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Abstract—Dead reckoning is a promising yet overlooked smart-
phone based indoor localization technology. It relies on phone-
mounted sensors for counting steps and estimating walking
directions, requiring no massive deployment of additional sensors
or landmarks. However, it suffers from the misalignment between
phone’s direction and human’s movement direction, which makes
the estimated walking direction unreliable and eventually leads to
inaccurate location estimation. To solve this problem, this paper
introduces SWiDir, an approach that calibrates walking direction
by integrating active smartphone sensing with passive WiFi
sensing. SWiDir deploys a few WiFi devices to form a correction
zone, and use their WiFi Channel State Information (CSI) to
infer human’s movement inside the zone. We adopt the training-
free WiFi Fresnel Zone model, and introduce an accurate and
robust direction estimation model by exploring the geometrical
relationship between the user’s movement and its impact on
the Fresnel zones. We built our testbed with 4 Raspberry Pis,
forming a large correction zone and evaluated SWiDir across
5 participants in 2 different real environments. Our extensive
experiments show that SWiDir achieves 8.89 degrees of average
75 percentile error in walking direction estimation, which is 64%
lower than the state-of-the-art existing approaches.

Index Terms—Walking Direction Estimation, Dead Reckon-
ing, Smartphone Sensor Calibration, Channel State Information
(CSI), WiFi Sensing

I. INTRODUCTION

Knowing the accurate location of the users can enable

a wide range of applications, including navigation, social

media, and location-based marketing. GPS has long been the

gold standard for outdoor localization. However, due to the

signal’s susceptibility to weakening or obstruction by physical

barriers, its applicability in indoor environments is limited.

Other than GPS, there are two categories of approaches for

indoor localization, device-free and smartphone-based. How-

ever, these approaches limit their applicability to pervasive

indoor environments due to their inherent limitations [1].

Smartphones have become an essential part of our daily

lives, and their widespread use is likely to continue for

the foreseeable future. Smartphone based indoor localization

technologies include WiFi RSSI [2], dead reckoning [3], BLE-

beacon [4], and camera-based [5]. Among these technologies,

Pedestrian Dead Reckoning (PDR) is relatively suitable for

being used pervasively, as it only relies on the IMU sensors

already integrated in smartphones. Although estimating the

walking distance by IMU is accurate, the walking direction

estimation is inaccurate because of the misalignment between

phone’s direction and human’s movement direction, which

eventually leads to inaccurate location estimation [6].

Many recent studies focus on enhancing smartphone-based

direction estimation. These approaches either rely on external

landmarks [7]–[9], or fuse the IMU sensor readings by ap-

plying various statistical techniques [10]–[14]. However, the

landmark based approaches require pedestrians to pass specific

landmarks consecutively, and the sensor fusion approaches

are usually user-specific and are sensitive to how the user

walks/carries the phone.

In this paper, we enhance PDR-based direction estimation

by gathering additional information from passive WiFi sens-

ing. Passive WiFi sensing is a device-free indoor localization

approach that has been studied widely due to the pervasive

existence of WiFi. To combine the advantages of smartphone-

based motion sensing and WiFi sensing, we deploy WiFi

devices to form WiFi sensing regions (correction zones), and

use accurate walking distance collected by smartphone to

improve the accuracy of pure WiFi sensing. Our approach

provides better accuracy and reliability compared with WiFi-

based direction estimation, and eliminates the aforementioned

constraints posed by smartphone-based direction estimation.

In summary our key contributions are as follows:

• We introduce SWiDir, a direction correction system that

corrects smartphone-based user direction estimation by

forming Correction zone with passive WiFi sensing. Our

approach accurately measures user’s walking directions

when she passes a correction zone, and utilizes the mea-

sured directions to correct the direction of the compass.

• We develop a Fresnel zone-based approach that measures

walking directions accurately. The novelty of our ap-

proach lies in its unique geometrical model for capturing

user’s movement by both smartphone and WiFi receivers,

making it more accurate and robust.

• We analyze and evaluate our system in 2 real environ-

ments and compare its performance with state-of-the-

art approaches. We extensively measure the impact of

different environments, walking directions and distances

on the accuracy of our approach. Our results show that

SWiDir consistently outperforms existing approaches that

is based either on WiFi sensing or smartphone sensor

fusion.

The remainder of this paper is organized as follows. Section

II provides a review of existing solutions and their associated

problems. In Section III, we present our system overview and

design considerations. Section IV outlines the main methodol-
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ogy behind our system. A detailed description of our system

implementation is provided in Section V, while Section VI

presents our evaluation results. Finally, we conclude this paper

with Section VII.

II. RELATED WORKS

There have been numerous efforts to accurately estimate

the walking direction and location of a subject by utilizing

either smartphone IMU sensor or by manipulating WiFi CSI

(Channel State Information) [15], [16]. Both of the approaches

suffer from their own limitations. Here, we briefly describe the

methodologies of few recent and popular related works, their

strengths and weaknesses.

A. Pedestrian Dead Reckoning

In pedestrian dead reckoning (PDR), step count and step

length are used to estimate the distance traveled by a pedes-

trian, while direction estimation is used to determine the

orientation of the pedestrian. Knowing the orientation and

length of each step will allow pedestrian to predict her real-

time locations given the starting location.

The major categories of step counting techniques using

the smartphone’s built-in accelerometer are threshold setting,

peak detection, correlation analysis, and spectral analysis [17].

Experiments show existing step counting approaches already

achieve very good accuracy: the results in [17] demonstrate

an error rate of lower than 5% for most pedestrians.

Many algorithms for estimating step length require user-

specific training [18]. In recent years, few training-free algo-

rithms [19] have also been developed for accurately measuring

the step length, independent of the pedestrian. This paper only

concentrates on orientation estimation, leaving the step count

and step length estimation methods out of our purview because

their accuracy is already high and steadily improving.

Compass is the default direction estimation method built-

in for Android and iOS. However, due to the misalignment

between the direction of the phone and the user’s walking

direction, using a smartphone compass for dead reckoning only

gets moderate precision [6]. Next, we review and summarize

the state-of-the-art walking direction estimation approaches.

B. Calibration-based Direction Estimation

Calibration-based direction estimation requires the pedes-

trian to pass two landmarks, whose locations are known in

prior. The pedestrian’s trajectory between these two landmarks

are recorded, with the phone compass providing inaccurate

walking directions. After passing the second landmark, the

actual walking direction is calculated, which is further used

to infer the projection between the phone’s compass reading

to pedestrian’s walking direction. The landmarks can be either

LED light [8], acoustic [9], or Bluetooth beacons [20], [21].

However, the calibration-based direction estimation ap-

proaches suffer from the following drawbacks: 1) they usually

require to deploy additional hardware devices; 2) their appli-

cability is restricted by the environment (e.g., SoundMark fails

in noisy environment and LiDR needs the LED lights to be in

a specific shape); 3) they require the pedestrians to pass two

consecutive locations, which adds extra hurdle.

C. WiFi-based Direction Estimation

Device-free direction estimation is a technique used to

estimate the direction of a moving pedestrian without relying

on any devices attached to her. Literatures such as WiDir [22]

and WiDar [23] estimate user’s direction in a device-free

manner by employing one or multiple theoretical models (e.g.,

Fresnel zone, Doppler Frequency Shift (DFS), and Angle-of-

Arrival (AoA)). Among them, the Fresnel zone model stands

out for its simple geometrical characteristics and ability to

attain precise direction estimations.

Fresnel zone is formed when a radio wave propagates

from transmitter (Tx) to receiver (Rx) and takes multiple

paths, resulting constructive and destructive interference as

the lengths of the reflected paths alternate [22]. Given a radio

wavelength λ, Fresnel zones having n number of ellipses are

formed by adhering the following properties [22]:

|RxP |+ |PTx| − |TxRx| = nλ/2 (1)

Fig. 1: Geometry of Fresnel Zones.

where P is a point on the nth ellipse as shown in Fig. 1.

The path length (|RxP | + |PTx|) of the signal reflected or

diffracted through the nth Fresnel zone boundary is nλ/2

longer than that of the Line-of-Sight (LoS) path length

(|TxRx|). There are infinite number of Fresnel zones, but

Raspberry Pis can only measure 256 sets of Fresnel zones

as they use 256 OFDM subcarriers. The innermost ellipsoid is

called the First Fresnel Zone (FFZ). Traditional FZ approaches

suffer from high errors when users are walking within certain

regions, which will be detailed in Sec. III-B.

To conclude, the phone compass is not suitable for deter-

mining direction in PDR, and each of the two methods for

direction estimation has its own drawbacks. Next we present

the design overview of SWiDir.

III. SWIDIR SYSTEM

In this section, we first present the overview of SWiDir

system, which combines the advantages of passive WiFi sens-

ing and smartphone motion detection for walking direction

estimation. Next, we will delve into the various design con-

siderations that were taken into account while designing the

SWiDir system.

A. System Overview

To provide walking directions for pedestrians in an indoor

environment, SWiDir consists of three major components:

1) phones held by pedestrians in an arbitrary manner; 2)

correction zones which are square in shape and size of

around 3*3 meters, with one WiFi router at the center and
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Fig. 2: A Simple Use-case to Illustrate the SWiDir System

four WiFi receivers at the borders; 3) a server that collects

and processes sensing information from users’ phones and

receivers via wireless communication links (WiFi or cellular

networks), and sends calculated directions back to the phones.

Fig. 2 demonstrates our system components, where a user

walks from location A to location D via B and C, passing

correction zone 1 and 2, with a phone attached to her arm.

When the user is crossing the correction zone, we use

the phone’s step count results and the passive WiFi CSI

information collected by WiFi transceivers to estimate the

users walking direction, and corrects the phone’s compass

direction with the estimated user’s movement direction.

To demonstrate how SWiDir system works, consider the

simple use-case portrayed in Fig. 2. The user starts walking

from point A and stops at point D, along the paths AB, BC and

CD. When crossing correction zone 1, SWiDir estimates her

walking direction as 110◦ w.r.t. to global north, and sends the

direction to her phone. At point B, the user turns 98◦ towards

global east, continues walking until she reaches point C. As

the compass direction is different from the user’s walking

direction, the compass direction incorrectly shows 37◦ instead

of 12◦(110◦-98◦=12◦). As soon as she crosses correction zone

2, phone corrects compass direction as 58◦ at location D.

B. SWiDir Design Considerations

The main challenge of SWiDir is to provide precise walking

directions when the user crosses a correction zone. To address

this challenge, SWiDir leverages the benefits of motion sensing

on smartphones and passive WiFi sensing, thereby enhancing

accuracy in navigation.

We have chosen the Fresnel zone-based (FZ) approach for

passive WiFi sensing due to its training-free nature. However,

traditional FZ approaches calculate direction estimation based

on the ratio of the number of Fresnel zones that the user walks

across in the x and y axes. This method is an approximation

and contributes to errors in the estimation. To address this

problem, SWiDir introduces innovative solution. Rather than

relying on ratios, SWiDir uses the geometrical relationship be-

tween the user’s movement and its effect on the Fresnel zones

as depicted in Fig 4a. Therefore, this approach enables SWiDir

to accurately calculate direction without approximation. In

addition to that SWiDir leverages the precise walking distance

data collected by smartphones to enhance the accuracy and

reliability of WiFi sensing. The details will be given in the

next sections.

IV. METHODOLOGY

This section initially outlines SWiDir’s workflow, followed

by a detailed discussion on movement direction calculation.

A. Workflow of SWiDir

Figure 3 demonstrates the workflow of SWiDir. To reiterate,

SWiDir employs WiFi-based direction estimation when the

user crosses the correction zone. Subsequently, upon exiting

the zone, direction correction is conducted on the phone’s

compass, using the estimated WiFi-based direction as a refer-

ence. The steps and details are described as follows.

1) A Network Time Protocol (NTP) is incorporated into the

central server to synchronize time between the smart-

phone and all 4 receivers.

2) A user carrying a smartphone moves into a correction

zone. When she crosses the Line-of-Sight between any

pair of WiFi transceivers at time T0, the crossing event

is detected by analyzing CSI, which will be described in

detail in our system implementation.

3) After analyzing CSI, the server sends T0 to the smart-

phone, which keeps collecting the motion sensor’s read-

ings while the user is walking. By processing the sensor’s

readings, it keeps a record of the movement steps of its

user, the phone’s compass reading, and the timestamp of

each step.

4) The phone sends a time T1 and a distance d to the server,

with T1 being the time the user has walked k more steps

after crossing LoS and d being the movement distance

between T0 and T1. The k value is given as a prior and

we calculate d based on each user’s individual step length.

5) The server processes the CSI data, counts the fluctuation

during time T0 and T1 and calculates the user’s walking

direction θp using Eq. 2 and Eq. 3.

6) The server sends back the direction to the phone.

7) The phone then corrects its compass direction received

from the server.

B. Movement Direction Calculation in Correction Zone

Fig. 4a shows how the user’s direction is calculated from

motion sensor readings and WiFi sensing. We use transmitter

Tx and four receivers (Rx1 - Rx4) to form a coordination

system, with Tx being (0,0) and Rx4 being the positive x

axis. When the user crosses the LoS formed by Tx-Rx4 at T0,

we use (ls, 0) to denote the point of LoS crossing. The LoS

crossing time can be detected by analyzing the CSI on receiver,

but we cannot tell the LoS crossing point (i.e., ls is unknown).

The user then continues walking k steps and reaches point P at

time T1. As shown in Fig. 4b, we can express the coordinates

of P (user’s location at T1) as:

(x = ls+ d cos θp, y = d sin θp) (2)
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Fig. 3: System Workflow of SWiDir

(a) User’s Trajectory (b) User’s Location at T1

Fig. 4: Geometrical Derivation of SWiDir using Triangle

where ls denotes the distance between Tx and crossing

point of user on LoS at time T0, and θp denotes the user’s

walking direction at location P towards the WiFi transceiver

system’s coordination. In the equation, the distance d between

LoS crossing and P is given by the smartphone, while the two

unknown parameters are ls and θp.

When the user walks between T0 and T1, she crosses

multiple Fresnel zones formed between two transceiver pairs,

Tx and Rx2, and Tx and Rx4. Such Fresnel zone crossing

events can be detected by analyzing the CSI captured by

corresponding receivers, as they cause fluctuations on the

receiving amplitude levels. For simplicity, we approximate

the sequence of the Fresnel zone at location P by using the

number of Fresnel zone the user crossed [24]. Here we use

m and n to denote the sequence of the Fresnel zone of Rx2

and Rx4 at location P , which can be calculated by fluctuation

counts. According to the Fresnel zone model, we have:

ellipse1 :
(x− c)2

(an1 )
2

+
(y)2

(bn1 )
2
= 1

ellipse2 :
(x+ c)2

(am2 )2
+

(y)2

(bm2 )2
= 1

(3)

where an1 , bn1 , am2 , bm2 are the major and minor axes of

the nth and mth ellipses respectively (see Fig. 5) and can be

calculated from the Fresnel zone theory given m and n; c
is half of the distance between the transmitter and receiver,

which is given during system setup. Finally, replacing the x,

y values obtained from Eq. 2 into Eq. 3, we can calculate the

user direction θp and the LoS crossing point (ls, 0).

Fig. 5: The mth and nth Fresnel Zone for Rx2 and Rx4

V. SYSTEM IMPLEMENTATION

In this section, we provide a description of hardware setup

and steps involved in the implementation of SWiDir software.

A. Hardware Setup

Each correction zone involves 4 receivers and 1 transmitter.

We use Raspberry Pi 4B as receiver to collect CSI data. The

reason for selecting the Raspberry Pi 4B was due to its wide

availability and low cost. However, the default firmware of

Broadcomm WiFi chip does not allow to capture CSI data.

Therefore, a modified firmware [16] developed by Nexmon

was used to capture CSI data. The firmware passes the CSI

data from the link layer to the host system by creating frames

with CSI embedded as transport layer payloads. A TP-Link

Archer A7 router was used as a transmitter working in 5GHz

band. We ping the router every 5ms to trigger it’s pong packet,

which will be received by the four receivers.

A desktop with Intel core i7 and 8GB RAM is used

as server, which is connected to all receivers by Ethernet.

The server is set up to process the CSI data and all the

calculations for direction computation. Additionally, it runs a

Network Time Protocol (NTP) server, which handles the time

synchronization among all system components.

Lastly, we use a Huawei Nova 3i smartphone as the user’s

device. It communicates with the server through TCP socket

and synchronizes its time automatically from the NTP server.
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B. Software Implementation

We implement the following steps on the server along with

the android App used in the phone:

1) LoS Crossing Detection: LoS crossing detection step

involves searching for a pattern on streams of CSI reading

from 4 receivers and returning the time T0 as LoS crossing

time as well as the receiver number (i.e. Rx1, 2, 3 or 4) through

which the user crosses the LoS. We observe a specific pattern

on the CSI reading when the user is crossing the LoS. Fig.

6 shows the pattern (marked by red rectangle box) when user

crosses LoS between the time t0 = 3.7sec and t′0 = 4.4sec. It

is noticeable from the pattern that the energy amplitude during

the time window t0 and t1 falls below -55dBm. The reason

is when user is crossing the LoS she blocks the radio signal

between the transmitter and receiver, resulting in low energy

observed in CSI reading. Since the time interval while crossing

LoS is small (less than 1 sec), we take T0 = (t0+t′0)/2, which

is the average of the interval.

We write a python script to implement a simple search

technique to find the pattern. The script searches for con-

secutive amplitude values equal or less than the threshold in

time domain. The window size of the pattern depends on the

body shape of the user, her walking speed, and the hardware

specifications. We repeat the experiments and observe that for

our hardware and correction zone setup, a normal sized human

walking at the speed between 0.5 to 1.5 m/s can be correctly

detected by applying a threshold amplitude value of -55dBm,

which is the parameter we use in our evaluation.

Fig. 6: LoS Crossing Detection

2) CSI Fluctuation Count: This step gets m and n by

counting fluctuations in the CSI data captured by Rx2 and

Rx4 between T0 and T1, where T0 is given by the LoS

crossing detection and T1 is given by the phone. While walking

along a radio propagation path, human causes peaks and

valleys in the measured CSI data in the Fresnel zone. Counting

the number of peaks and valleys tells which Fresnel zone the

user is in after walking k steps.

CSI data collected by Raspberry Pi is noisy. To remove

the noise, we apply the Least-square smoothing filter [25]

to smooth the CSI without warping the waveform too much.

The filter determines a polynomial fit for a certain number

of input samples, i.e., a sample window. From extensive

experiments conducted on different scenarios(environments,

walking directions and distances), we empirically choose 51 as

the window size. Figure 7 demonstrates the results before and

after smoothing the CSI. We then use find peaks function from

SciPy package to count the fluctuation. We experimentally

choose the minimum height as 750 (raw amplitude value, not

in dBm scale) to be counted as a fluctuation.

Fig. 7: Before and After CSI Smoothing

3) Direction Calculation: Knowing m and n, the next step

is to solve the 2 ellipses equations derived in Eq. 3. Given

n, the boundary of n-th Fresnel zone bn1 formed by Rx2 is

defined by Fresnel zone model as follows:

bn1 = {|Rx2P |+ |PTx| − |TxRx2| = nλ/2} (4)

where λ is a parameter determined by the radio wavelength.

Similarly, we can obtain the boundary for m-th Fresnel zone

bm2 formed by Rx4. Additionally, for the ellipse1 and ellipse2,

we can get 3 more properties of ellipses according to Fresnel

zone theory. They are required to calculate the values of an1 ,

bn1 , am2 and bm2 for Eq. 3. For simplicity, 3 properties are given

below for ellipse1:

|Rx2P |+ |PTx| = 2an1

|TxRx2| = 2c

(a1n)
2 − c2 = (b1n)

2

(5)

Solving Equations 4 and 5, bn1 is obtained as follows:

bn1 =

√
nλ2 + 8nλc

4
(6)

Putting bn1 in Eq. 5, an1 is derived, where c is a known variable

(from Eq. 3). Similarly, we can get the values of am2 and bm2 for

ellipse2. Therefore, we can solve Eq. 3 to obtain 2 unknown

variables θp (direction) and ls as depicted by Fig. 4b. Once

direction θp and ls distance are derived, user location x and

y at point P can easily be obtained using Eq. 2.

4) SWiDir App Implementation: We base our App imple-

mentation on an open-source compass app [26]. In particular,

our App (1) communicates with the server to receive T0 and

θp, and sends T1 and d; (2) detects user’s steps and records

time; (3) corrects compass direction received from the server.

VI. EVALUATION

This section describes the procedure and results of our

evaluation.
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A. Testbed Setup

We conducted experiments in two indoor environments to

properly evaluate the performance of SWiDir, which are: a lab

office of 7.5m×6m and a large empty corridor of 46m×3m.

In both environments, we placed the four receivers forming

a 3m×3m correction zone. The lab office has four tables,

four chairs, and a few desktops and monitors. The lab office

represents an environment with rich multi-path reflections, and

the corridor represents an environment with static reflections.

(a) Office Room (b) Corridor

Fig. 8: Testbed Setup

The receivers were placed 50cm above the ground and

mounted on tripods as shown in Fig. 8. The distance between

the WiFi router and each Raspberry Pi was 1.5m. The router

was attached to the ceiling, at the perpendicular bisector of the

4 receivers. Maintaining a certain distance from the ground is

important to reduce radio waves’ reflection from the ground.

B. Performance Evaluation

Firstly, we assessed our WiFi sensing approach by analyzing

the direction estimation accuracy for 8 basic paths. These basic

paths crossed the WiFi router from 8 directions separated 45

degrees apart, i.e., 0, 45, 90, 135, 180, 225, 270 and 315

degrees towards the line from Rx2 to Rx4. As the smartphone-

based distance estimation is known to be accurate and is not

the focus of our research, we assume that the distance d
measured by smartphone is accurate, and our experiment only

measured the errors caused by our WiFi sensing approach.

To establish the actual directions for each path, we used

a digital protractor and markers to demarcate the path on

the ground. We enlisted three volunteers to walk from the

designated starting point to the end point while maintaining

their torso alignment with the straight line. We repeated each

data collection eight times and captured 384 sets of WiFi CSI

data (2 environments×3 volunteers×8 paths×8 repeats).

Figure 9 depicts the Median Absolute Error(MAE) for

the eight basic paths in the office room and empty corridor

respectively. Figure 9.(a) shows that the overall MAE for

the office room is 6 degrees and deviation is 5.41 degrees.

Figure 9.(b) shows that the overall MAE for empty corridor is

around 5 degrees and deviation is 4.04 degrees. Figure 9.(c)

shows that compared with the office room with rich multi-path

reflections, empty corridor produced less error: 75th percentile

error in corridor is around 6 degrees while in office room the

error is around 8 degrees. Among all the angles, only 45 degree

has less than 4 degrees of error for upper quantile in both of

the rooms.

(a) Office Room (b) Empty Corridor (c) CDF Comparison

Fig. 9: Accuracy of SWiDir in 2 Different Environments

Fig. 10: Paths with Different

LoS Crossing Locations

We then assessed how dif-

ferent LoS crossing locations

impact accuracy. As shown by

Fig. 10, the testers passed the

LoS between Rx2 and Rx4

with a fixed walking direction

but different LoS crossing loca-

tions. These paths (P1, P2, P3, P4 and P5) each has the same

length of 3m, and are 0.5m apart. Fig. 11a shows that direction

estimation results for all the paths has less than 7 degrees of

median error, indicating that our WiFi sensing approach can

achieve good results with different LoS crossing points.

(a) Different LoS Crossing Pt. (b) Different Distance d

Fig. 11: Impact of LoS Crossing Locations and Distances

We also observed that the human body’s impact on the

accuracy cannot be ignored. Although we model human body

as a point in our equations, the width of human body actually

causes an impact on the CSI reflection and the Fresnel

zone fluctuation counts. Such impact is less significant if

the testers walk a longer distance after crossing LoS. Hence,

we conducted another experiment to measure how distance d
(the length of the path after LoS crossing) impacts accuracy.

The testers passed the LoS with a fixed walking direction

but different walking distances d (i.e., 0.5m, 1m, 1.5m).

Figure. 11b exhibits that lower d distance incurs more error.

Based on this observation, when deploying the correction

zones, the developers need to choose the locations where

the users can continue walking for at least 0.5m after LoS

crossing.
Lastly, we calculated the median and 75th percentile accu-

racy achieved by SWiDir in all testing scenarios, and com-

pared it with three additional state-of-the-art works namely
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WiDir [22], Widar [23] and WalkCompass [27]. Of the three

works, WiDir and Widar rely on WiFi passive sensing, while

WalkCompass is smartphone-based. The accuracy of these

approaches was obtained from publications since we lacked

access to their source codes. Table- I shows that SWiDir

outperforms all the three works for 75th percentile and me-

dian error except Widar achieved median error of 5 degrees,

where SWiDir attain 6 degrees. Compared with the closest

(WalkCompass), SWiDir reduces the 75th percentile error by

64%. The reason for achieving outperforming result is the

geometrical relationship which does not cause cumulative error

unlike other models.

Approaches 75th Percentile Error (in degree) Median Error (in degree)
WiDir 23 10

WalkCompass 14.2 8
WiDar 18 5

SWiDir (Our Approach) 8.89 6

TABLE I: Comparing SWiDir’s Accuracy with Other Methods

C. Discussion

As far as we know, SWiDir is the first attempt to combine

passive WiFi sensing with phone-based direction estimation.

As indicated by our evaluation, SWiDir achieved good ac-

curacy comparing with other state-of-the-art models. It is also

training-free, so it can be deployed in a plug-and-play fashion.

However, likewise the other RF-based human sensing appli-

cations such as localization and gesture recognition, SWiDir

is also impacted by rich multi-path and its accuracy drops

greatly when two persons enter the same correction zone

simultaneously. Besides, pedestrian should also walk for 0.5

meters after crossing LoS. Hence, developers need to pay

attention to satisfy these requirements when using SWiDir.

VII. CONCLUSION

In this paper, we present SWiDir, a system for accurately

estimating movement direction by combining passive WiFi

sensing with phone based direction estimation. The novelty

of our approach lies in introducing additional receivers for

better WiFi sensing and utilizing a geometrical approach for

accurate direction estimation. We implement SWiDir using

Raspberry Pi and our extensive experiments show that SWiDir

achieves 8.89 degrees of average 75 percentile error in walking

direction estimation, which is 64% lower than the state-of-the-

art approaches.
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