the item position in the ranking and users are
less likely to interact with lower ranked items. As a result, more relevant items in upper positions collect a
disproportionately larger number of user interactions than (sometimes slightly) less relevant items in lower
positions. There are three main sources of user-item interaction bias that contribute to unfairness: position bias,

Authors’ addresses: Zohreh Ovaisi, University of Illinois Chicago, Chicago, Illinois, USA, zovais2@uic.edu; Parsa Saadatpanah, Meta Inc,

Washington DC, USA, parsasp@fb.com; Shahin Sefati, Meta Inc, New York, USA, shahinsefati@fb.com; Mesrob Ohannessian, University of

Illinois Chicago, Chicago, USA, mesrob@uic.edu; Elena Zheleva, University of Illinois Chicago, Chicago, USA, ezheleva@uic.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2770-6699/2024/4-ART

https://doi.org/10.1145/3652864

ACM Trans. Recomm. Syst.

https://doi.org/10.1145/3652864
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652864&domain=pdf&date_stamp=2024-04-06

2 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

selection bias, and trust bias. We irst introduce these biases with an illustrative example which highlights their
impact on the amount of interaction an item receives in a ranked list.

Consider a toy recommender system that connects employers and applicants for a job position, as illustrated
in Fig. 1. We assume that applicants (shown on top of the igure) belong to one of two groups, female or male,

rel 0.92 0.90 0.88 0.86 0.84 0.82

P(C) = P(O) × rel
p

0.92

0.56

0.44

0.37

0.31

0.28

0.92

0.90

0.88

0.86

0

0

0.95

0.91

0.87

0.84

0.81

0.78

0.95

0.57

0.43

0.36

0

0

Only Position Bias Only Selection Bias Only Trust Bias Position, Selection, and Trust Bias

rel
pP(C) P(O)

vs. rel

perceived relevanceclick observation

true relevance

rel
pP(C) P(O)

vs. rel

rel
pP(C) P(O)

vs. rel

rel
pP(C) P(O)

vs. rel

=

Fig. 1. Impact of biases on fairness of interactionÐreflecting employment chance for male and female applicants.

with the irst three applicants being female and the other three male. Each applicant has a resume that has a
relevance score (shown under each face) for the job position. All resumes compete for interaction (e.g., click) by
employers, which occurs if the employers observe them, and ind them relevant [3]. The platform ranks resumes
in decreasing order of their relevance to the job, which results in female resumes placed in the irst three positions
and male resumes in the last three positions. Position bias refers to the fact that users are more likely to observe
and, therefore, interact with higher-ranked items [4, 22, 44]. In Fig. 1, the observation probability P(O) is shown
with the decreasing eye opacity from top to bottom. The interaction probability P(C) of higher-ranked resumes
is higher accordingly. Selection bias refers to the fact that users may not be able to see the full ranking and
only the top-� items may be displayed by the front-end application (in the example, the cutof � = 4) [32, 34].
Consequently, tail items beyond cutof � will not be observed (e.g., most of the male resumes). Thus, tail items
have interaction probability P(C) equal to zero. Trust bias refers to the fact that users may perceive top-ranked
items as more relevant even after observing all items [3, 33, 41, 42]. This is because they overtrust the efectiveness
of the system to rank relevant items higher. This is shown with the employers’ perceived relevance rel� (trust) of
applicant resumes being ampliied near the top and attenuated near the bottom, relative to their true relevance
rel. As a result, the interaction probability P(C) of higher-ranked resumes is higher. Finally, in practice, all three
biases coexist, as in the fourth column of Fig. 1. Note that trust bias is fundamentally diferent from position bias
and selection bias. Under position bias and selection bias, the user has a realistic perception of the true relevance
score (rel� = rel). Thus, after observing an item, the user will choose whether to interact with it based on its true
relevance regardless of its position.Under trust bias, however, the user perception of the item relevance score is
position-dependent and may deviate from the actual relevance score (rel� ≠ rel). That is, after observing a lower

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 3

0

3.06

0.62

0.62

1 0.5 0.45 0.4 0.33 0.2 0.1 0.05 0.03

1 0.5 0.45 0.4 0.3 0.23 0.1 0.05 0.03

3.06

0

1 0.5 0.45 0.4 0.33 0.2 0.1 0.05 0.03

0.25 0.2 0.17 0.14 0.13 0.12 0.11 0.1 0.02

1.53

1.53

k=3

1 0.5 0.45 0.42 0.33 0.2 0.1 0.04 0.02

0.7 0.35 0.3 0.2 0.15 0.1 0.07 0.05 0.02

0.95

1

0.65

0.7

P(C)

P(C)

P(C)

P(C)

P(C)

C

P(C)

(a)

(b)

(c)

Fig. 2. Fairness criterion is met (a) over all users, (b) at each user, and (c) as

much as possible at each � for each user.

ranked item, the user may mistakenly perceive it as much less relevant than it actually is and skip it. As a result,
the top-ranked resumes get far more clicks than they deserve given their true relevances. We provide more detail
on trust models in Section 3.
As a result of these existing biases, the recommender system causes the average number of interactions that

female resumes receive to be much higher than those of male resumes although the relevances of male and
female resumes are not signiicantly diferent, which is arguably unfair to male applicants. The discrepancies in
interaction that items with certain properties (e.g., female applicants) receive could propagate further through
rich-get-richer dynamics [10, 13]. In the case of two-sided marketplaces, this helps popular and relevant suppliers
to receive the majority of available interaction in the long run, leaving the suppliers in the long tail struggling to
attract users’ interactions. These suppliers may then switch to other platforms, which in turn may limit user
choices and consequently drive users to quit the platform. Besides such dire consequences, unfairness toward
items (suppliers) may expose the online platform to legal and reputation risks, due to the resulting polarization
and monopoly of popular suppliers.

Recent studies propose frameworks that take into account not only user satisfaction but also fairness toward
items, considering item utility, such as exposure or interaction, as a resource provided by users to items. Most
past studies focus on exposure as a resource [17, 35, 36, 47], thus providing fair exposure opportunity. We focus
on interaction as a resource, also studied without trust bias in [36], thus providing fair interaction opportunity.

ACM Trans. Recomm. Syst.

4 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

Note that fairness of interaction more accurately relects the efective impact of ranking, compared to fairness of
exposure. This is because an item being interacted with/clicked has a higher chance of having a more efective
engagement by the user (e.g., bought, invited to interview, etc.), in contrast to simply being shown to the user.
This is especially prominent in e-commerce systems where the number of interactions of an item plays a key role
in whether this item is further advertised to users in the future.
Once a resource is speciied, then fairness can be considered under various scopes. Scope refers to how we

account for the amount of received resource, before we compare whether two groups received the desired
amounts. For example, we could pool across all users, or we could pool per user, or even per position. The concept
of scope is illustrated with the example in Fig. 2. Consider the same platform, with two employers (i.e., users)
and multiple female and male applicant resumes (i.e., items), which aims to minimize the diference in expected
interaction that female and male applicant resumes would receive. P(C) for a resume decreases down the ranks
due to position and trust bias efects. For each ranking, the aggregated interactions (in terms of expected number

of clicks C) with male and female resumes per user is depicted on the right-hand side. For simplicity, we assume
that the fairness criterion is loosely deined as łboth groups receive the same expected amount of interaction.ž
One possible scope that characterizes such fairness is by considering the expected interactions across all users

(Fig. 2(a)) [6, 35]. According to this scope, the expected interactions are fair, (female � = 3.06 + 0, and male

� = 0 + 3.06 considering rankings shown to both users). However, this notion of fairness can be problematic
when not all users are the same. For example, if the irst employer is less active or plans to hire less people, female
resumes would receive less interaction.

One way to overcome this issue is by aiming to ensure fairness at the user level and consider per-user fairness

criteria [36, 37]. In the example, per-user item fairness is satisied, as illustrated in Fig. 2(b) where male C is

identical to female C for each user. However, if the employer is presented with a truncated list of resumes, e.g.,
� = 3, then resumes below the cutof get zero exposure, and the proposed fairness solution does not apply because

of the large resulting discrepancy between male and female C. One could argue that if the truncation cutof is
known in advance, then it could be taken into consideration while designing the ranking. However, front-end
user interfaces where the recommendations appear can have varying truncation cutofs, e.g., by device and
application type, which requires the back-end recommendation algorithm to be versatile and handle multiple
possible cutofs � . To address this problem of varying cutofs, some ranking algorithms aim to rank items for
each user such that the fairness criterion is satisied as much as possible per ranking position [17, 47]. As shown

in Fig. 2(c), at � = 3 the discrepancies between male and female C are very small for the rankings shown to either
user (0.95 vs. 1 and 0.65 vs. 0.7).

There are three fundamental questions that we aim to address in this work:

• Q1: Can a ranking method allow for item interaction fairness as opposed to item exposure fairness while
maintaining high utility for users?

• Q2: Is such a fair ranking algorithm able to adjust the level of trade-of between utility and fairness, thus
enabling recommender platform decision makers to freely specify how much utility vs. fairness they desire
based on their needs?

• Q3: How robust can this fair recommender system be to arbitrary selection bias cutofs, while addressing
interactions under user position and trust bias?

The perspective of the current paper is that by reining the scope of interaction resource and simultaneously
taking into account each user, each ranking index, and the efect of each position in terms of both observation and
perceived relevance, we can achieve an efective exploration of the fairness-utility landscape. We place a more
realistic model of interaction at the core of the notion of item fairness and ofer the following main contributions:

• A per-user item fairness metric that captures position, selection and trust bias (Sec. 3).

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 5

• A post-processing fair ranking algorithm, Fairness Optimization for Ranking via Greedy Exploration (FORGE),
that improves item fairness while maintaining high user utility (Sec. 4.1).

• Theoretical (Sections 4.2) and empirical insight (Sec. 5.6) for FORGE’s near-optimality at all selection cutofs.
• Experimental evidence that incorporating all three types of biases achieves fairer ranking than the state-of-the-
art algorithms that focus on a subset of them (Sec. 5).
We provide public access to our experimental implementation to enhance the reproducibility of the reported
results 1.

2 RELATED WORK

Controlling unfairness in ranking has been extensively studied in past literature [29, 36, 37, 47]. Some studies
focus on in-processing algorithms, where fairness is incorporated in the learning algorithm [37, 48], while others
focus on post-processing algorithms where they re-rank the inal ranking produced by the ranking system to
remove discrimination [17, 36]. We can categorize these by the scope of exposure resources.

First, there is work that considers wide exposure resource, namely all users. That is, fairness criteria are deined
based on the exposure that is provided by all rankings for all users. Biswas and Barman [6] study the problem of
fair recommender system and propose a greedy post-processing algorithm that ranks items in a round-robin
fashion such that the fairness criterion is satisied for both items and users when ranking top-k items to users.
Later, Patro et al. [35] propose a slightly modiied approach for the same goal, improving upon Biswas and Barman
[6]. This study, while addressing the impact of selection bias, neglects to consider the inluence of position bias.
Wu et al. [45] tackles the same goal but proposes a fair method that accounts for position bias. Zhu et al. [49]
proposes fair ranking using adversarial learning for top-k recommendation, handling a form of selection bias.
The claimed performance of wide exposure methods is, however, arguable when there are inactive users, as items
shown to them would get lower attention. In contrast, our method handles such scenarios by aiming to remove
discrepancy at each user (in addition to accounting for all the biases).

Indeed, this is the theme of work that considers a narrower exposure resource where the fairness criterion is
deined per user. That is, fairness is based on the exposure provided by the ranking for each user. These works
account for position bias efects. Singh and Joachims [36] introduce a post-processing framework that maximizes
the utility of ranking system subject to fairness constraints where fairness of interaction is deined in addition to
fairness of exposure, but without accounting for trust bias. Basu et al. [5] extend [36] and present a framework
that is fair to both users and items. Later, Zehlike and Castillo [48] propose an in-processing algorithm based on
ListNet [8], a well-known ranking algorithm to minimize the inequality of opportunity in ranking, but focuses
only on the irst position in ranking. Singh and Joachims [37] propose a novel in-processing policy-gradient
approach that maximizes an objective function deined based on utility and fairness. Wang and Joachims [43]
present a ranking algorithm that enforces user fairness, item fairness and diversity. Singh et al. [38] propose a
novel deinition of fairness that incorporates uncertainty about items’ merit, and present a fairness framework
that maximizes utility subject to the fairness deinition. These methods fail to incorporate the selection bias efect.

Lastly, there is literature that considers a highly limited exposure resource and thus accounts for selection bias.
Zehlike et al. [47] present a post-processing fair top-k ranking algorithm that guarantees a required representation
for the under-represented group. But their method is limited to binary attributes. Later, Geyik et al. [17] presents
an eicient post-processing fair top-k ranking that meets fairness criteria at each ranking index and allows for
multiple attributes. Celis et al. [9] proposes a theoretical analysis of fair ranking computation that similarly
meets fairness requirements at each ranking index. More recently, Naghiaei et al. [30] propose a post-processing
two-sided fairness method that accounts for both user and item fairness, but without considering position bias

1https://github.com/edgeslab/FORGE

ACM Trans. Recomm. Syst.

6 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

Table 1. Glossary of Notations

Symbol Description

� user
� set of documents to be ranked for user �
� a document to be ranked
� a ranking function that assigns to each position a document
ℓ position in a ranking
�ℓ document positioned at position ℓ

� cutof (only top � documents are displayed to user)
rel� user-document perceived relevance score: P(�ℓ trusted | trust �)
rel user-document true relevance score
� possible value of relevance score
� possible value of trust parameter
� population of trusts
�+ℓ perceived relevance at rank ℓ of an observed relevant document
�−ℓ (�) perceived relevance at rank ℓ of an observed non-relevant document

C expected number of clicks for a group of documents

�� ��ℎ document group
� interpolation level for trading of fairness and utility
� relative number of interactions of each document group
� relative merit of each document group

(they assume binary exposure, such that all shown items have the same exposure score). These lines of work
do not account for trust bias, as they consider that items at diferent positions, once observed, get the attention
they deserve. In contrast, we provide an algorithm that accounts for all three types of biases. It is also worth
mentioning the work of Steck [39], where recommendations are calibrated to that the selection list relects the
various interests of users, as interpreted from their past interaction history. The goal of that work is not to directly
impose fairness to items, though it may indirectly lead to it. Thus it is not expressly guaranteed to achieve fairness
toward item groups. Note that [39] does not solve a ranking problem, but rather a selection problem. That said,
the analysis of the approach relies on submodular optimization, and in that respect has some commonality with
the theoretical insights that we provide in the present paper.
Recent work also considers real-time recommender systems where users enter the system dynamically [15,

18, 40, 46]. These deine and study fairness with the goal of satisfying the fairness of items over a time window,
which is thematically related but outside the scope of the current paper. Lastly, within the literature, there are
studies exploring fairness in relation to users, whereas our work is distinctly concentrated on ensuring fairness
towards items [24, 25].

3 PROBLEM SETUP

Consider the problem of fairly ranking itemsÐsuch as movies, songs, search results, resumes, etc.Ð to deliver to
a user � based on a speciic user query. Without loss of generality, in the rest of the paper, we call these items
documents and denote them by D. A ranking of these documents is a permutation � : {1, · · · , |D|} → D that

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 7

assigns to each position ℓ ∈ {1, · · · , |D|} a distinct document �ℓ . For each � ∈ D let rel(�) ∈ R+ be its relevance
to user �. The front-end application may arbitrarily truncate the ranking consideration to only up to position � ,
we refer to this as selection cutof � . Lastly, user � has a function rel� that captures their perceived relevance of a
document based on its position. This function has an unobserved trust parameter � , which thus inluences how
the ranked and selected documents are interacted with. Our goal is to achieve fairness of documents for any
given user �, even if diferent users have diferent relevance vectors, selection cutofs, and trust parameters. We
formalize this in Sec. 3.4. In what follows, unless needed for clarity, we omit speciically referring to user � since
they are ixed. Table 1 summarizes the notation we use in the paper.

3.1 Biases

The quality of a ranking is whether or not each document is interacted with / clicked. We model this by describing
the click probability based on each document’s position and relevance, and how the user inds documents relevant
(trusts them). In recent work (see [3] and [42], for example), it is customary to assume that a click occurs when a
document is both observed and trusted (perceived to be relevant) and that trust is independent of observation.
We formalize this through the model

P(�ℓ clicked | trust �) = P(�ℓ observed)P(�ℓ trusted | trust �). (1)

where P(�ℓ trusted | trust �) = rel� captures the perceived relevance of the user. Here we will clarify how this
model portrays observation bias, selection bias and trust bias.

Position bias. Under this bias, the observation probability is document-position dependent, where P(�ℓ observed) =

� (ℓ), with the choice � (ℓ) = 1/log(ℓ + 1) (customarily in base-2) commonly used. The user’s perceived rele-
vance, however, is independent of document position, and is simply the same as the true relevance score. Thus
P(�ℓ trusted | trust �) = rel� = rel(�ℓ).

Selection bias. selection bias voids observation probability beyond cutof � . A statistical model is not appro-
priate for this cutof, because it is arbitrarily set at deployment time (e.g., depending on front-end application or
device) and not relected in user data. Following the approach of Ovaisi et al. [34] and Oosterhuis and de Rijke [32],
we adopt an adversarial model, by characterizing performance at each � . Under this bias P(�ℓ observed) = 1 for
all documents that appeared in top � results, and P(�ℓ observed) = 0 otherwise. The user’s perceived relevance
is simply the same as the true relevance score. Thus P(�ℓ trusted | trust �) = rel� = rel(�ℓ).

Trust bias. When dealing only with trust bias, observation probability is position-independent, which leads
P(�ℓ observed) = 1. However, it efectively alters the perceived relevance of documents across positions. Thus
perceived relevance now depends on both the true relevance and position, as opposed to position bias where
it only depends on the true relevance. We can write this as P(�ℓ trusted | trust �) = rel� (rel(�ℓ), ℓ ; �). We can
understand the function rel� (�, ℓ ; �) as taking in a speciic relevance value � and modifying it per position ℓ ,
according the the trust parameter � of the user. We use a semicolon before � , to remind us that this describes a
conditional quantity, that changes with the amount of trust. Our methodology applies for general rel� , but for
concreteness we consider a realistic trust bias empirically determined by [3] and expressed in simpliied form by
[42], cf. Eq. (11) and Eq. (45):

rel� (�, ℓ ; �) = ��+ℓ + (1 − �)�−ℓ (�), where �+ℓ = 1 − min{ℓ,25}+1
100 and �−ℓ (�) =

�
min{ℓ,10} . (2)

This simultaneously captures two forms of distortions to the perceived relevance: reduced trust in relevant
documents at larger ℓ and increased undeserved trust in irrelevant documents at smaller ℓ .

ACM Trans. Recomm. Syst.

8 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

Position, selection, and trust bias. Finally, we incorporate all biases in a single interaction/click model:

P(�ℓ clicked | trust �) =

{

P(�ℓ observed)P(�ℓ trusted | trust �), for ℓ ≤ �

0, otherwise

where P(�ℓ observed) = 1/log(ℓ + 1) and P(�ℓ trusted | trust �) = rel� is derived from Eq. (2).

3.2 Fairness

What is a meaningful notion of fairness in this model? Recall that we wish for rankings to give fair interaction
across groups of documents. Denote these groups by�� ⊂ D, for � = 1, · · · , �. These partition the set of documents
D. At a high level, fairness is measured by comparing the interaction provided by the ranking to a given notion
of parity or equity across groups. For example, demographic parity aims to afect Ð provide interaction with Ð
each group equally [7, 19, 36]. Alternatively, one may aim to afect groups proportionally to their utility to ofer
treatment parity [12, 27, 36].
In the present context, any lexible group fairness metric needs three components: a description of the

actual interaction each document group receives from the ranking, a description of the desired parity (the ideal
interaction), and a distance to compare them. Most importantly, the way interaction is measured needs to (a)

account for the three highlighted types of bias (position, selection, and trust) and (b) be at the scope of users and
not of the entire population, i.e., per-user fairness. To highlight the importance of (b), one scenario where it is
critical is when some users have wildly diferent activity levels, resulting in actual interaction with the document
groups that is very diferent from the one assuming everyone actively interacts.

Interaction. Building on prior work [36], we propose using the relative interaction to describe diferences across
groups. This can be represented as a probability measure � over all groups, which is a vector:

� (�, �) :=
(
interaction(�1,�,�)

interaction(�)
, · · · ,

interaction(��,�,�)
interaction(�)

)

. (3)

Here, the total expected interaction resource up to position � is deined as

interaction(�) :=

�︁

ℓ=1

1
log(ℓ+1)
︸ ︷︷ ︸

P(�ℓ observed)

rel� (rel(�ℓ), ℓ ; �)
︸ ︷︷ ︸

E� [P(�ℓ trusted | trust�)]

, (4)

where rel� is speciically given by Eq. (2) and � = E[�] is the ensemble-averaged trust parameter. Intuitively,
interaction(�) represents the expected number of interactions/clicks received by documents if the ranking is cut
of at � , paralleling C̄ in the introductory example of Fig. 2. Similarly, the restriction of this for each group�� is:

interaction(�� , �, �) :=
∑�

ℓ=1 ✶{�ℓ ∈ �� }
rel� (rel(�ℓ),ℓ ;�)

log(ℓ+1) .

This measures the total interaction received by group �� , which represents the expected number of documents

interacted with in that group. Thus, interaction(�� ,�,�)
interaction(�)

indicates the fraction of total interactions the ranking allocates

to �� .
Note how: (a) the interaction resource depends on all three types of biases, position bias through the 1

log(ℓ+1)

term, selection bias through the cutof at � , and trust bias through the perceived relevances, and (b) the scope
is per-user, owing to the use of individual relevances.

Parity. We represent parity via a base measure � , which is a probability vector that we aim for � to resemble.
As particular examples, we can parallel the notions used in [36]:

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 9

• Demographic parity can be represented by choosing �� proportionally to the size |�� | of group �� ,

� =
1

|D |
(|�1 |, · · · , |�� |) .

• Treatment parity can be represented by choosing �� proportionally to the the merit
∑

�∈��
rel(�) of group

�� :
� =

1
∑

�∈D rel(�)

(∑

�∈�1
rel(�), · · · ,

∑

�∈��
rel(�)

)

. (5)

Although fairness in this paper is illustrated mainly through these two notions, the choice of � allows for
lexible modeling. We particularly adhere to treatment parity, as it aligns fairness with the user’s preferences.

Distance. To compare � in (3) to a choice of � , we choose a distance dist(�,�) between probability measures,
which we assume to be bounded, dist(�,�) ≤ 1 without loss of generality. We consider two distances:

• Jensen-Shannon Distance Ð This is the main distance used in our algorithm and experimental results. Let
� =

1
2 (� +�) be the arithmetic midpoint of � and � , then the Jensen-Shannon distance is deined as [14]:

distJSD (�,�) := JSD(� ∥�) = 1
2KL(� ∥�) + 1

2KL(� ∥�) .

Recall that KL-Divergence between � and � is deined as KL(�∥�) =
∑

� �� log2
��
��
.

• �1 Distance Ð This distance lends itself more easily to analysis, and is used for theoretical insight. It is
equivalent to (twice) the total variation distance, and is deined as:

dist�1 (�,�) := ∥� −� ∥1 =
∑�

�=1 |�� −�� |.

Both distances are straightforward to implement and the observed behavior in terms of fairness-utility trade-ofs
is very similar. This can be attributed to the fact that JSD is (up to constant factors) upper bounded by �1 and
lower bounded by �1-squared (cf. Pinsker’s inequality). The �1 distance is very beneicial to simplifying the
theory. But we focus only on JSD for experimental evaluations, since it more closely relates to other reference
fairness notions.

Fairness Metric. We now deine the fairness of a ranking at cutof � as follows:

fairness(�, �) := 1 − dist (� (�, �), �) . (6)

This gives us a number in [0, 1], as both distances are in the [0, 1] range. Note that the closer the relative
interaction of each group is to the desired parityÐthe smaller the distance between � (at �) and �Ðthe larger is
this fairness metric.
We end by mentioning that this notion of fairness is grounded in and extendsÐnotably by simultaneously

accounting for all three types of biases per-userÐprior suggestions in the literature (cf. the use of clickthrough
rate for fairness as in Eq. (9) of [36], the use of JSD in [28], and the use of selection bias with arbitrary cutofs in
[17].)

3.3 Utility

The goal of recommender systems is to maximize the utility of ranking for users by exposing them to relevant
documents. In the present context, this continues to be a key objective, along with providing the desired fairness
toward documents. We adhere to classical measures of utility. For each � ∈ D let rel(�) ∈ R+ be its relevance. For
every cutof � , the utility of ranking is given by the discounted cumulative gain of the ranking � :

DCG(�, �) :=
∑�

ℓ=1
2rel(�ℓ)−1
log(ℓ+1) .

It is customary to normalize DCG by its largest achievable value, to get the normalized discounted cumulative
gain:

nDCG(�, �) := DCG(�,�)
I(�)

, I(�) := max� DCG(�, �). (7)

ACM Trans. Recomm. Syst.

10 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

If document relevances are accurately predicted, and sorted from most to least relevant, nDCG reaches its
highest value. That is, nDCG(�, �) = 1, which translates to the highest user satisfaction from ranking.

3.4 Fairness-Utility Trade-Of

Now that we have deined the fairness and utility objectives, we are ready to deine the main goal of our paper,
obtaining a ranking that achieves an optimal trade-of between fairness and utility. At each cutof � , there is a
multi-objective optimal Pareto frontier which can be characterized in one of two dual forms: (1) by ixing one of
fairness/utility and optimizing the other, or (2) by interpolating between fairness and utility and optimizing the
resulting objective. Most prior work attempting to achieve such a trade-of in fair ranking adhere to (1). Here we
propose form (2), as it lends itself to an elegant algorithmic solution.

Optimal trade-of. Given an interpolation level � ∈ [0, 1], a ranking that achieves an optimal trade-of at cutof
� is:

�★,� ∈ argmax
�

(1 − �) nDCG(�, �) + � fairness(�, �), (8)

where � = 0 and 1 respectively correspond to ignoring fairness or utility entirely, and 0 < � < 1 achieves a certain
desired trade-of between the two objectives. The optimal algorithm is a brute-force algorithm that considers all
possible permutations of |D| documents, and at each cutof � , chooses a permutation that has the highest desired
combination of nDCG(�, �) and fairness(�, �). However, the best permutation at cutof � and cutof � ′ > � may
order documents diferently in the range 1, · · · , � . Thus, there may not be a single ranking that is optimal at
every cutof � . The full Pareto optimality frontier is indeed over 2|D| objectives, i.e., the utility and fairness at
every possible cutof � = 1, · · · , |D|. Yet, the algorithm we present next produces a single ranking. While we
can’t expect it to achieve the trade-of of �★,� at every � , the theoretical insight in Sec. 4.2 as well as empirical
results in Sec. 5 suggest that one could at least hope to be within a constant factor of this optimal trade-of with a
single ranking.

4 FORGE: FAIRNESS OPTIMIZATION FOR RANKING VIA GREEDY EXPLORATION

We now propose our fair ranking algorithm that aims to approach the optimal fairness-utility trade-of. It is a
post-processing fairness-aware re-ranking method, which we call Fairness Optimization for Ranking via Greedy
Exploration (FORGE).

4.1 Algorithm

In addition to not producing a single ranking at all cutofs � , the optimization in (8) is combinatorial in nature. A
brute-force search is not feasible unless we have small values of � and |D|. Instead, we give a greedy ranking
algorithm that iterates over cutofs � and works as follows: it chooses only one of the remaining documents which,
when appended to the current ranking, maximizes the interpolated objective. It then updates the interaction of the
corresponding group, allowing fairness and nDCG to be calculated at the next cutof. The iterations can continue
either to the end of documents |D|, or may be stopped at a speciied maximal ranking index. We describe this
formally in pseudocode in Algorithm 1. Note that brackets [,] indicate concatenation. In this pseudocode, � is
represented as a list, which can be interpreted in this paper’s equations as a function mapping each position to
the corresponding document in the list.

The argmax in Algorithm 1 is written in terms of the main trade-of objective as in (8). But because the search
only afects ranking index � , and cumulative terms 1 through � − 1 in nDCG (7) and fairness (6) only depend on
the (unchanging) ranking indices up to � − 1, we can equivalently write it as:

argmax�∈D\�
1−�
I(�)

2rel(�)−1
log2 (�+1)

+ � fairness([�,�], �).

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 11

Algorithm 1: FORGE

Input: D, �, (��), �, � , t;

rel ← Run the base-ranker to get predicted relevance scores for user-document pairs;

for � = 1, · · · , � do

interaction(��) = 0;

end

� = 0; � = ∅;

for � = 1, · · · , |D| do

�★ = argmax�∈D\� (1 − �) nDCG([�,�], �) + � fairness([�,�], �);

� ← [�,�★];

for � = 1, · · · , � do

if �★ ∈ �� then

interaction(��)+ =
rel� (rel(�★),� ;�)

log2 (�+1)
;

break;

end

end

end

� ← Final fair ranking;
Return �

By maintaining a non-normalized � , this objective can be computed in O(1) time for every remaining document,
by updating only one coordinate of � and its normalization. The algorithm thus runs only in O(|D|2) time.

4.2 Theoretical Insight

The position and trust bias aspects of the FORGE algorithm are straightforwardly optimized. The main question
about its usefulness is whether a single ranking can compete with an optimal ranking at every cutof � , and thus
account for selection bias as well. The goal of this section is to support the insight that a greedy heuristic as in
Algorithm 1 is reasonable for this purpose. We later also support this empirically in Sec. 5.6.

To focus on selection bias, we simplify the interaction in the fairness notion to take only exposure into account,

i.e. we let �� (�, �) ∝
∑�

ℓ=1
✶{�ℓ ∈�� }
log2 (ℓ+1)

in Eq. (3). What makes our task challenging is the combinatorial nature of

the problem. To alleviate this, we turn the ranking problem to a choice problem by assuming oracle access to
the optimal ranking, once the best � documents for the task are chosen. The question becomes: how well can

greedy choice compete with optimal choice at every cutof �? To simplify, we work with a proxy objective
that lends itself to easier analysis, while retaining key properties of the original objective.

Proxy Objective. Assume documents D are partitioned into two groups of equal size,� and�c. Let � > 0 and
� > 0 be two constants, used to abstract both normalizations and trade-of parameter � . Deine two set-valued
functions �+ and �− on subsets � ⊆ D:

�± (�) := max�∈perm(�)

∑ |� |
ℓ=1

[

� 2rel(�ℓ)−1
log2 (ℓ+1)

± �
(
✶{�ℓ ∈� }
log2 (ℓ+1)

−
✶{�ℓ∉� }
log2 (ℓ+1)

)]

.

Using these, deine also � (�) := min {�+ (�), �− (�)}. For the remainder of this section, let the maximization of

� be a proxy to the original trade-of objective. To justify this choice, let us establish a qualitative relationship

ACM Trans. Recomm. Syst.

12 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

between the two. Lower bounding minmax by maxmin:

� (�) ≥ max�∈perm(�) �
∑ |� |

ℓ=1
2rel(�ℓ)−1
log2 (ℓ+1)

− �
�
�
�

∑ |� |
ℓ=1

(
✶{�ℓ ∈� }
log2 (ℓ+1)

−
✶{�ℓ∉� }
log2 (ℓ+1)

)�
�
� .

The irst term in the bound is the cumulative discounted gain. The second term is our fairness notion with the
�1 distance between � and � =

(
1
2 ,

1
2

)

, the special case of demographic parity with equal-sized groups. This is
because:

�
��1 −

1
2

�
� +

�
��2 −

1
2

�
� =

�
��1 −

1
2 (�1 + �2)

�
� +

�
��2 −

1
2 (�1 + �2)

�
�

= 2
�
� 1
2�1 −

1
2�2

�
� = |�1 − �2 | .

Note that nDCG and fairness with the chosen � have the same normalization I(�), which varies with � . However,
this afects neither the greedy choice nor the constant-factor guarantee of Theorem 1, which is why we can
consider � and � to be constants throughout. As a result � is an upper bound on the objective function in this
special case, and can be thought of as a proxy objective.

Proxy Algorithm. Assume oracle access to � : this places the onus of the ranking algorithm on choice rather
than permutation, by making the latter ‘free’. Namely, for any given cutof � , the best ranking up to position �

can be determined by irst selecting the best subset �, by maximizing � , and then inding the best permutation �

on �. Towards this goal, consider the following procedure:

• Start with �0 = ∅

• Iterate over ℓ = 1, · · · , �max:

�ℓ = �ℓ−1∪
{

argmax�∈D\�ℓ−1
� (�ℓ ∪ {�})

}

This procedure maintains the spirit of Algorithm 1 but idealizes it, namely selecting greedily but allowing
to re-rank after every new choice. Even in this idealized form, because the choice is performed greedily, we
can formally pose the key question: at every cutof � , how close is � (��) to the true maximal objective

max�: |� |=� � (�)?

Submodularity. Observe that if the objective were to maximize either �+ or �− , then greed would be suicient
(see proof of Lemma 1.) The same cannot be done with � . However, the construction of � from �+ and �− confers
it key desirable properties, as given by Lemma 1:

Lemma 1. � is submodular, i.e. all � ⊂ � ⊆ D and every � ∉ �, � (� ∪ {�}) − � (�) ≥ � (� ∪ {�}) − � (�). � is

also monotone, i.e. for all � ∈ D, � (� ∪ {�}) − � (�) > 0.

Proof. (Sketch) The key to this property is to rely on the fact that �+ and �− can be optimized by sorting the
elements of �, then using the telescoping properties of the sum to compare the impact of an addition to the set.
In place of a sketch, we illustrate this by proving that �+ is monotone and submodular. The proof for � is more
elaborate but follows the same essential steps. (Of course the steps trivially extend to �− , but it’s not suicient
to stop there because in general the minimum of two submodular functions is not itself submodular.) Consider
two nested choices � ⊂ �. The optimizing permutation � for each is obtained by sorting documents � ∈ � or �
according to decreasing

� (�) := � (2rel(�) − 1) + � (✶{� ∈ �} − ✶{� ∉ �}) .

Consider next a new document � ∉ �, and write Δ(�) := �+ (� ∪ {�}) − �+ (�) and Δ(�) := �+ (� ∪ {�}) − �+ (�).
Since documents ranked higher than � do not afect Δ, it suices to compare the contributions of all documents
at the position of � and lower. Number such documents in � as (�0 ≡ �), �1, · · · , �� in their �-sorted order. Say
the optimal position of � in � ∪ {�} is � , then that of �ℓ would be � + ℓ . We then have that:

Δ(�) =
� (�)

log(�+1) +
∑�

ℓ=1

(
� (�ℓ)

log(�+ℓ+1) −
� (�ℓ)

log(�+ℓ)

)

.

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 13

By using the fact that these documents are sorted, we can telescope this sum to obtain that Δ(�) ≥ 0, thus
establishingmonotonicity. Next, let� (ℓ) indicate the optimal position of�ℓ in �,� (0) being that of� by convention.
Since � ⊃ �, we have � (ℓ) ≥ � + ℓ . By telescoping between successive � (ℓ) positions, we get that:

Δ(�) ≤
� (�)

log(� (0)+1) +
∑�

ℓ=1

(
� (�ℓ)

log(� (ℓ)+1) −
� (�ℓ)

log(� (ℓ−1)+1)

)

.

Finally, by telescoping the diference and taking advantage of the decay of the logarithmic discounts, we obtain
that Δ(�) − Δ(�) ≥ 0, thus establishing submodularity. This approach extends to � . □

Intuitively, submodularity means that a new addition is more valuable to a smaller than a larger set and
monotonicity means that every new addition increases the objective.

Near-Optimality of Greed. The submodularity property of this proxy objective means that the corresponding
greedy algorithm is near-optimal.

Theorem 1. At every � = 1, · · · , �max, we have: � (��) ≥
(

1 − 1
e

)

max�: |� |=� � (�).

This follows directly from classical submodularity results [31]. See also Theorem 1 in [23] for a more recent use
in computer science. What is remarkable in this setting is that despite the fact that, generally, entirely diferent
(non-nested) choices may be needed to achieve the optimal solution at every cutof � , yet growing (nested)

choices are suicient for a constant-factor approximation to the optimal solution. As our experiments
demonstrate, the same appears to also hold for rankings. In general, an entirely diferent ranking is needed
to achieve the optimal trade-of at each cutof. But Algorithm 1, which produces a single ranking, performs
well across all cutofs. Thus, while the proxy objective and procedure presented here do not correspond to this
algorithm exactly, they do validate its overall qualitative behavior.

5 EXPERIMENTS

We now provide experimental results to demonstrate how our methodology navigates the fairness and utility
landscape. We introduce datasets, the base-rankers employed in post-processing fair rankings, summarize the
baselines that we compare against, discuss the signiicance of our results compared to the baselines, and assess
optimality empirically by comparing to brute-force search.

5.1 Datasets

We perform evaluations using datasets tailored to various use cases, encompassing both personalized and non-
personalized datasets. Personalized datasets focus on individual users’ preferences for tailored recommendations,
while non-personalized datasets emphasize general trends and patterns, making them suitable for ranking tasks.
Speciically, we employ MovieLens1M, MovieLens100K, and Epinion as examples of personalized datasets, while
the German Credit Dataset [11] and COMPAS datasets [21] serve as illustrations of non-personalized datasets.
Further details about each dataset are presented below.

MovieLens1M Dataset. This publicly available dataset contains 1, 000, 000 ratings (1-5 stars) from 6, 000 users
on 4, 000 movies collected from the MovieLens website[2, 20]. This data also includes user demographic features
such as age, gender, occupation, etc., as well as movie features including movie title, release date, action, etc. We
binarize the interaction such that it is 1 if the user rated the movie and 0 otherwise. Also, to reduce the sparsity,
we drop users and movies with less than 150 number of interactions.

ACM Trans. Recomm. Syst.

14 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

MovieLens100k Dataset. This dataset is smaller than MovieLens1M dataset that contains 100, 000 ratings (1-5
stars) from 943 users on 1, 682 movies. Similar to the MovieLens1M dataset, we binarize the interaction such that
it is 1 if the user rated the movie and 0 otherwise. Also, to reduce the sparsity, we drop users and movies with
less than 80 number of interactions.

Epinion Dataset. This is a publicly available dataset that contains 664, 824 ratings (1-5 stars) from approxi-
mately 40, 163 users on 139, 738 items collected from the shopping website[1]. We binarize the interaction such
that it is 1 if the user rated the item and 0 otherwise. Also, to reduce the sparsity, we drop users and items with
less than 24 interactions.

German Credit Dataset. We use the German Credit dataset, which is publicly available [11]. This dataset
contains 1, 000 applicants with corresponding non-PII features, including age, gender, job, marital status, etc.
Each applicant is assigned a binary credit rating based on their set of features by a German credit agency. This
data reveals that, on average, women receive a lower credit score [47]. Motivated by this fact, we use gender as
the protected attribute.

COMPAS Dataset. This dataset is also publicly available [21]. It contains 6, 167 criminal defendants with
corresponding non-PII features, including age, gender, race, ofense date, arrest date, etc. Each defendant is
assigned a binary two-year recidivism score based on their set of features. This data reveals that, on average,
African-American defendants were far more likely than white defendants to be incorrectly judged to be at a
higher risk of recidivism. Motivated by this fact, we use race as the protected attribute.
Table 2 illustrates the datasets used in this paper

Dataset MovieLens1M MovieLens100K Epinion German Credit COMPAS

Protected attribute popularity popularity popularity gender race

Public/Private public public public public public

Personalized/

Non-personalized
Personalized Personalized Personalized Non-Personalized Non-Personalized

Size

1, 000, 000 ratings

4, 000 movies

6, 000 users

100, 000 ratings

1, 682 movies

943 users

664, 824 ratings

139, 738 items

40, 163 users
1, 000 applicants 6, 167 defendants

Table 2. Datasets used in experimental analysis.

5.2 Base-rankers

We conduct evaluations using diferent base-rankers customized for diverse scenarios, covering both personalized
and non-personalized domains. Speciically, we utilize VAECF [26], a base-ranker designed for personalization
and recommender systems. Additionally, we employ FeatNet, which can serve both personalization and non-
personalization purposes based on whether user features are included as input or not. Below, we provide
descriptions for each of the base-rankers used in our evaluations:

VAECF [26]. This base-ranker is speciically designed for personalization and recommender systems. It extends
variational autoencoders to collaborative iltering. It introduces a generative model with a multinomial likelihood
and employs Bayesian inference for parameter estimation. This model enables us to forecast relevance scores
for user-item pairs within the test dataset, which can subsequently be utilized by post-processing baselines to
construct a fair ranking.

FeatNet. This base-ranker employs a neural network model to predict user-item relevance scores, utilizing
their features as inputs, with a focus on optimizing for nDCG. We refer to it as ’FeatNet’ for convenient reference

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 15

throughout the paper. To ensure a fair assessment alongside Fair-PG Rank [37], we adopt the same model
architecture to the one used in Fair-PG Rank. However, note that the model used by Fair-PG Rank is designed to
predict a hybrid score for user-item pairs, taking both fairness and ���� into account. To obtain the FeatNet
base ranker, we deactivate its fairness component (� = 0) to solely optimize for ���� . This gives us relevance
scores for user-item pairs without any fairness consideration, which can then be utilized by the post-processing
baselines to achieve a fair ranking. Note that when provided with both user and item features, this base-ranker
can consider individual preferences, resulting in a personalized ranking algorithm. Without this input, it is unable
to generate personalized rankings and can only produce pure rankings.

5.3 Baselines

Here, we present fair baselines in both in-processing and post-processing domains for fair ranking. In-processing
fair ranking baselines can be divided into two categories: those originating from the recommender system domain
and those from the pure ranking domain. The former pertains to personalized ranking, while the latter pertains
to non-personalized ranking. Conversely, post-processing fair ranking baselines are generally applicable to both
recommender systems and pure ranking domains. The reason for this adaptability is that post-processing fair
rankings do not directly aim to predict user-item relevance labels themselves as opposed to in-processing fair
ranking baselines. Post-processing methods focus on the inal stage of ranking, where they utilize the predicted
user-item relevance values (obtained either through personalized or non-personalized approaches using the
base-ranker) to re-rank the items and achieve a fairer inal ranking.

Fairness-aware ranking. [17]: This is a post-processing method, and thus is applicable to both the recom-
mender system and pure ranking domain. We use the exact same learned relevance score function on test queries.
Similarities: This method addresses selection bias, by providing as much fairness as possible at each cutof
� . The fairness metric can be chosen to represent treatment parity. Diferences: The fairness metric does not
address position bias and trust bias, relying merely on counts (size of groups) to measure exposure diferences
across groups. This method does not explicitly explore trade-ofs, and produces only a single feasible ranking,
with speciic fairness and utility at each cutof � .

PostProc. [36]: This is also a post-processing method which is applicable to both the recommender system
and pure ranking domain. We use the exact same learned relevance score function on test queries. Similarities:

The fairness metric takes into account position bias. It is chosen to represent treatment parity. We follow the
lead of [37] that enables this method to strive to explore utility-fairness trade-ofs by adjusting the level � of
linear combination with the fairness metric. Diferences: Fairness is accounted for only at the last position, as it
focuses on full ranking. That is, it relies on exposure resources over the whole spectrum of ranking, meaning that
selection bias is not addressed. This approach also does not account for trust bias.

CPFair. [30]: This is also a post-processing approach that is relevant to both the domain of recommender
systems and the domain of pure ranking. We use the exact same learned relevance score function on test queries.
This method is a two-sided fairness re-ranking method rooted in optimization principles, which simultaneously
incorporate fairness constraints from both the consumer and producer perspectives within a uniied objective
framework. To have a fair comparison with our approach, we deactivated its consumer fairness component to
focus solely on producer fairness (fairness toward items). Similarities: The fairness metric takes into account
selection bias where a truncated ranking might be displayed to the user. Diferences: The underlying goal
of this method is to rank � items from a pool of � items, where |� | < |� |. Consequently, it relies on the user
interface to display � = |� | items to the user. Due to this reliance, it may encounter challenges in upholding
fairness requirements if fewer items are presented to the user on the front-end. Additionally, the approach does
not consider position bias and trust bias.

ACM Trans. Recomm. Syst.

16 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

Fair-PG Rank. [37]: This is an in-processing method: instead of learning relevances, this approach learns
how to rank by using a parametrized distribution over rankings, conditionally on the features of the query/user.
Learning occurs via empirical risk minimization on the training data, where the risk, as in this paper, is also a
linear combination of both the utility of the ranking and its fairness. While not inherently originating from the
realm of recommender systems, it can still ofer personalized prediction if equipped with both user and item
features. Similarities: The fairness metric takes into account position bias. It can also be chosen to represent
treatment parity. By adjusting the level � of linear combination with this metric, this method also strives to
explore utility-fairness trade-ofs. Diferences: Fairness is accounted for only at the last position, as it focuses on
full ranking. That is, it relies on exposure resources over the whole spectrum of ranking, meaning that selection
bias is not addressed. This approach also does not account for trust bias.

DELTR. [48]: This is also an in-processing method, which reduces unfairness at training time. It extends
ListNet [8], a well-known listwise learning-to-rank method, with a fairness objective that reduces discrimination
by focusing on the top position in the ranking. Although not originating from the recommender system ield, it
possesses the ability to provide personalized prediction when user and item features are available. Similarities:

The fairness metric takes into account position bias. By adjusting the level � of linear combination with this
metric, this method also strives to explore utility-fairness trade-ofs. Diferences: It does not consider selection
bias and trust bias efects.
Table 3 provides information about these baselines.

Fairness method FORGE Fairness-aware ranking CPFair PostProc Fair-PG Rank DELTR

In-processing/

Post-processing
post-processing post-processing post-processing post-processing in-processing in-processing

Bias considered

position bias

selection bias

trust bias
selection bias selection bias 2 position bias position bias position bias

Interpolation level

for fairness and utility
� Ð � � � �

Table 3. Fair ranking algorithms evaluated in experimental analysis.

5.4 Conducting ranking tasks for each dataset

In order to rank documents for each ranking task, we need to predict a score for all documents under a query/user,
and rank them accordingly. In-processing baselines (Fair-PG Rank and DELTR) use training data to learn a fair
ranking function. This function predicts a hybrid score that accounts for both fairness and utility, which can be
applied to the test set.
Unlike in-processing methods, post-processing fair rankings (FORGE, Fairness-aware ranking, CPFair, and

PostProc) require pre-existing relevance scores. Consequently, a base-ranker is essential to generate these scores.
The relevance score can be learned through FeatNet or VAECF, depending on the speciic dataset. We then use
the predicted relevance score for ranking the test queries using FORGE as well as other post-processing baselines.

Below we describe how we conduct ranking tasks for each dataset:

MovieLens1M Dataset. We randomly split each dataset into train and test sets by 4 : 1. We categorize items into
two groups. Following the lead of [30], we select the top 5% of movies according to the number of interactions they
received from the training set as the popular movies, i.e., short-head movies, and the rest as the unpopular items

2As opposed to FORGE and Fairness-aware ranking, CPFair does not aim to produce a fair ranking at each cutof � , but rather to achieve

fairness in ranking at a speciic cutof �

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 17

or long-tail movies for which we aim to impose fairness. Finally, for the re-ranking experiment, we aim to provide
a fair ranking for the top 50 movies with the highest number of ratings which potentially include movies from
both short-head and long-tail groups. To achieve this, we train the base-ranker VAECF to forecast user-movie
relevance scores speciically for these 50 movies within the test dataset. Subsequently, these predicted relevance
scores are utilized for the FORGE algorithm and other post-processing baselines. We repeat this experiment 5
times and report the average, minimum, and maximum results.

Epinion Dataset. We take a similar approach as with the MovieLens1M dataset, and randomly split each dataset
into train and test sets by 4 : 1. We categorize items into two groups i.e., popular (short-head) movies, and
unpopular (long-tail) movies. We train base ranker VAECF to predict user-movie relevance labels for the top 30

movies with the highest number of ratings in test data. Similarly, we later use these predicted relevance scores for
FORGE and other post-processing baselines. We repeat this experiment 5 times and report the average, minimum,
and maximum results.

MovieLens100K Dataset. For this dataset, we apply both VAECF and FeatNet as the base-rankers.
When predicting user-movie relevance score with VAECF, we take a similar approach as with the MovieLens1M

dataset, and randomly split each dataset into train and test sets by 4 : 1. Items are classiied into two distinct
groups: popular (short-head) movies, and unpopular (long-tail) movies. The base ranker VAECF is trained to
anticipate user-movie relevance labels for the top 30 movies with the highest number of ratings within the test
data. Analogously, these forecasted relevance scores are subsequently applied in FORGE and other post-processing
baselines. We repeat this experiment 5 times and report the average, minimum, and maximum results.
When predicting user-movie relevance score with FeatNet, we randomly choose 150 users and 150 movies,

and for each user and for each movie, we concatenate user and movie features, and assign label 1 if the user
interacted with the document, and 0 otherwise. This helps FeatNet predict personalized relevance scores. Finally,
for each user, we split the movies into training and testing sets by 4 : 1, which leads to test data having 30 movies
to be ranked for each user. Following the work of [16], we assign each movie a popularity score based on the
number of interactions it received in total and use movie popularity as the protected attribute. We select the
bottom 20% of movies with the lowest number of interactions as unpopular and the rest as the popular movies.
We repeat this experiment 5 times and report the average, minimum, and maximum results.

German Credit Dataset. The dataset lends itself naturally to a binary (credit-worthy or not) classiication task.
We follow the lead of [37] to create a synthetic ranking task from this data. We do this by learning to rank, on
random queries generated as follows. Each query consists of 25 random applicants, sampled at a ratio of 4:1 of
credit-worthy or not. Training data has 500 such queries, while test has 100. As previously stated, we consider
gender as the protected attribute. We repeat this experiment 5 times and report average, minimum, and maximum
results.

COMPAS Dataset. Similarly to the German Credit dataset, this data lends itself naturally to a binary (two-year
recidivism or not) classiication task. We create a synthetic ranking task from this data analogous to the German
Credit dataset, where train and test data have 500 and 100 queries each with 25 randomly chosen defendants
respectively. As previously stated, we consider race as the protected attribute. We repeat this experiment 5 times
and report the average, minimum, and maximum results.

5.5 Evaluation

To highlight the ability of our approach to tradeof utility with a fairness metric that takes into account position
bias, trust bias, and selection bias, we plot average 1 − fairness (fairness violation) and average nDCG achieved
by each method. We report these results when � ∈ [0, 1] for FORGE, when � ∈ [0, 100] for Fair-PG Rank, and

ACM Trans. Recomm. Syst.

18 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

� ∈ [0, 106] for DELTR, when � ∈ [0, 0.01] for CPFair, and when � ∈ [0, 0.1] for PostProc. Fairness-aware ranking
does not aim for a trade-of and is plotted as a single point, i.e. a single pair (nDCG, 1 − fairness). Similarly to
[42], we set the average trust parameter � = 0.65. � is chosen to address treatment parity, as deined in Eq. (5).
We segment our evaluation into two sections: one where we employ FeatNet as the base-ranker, and the other
where we use VAECF as our base-ranker.

When FeatNet is used as the base ranker, Fig. 3, Fig. 4, and Fig. 5 illustrate the results on the German Credit
dataset, COMPAS dataset, and MovieLense100K dataset respectively at the intermediate cutof (� < |D|) and
maximal cutof (� = |D|).
When VAECF is used as the base ranker, Fig . 6, Fig. 7 and Fig. 8 illustrate the results on the MovieLens100K

dataset, Epinion dataset, and MovieLense1M dataset respectively.
We now elaborate on how each type of bias may promote some amount of unfairness, and on why fair

algorithms that do not take into account each of these biases have undesirable performance.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
nDCG@5

0.00

0.02

0.04

0.06

0.08

0.10

Fa
irn

es
s v

io
la

tio
n

(1
-F

ai
rn

es
s)

= 0= 100
= 0

= 106

= 0

= 1

FAIR-PGRANK ([0, 100])
DELTR([0, 106])
FORGE ([0, 1])
Fairness-aware ranking

(a) � = 5, |D| = 25

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94
nDCG@25

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Fa
irn

es
s v

io
la

tio
n

(1
-F

ai
rn

es
s)

= 0
= 100

= 0

= 106

= 0

= 1

FAIR-PGRANK ([0, 100])
DELTR([0, 106])
FORGE ([0, 1])
Fairness-aware ranking

(b) � = 25, |D| = 25

Fig. 3. German Credit data with FeatNet as base-rankerÐ average nDCG vs. average 1−fairness at intermediate and maximal

cutof � on test data. Variance is shown in gray.

5.5.1 When FeatNet is the base-ranker. Here, we evaluate fair baselines when we choose FeatNet as our
base-ranker.

Impact of position bias and trust bias. Fairness-aware ranking accounts for selection bias but fails to account
for position bias and trust bias. Thus, to highlight the efect of these two biases, we compare the performance
of our approach with Fairness-aware ranking for all datasets. Figure 3, 4, and 5 show that FORGE provides
an efective trade-of between utility and fairness. In addition, a good performance at both intermediate and
maximal cutofs is achieved for both our algorithm and Fairness-aware ranking. Thus if the front-end application
shows a truncated list of documents to a user, we can expect a strong fairness vs. utility guarantee. In contrast,
since Fairness-aware ranking does not take into account position bias and trust bias, our approach dominates
it (outperforms it in both nDCG and 1 − fairness) both at intermediate and maximal cutof � within a certain
range of � . More speciically, FORGE outperforms Fairness-aware ranking in both nDCG and 1 − fairness for
German Credit dataset when � ∈ [0.5, 0.9] at � = 5 and when � ∈ [0.1, 0.9] at � = 25, for the COMPAS dataset
when � ∈ [0.1, 0.3] at � = 5 and when � ∈ [0.3, 0.9] at � = 25, and for the MovieLense dataset when � ∈ [0.2, 0.9]

at � = 5 and when � ∈ [0.2, 0.9] at � = 30. Also, Fairness-aware ranking is not designed to achieve a trade-of
between utility and fairness, and cannot, as FORGE does, signiicantly improve fairness for only a small reduction

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 19

in utility. Thus, if highly-ranked applicants are over-trusted, this baseline would not only be less fair across
groups but would also not achieve the highest utility possible, for the amount of fairness it provides.

0.35 0.40 0.45 0.50 0.55 0.60 0.65
nDCG@5

0.02

0.04

0.06

0.08

0.10

Fa
irn

es
s v

io
la

tio
n

(1
-F

ai
rn

es
s)

= 0

= 100

= 0

= 106

= 0

= 1

FAIR-PGRANK ([0, 100])
DELTR([0, 106])
FORGE ([0, 1])
Fairness-aware ranking

(a) � = 5, |D| = 25

0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825
nDCG@25

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Fa
irn

es
s v

io
la

tio
n

(1
-F

ai
rn

es
s)

= 0

= 100

= 0

= 106

= 0

= 1

FAIR-PGRANK ([0, 100])
DELTR([0, 106])
FORGE ([0, 1])
Fairness-aware ranking

(b) � = 25, |D| = 25

Fig. 4. COMPAS data with FeatNet as base-ranker Ð average nDCG vs. average 1 − fairness at intermediate and maximal

cutof � on test data. Variance is shown in gray.

0.40 0.45 0.50 0.55 0.60 0.65
nDCG@5

0.00

0.02

0.04

0.06

0.08

0.10

Fa
irn

es
s v

io
la

tio
n

(1
-F

ai
rn

es
s)

= 0

= 100 = 0

= 106

= 0

= 1

FAIR-PGRANK ([0, 100])
DELTR([0, 106])
FORGE ([0, 1])
Fairness-aware ranking

(a) � = 5, |D| = 30

0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83
nDCG@30

0.000

0.002

0.004

0.006

0.008

0.010

Fa
irn

es
s v

io
la

tio
n

(1
-F

ai
rn

es
s)

= 0

= 100

= 0

= 106

= 0

= 1

FAIR-PGRANK ([0, 100])
DELTR([0, 106])
FORGE ([0, 1])
Fairness-aware ranking

(b) � = 30, |D| = 30

Fig. 5. MovieLens100K data with FeatNet as base-rankerÐ average nDCG vs. average 1 − fairness at intermediate and

maximal cutof � on test data. Variance is shown in gray.

Impact of selection and trust bias. Fairness-PG Rank and DELTR account for position bias but do not
account for selection bias and trust bias. Thus to highlight the efect of selection bias and trust bias, we compare
the performance of our approach with these two algorithms for all datasets. We chose a fairness metric for these
approaches to closely match the choice of treatment parity in FORGE.

For all datasets (Fig. 3, 4, 5) and for both intermediate and maximal cutof � , FORGE achieves a good trade-of
between utility and fairness, and outperforms Fair-PG Rank in both nDCG and 1 − fairness. In other words, for a
minimal change in nDCG, FORGE improves the fairness noticeably. Also, although Fair-PG Rank falls behind
FORGE in both nDCG and 1 − fairness for both intermediate and maximal cutof � , the worse performance of

ACM Trans. Recomm. Syst.

20 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

Method
Dataset German Credit

nDCG fairness violation
COMPAS

nDCG fairness violation
MovieLens100K

nDCG fairness violation

FORGE 0.8950 0.00553 0.611 0.0087 0.6331 0.00758
Fair-PG RANK 0.826 0.0378 0.527 0.0427 0.48939 0.04097
DELTR 0.8718 0.0541 0.645 0.0741 0.6411 0.04602
Fairnes-Aware Ranking 0.8645 0.0185 0.624 0.038 0.630 0.0201

Table 4. Fairest results targeting a specified desirable fairness (fairness violation < 0.01), at intermediate cutof � when

FeatNet is the base-ranker. Only FORGE achieves this (in blue), while its nDCG (in red) remains comparable to all the

baselines.

Method
Dataset German Credit

nDCG fairness violation
COMPAS

nDCG fairness violation
MovieLens100K

nDCG fairness violation

FORGE 0.9396 0.00048 0.821 0.0010 0.8113 0.00039
Fair-PG RANK 0.83818 0.00068 0.758 0.0024 0.76917 0.00162
DELTR 0.93959 0.00371 0.8334 0.0073 0.81545 0.00397
Fairnes-Aware Ranking 0.9325 0.0025 0.814 0.0025 0.8055 0.0018

Table 5. Fairest results targeting a specified desirable fairness (fairness violation < 0.001), at maximal cutof � when FeatNet

is the base-ranker. FORGE achieves this (in blue) every time, and its nDCG (in red) remains comparable to all the baselines.

The only baseline and dataset pair where the fairness target is achieved is Fair-PG RANK on German Credit, but nDCG is

then markedly lower.

Fair-PG Rank over FORGE is more pronounced at the intermediate cutof. This is because, at the intermediate
cutof (� = 5), we introduce selection bias, while Fair-PG Rank ignores selection bias, and assumes all ranking
indices are shown by the user’s interface. Thus it relies on the whole ranking spectrum to achieve fairness across
all documents. In contrast, we aim to account for the fact that documents below a certain cutof may (arbitrarily)
not be shown to the user. We believe that the reason Fair-PG Rank still lags behind FORGE at maximal cutof � ,
where no selection bias exists, is that it does not account for the efect of trust bias.

To compare FORGE with DELTR, DELTR fails to achieve a reasonable trade-of between utility and fairness.
While it illustrates a more reasonable trade-of for the COMPAS dataset, it shows an unreasonable counter-trade-
of behavior for other datasets. This counter-trade-of behavior was also observed in Fig. 3(b) in [37]. DELTR also
lags behind FORGE signiicantly in the fairness it achieves. In other words, it fails to improve fairness noticeably.
Also, although DELTR falls behind FORGE for both intermediate and maximal cutof � , the performance gap
reduces at maximal cutof, illustrating once again that it is not suicient to optimize over the full range to
guarantee good performance when the ranking is cut of due to selection bias.
Next, to evaluate how fair each baseline is, we report the minimum fairness violation (1 − fairness) and its

corresponding nDCG at both intermediate and maximal cutof � for each algorithm on each dataset. This aims to
capture the practical use of this algorithm when it is required to guarantee fairness, up to a threshold. Table 4
and Table 5 show the results for this evaluation at intermediate and maximal cutof � respectively. In blue, we
highlight the lowest fairness violation achieved by these methods. In red, we highlight the nDCG values achieved
when fairness violation is below a given threshold, which we set to fairness violation < 0.01 for intermediate
cutof � and fairness violation < 0.001 for maximal cutof � . FORGE outperforms all baseline methods in terms of
fairest results while it maintains its high nDCG for the given fairness violation threshold.

5.5.2 When VAECF is the base-ranker. Here, we evaluate fair baselines when we choose VAECF as our
base-ranker. The primary objective here is to exclusively compare FORGE as a post-processing baseline with
other post-processing baselines, ensuring a direct and fair comparison speciic to this category of fair methods.

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 21

Additionally, since post-processing fair ranking baselines are generally relevant to the personalization and
recommender systems domain, this section exclusively addresses the realm of personalization.

Impact of position bias and trust bias. Fairness-aware ranking and CPFair address selection bias, yet
overlook position bias and trust bias. To emphasize the impact of these two biases, we conduct a performance
comparison between FORGE and these two baselines across the MovieLens1M, MovieLens100K, and Epinion
datasets, each requiring sorting of 50, 30, and 30 movies per user, respectively.

Note that, CPFair is designed to rank � items out of � , with unfairness quantiied as the disparity in the number
of items from each group among the top � items. Similar to [30], we choose � = 10. While CPFair considers
selection bias, its assumption of predeined truncation criteria can lead to limitations: If truncation on the user
end occurs at a lower cutof (� ≤ �), it may not efectively mitigate selection bias. Thus, we present results at
intermediate cutofs of � = 5 and � = 10. We omit evaluation at maximal cutofs (� = 30 and � = 50) as CPFair’s
objective does not extend to sorting all � items.

0.10 0.12 0.14 0.16 0.18 0.20
nDCG@5

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fa
irn

es
s v

io
la

tio
n

(1
-Fa

irn
es

s)

= 0 = 0.1
= 0

= 0.01

= 0

= 1

PostProc ([0, 0.1])
CPFair([0, 0.01])
FORGE ([0, 1])
Fairness-aware ranking

(a) � = 5, |D| = 30

0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27
nDCG@10

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fa
irn

es
s v

io
la

tio
n

(1
-Fa

irn
es

s)

= 0 = 0.1

= 0

= 0.01

= 0

= 1

PostProc ([0, 0.1])
CPFair([0, 0.01])
FORGE ([0, 1])
Fairness-aware ranking

(b) � = 10, |D| = 30

Fig. 6. MovieLens100K data with VAECF as base-rankerÐ average nDCG vs. average 1 − fairness at � = 5, and � = 10 on test

data. Variance is shown in gray.

Fig. 6, 7, and Fig. 8 show that FORGE provides an efective trade-of between utility and fairness. In addition, a
good performance at both � = 5 and � = 10 cutofs is achieved for both our algorithm and Fairness-aware ranking.
Thus if the front-end application shows a truncated list of documents to a user, we can expect a strong fairness vs.
utility guarantee. In contrast, since Fairness-aware ranking does not take into account position bias and trust bias,
our approach can dominate it in nDCG and 1 − fairness within a certain range of � in most cases. Speciically,
across the MovieLens100K dataset, FORGE exhibits superior performance to Fairness-aware ranking in both
nDCG and 1 − fairness metrics when � falls within the range of [0.4, 1] at � = 5, and within [0.6, 0.8] at � = 10.
Within the MovieLens1M dataset, FORGE mainly demonstrates a comparable nDCG score with Fairness-aware
ranking, while it surpasses it in terms of 1 − fairness when � lies within [0.6, 0.8] at both � = 5 and � = 10. In
the context of the Epinion dataset, when � = 5, FORGE and Fairness-aware ranking yield similar ���� and
1 − fairness values at � = 0.8, with FORGE outperforming Fairness-aware ranking in 1 − fairness at the expense
of a minor reduction in ���� . At � = 10, FORGE exhibits a moderate superiority over Fairness-aware ranking
solely in the 1− fairness metric, albeit with a moderate reduction in the ���� metric. In general, Fairness-aware
ranking showcases a satisfactory performance, yet it is surpassed by FORGE in most scenarios. Nevertheless, it is

ACM Trans. Recomm. Syst.

22 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

not designed to achieve a trade-of between utility and fairness, and cannot, as FORGE does, allow us to adjust
the level of desired ���� and fairness.
When it comes to CPFair, FORGE outperforms CPFair in both nDCG and 1 − fairness. In other words, for a

minimal change in nDCG, FORGE improves the fairness noticeably, a result that CPFair fails to replicate. This is
because CPFair does not account for position and trust bias.

0.14 0.16 0.18 0.20 0.22 0.24
nDCG@5

0.00

0.05

0.10

0.15

0.20

0.25

Fa
irn

es
s v

io
la

tio
n

(1
-Fa

irn
es

s)

= 0 = 0.1

= 0

= 0.01

= 0

= 1

PostProc ([0, 0.1])
CPFair([0, 0.01])
FORGE ([0, 1])
Fairness-aware ranking

(a) � = 5, |D| = 30

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32
nDCG@10

0.00

0.05

0.10

0.15

0.20

0.25

Fa
irn

es
s v

io
la

tio
n

(1
-Fa

irn
es

s)

= 0 = 0.1

= 0

= 0.01

= 0

= 1

PostProc ([0, 0.1])
CPFair([0, 0.01])
FORGE ([0, 1])
Fairness-aware ranking

(b) � = 10, |D| = 30

Fig. 7. Epinion data with VAECF as base-rankerÐ average nDCG vs. average 1 − fairness at � = 5, and � = 10 on test data.

Variance is shown in gray

0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18
nDCG@5

0.00

0.05

0.10

0.15

0.20

0.25

Fa
irn

es
s v

io
la

tio
n

(1
-Fa

irn
es

s)

= 0
= 0.1

= 0

= 0.01

= 0

= 1

PostProc ([0, 0.1])
CPFair([0, 0.01])
FORGE ([0, 1])
Fairness-aware ranking

(a) � = 5, |D| = 50

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21
nDCG@5

0.00

0.05

0.10

0.15

0.20

0.25

Fa
irn

es
s v

io
la

tio
n

(1
-Fa

irn
es

s)

= 0 = 0.1
= 0

= 0.01

= 0

= 1

PostProc ([0, 0.1])
CPFair([0, 0.01])
FORGE ([0, 1])
Fairness-aware ranking

(b) � = 10, |D| = 50

Fig. 8. MovieLens1M data with VAECF as base-rankerÐ average nDCG vs. average 1 − fairness at � = 5, and � = 10 on test

data. Variance is shown in gray

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 23

Method
Dataset MovieLens100K

nDCG fairness violation
Epinion

nDCG fairness violation
MovieLens1M

nDCG fairness violation

FORGE 0.1680 0.0139 0.2170 0.0199 0.1668 0.0134
CPFair 0.1652 0.1181 0.2060 0.1543 0.1679 0.1060
PostProc 0.1809 0.1367 0.2118 0.1606 0.1736 0.1060
Fairnes-Aware Ranking 0.1673 0.0397 0.2211 0.0364 0.1689 0.0299

Table 6. Fairest results targeting a specified desirable fairness (fairness violation < 0.02), at intermediate cutof � = 5 for

post-processing fair methods when VAECF is the base-ranker. Only FORGE achieves this (in blue), while its nDCG (in red)

remains comparable to all the baselines.

Impact of selection and trust bias. PostProc accounts for position bias but does not account for selection
bias and trust bias. Thus to highlight the efect of selection bias and trust bias, we compare the performance
FORGE with it for MovieLens100K, Epinion, and MovieLens1M datasets. PostProc concentrates on optimizing a
fairness metric that, while excluding trust bias, closely corresponds to FORGE’s emphasis on treatment parity.
Fig. 6, 7 and 8 illustrate that unlike FORGE which reduces disparity with increasing � , PostProc does not

produce a better ranking in terms of 1 − fairness when � is increased (in subsection 5.5.4 we will show that
PostProc produces a ranking that becomes even worse in terms of its fairness metric as � is increased). While it
demonstrates a slightly higher nDCG, its signiicant deiciency in fairness emphasizes FORGE’s superiority over
it. This poor performance can be attributed to the neglect of selection and trust bias.

Next, to evaluate how fair each baseline is, we report the minimum fairness violation (1− fairness) alongside its
corresponding nDCG at � = 5 and � = 10 for post-processing fair algorithms across the MovieLens100K, Epinion,
and MovieLens1M datasets. This evaluation aims to relect the practical utility of the algorithm, demonstrating
its ability to ensure fairness within a speciied threshold. Table 6 and Table 7 show the results for this evaluation
at cutof � = 5 and � = 10 respectively. In blue, we highlight the lowest fairness violation achieved by these
methods. In red, we highlight the nDCG values achieved when the fairness violation is below a given threshold,
which we set to fairness violation < 0.02. Likewise, FORGE outperforms all baseline methods in terms of fairest
results while it maintains its high nDCG for the given fairness violation threshold.

Method
Dataset MovieLens100K

nDCG fairness violation
Epinion

nDCG fairness violation
MovieLens1M

nDCG fairness violation

FORGE 0.2485 0.0134 0.2645 0.0162 0.1878 0.0129
CPFair 0.2372 0.0701 0.2781 0.0915 0.1896 0.0734
PostProc 0.2581 0.0964 0.2892 0.1375 0.1939 0.0763
Fairnes-Aware Ranking 0.2501 0.0236 0.2943 0.0243 0.1938 0.0228

Table 7. Fairest results targeting a specified desirable fairness (fairness violation < 0.02), at intermediate cutof � = 10 for

post-processing fair methods when VAECF is the base-ranker. Only FORGE achieves this (in blue), while its nDCG (in red)

remains comparable to all the baselines.

5.5.3 Decomposing bias efects in FORGE(isolating and combining variations). Thus far, our evaluations
of FORGE’s performance have demonstrated the impact of considering all three biases simultaneously. In this
section, we provide an illustration of how FORGE would have performed in terms of fairness if it had not
accounted for the efect of each bias when re-ranking. This analysis aims to reveal the efects of ignoring each
bias when providing a fair ranking, and how it would have inluenced FORGE’s overall performance.
As FORGE is a greedy-based algorithm, it inherently incorporates considerations for selection bias issues.

Consequently, we cannot prevent it from doing so. Hence, we make modiications to the FORGE algorithm to
account for diferent scenarios: i) accounting for only trust bias and selection bias while ignoring position bias,

ACM Trans. Recomm. Syst.

24 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

which translates to P(�ℓ observed) = 1 for top-k items, ii) accounting for only position bias and selection bias
while ignoring trust bias, which translates to P(�ℓ trusted | trust �) = rel(�ℓ) for top-k items, and iii) accounting
for only the selection bias and ignoring position and trust bias, which translates to P(�ℓ observed) = 1 and
P(�ℓ trusted | trust �) = rel(�ℓ). We then compare each of these cases individually against the scenario where
FORGE accounts for all three biases simultaneously, including position, trust, and selection bias. In order to
demonstrate the impact of disregarding each bias on fairness, we identify a speciic value for � that yields
comparable (or nearly comparable) ���� across all the cases. Subsequently, we report the corresponding fairness
metrics obtained for the same ���� in each instance. Figure 9 visually presents the described FORGE variations
using the MovieLens1M dataset at � = 10. As shown, disregarding the position bias efect raises unfairness by
19%, while ignoring the trust bias efect results in a 23% increase in unfairness. Furthermore, the omission of both
position bias and trust bias efects leads to a notable 42% rise in unfairness.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

fa
irn

es
s v

io
la

tio
n

(1
-Fa

irn
es

s)

19% 23%

42%

FORGE (all biases)
FORGE (selection and trust bias)
FORGE (selection and position bias)
FORGE (only selection bias)

Fig. 9. MovieLens1M data with VAECF as base-rankerÐ per-

formance of FORGE variations in 1− fairness with comparable

���� at � = 10.

5.5.4 Exploring an alternative fairness metric in evaluation. So far, we evaluated all fair baselines with the
fairness metric that we optimize the FORGE with (Eq . 6), which other baselines do not optimize for. While it is
wise to optimize the ranking for the same metric as the one used in the evaluation, we illustrate the performance
of our algorithm FORGE under other circumstances. Speciically, we evaluate FORGE and other fairness baselines
on a fairness metric used by Fair-PGRANK [37] and PostProc [36]. This is a disparate treatment (DT) constraint
that enforces the exposure of the two groups to be proportional to their average utility:

�� :=
�
�
�
�������� (�0,�,�)

������� (�0 |�)
−

�������� (�1,�,�)

������� (�1 |�)

�
�
� . (9)

where �������� (�� , �, �) :=
∑�

ℓ=1 ✶{�ℓ ∈ �� }
1

log(ℓ+1) , and������� (�� |�) =
1

|�� |

∑

�∈��
��� (�)

Fig. 10 illustrates the performance of fair methods on MovieLens100K at both � = 5 and � = 10. Surprisingly,
PostProc becomes even less fair as � is increased though it optimizes for DT, the metric that it is evaluated with.
This unexpected behavior corroborates what has already been reported in the literature, e.g., in Figure 3 of [37].
Similarly, CPFair illustrates a poor performance when evaluated with this fairness metric. Conversely, both
FORGE and Fairness-aware ranking excel in performance, despite being evaluated with a metric diferent from

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 25

their respective optimization objectives. This highlights the remarkable resilience of FORGE’s good performance
even when evaluated using a distinct fairness metric.

0.10 0.12 0.14 0.16 0.18 0.20
nDCG@5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fa
irn

es
s v

io
la

tio
n

(D
T)

= 0

= 0.1

= 0

= 0.01

= 0

= 1

PostProc ([0, 0.1])
CPFair([0, 0.01])
FORGE ([0, 1])
Fairness-aware ranking

(a) � = 5, |D| = 30

0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27
nDCG@10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fa
irn

es
s v

io
la

tio
n

(D
T)

= 0

= 0.1

= 0

= 0.01

= 0

= 1

PostProc ([0, 0.1])
CPFair([0, 0.01])
FORGE ([0, 1])
Fairness-aware ranking

(b) � = 10, |D| = 30

Fig. 10. MovieLens100K data with VAECF as base-rankerÐ average nDCG vs. average disparate treatment (DT) at � = 5, and

� = 10 on test data. Variance is shown in gray.

5.6 Comparison with Optimal Brute-Force Search

Fig. 11 illustrates the performance of FORGE versus the optimal brute-force algorithm for the German Credit
dataset at cutofs � = 2, · · · , 5 and for � = 0, 0.5, 1, when |D| = 10. Note that a brute-force search over all
permutations is only tractable with such modest choices of � and |D|. As expected, the greedy algorithm is
optimal for � = 0, since it results in sorting documents in order of decreasing relevance. More interestingly, when
� > 0, the algorithm still maintains an acceptable margin from the optimal ranking in terms of the combined
objective (1 − �) · nDCG + � · fairness. This is true despite the optimal ranking at diferent �’s being diferent as
explained in Sec. 4.1. These results experimentally illustrate the insights of Sec. 4.2.

2 3 4 5
k

0.6

0.7

0.8

0.9

(1
) n

DC
G+

 fa

irn
es

s

FORGE
Optimal

(a) � = 0, |� | = 10

2 3 4 5
k

0.92

0.93

0.94

0.95

(1
) n

DC
G+

 fa

irn
es

s

FORGE
Optimal

(b) � = 0.5, |� | = 10

2 3 4 5
k

0.98

0.99

1.00

(1
) n

DC
G+

 fa

irn
es

s

FORGE
Optimal

(c) � = 1, |� | = 10

Fig. 11. FORGE vs optimal brute-force algorithm.

ACM Trans. Recomm. Syst.

26 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

5.7 Main takeaways from experimental results

• Comparing FORGE with in-processing baselines, FORGE ofers a more favorable trade-of in terms of both
nDCG and fairness, compared to Fair-PG Rank and DELTR. Furthermore, FORGE exhibits exceptional
fairness performance in comparison to PostProc. This diference stems from the fact that Fair-PG Rank,
DELTR, and PostProc do not address selection bias or trust bias. The performance gap between FORGE and
Fair-PG Rank, as well as DELTR, narrows at maximal cutofs due to the absence of selection bias efects.
The remaining performance gap at maximal cutofs can be attributed to the unaddressed trust bias efect in
DELTR and Fair-PG Rank.

• Comparing FORGE with in-processing baselines, FORGE outperforms Fairness-aware ranking in nDCG
and fairness across most scenarios, and it outperforms CPFair in all cases due to Fairness-aware ranking
and CPFair not addressing position bias or trust bias.

• FORGE provides the overall highest amount of fairness compared to all baselines while retaining high
nDCG. We can quantify this by being stringent in our fairness requirement. We then see that FORGE is
often the only method that meets these requirements. Furthermore, its nDCG is always comparable to the
fairest of the baselines, which themselves do not meet the fairness requirement. (Tables 4 and 5).

• FORGE performance is experimentally veriied to be near optimal, by comparing to the brute-force exhaus-
tive search algorithm.

6 CONCLUSION

In this paper, we considered the problem of fair ranking by introducing a fairness metric that incorporates position
and trust bias, and proposed a greedy ranking algorithm (FORGE) that aims for a fairness-utility trade-of when
the ranking is cut of arbitrarily, thus addressing selection bias. We gave theoretical insight on why a greedy
algorithm could provide a single ranking that competes with the optimal ranking despite the latter being possibly
diferent at diferent cutofs. We demonstrated our approach on six datasets, highlighting the efectiveness of
FORGE in contrast to state-of-the-art baselines that either fail to account for some of these biases. This work
paves the way for exploring the interplay between trust behavior and fairness, as well as developing algorithms
with robust fairness-utility trade-ofs.

On the applied side, measurement and validation of trust behavior by users is crucial to achieve the true
potential of this work. This can parallel and extend some of the validation methodologies for position bias. On
the theoretical front, direct guarantees for greedy ranking would be most welcome, by shedding light on how
one can eiciently approach the high-dimensional Pareto frontier across all cutofs.

Some of the basic aspects of this methodology may be readily extended. For example, to adapt to non-disjoint
groups, a few diferent approaches may be taken. A principled but ineicient approach is to work with the
partition that reines the groups. These would be disjoint, and though the dimensionality increases, the exposure
distributions remain well-deined. A less principled but more eicient possibility is to normalize the exposures
over the overlapping groups, and compare them the same way. The disadvantage is that groups with areas of
large overlap will be disproportionately represented. Lastly, if groups can be embedded in a meaningful way (e.g.,
as in topic models), then exposure distribution over the embedding space can be used instead.

While the focus is on enhancing fairness in ranked items, altering the fairness metric (e.g., favoring privileged
groups with �) could lead to unintended adverse efects. This fundamentally alters the message of the paper
and motivates the need to audit ranking systems for such malicious manipulation. In the interim, imposing
benevolent fairness in post-processing could combat existing biases, malicious or otherwise.

REFERENCES

[1] [n. d.]. Epinion dataset. https://www.shopping.com/.

[2] [n. d.]. MovieLens dataset. https://movielens.org/.

ACM Trans. Recomm. Syst.

Fairness of Interaction in Ranking under Position, Selection, and Trust Bias • 27

[3] AmanAgarwal, XuanhuiWang, Cheng Li, Michael Bendersky, andMarc Najork. 2019. Addressing trust bias for unbiased learning-to-rank.

In Proceedings of The Web Conference.

[4] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W Bruce Croft. 2018. Unbiased Learning to Rank with Unbiased Propensity

Estimation. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (2018).

[5] Kinjal Basu, Cyrus DiCiccio, Heloise Logan, and Noureddine El Karoui. 2020. A Framework for Fairness in Two-Sided Marketplaces.

arXiv preprint arXiv:2006.12756 (2020).

[6] Arpita Biswas and Siddharth Barman. 2018. Fair Division Under Cardinality Constraints.. In International Joint Conferences on Artiicial

Intelligence.

[7] Toon Calders, Faisal Kamiran, andMykola Pechenizkiy. 2009. Building classiiers with independency constraints. In 2009 IEEE International

Conference on Data Mining Workshops.

[8] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to rank: from pairwise approach to listwise approach. In

Proceedings of the 24th international conference on Machine learning.

[9] L Elisa Celis, Damian Straszak, and Nisheeth K Vishnoi. 2018. Ranking with fairness constraints. International Colloquium on Automata,

Languages and Programming (2018).

[10] Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. 2018. How algorithmic confounding in recommendation systems

increases homogeneity and decreases utility. In Proceedings of the 12th ACM conference on recommender systems.

[11] Dua Dheeru and Ei Karra Taniskidou. 2017. UCI machine learning repository. 12 (2017). http://archive.ics.uci.edu/ml.

[12] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. 2012. Fairness through awareness. In Proceedings of

the 3rd Innovations in Theoretical Computer Science Conference.

[13] Francesco Fabbri, Maria Luisa Croci, Francesco Bonchi, and Carlos Castillo. 2022. Exposure inequality in people recommender systems:

the long-term efects. In Proceedings of the 12th ACM conference on year=Proceedings of the International AAAI Conference on Web and

Social Media.

[14] Bent Fuglede and Flemming Topsoe. 2004. Jensen-Shannon divergence and Hilbert space embedding. In Proceedings of the 2004

International Symposium on Information Theory.

[15] Yingqiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao, Changhua Pei, Fei Sun, Junfeng Ge, Wenwu Ou, et al.

2021. Towards Long-term Fairness in Recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data

Mining.

[16] Yingqiang Ge, Xiaoting Zhao, Lucia Yu, Saurabh Paul, Diane Hu, Chu-Cheng Hsieh, and Yongfeng Zhang. 2022. Toward Pareto Eicient

Fairness-Utility Trade-of inRecommendation through Reinforcement Learning. (2022).

[17] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. 2019. Fairness-aware ranking in search & recommendation systems with

application to LinkedIn talent search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining.

[18] Ananya Gupta, Eric Johnson, Justin Payan, Aditya Kumar Roy, Ari Kobren, Swetasudha Panda, Jean-Baptiste Tristan, and Michael Wick.

2021. Online Post-Processing in Rankings for Fair Utility Maximization. In Proceedings of the 14th ACM International Conference on Web

Search and Data Mining.

[19] Moritz Hardt, Eric Price, and Nathan Srebro. 2016. Equality of opportunity in supervised learning. In Proceedings of the 30th International

Conference on Neural Information Processing Systems.

[20] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Trans (2015).

[21] Lauren Kirchner Jef Larson, Surya Mattu and Julia Angwin. 2016. How we analyzed the compas recidivism algorithm. In ProPublica.

[22] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased learning-to-rank with biased feedback. In Proceedings of

the Tenth ACM International Conference on Web Search and Data Mining.

[23] Andreas Krause and Carlos Guestrin. 2007. Near-optimal observation selection using submodular functions. In AAAI, Vol. 7. 1650ś1654.

[24] Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2021. User-oriented Fairness in Recommendation. In

Proceedings of the Web Conference 2021.

[25] Yunqi Li, Hanxiong Chen, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2021. Towards personalized fairness based on causal notion.

In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.

[26] Dawen Liang, Rahul G Krishnan, Matthew D Hofman, and Tony Jebara. 2018. Variational autoencoders for collaborative iltering. In

Proceedings of the 2018 world wide web conference.

[27] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2019. A survey on bias and fairness in

machine learning. ACM Computing Surveys (CSUR) (2019).

[28] Natwar Modani, Deepali Jain, Ujjawal Soni, Gaurav Kumar Gupta, and Palak Agarwal. 2017. Fairness aware recommendations on

Behance. In Paciic-Asia Conference on Knowledge Discovery and Data Mining.

[29] Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims. 2020. Controlling fairness and bias in dynamic learning-to-rank.

In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.

ACM Trans. Recomm. Syst.

http://archive.ics.uci.edu/ml.

28 • Zohreh Ovaisi, Parsa Saadatpanah, Shahin Sefati, Mesrob Ohannessian, and Elena Zheleva

[30] Mohammadmehdi Naghiaei, Hossein Rahmani, and Yashar Deldjoo. 2022. CPFair: Personalized Consumer and Producer Fairness Re-

ranking for Recommender Systems. In Proceedings of the International ACM SIGIR Conference on Research & Development in Information

Retrieval (2022).

[31] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An analysis of approximations for maximizing submodular set

functionsÐI. Mathematical programming (1978).

[32] Harrie Oosterhuis and Maarten de Rijke. 2020. Policy-Aware Unbiased Learning to Rank for Top-k Rankings. In Proceedings of the 43rd

International ACM SIGIR Conference on Research and Development in Information Retrieval (2020).

[33] Harrie Oosterhuis and Maarten de Rijke. 2021. Unifying online and counterfactual learning to rank: A novel counterfactual estimator

that efectively utilizes online interventions. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining.

[34] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva. 2020. Correcting for Selection Bias in Learning-to-rank

Systems. In Proceedings of the 29th International Conference on World Wide Web.

[35] Gourab K Patro, Arpita Biswas, Niloy Ganguly, Krishna P Gummadi, and Abhijnan Chakraborty. 2020. FairRec: Two-Sided Fairness for

Personalized Recommendations in Two-Sided Platforms. In Proceedings of The Web Conference 2020.

[36] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of exposure in rankings. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining.

[37] Ashudeep Singh and Thorsten Joachims. 2019. Policy Learning for Fairness in Ranking. In Conference on Neural Information Processing

Systems (NeurIPS 2019).

[38] Ashudeep Singh, David Kempe, and Thorsten Joachims. 2021. Fairness in ranking under uncertainty. Advances in Neural Information

Processing Systems (2021).

[39] Harald Steck. 2018. Calibrated recommendations. In Proceedings of the 12th ACM conference on recommender systems.

[40] Tom Sühr, Asia J Biega, Meike Zehlike, Krishna P Gummadi, and Abhijnan Chakraborty. 2019. Two-sided fairness for repeated matchings

in two-sided markets: A case study of a ride-hailing platform. In Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining.

[41] Ali Vardasbi, Maarten de Rijke, and Ilya Markov. 2021. Mixture-Based Correction for Position and Trust Bias in Counterfactual Learning

to Rank. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[42] Ali Vardasbi, Harrie Oosterhuis, and Maarten de Rijke. 2020. When Inverse Propensity Scoring does not Work: Aine Corrections for

Unbiased Learning to Rank. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management.

[43] LequnWang and Thorsten Joachims. 2021. User Fairness, Item Fairness, and Diversity for Rankings in Two-Sided Markets. In Proceedings

of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval. 23ś41.

[44] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc Najork. 2018. Position bias estimation for unbiased

learning to rank in personal search. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining.

[45] Yao Wu, Jian Cao, Guandong Xu, and Yudong Tan. 2021. TFROM: A Two-sided Fairness-Aware Recommendation Model for Both

Customers and Providers. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information

Retrieval.

[46] Tao Yang and Qingyao Ai. 2021. Maximizing Marginal Fairness for Dynamic Learning to Rank. In Proceedings of the Web Conference

2021.

[47] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed, and Ricardo Baeza-Yates. 2017. Fa* ir: A fair top-k

ranking algorithm. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.

[48] Meike Zehlike and Carlos Castillo. 2020. Reducing disparate exposure in ranking: A learning to rank approach. In Proceedings of The

Web Conference 2020.

[49] Ziwei Zhu, Jianling Wang, and James Caverlee. 2021. Fairness-aware Personalized Ranking Recommendation via Adversarial Learning.

arXiv preprint arXiv:2103.07849 (2021).

ACM Trans. Recomm. Syst.

	Abstract
	1 Introduction
	2 Related work
	3 Problem Setup
	3.1 Biases
	3.2 Fairness
	3.3 Utility
	3.4 Fairness-Utility Trade-Off

	4 FORGE: Fairness Optimization for Ranking via Greedy Exploration
	4.1 Algorithm
	4.2 Theoretical Insight

	5 Experiments
	5.1 Datasets
	5.2 Base-rankers
	5.3 Baselines
	5.4 Conducting ranking tasks for each dataset
	5.5 Evaluation
	5.6 Comparison with Optimal Brute-Force Search
	5.7 Main takeaways from experimental results

	6 Conclusion
	References

