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Abstract—Dead reckoning is a promising yet overlooked smart-
phone based indoor localization technology. It relies on phone-
mounted sensors for counting steps and estimating walking
directions, requiring no massive deployment of additional sensors
or landmarks. However, it suffers from the misalignment between
phone’s direction and human’s movement direction, which makes
the estimated walking direction unreliable and eventually leads to
inaccurate location estimation. To solve this problem, this paper
introduces SWiDir, an approach that calibrates walking direction
by integrating active smartphone sensing with passive WiFi
sensing. SWiDir deploys a few WiFi devices to form a correction
zone, and use their WiFi Channel State Information (CSI) to
infer human’s movement inside the zone. We adopt the training-
free WiFi Fresnel Zone model, and introduce an accurate and
robust direction estimation model by exploring the geometrical
relationship between the user’s movement and its impact on
the Fresnel zones. We built our testbed with 4 Raspberry Pis,
forming a large correction zone and evaluated SWiDir across
5 participants in 2 different real environments. Our extensive
experiments show that SWiDir achieves 8.89 degrees of average
75 percentile error in walking direction estimation, which is 64 %
lower than the state-of-the-art existing approaches.

Index Terms—Walking Direction Estimation, Dead Reckon-
ing, Smartphone Sensor Calibration, Channel State Information
(CSI), WiFi Sensing

1. INTRODUCTION

Knowing the accurate location of the users can enable
a wide range of applications, including navigation, social
media, and location-based marketing. GPS has long been the
gold standard for outdoor localization. However, due to the
signal’s susceptibility to weakening or obstruction by physical
barriers, its applicability in indoor environments is limited.
Other than GPS, there are two categories of approaches for
indoor localization, device-free and smartphone-based. How-
ever, these approaches limit their applicability to pervasive
indoor environments due to their inherent limitations [1].

Smartphones have become an essential part of our daily
lives, and their widespread use is likely to continue for
the foreseeable future. Smartphone based indoor localization
technologies include WiFi RSSI [2], dead reckoning [3], BLE-
beacon [4], and camera-based [5]. Among these technologies,
Pedestrian Dead Reckoning (PDR) is relatively suitable for
being used pervasively, as it only relies on the IMU sensors
already integrated in smartphones. Although estimating the
walking distance by IMU is accurate, the walking direction
estimation is inaccurate because of the misalignment between
phone’s direction and human’s movement direction, which
eventually leads to inaccurate location estimation [6].
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Many recent studies focus on enhancing smartphone-based
direction estimation. These approaches either rely on external
landmarks [7]-[9], or fuse the IMU sensor readings by ap-
plying various statistical techniques [10]-[14]. However, the
landmark based approaches require pedestrians to pass specific
landmarks consecutively, and the sensor fusion approaches
are usually user-specific and are sensitive to how the user
walks/carries the phone.

In this paper, we enhance PDR-based direction estimation
by gathering additional information from passive WiFi sens-
ing. Passive WiFi sensing is a device-free indoor localization
approach that has been studied widely due to the pervasive
existence of WiFi. To combine the advantages of smartphone-
based motion sensing and WiFi sensing, we deploy WiFi
devices to form WiFi sensing regions (correction zones), and
use accurate walking distance collected by smartphone to
improve the accuracy of pure WiFi sensing. Our approach
provides better accuracy and reliability compared with WiFi-
based direction estimation, and eliminates the aforementioned
constraints posed by smartphone-based direction estimation.

In summary our key contributions are as follows:

« We introduce SWiDir, a direction correction system that
corrects smartphone-based user direction estimation by
forming Correction zone with passive WiFi sensing. Our
approach accurately measures user’s walking directions
when she passes a correction zone, and utilizes the mea-
sured directions to correct the direction of the compass.

« We develop a Fresnel zone-based approach that measures
walking directions accurately. The novelty of our ap-
proach lies in its unique geometrical model for capturing
user’s movement by both smartphone and WiFi receivers,
making it more accurate and robust.

« We analyze and evaluate our system in 2 real environ-
ments and compare its performance with state-of-the-
art approaches. We extensively measure the impact of
different environments, walking directions and distances
on the accuracy of our approach. Our results show that
SWiDir consistently outperforms existing approaches that
is based either on WiFi sensing or smartphone sensor
fusion.

The remainder of this paper is organized as follows. Section
II provides a review of existing solutions and their associated
problems. In Section III, we present our system overview and
design considerations. Section IV outlines the main methodol-
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ogy behind our system. A detailed description of our system
implementation is provided in Section V, while Section VI
presents our evaluation results. Finally, we conclude this paper
with Section VIL

II. RELATED WORKS

There have been numerous efforts to accurately estimate
the walking direction and location of a subject by utilizing
either smartphone IMU sensor or by manipulating WiFi CSI
(Channel State Information) [15], [16]. Both of the approaches
suffer from their own limitations. Here, we briefly describe the
methodologies of few recent and popular related works, their
strengths and weaknesses.

A. Pedestrian Dead Reckoning

In pedestrian dead reckoning (PDR), step count and step
length are used to estimate the distance traveled by a pedes-
trian, while direction estimation is used to determine the
orientation of the pedestrian. Knowing the orientation and
length of each step will allow pedestrian to predict her real-
time locations given the starting location.

The major categories of step counting techniques using
the smartphone’s built-in accelerometer are threshold setting,
peak detection, correlation analysis, and spectral analysis [17].
Experiments show existing step counting approaches already
achieve very good accuracy: the results in [17] demonstrate
an error rate of lower than 5% for most pedestrians.

Many algorithms for estimating step length require user-
specific training [18]. In recent years, few training-free algo-
rithms [19] have also been developed for accurately measuring
the step length, independent of the pedestrian. This paper only
concentrates on orientation estimation, leaving the step count
and step length estimation methods out of our purview because
their accuracy is already high and steadily improving.

Compass is the default direction estimation method built-
in for Android and iOS. However, due to the misalignment
between the direction of the phone and the user’s walking
direction, using a smartphone compass for dead reckoning only
gets moderate precision [6]. Next, we review and summarize
the state-of-the-art walking direction estimation approaches.

B. Calibration-based Direction Estimation

Calibration-based direction estimation requires the pedes-
trian to pass two landmarks, whose locations are known in
prior. The pedestrian’s trajectory between these two landmarks
are recorded, with the phone compass providing inaccurate
walking directions. After passing the second landmark, the
actual walking direction is calculated, which is further used
to infer the projection between the phone’s compass reading
to pedestrian’s walking direction. The landmarks can be either
LED light [8], acoustic [9], or Bluetooth beacons [20], [21].

However, the calibration-based direction estimation ap-
proaches suffer from the following drawbacks: 1) they usually
require to deploy additional hardware devices; 2) their appli-
cability is restricted by the environment (e.g., SoundMark fails
in noisy environment and LiDR needs the LED lights to be in
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a specific shape); 3) they require the pedestrians to pass two
consecutive locations, which adds extra hurdle.

C. WiFi-based Direction Estimation

Device-free direction estimation is a technique used to
estimate the direction of a moving pedestrian without relying
on any devices attached to her. Literatures such as WiDir [22]
and WiDar [23] estimate user’s direction in a device-free
manner by employing one or multiple theoretical models (e.g.,
Fresnel zone, Doppler Frequency Shift (DFS), and Angle-of-
Arrival (AoA)). Among them, the Fresnel zone model stands
out for its simple geometrical characteristics and ability to
attain precise direction estimations.

Fresnel zone is formed when a radio wave propagates
from transmitter (Tx) to receiver (Rx) and takes multiple
paths, resulting constructive and destructive interference as
the lengths of the reflected paths alternate [22]. Given a radio
wavelength A, Fresnel zones having n number of ellipses are
formed by adhering the following properties [22]:

|RxP| + |PTz| — |TxRx| = nA/2 (1)

Fig. 1: Geometry of Fresnel Zones.

where P is a point on the nth ellipse as shown in Fig. 1.
The path length (|[RxP| + |PTx|) of the signal reflected or
diffracted through the mth Fresnel zone boundary is n\/2
longer than that of the Line-of-Sight (LoS) path length
(|TxRz|). There are infinite number of Fresnel zones, but
Raspberry Pis can only measure 256 sets of Fresnel zones
as they use 256 OFDM subcarriers. The innermost ellipsoid is
called the First Fresnel Zone (FFZ). Traditional FZ approaches
suffer from high errors when users are walking within certain
regions, which will be detailed in Sec. III-B.

To conclude, the phone compass is not suitable for deter-
mining direction in PDR, and each of the two methods for
direction estimation has its own drawbacks. Next we present
the design overview of SWiDir.

III. SWIDIR SYSTEM

In this section, we first present the overview of SWiDir
system, which combines the advantages of passive WiFi sens-
ing and smartphone motion detection for walking direction
estimation. Next, we will delve into the various design con-
siderations that were taken into account while designing the
SWiDir system.

A. System Overview

To provide walking directions for pedestrians in an indoor
environment, SWiDir consists of three major components:
1) phones held by pedestrians in an arbitrary manner; 2)
correction zones which are square in shape and size of
around 3*3 meters, with one WiFi router at the center and
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Fig. 2: A Simple Use-case to Illustrate the SWiDir System

four WiFi receivers at the borders; 3) a server that collects
and processes sensing information from users’ phones and
receivers via wireless communication links (WiFi or cellular
networks), and sends calculated directions back to the phones.
Fig. 2 demonstrates our system components, where a user
walks from location A to location D via B and C, passing
correction zone 1 and 2, with a phone attached to her arm.

When the user is crossing the correction zone, we use
the phone’s step count results and the passive WiFi CSI
information collected by WiFi transceivers to estimate the
users walking direction, and corrects the phone’s compass
direction with the estimated user’s movement direction.

To demonstrate how SWiDir system works, consider the
simple use-case portrayed in Fig. 2. The user starts walking
from point A and stops at point D, along the paths AB, BC and
CD. When crossing correction zone 1, SWiDir estimates her
walking direction as 110° w.r.t. to global north, and sends the
direction to her phone. At point B, the user turns 98° towards
global east, continues walking until she reaches point C. As
the compass direction is different from the user’s walking
direction, the compass direction incorrectly shows 37° instead
of 12°(110°-98°=12°). As soon as she crosses correction zone
2, phone corrects compass direction as 58° at location D.

B. SWiDir Design Considerations

The main challenge of SWiDir is to provide precise walking
directions when the user crosses a correction zone. To address
this challenge, SWiDir leverages the benefits of motion sensing
on smartphones and passive WiFi sensing, thereby enhancing
accuracy in navigation.

We have chosen the Fresnel zone-based (FZ) approach for
passive WiFi sensing due to its training-free nature. However,
traditional FZ approaches calculate direction estimation based
on the ratio of the number of Fresnel zones that the user walks
across in the x and y axes. This method is an approximation
and contributes to errors in the estimation. To address this
problem, SWiDir introduces innovative solution. Rather than
relying on ratios, SWiDir uses the geometrical relationship be-
tween the user’s movement and its effect on the Fresnel zones
as depicted in Fig 4a. Therefore, this approach enables SWiDir
to accurately calculate direction without approximation. In
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addition to that SWiDir leverages the precise walking distance
data collected by smartphones to enhance the accuracy and
reliability of WiFi sensing. The details will be given in the
next sections.

IV. METHODOLOGY

This section initially outlines SWiDir’s workflow, followed
by a detailed discussion on movement direction calculation.

A. Workflow of SWiDir

Figure 3 demonstrates the workflow of SWiDir. To reiterate,
SWiDir employs WiFi-based direction estimation when the
user crosses the correction zone. Subsequently, upon exiting
the zone, direction correction is conducted on the phone’s
compass, using the estimated WiFi-based direction as a refer-
ence. The steps and details are described as follows.

1) A Network Time Protocol (NTP) is incorporated into the
central server to synchronize time between the smart-
phone and all 4 receivers.

A user carrying a smartphone moves into a correction
zone. When she crosses the Line-of-Sight between any
pair of WiFi transceivers at time 7j, the crossing event
is detected by analyzing CSI, which will be described in
detail in our system implementation.

After analyzing CSI, the server sends 7y to the smart-
phone, which keeps collecting the motion sensor’s read-
ings while the user is walking. By processing the sensor’s
readings, it keeps a record of the movement steps of its
user, the phone’s compass reading, and the timestamp of
each step.

The phone sends a time 77 and a distance d to the server,
with T3 being the time the user has walked k& more steps
after crossing LoS and d being the movement distance
between Tp and 7. The £ value is given as a prior and
we calculate d based on each user’s individual step length.
The server processes the CSI data, counts the fluctuation
during time 7y and 77 and calculates the user’s walking
direction 6, using Eq. 2 and Eq. 3.

The server sends back the direction to the phone.

The phone then corrects its compass direction received
from the server.

2)

3)

4)

5)

6)
7

B. Movement Direction Calculation in Correction Zone

Fig. 4a shows how the user’s direction is calculated from
motion sensor readings and WiFi sensing. We use transmitter
Tx and four receivers (Rx1 - Rx4) to form a coordination
system, with Tx being (0,0) and Rx4 being the positive x
axis. When the user crosses the LoS formed by Tx-Rx4 at 7Tj,
we use (Is, 0) to denote the point of LoS crossing. The LoS
crossing time can be detected by analyzing the CSI on receiver,
but we cannot tell the LoS crossing point (i.e., [s is unknown).
The user then continues walking £ steps and reaches point P at
time 77. As shown in Fig. 4b, we can express the coordinates
of P (user’s location at 77) as:

(x =1Ils+dcosby,y =dsinb)) 2)
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Fig. 3: System Workflow of SWiDir

(x=Ls +dcos6,,
y =dsing,)

Triangle
Formulation

/’—\
®
N fo
\7@&(1

(a) User’s Trajectory

(b) User’s Location at T}

Fig. 4: Geometrical Derivation of SWiDir using Triangle

where [s denotes the distance between Tx and crossing
point of user on LoS at time Tp, and 6, denotes the user’s
walking direction at location P towards the WiFi transceiver
system’s coordination. In the equation, the distance d between
LoS crossing and P is given by the smartphone, while the two
unknown parameters are [s and 0,,.

When the user walks between 7 and 77, she crosses
multiple Fresnel zones formed between two transceiver pairs,
Tx and Rx2, and Tx and Rx4. Such Fresnel zone crossing
events can be detected by analyzing the CSI captured by
corresponding receivers, as they cause fluctuations on the
receiving amplitude levels. For simplicity, we approximate
the sequence of the Fresnel zone at location P by using the
number of Fresnel zone the user crossed [24]. Here we use
m and n to denote the sequence of the Fresnel zone of Rx2
and Rx4 at location P, which can be calculated by fluctuation
counts. According to the Fresnel zone model, we have:

ellipsel : M + ()" =1
(a’?)z (biL)Q (3)
, (z+c)? | (y)?
I 22—t =1
P g T g2
where af, b7, a3, by' are the major and minor axes of

the nth and mth ellipses respectively (see Fig. 5) and can be
calculated from the Fresnel zone theory given m and n; ¢
is half of the distance between the transmitter and receiver,
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which is given during system setup. Finally, replacing the =z,
y values obtained from Eq. 2 into Eq. 3, we can calculate the
user direction ¢, and the LoS crossing point (Is,0).

Ellipse1

Fig. 5: The mth and nth Fresnel Zone for Rx2 and Rx4

V. SYSTEM IMPLEMENTATION

In this section, we provide a description of hardware setup
and steps involved in the implementation of SWiDir software.

A. Hardware Setup

Each correction zone involves 4 receivers and 1 transmitter.
We use Raspberry Pi 4B as receiver to collect CSI data. The
reason for selecting the Raspberry Pi 4B was due to its wide
availability and low cost. However, the default firmware of
Broadcomm WiFi chip does not allow to capture CSI data.
Therefore, a modified firmware [16] developed by Nexmon
was used to capture CSI data. The firmware passes the CSI
data from the link layer to the host system by creating frames
with CSI embedded as transport layer payloads. A TP-Link
Archer A7 router was used as a transmitter working in 5GHz
band. We ping the router every Sms to trigger it’s pong packet,
which will be received by the four receivers.

A desktop with Intel core i7 and 8GB RAM is used
as server, which is connected to all receivers by Ethernet.
The server is set up to process the CSI data and all the
calculations for direction computation. Additionally, it runs a
Network Time Protocol (NTP) server, which handles the time
synchronization among all system components.

Lastly, we use a Huawei Nova 3i smartphone as the user’s
device. It communicates with the server through TCP socket
and synchronizes its time automatically from the NTP server.
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B. Software Implementation

We implement the following steps on the server along with
the android App used in the phone:

1) LoS Crossing Detection: LoS crossing detection step
involves searching for a pattern on streams of CSI reading
from 4 receivers and returning the time 7y as LoS crossing
time as well as the receiver number (i.e. Rx1, 2, 3 or 4) through
which the user crosses the LoS. We observe a specific pattern
on the CSI reading when the user is crossing the LoS. Fig.
6 shows the pattern (marked by red rectangle box) when user
crosses LoS between the time ty = 3.7sec and t{, = 4.4sec. It
is noticeable from the pattern that the energy amplitude during
the time window tg and ¢; falls below -55dBm. The reason
is when user is crossing the LoS she blocks the radio signal
between the transmitter and receiver, resulting in low energy
observed in CSI reading. Since the time interval while crossing
LoS is small (less than 1 sec), we take Ty = (to+t;)/2, which
is the average of the interval.

We write a python script to implement a simple search
technique to find the pattern. The script searches for con-
secutive amplitude values equal or less than the threshold in
time domain. The window size of the pattern depends on the
body shape of the user, her walking speed, and the hardware
specifications. We repeat the experiments and observe that for
our hardware and correction zone setup, a normal sized human
walking at the speed between 0.5 to 1.5 m/s can be correctly
detected by applying a threshold amplitude value of -55dBm,
which is the parameter we use in our evaluation.
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Fig. 6: LoS Crossing Detection

2) CSI Fluctuation Count: This step gets m and n by
counting fluctuations in the CSI data captured by Rxz2 and
Rx4 between Ty and T3, where T is given by the LoS
crossing detection and 77 is given by the phone. While walking
along a radio propagation path, human causes peaks and
valleys in the measured CSI data in the Fresnel zone. Counting
the number of peaks and valleys tells which Fresnel zone the
user is in after walking k steps.

CSI data collected by Raspberry Pi is noisy. To remove
the noise, we apply the Least-square smoothing filter [25]
to smooth the CSI without warping the waveform too much.
The filter determines a polynomial fit for a certain number
of input samples, i.e., a sample window. From extensive
experiments conducted on different scenarios(environments,
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walking directions and distances), we empirically choose 51 as
the window size. Figure 7 demonstrates the results before and
after smoothing the CSI. We then use find_peaks function from
SciPy package to count the fluctuation. We experimentally
choose the minimum height as 750 (raw amplitude value, not
in dBm scale) to be counted as a fluctuation.

— sl

s CSI_smoothed

Amplitude

200

0 50 100 150

Subcarrier

Fig. 7: Before and After CSI Smoothing

200 250

3) Direction Calculation: Knowing m and n, the next step
is to solve the 2 ellipses equations derived in Eq. 3. Given
n, the boundary of n-th Fresnel zone 0} formed by Rx2 is
defined by Fresnel zone model as follows:

U = {|RxoP| + |PTx| — |TzRxs| = nA/2} (6))
where )\ is a parameter determined by the radio wavelength.
Similarly, we can obtain the boundary for m-th Fresnel zone
by formed by Rx4. Additionally, for the ellipsel and ellipse2,
we can get 3 more properties of ellipses according to Fresnel
zone theory. They are required to calculate the values of af,

7, ay' and b5" for Eq. 3. For simplicity, 3 properties are given
below for ellipsel:

|RzoP| + |PTx| = 2a}

|TxRxs| = 2¢ Q)
(a’}b)Q - 62 - (b}L)Q
Solving Equations 4 and 5, b7 is obtained as follows:
VnA? 4+ 8n\
b = VnA© + snac (6)

4

Putting b7 in Eq. 5, a7 is derived, where c is a known variable
(from Eq. 3). Similarly, we can get the values of a3* and b3" for
ellipse2. Therefore, we can solve Eq. 3 to obtain 2 unknown
variables 6, (direction) and [s as depicted by Fig. 4b. Once
direction ), and [s distance are derived, user location z and
y at point P can easily be obtained using Eq. 2.

4) SWiDir App Implementation: We base our App imple-
mentation on an open-source compass app [26]. In particular,
our App (1) communicates with the server to receive T and
0,, and sends T and d; (2) detects user’s steps and records
time; (3) corrects compass direction received from the server.

VI. EVALUATION

This section describes the procedure and results of our
evaluation.
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A. Testbed Setup

We conducted experiments in two indoor environments to
properly evaluate the performance of SWiDir, which are: a lab
office of 7.5mx6m and a large empty corridor of 46mx3m.
In both environments, we placed the four receivers forming
a 3mx3m correction zone. The lab office has four tables,
four chairs, and a few desktops and monitors. The lab office
represents an environment with rich multi-path reflections, and
the corridor represents an environment with static reflections.

3 Transmitter

(a) Office Room
Fig. 8: Testbed Setup

(b) Corridor

The receivers were placed 50cm above the ground and
mounted on tripods as shown in Fig. 8. The distance between
the WiFi router and each Raspberry Pi was 1.5m. The router
was attached to the ceiling, at the perpendicular bisector of the
4 receivers. Maintaining a certain distance from the ground is
important to reduce radio waves’ reflection from the ground.

B. Performance Evaluation

Firstly, we assessed our WiFi sensing approach by analyzing
the direction estimation accuracy for 8 basic paths. These basic
paths crossed the WiFi router from 8§ directions separated 45
degrees apart, i.e., 0, 45, 90, 135, 180, 225, 270 and 315
degrees towards the line from Rx2 to Rx4. As the smartphone-
based distance estimation is known to be accurate and is not
the focus of our research, we assume that the distance d
measured by smartphone is accurate, and our experiment only
measured the errors caused by our WiFi sensing approach.
To establish the actual directions for each path, we used
a digital protractor and markers to demarcate the path on
the ground. We enlisted three volunteers to walk from the
designated starting point to the end point while maintaining
their torso alignment with the straight line. We repeated each
data collection eight times and captured 384 sets of WiFi CSI
data (2 environments x3 volunteers x 8 pathsx8 repeats).

Figure 9 depicts the Median Absolute Error(MAE) for
the eight basic paths in the office room and empty corridor
respectively. Figure 9.(a) shows that the overall MAE for
the office room is 6 degrees and deviation is 5.41 degrees.
Figure 9.(b) shows that the overall MAE for empty corridor is
around 5 degrees and deviation is 4.04 degrees. Figure 9.(c)
shows that compared with the office room with rich multi-path
reflections, empty corridor produced less error: 75th percentile
error in corridor is around 6 degrees while in office room the
error is around 8 degrees. Among all the angles, only 45 degree
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has less than 4 degrees of error for upper quantile in both of
the rooms.
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Fig. 9: Accuracy of SWiDir in 2 Different Environments

|
g /60 0 L./ ko Jeo'
P1 2 Ps‘ 4 Ps

Fig. 10: Paths with Different
LoS Crossing Locations

We then assessed how dif-
ferent LoS crossing locations
impact accuracy. As shown by
Fig. 10, the testers passed the
LoS between Rx2 and Rx4
with a fixed walking direction
but different LoS crossing loca-
tions. These paths (P, P>, P53, P, and Ps) each has the same
length of 3m, and are 0.5m apart. Fig. 11a shows that direction
estimation results for all the paths has less than 7 degrees of
median error, indicating that our WiFi sensing approach can
achieve good results with different LoS crossing points.
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Fig. 11: Impact of LoS Crossing Locations and Distances

We also observed that the human body’s impact on the
accuracy cannot be ignored. Although we model human body
as a point in our equations, the width of human body actually
causes an impact on the CSI reflection and the Fresnel
zone fluctuation counts. Such impact is less significant if
the testers walk a longer distance after crossing LoS. Hence,
we conducted another experiment to measure how distance d
(the length of the path after LoS crossing) impacts accuracy.
The testers passed the LoS with a fixed walking direction
but different walking distances d (i.e., 0.5m, Im, 1.5m).
Figure. 11b exhibits that lower d distance incurs more error.
Based on this observation, when deploying the correction
zones, the developers need to choose the locations where
the users can continue walking for at least 0.5m after LoS
crossing.

Lastly, we calculated the median and 75th percentile accu-
racy achieved by SWiDir in all testing scenarios, and com-
pared it with three additional state-of-the-art works namely
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WiDir [22], Widar [23] and WalkCompass [27]. Of the three
works, WiDir and Widar rely on WiFi passive sensing, while
WalkCompass is smartphone-based. The accuracy of these
approaches was obtained from publications since we lacked
access to their source codes. Table- I shows that SWiDir
outperforms all the three works for 75th percentile and me-
dian error except Widar achieved median error of 5 degrees,
where SWiDir attain 6 degrees. Compared with the closest
(WalkCompass), SWiDir reduces the 75th percentile error by
64%. The reason for achieving outperforming result is the
geometrical relationship which does not cause cumulative error
unlike other models.

Approaches 75th Percentile Error (in degree) | Median Error (in degree)
‘WiDir 23 10
‘WalkCompass 14.2 8
WiDar 18 5
SWiDir (Our Approach) 8.89 6

TABLE I: Comparing SWiDir’s Accuracy with Other Methods

C. Discussion

As far as we know, SWiDir is the first attempt to combine
passive WiFi sensing with phone-based direction estimation.
As indicated by our evaluation, SWiDir achieved good ac-
curacy comparing with other state-of-the-art models. It is also
training-free, so it can be deployed in a plug-and-play fashion.
However, likewise the other RF-based human sensing appli-
cations such as localization and gesture recognition, SWiDir
is also impacted by rich multi-path and its accuracy drops
greatly when two persons enter the same correction zone
simultaneously. Besides, pedestrian should also walk for 0.5
meters after crossing LoS. Hence, developers need to pay
attention to satisfy these requirements when using SWiDir.

VII. CONCLUSION

In this paper, we present SWiDir, a system for accurately
estimating movement direction by combining passive WiFi
sensing with phone based direction estimation. The novelty
of our approach lies in introducing additional receivers for
better WiFi sensing and utilizing a geometrical approach for
accurate direction estimation. We implement SWiDir using
Raspberry Pi and our extensive experiments show that SWiDir
achieves 8.89 degrees of average 75 percentile error in walking
direction estimation, which is 64% lower than the state-of-the-
art approaches.
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