2023 IEEE 5th International Conference on Cognitive Machine Intelligence (CogMI) | 979-8-3503-2383-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/COGMI58952.2023.00014

2023 IEEE 5th International Conference on Cognitive Machine Intelligence (CogMI)

Location-Adaptive Generative Graph Augmentation
for Fraud Detection

Lin Meng*, Xiaonan Zhang', Jiawei Zhang! and Philip S. Yu®
*TDepartment of Computer Science, Florida State University, Tallahassee, FL, USA
iDepartment of Computer Science, University of California, Davis, Davis, CA, USA
§Department of Computer Science, University of Illinois, Chicago, Chicago, IL, USA

*Im18h@fsu.edu, szhang@cs.fsu.edu, J:jiawei@ifmlab.org, §psyu@uic.edu

Abstract—Class imbalance is a well-recognized challenge in
GNN-based fraud detection. Traditional methods like re-sampling
and re-weighting address this issue by balancing class distribu-
tion. However, node class balancing with simple re-sampling or
re-weighting may significantly distort the data distributions and
eventually lead to the ineffective performance of GNNs. In this
paper, we propose a novel approach named Location-Adaptive
Generative Node Augmentation (LAGA), which improves GNN-
based fraud detection models by augmenting synthetic nodes of
the minority class. To increase the variety for the synthetic nodes,
LAGA utilizes the GAN framework to synthesize node features
and related edges of fake fraudulent nodes. Specifically, LAGA
include feature generation and edge generation modules. In order
to make sure the generated features are consistent in terms of
representing fraudulent nodes, we also design a location network
that uses node features to find the neighborhood of synthetic
nodes. Our empirical results on two real-world fraud datasets
demonstrate that LAGA improves the performance of GNN-
based fraud detection models by a large margin with much fewer
nodes than traditional class balance methods, and outperforms
recent graph augmentation methods with the same number of
synthetic nodes.

Index Terms—Graph Neural Networks, Fraud Detection, Node
Augmentation, Generative Adversarial Network

I. INTRODUCTION

Fraud detection has become increasingly crucial due to
a surge in fraudsters stealing unsuspecting individuals for
personal gain [6], [12]. Such deceptive actions manifest in di-
verse ways. For instance, there is the distortion of consumers’
shopping decisions via the spread of deceptive reviews by
opinion fraudsters [3], [29] and financial deceptions linked to
credit cards [13] and illicit money laundering activities [9]. In
this domain, graphs serve as valuable tools. They show pivotal
information useful in fraudulent entities and activities. A
typical graph contains both benign and fraudulent participants
and the connections between them. Thus, fraud detection is
often regarded as a node classification task [14], [23], [29].
Here, the mission is to categorize nodes (for instance, users)
within a graph as either benign or fraudulent. The rise of graph
neural networks (GNNSs) [7], [25] has introduced innovative
methods to tackle graph data, accelerating the process of
integrating GNNs into fraud detection [3], [16], [23], [27],
[29].

In real-world fraud detection, datasets commonly suffer
from class imbalance problem, where the number of fraudulent

entities is significantly fewer than the benign ones [1]. As a
result, GNN-based fraud detection models often lean towards
predicting the predominant class, in other words, boosting
accuracy and simultaneously diminishing recall. Traditional
strategies to mitigate the class imbalance for i.i.d. data, includ-
ing re-sampling [13], [18] and re-weighting techniques [3],
[23], find limited applicability in graph data due to the inherent
interconnectedness of its nodes. Specifically, under-sampling
decreases the training data for the majority class, and over-
sampling not only replicates nodes but also their associated
edges within the minority class. This can lead to overfitting
because of “neighborhood memorization” [19]. Re-weighting,
on the other hand, by merely adjusting weights in the loss
function, tends to overlook the graph edges. This oversight
disrupts the information exchange between neighboring nodes,
potentially causing overfitting in the minority class and under-
fitting in the majority class [19]. To deal with these challenges,
more recent studies [5], [19], [30] suggest the augmentation of
the minority class using node synthesis, aiming at balancing
class distribution in graph data.

However, node class balancing techniques using mere re-
sampling or re-weighting can significantly distort data distri-
butions, which in turn may adversely affect the effectiveness
of GNNs. While node synthesis techniques can improve per-
formance, they often neglect task-specific information during
node generation. For fraud detection, a better approach would
be to generate node features and neighborhoods that have the
structural characteristics of fraudsters.

In this paper, we introduce the Location-Adaptive
Generative Graph Augmentation (LAGA) model. This model
synthesizes nodes and their associated edges for the minority
class, with the objective of enhancing GNN-based fraud de-
tection performance. At its core, LAGAadopts a generative
adversarial network (GAN) framework, comprising feature
and edge generators along two discriminators. The feature
generator generates node features, ensuring they do not merely
interpolate features of existing nodes. The edge generator
generates edges for these synthetic nodes, which connect to
nodes and their neighborhood searched by a location network.
Different from conventional GANs, which employ a single
discriminator to differentiate between real and fake nodes, our
model incorporates an additional discriminator, which deter-
mines if nodes are fraudulent or benign, thereby reducing noise

979-8-3503-2383-2/23/$31.00 ©2023 IEEE 24
DOI 10.1109/CogMI58952.2023.00014
Authorized licensed use limited to: Florida State University. Downloaded on July 23,2024 at 20:56:25 UTC from IEEE Xplore. Restrictions apply.

generation. Instead of balancing class distribution, our method
recommends the integration of a limited set of synthesized
nodes for the minority class to improve GNN performance in
fraud detection. We summarize our contributions of this paper
as follows:

o We propose to augment a few nodes in minority class
that is better than balancing node class for graph neural
networks.

e We propose a generative graph model for fraud detection
that generates fraudulent nodes without external knowl-
edge.

o We provide extensive experimental results to demonstrate
the effectiveness of the proposed model.

II. PROPOSED METHOD

The proposed LAGA automatically generates fake fraud-
sters V/, their corresponding node features X'/ and edge
set £/, and then places them into the original graph G =
(V, €, X), making the original GNN model work better. The
overall framework is shown in Fig. 1. It contains a generator
(@) including feature generator (G,) and edge generator (G.),
a discriminator (D) that tells if generated nodes are real or
not, and another discriminator (Ds) that determines if nodes
are benign or not. Two discriminators are the same GNN
model for fraud detection (Here, we use BWGNN [23] as our
discriminators). Next, we talk about how to generate feature
x; € X7 and edges P; C £/ for a generated node v;.

A. Feature Generation

When generating node features, there are three options: (1)
interpolating node features of fraudulent nodes, (2) interpolat-
ing node features between fraudsters and other nodes from all
classes, and (3) using learnable variables. Previous works [19]
point out that only fraudulent nodes are often limited, causing
loss of generalizability while generating it from other classes
may be extremely hard examples for discriminators. Therefore,
we believe that the third option is the best choice. Formally, we
randomly sample a noise vector zy ~ p(z), and we generate
a hidden embedding for a fake node by an Encoder composed
of MLP layers.

h; = Encoder(zy). (1)

We regard the embedding to be the potential graph embedding
of the generated nodes in the potentially augmented graph.
Later, we combine it with the node embeddings of real nodes
to generate fake edges for generated nodes. To get the feature
vector of a node x; € R? in the original feature space, we
use a decoder composed by MLP, too.

xf = Decoder(hy). 2)

B. Edge Generation

The fake fraudulent nodes should be in some ‘commu-
nities’ that can provide positive contributions to the second
discriminator D5. Therefore, by finding the ‘communities’ of
fraudulent nodes, we can synthesize reliable fraudulent nodes.
Moreover, the generated nodes need to match the distribution

25

of the original graph. Inspired by the idea, we propose three
steps to generate edges for the fake nodes including embedding
real nodes, finding insertion nodes, and generating edges.

1) Embedding Real Nodes: To make sure the model can
generate edges that mimic the real fraudulent nodes, the node
embeddings for real nodes should contain feature-level and
structure-level behavior information. Therefore, we propose
feature-attentive graph convolutional networks (FA-GCN) to
learn node embeddings, which contain a feature-attentive layer
and graph convolutional layers. Fraudsters often camouflage
themselves by having similar features to benign ones [3], thus,
we believe that each feature should be learned separately to
mitigate the feature camouflage issue. Thus, we propose a
feature-attentive layer to vary the contribution of each feature
for implying the true label. Formally, for the feature vector
x; of v;, we embed the individual feature x;(j) € R into a
vector, where 1 < j < d, and then add corresponding position
vector p; to get the individual embedding h;; € R" for j-th
feature of i-th real node.

3

Note that p; is a constant position vector on index j [24].
After that, we use an attention vector ay € R” to calculate
the importance of each feature vector. Formally, the weight
a;j € R can be calculated as

o ((a70))

h;; = FeatureEncoder; (x;(j)) + p;-

S ()
fli:’y iaijhij) (@)
j=1

where ~ is LeakyReLU and a; means the transposition of
the attention vector. To make sure the real node embedding
contains structure information, we use graph convolutional
layers as follows.

h,E” = < Z h,(jl)W(”>
vke/\/i

where W) € R"*" is a learnable weight at layer I, and
1 <1 < L. The input of the GCN layers hﬁ‘” is the output of
feature-attentive layer h;. N; is the neighboring node set for
node v;. We can stack L graph convolutional layers and take
the average of outputs of all layers as the final embedding h;

of real node 7. . 0
— hl
= L—i : @)

2) Finding Insertion Nodes: To locate where the fake node
should be inserted, we use a location network to find the nodes
to be connected. Additionally, we want to improve the variety
of ‘communities’ as well, so we want to sample a small of
number of nodes from the real nodes V. We use a locator to
locate the sampled nodes, which is consisted of simple MLP
layers. Assume we sample k& nodes, then we have a vector

(6)

h;

Authorized licensed use limited to: Florida State University. Downloaded on July 23,2024 at 20:56:25 UTC from IEEE Xplore. Restrictions apply.

Feature Generator

Real
e or
fake?
Benign
—— or
Fraudulent?

Feature
Encoder,

(Vg v1)

(Vfpv4)
Wy, v6)

Edge
indicator

Fig. 1: Model Architecture. The grey nodes are fraudulent nodes and the white nodes are benign nodes. Note that the
generated edges are single-directional so that the neighborhoods of the real nodes remain unchanged. The upper plot is the
overall framework of LAGA. The generator GG uses a feature generator and an edge generator to generate node features and
edges for fake node vy, respectively. Then, the discriminator D, determines if nodes are real or fake, and the discriminator Dj
determines if nodes are benign or fraudulent. The lower plot shows the details in the edge generator. Firstly, the edge generator
embeds the real nodes via feature encoders and GCN layers. Then, it uses a locator to locate the potential neighborhood of the
generated node with d, ¢ of fake node vy learned by D and ds ¢ of vy learned by Ds. Finally, it concatenates the embedding
of vy and the embeddings of potential neighbors to generate edges.

1. € [0, 1]* to represent indices of sampled nodes for the fake
node vy at e-th epoch. The sampled nodes for next epoch is

®)

where 1(.41) € [0, 1]%, and dis and da are the embeddings
of vy from Dy and D-, respectively LI denotes concatenation
operation. To map the location vector into real indices, we use
the same methods stated in [17]. Then, we take the & sampled
nodes and their ego networks as the candidate set C; to be
connected with the fake node.

3) Generating Edges: As we have the candidate set C¢, we
generate potential edges from it. Assume node vy, is in Cy,
an edge embedding &y,,) for a potential edge between vy
and v, can be obtained by concatenating the target generated
node embedding and the candidate node embedding as

l(e41) = Locator(dy y Uday L1,),

€(f,m) = EdgeGenerator (hy Lih,,), 9)

where €, € R2. To get the edge indicator, a Gumbel-
softmax is applied as

exp (éu,v:)(i))

o (222)

where 7 is the temperature and e ,,,) € [0, 1]%. If e,y (0) >
€(,m)(1), then edge (v, vy,) is generated, otherwise, the edge
is not generated. However, to facilitate the training process on

e(f,m) (i) = 10)

26

edge generator, we treat e(s,,)(0) as the edge weight and
pass it to discriminators as the input later. The same process
is applied on all candidate nodes in Cy to obtain P;. After
finishing generating all nodes, we can have the augmented
graph G’ = (VUV/ EUET X UXT). If dealing with multi-
relational graphs, we just adopt the same process for each
single-relational graph and combine them together as the final
augmented graphs. It is worth to mention that the generated
edges are directed edges only pointing to generated nodes so
that the structures of the real nodes remain unchanged.

C. Framework Training
The adversial loss L4, is adopted to generator and Dj,
which is given by
V)

7] 2 g Di(em|G) +1og (1= D (v, [6'))].
m=1
(11

where v,,, can be any fraudsters in training data and vy, € Vi,
While for training D> and G, we use the cross-entropy loss
L., which is

Eadv = -

£C€

> Y

i €VirainUVF c=1

c)logyi(c), (12)

where y; are ground truth while y; are predicted label of
D5. However, with L4, and L., locator is not trained so far.

Authorized licensed use limited to: Florida State University. Downloaded on July 23,2024 at 20:56:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Dataset Statistics

Dataset | #Nodes | #Edges | Fraud%
R-UR RTR RSR

Yelp ‘ 45,954 ‘ 29315 573616 3402743 | 143%

T-finance | 39,357 | 21,222,543 | 4.58%

Therefore, we use policy gradient of reinforcement learning to
update parameters in the generator and locator. In this view, the
agent needs to learn a policy 7 that, at each epoch e, maps the
previous ineraction with the environment s, =1._1,d1f,d2y
to a distribution over locations. In our case, we regard the
actions as the locations and rewards are determined by the
predictions of two discriminators. That is to say, only the
predictions of two discriminators are 1, the reward R = 1,
otherwise, R = —1. The objective is to maximize the reward
under the distribution J(0) = Eps.:0) [R], where 6 includes
all parameters in G,, G. and the locator. Therefore, the
reinforcement loss £,; is given by

L
1 mo|em m
Erl = W 571 v@ 10g7‘l’(18+1|55 79)R . (13)

Dy is is firstly optimized to minimize the adversarial 1oss L4,
and G is subsequently trained to maximize it. Then, both G
and Dy are trained to minimize L... Lastly, G is trained to
maximize L£,; with a hyperparameter A\ to update G only.

III. EXPERIMENT
A. Experimental Setting

1) Experiment Setup and metrics: We conduct experiments
on Yelp and T-finance, whose statistics are shown in Table L.
We use 10% data of T-finance and 20% data of Yelp as the
training set, respectively. 20% of the rest data is the validation
set, and the remaining data is the testing set. All baselines
share the same embedding dimension h = 64. For feature
generation, Encoder contains 2 MLP layers while Decoder
contains 1 MLP layer. The sigmoid function is the activation
function in it. For edge generation, 2 GCN layers are applied
for real node embeddings, and 2 MLP layers for generating
edges. We also set A = 0.001 for £,;. For methods only adding
a few nodes, the number of generated nodes are respect to
sample ratio o and the number of real fraudsters n in the
training dataset, i.e., axn. Same number of augmentated nodes
is applied to all imbalanced methods. We set learning rates to
be 1x1073, 1x107%, 1x 1072 for feature and edge generators,
D and D, respectively. We choose Adam to be the optimizer.
For all experiments, we set a fixed random seed.

Since the datasets are class imbalanced, we use AUC,
F1 and average precision (AP) and accuracy (ACC) as our
evaluation metrics.

2) Comparison Methods: We have ten baselines to com-
pare with LAGA. MLP with node features and the original
GNN model without augmentation as the first two baselines.
Three traditional class imbalance techniques including under-
sampling, over-sampling and re-weight. Three class balance

27

methods based on GNNs, including PC-GNN [12], FRAU-
DRE [29], and DAGAD [11]. Moreover, we compare with
GraphSMOTE [30] and GraphENS [19], which are two recent
GNN-based methods that use node synthesis for class imbal-
ance. All the baselines follow the settings in the corresponding
papers.

B. Overall Performance

The overall performance is shown in Table II. To get this
table, we set the number of sampled nodes £ = 3 and
temperature 7 = 1 x 1073, sample ratio o = 0.2 for Yelp,
and set k = 3 and 7 = 1 x 1074, sample ratio o = 1.0 for
T-finance. From this table, we see the performances of GNNs
are generally better than MLP, which indicates graph struc-
ture provides useful information on classifying node labels.
Obviously, on the Yelp dataset, the traditional class balance
methods perform worse on AUC, ACC, and AP while better
on F1 compared to the original, which verifies that GNNs
easily overfit fraudulent nodes and underfit benign nodes with
class balancing methods with traditional methods. For GNN-
based class-balanced methods, like PC-GNN, FRAUDRE, and
DAGAD on the Yelp dataset, even though their GNNs are not
the same as the original, their performances are better than the
base model (original) and traditional class-balanced methods,
indicating the effectiveness of their models. However, the
performance of LAGA is better than those GNN-based class-
balanced methods, showing the proposed model enjoys better
effectiveness. However, class-balanced methods can improve
the performance but GNN-based class-balanced methods get
similar or lower results compared to the original one on
the T-finance dataset. Moreover, compared with GraphENS,
GraphSMOTE is the better performer on both datasets, and
both GraphENS and GraphSMOTE are both better than class-
balanced methods which illustrates synthesizing nodes is better
since they adaptively generate ‘new’ nodes that can avoid
overfitting for the minority class. LAGA outperforms all
baselines with only a few generated nodes, showing task-
specific information is learned by LAGA, which proves the
effectiveness of the proposed model.

C. Parameter Analysis

We conduct experiments on Yelp to discuss how three
important parameters affect the model, including the number
of GCN layers in FA-GCN, 7 in edge generation, sample size
k in locator and the sample ratio .

1) Number of GCN Layers: We show how the number
of GCN layers affects the performance of the proposed
model on Yelp with the number of GCN layers chosen from
{1,2,3,4,5}. From Fig. 2a, we see that F1 is relatively steady
with the first three layers and reaches a peak at the fourth layer.
While AP gets the best score with two GCN layers. Therefore,
adding more layers cannot improve the performance due to
oversmoothing problem. Since the difference on F1 is not big,
two GCN layers are the best option for LAGA.

Authorized licensed use limited to: Florida State University. Downloaded on July 23,2024 at 20:56:25 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Classification results on two real-world datasets. The best scores are bold.

Balanced Methods Imbalanced Methods
Datasets | Metrics | MLP | Original Under- Over- Re- PC- FRAU- Graph- Graph-

sampling | sampling | weight | GNN DRE DAGAD SMOTE ENS LAGA
AUC 82.70 81.70 80.22 81.32 81.68 | 85.39 88.55 89.20 89.43 88.94 90.46
Yel Fl1 42.26 42.46 45.14 47.13 47.88 | 54.76 59.39 59.60 57.87 58.82 62.46
cp ACC 87.08 86.23 76.80 78.29 82.84 | 84.60 87.09 86.95 88.78 87.06 88.93
AP 49.96 48.16 44.90 45.74 49.15 | 55.82 62.86 62.95 64.12 62.82 65.85
AUC 92.72 96.20 96.14 95.53 96.14 | 90.40 95.19 96.18 96.34 96.17 96.47
T-finance F1 70.37 83.50 80.44 81.16 80.23 | 68.06 83.62 83.43 83.92 82.69 84.18
ACC 97.84 98.63 98.11 98.21 98.08 | 97.04 98.61 98.51 98.60 98.43 98.66
AP 73.04 87.55 87.83 87.56 87.84 | 7247 86.22 87.78 87.19 87.33 88.35

" 35| e, Bl 2EES g .

0.64 -

0.63 » -

0.61

0.60 ‘
0.58

0.65
0.64
0.63 -
0.62
0.61
0.60
0.59

i 2 3 a 5 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01

(a) Number of GCN Layers (b) Temperature 7

2 a 6 8 0.2 0.4 0.6 (X3 12

(c) Sample Size k (d) Sample Ratio o

Fig. 2: Parameter Analysis.

2) Temperature T in Edge Generator: 7 in the Gumbel-
softmax function is a key parameters in edge generation.
Fig. 2b shows LAGA performance at different temperatures.
We select 7 € {1 x 107°,1 x 107%,1 x 1073,1 x 10721 x
1071}, the performance increase from 1 x 1075 to 1 x 1073
and then decreases. F1 reaches peak when 7 = 1 x 10~* while
AP gets to the top when 1 x 1073, indicating small 7 is better
for the proposed model.

3) Sample Size k: We choose sample size k in locator from
{2,4,6,8}. The effect of k is shown in Fig. 2c. We observed
that 4 is the best sample size among the four choices. It might
be because the communities found by the locator include few
fraudsters or the variety is relatively low when k is small
(e.g., 2 in this case). While having many sample nodes (i.e.,
k = 6or8inthis) results in too complex communities which
introduce noise instead.

4) Sample Ratio «: We choose sample ratio « from
{0.2,0.4,0.6,0.8,1.0,1.2}. The effect of « (i.e., the number
of generated nodes) is shown in Fig. 2d. The performance
goes to the top when only generating nodes that are 40%
of the real fraudsters in the datasets. Then, the performance
goes down at first and then goes up along with the sample
ratio increases, and gradually becomes steady. Therefore, more
nodes do not guarantee better performance. With only a few
nodes, the performance can be improved by a large margin.

IV. RELATED WORK
A. Graph Neural Networks for Fraud Detection

Graph Neural Networks (GNNs) are applied to fraud de-
tection widely. Since fraudsters often camouflage themselves
both features and relations, works like GraphConsis [14],
CARE-GNN [3], DC-GNN [16], and DIGNN [10] consider

dropping neighborhood when aggregating information. For
example, CARE-GNN utilizes the BMBA module to control
the neighborhood selection threshold. GraphConsis samples
top-k neighbors by calculating the consistency score between
node embeddings. H2-FDetector [21] identifies homophilic
and heterophilic connections and then propagates similar infor-
mation on homophilic connections and different information
on heterophilic connections. DAGNN [8] augments dispar-
ity between the target node and its heterogenous neighbors
and similarity to homogenous neighbors. Other works like
DCI [27] assume the decoupling representation learning and
classification training is less biased by the hard instances,
so they propose an SSL training scheme to learn node em-
beddings. Different from other GNNs in the spatial domain,
BWGNN [23] has Beta Wavelet kernels to enable spectral
and spatial localized band-pass filter. AO-GNN [6] decou-
ples the AUC maximization process on GNNs to classifier
parameter searching and edge pruning policy searching in
order to maximize AUC. NGS [20] uses a differentiable neural
architecture search to determine the optimal message-passing
graph structure. Many works also explored specific methods
for various tasks. GEM [15] adopts an attention module to
discriminate the importance of node types in a heterogeneous
graph to detect malicious accounts. FD-NAG [26] embeds non-
target entities into edge features and pre-trains a GNN with
the graph with contrastive learning to leverage unlabeled data
to detect fraudsters in ride-sharing services.

B. Class Imbalance Learning for Node Classfication

Class imbalance learning for node classification is a crucial
research area as imbalanced class distributions can signif-
icantly impact the performance of Graph Neural Networks

28

Authorized licensed use limited to: Florida State University. Downloaded on July 23,2024 at 20:56:25 UTC from IEEE Xplore. Restrictions apply.

(GNNs). Recent studies in this field can be broadly cate-
gorized into data-level and algorithm-level approaches. At
the data level, besides traditional methods including under-
sampling and over-sampling, recent works generate nodes for
the minority class. For example, GraphSMOTE [30] synthe-
sizes nodes and edges for the minority class by interpolating
between two labeled training instances from the same class.
SORAG [5] synthesizes both labeled minority nodes and
unlabeled nodes enriched by label correlations. To mitigate the
“neighborhood memorization” issue, GraphENS [19] employs
a gradient-based feature saliency method to mix features
from a real minority node and a randomly selected target
node. GraphMixup [28] generates features, edges and labels
by mixing up their embeddings in the constructed semantic
space. On the algorithm level, methods focus on redesigning
the loss function to address class imbalance. In addition to
the traditional re-weighting technique, FRAUDRE [29] pro-
poses an imbalanced distribution-oriented loss that explicitly
considers the imbalance ratio between classes. ReNode [2]
tackles both quantity and topology imbalance by adaptively
re-weighting the influence of labeled nodes based on their
relative positions to class boundaries. DR-GCN [22] proposes
two novel regularization terms to handle multi-class imbalance
graphs. GCLE [4] transforms the original logical labels to
numerical labels by utilizing local label correlations among the
neighborhood and then uses the relative labeling importance
of the numeric label to handle the class imbalance problem.
DAGAD [11] uses an imbalance-tailored loss function for
the imbalance problem. While these approaches have made
significant contributions, the field of algorithm-level solutions
for class imbalance in node classification is still relatively
limited, calling for further research and exploration in the
future.

V. CONCLUSION

In this paper, we address the class imbalance problem in
GNN-based fraud detection. To mitigate this problem, we
propose a novel approach called LAGA, which generates fake
fraudulent nodes and their corresponding edges to augment
the original graph. This augmentation enriches the information
of the graph, leading to improved performance of GNN-
based fraud detection models. LAGA model adopts the GAN
framework, consisting of generators for node features and
edges, as well as two discriminators. The discriminators
distinguish between real and fake, as well as benign and
fraudulent. The feature generator focuses on generating node
features using learnable variants, while the edge generators
generate edges within the neighborhood of fraudulent nodes.
To learn node embeddings that capture both feature-level and
structural information, we introduce FA-GCN incorporating a
feature-attentive layer before the GCN layers and a locator to
search nodes adaptively. Then, we utilize the Gumbel-softmax
function to generate the edges. The results on two real-
world fraud detection datasets demonstrate that our proposed
approach outperforms existing methods and effectively tackles
the class imbalance problem in GNN-based fraud detection.

29

VI. ACKNOWLEDGEMENT

This work is also partially supported by NSF under grants
IIS-1763365 and IIS-2106972 through Prof. Jiawei Zhang,
grant CCF-2312617 through Prof. Xiaonan Zhang. This work
is also supported in part by NSF under grant II1-2106758
through Prof. Philip S. Yu.

REFERENCES

Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based
anomaly detection and description: a survey. Data mining and knowledge
discovery, 29:626-688, 2015.

Deli Chen, Yankai Lin, Guangxiang Zhao, Xuancheng Ren, Peng Li, Jie
Zhou, and Xu Sun. Topology-imbalance learning for semi-supervised
node classification. Advances in Neural Information Processing Systems,
34:29885-29897, 2021.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and
Philip S Yu. Enhancing graph neural network-based fraud detectors
against camouflaged fraudsters. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management,
pages 315-324, 2020.

Guodong Du, Jia Zhang, Min Jiang, Jinyi Long, Yaojin Lin, Shaozi Li,
and Kay Chen Tan. Graph-based class-imbalance learning with label
enhancement. IEEE Transactions on Neural Networks and Learning
Systems, 2021.

Yijun Duan, Xin Liu, Adam Jatowt, Hai-tao Yu, Steven Lynden, Kyoung-
Sook Kim, and Akiyoshi Matono. Sorag: Synthetic data over-sampling
strategy on multi-label graphs. Remote Sensing, 14(18):4479, 2022.
Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua
Feng, Hao Yang, and Qing He. Auc-oriented graph neural network for
fraud detection. In Proceedings of the ACM Web Conference 2022, pages
1311-1321, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representations, 2016.

Qiutong Li, Yanshen He, Cong Xu, Feng Wu, Jianliang Gao, and
Zhao Li. Dual-augment graph neural network for fraud detection. In
Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, pages 4188-4192, 2022.

Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi,
Bryan Hooi, He Huang, and Xueqi Cheng. Flowscope: Spotting money
laundering based on graphs. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 4731-4738, 2020.

Zhixun Li, Dingshuo Chen, Qiang Liu, and Shu Wu. The devil is in
the conflict: Disentangled information graph neural networks for fraud
detection. In 2022 IEEE International Conference on Data Mining
(ICDM), pages 1059-1064. IEEE, 2022.

Fanzhen Liu, Xiaoxiao Ma, Jia Wu, Jian Yang, Shan Xue, Amin
Beheshti, Chuan Zhou, Hao Peng, Quan Z. Sheng, and Charu C.
Aggarwal. Dagad: Data augmentation for graph anomaly detection. In
ICDM, pages 259-268, 2022.

Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang,
and Qing He. Pick and choose: a gnn-based imbalanced learning
approach for fraud detection. In Proceedings of the Web Conference
2021, pages 3168-3177, 2021.

Yang Liu, Xiang Ao, Qiwei Zhong, Jinghua Feng, Jiayu Tang, and Qing
He. Alike and unlike: Resolving class imbalance problem in financial
credit risk assessment. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pages 2125-
2128, 2020.

Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng.
Alleviating the inconsistency problem of applying graph neural network
to fraud detection. In Proceedings of the 43rd international ACM SIGIR
conference on research and development in information retrieval, pages
1569-1572, 2020.

Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and
Le Song. Heterogeneous graph neural networks for malicious account
detection. In Proceedings of the 27th ACM international conference on
information and knowledge management, pages 2077-2085, 2018.

=
o

[51

(6

—

[7

—

(8

—

=l
=t

[10]

[11]

[12]

[13]

[14]

[15]

Authorized licensed use limited to: Florida State University. Downloaded on July 23,2024 at 20:56:25 UTC from IEEE Xplore. Restrictions apply.

[16] Lin Meng, Yuxiang Ren, and Jiawei Zhang. Decoupling graph neural
network with contrastive learning for fraud detection. In Database
Systems for Advanced Applications: 28th International Conference,
DASFAA 2023, Tianjin, China, April 17-20, 2023, Proceedings, Part
1V, pages 397-414. Springer, 2023.

[17] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models
of visual attention. Advances in neural information processing systems,
27, 2014.

[18] Lina Ni, Jufeng Li, Huixin Xu, Xiangbo Wang, and Jinquan Zhang.
Fraud feature boosting mechanism and spiral oversampling balancing
technique for credit card fraud detection. [EEE Transactions on
Computational Social Systems, 2023.

[19] Joonhyung Park, Jaeyun Song, and Eunho Yang. GraphENS: Neighbor-
aware ego network synthesis for class-imbalanced node classification.
In International Conference on Learning Representations, 2022.

[20] Zidi Qin, Yang Liu, Qing He, and Xiang Ao. Explainable graph-
based fraud detection via neural meta-graph search. In Proceedings of
the 31st ACM International Conference on Information & Knowledge
Management, pages 4414-4418, 2022.

[21] Fengzhao Shi, Yanan Cao, Yanmin Shang, Yuchen Zhou, Chuan Zhou,
and Jia Wu. H2-fdetector: A gnn-based fraud detector with homophilic
and heterophilic connections. In Proceedings of the ACM Web Confer-
ence 2022, pages 1486-1494, 2022.

[22] Min Shi, Yufei Tang, Xingquan Zhu, David Wilson, and Jianxun
Liu. Multi-class imbalanced graph convolutional network learning. In
Christian Bessiere, editor, Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, pages 2879-2885.
International Joint Conferences on Artificial Intelligence Organization,
7 2020. Main track.

[23] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph
neural networks for anomaly detection. In International Conference
on Machine Learning, pages 21076-21089. PMLR, 2022.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Fukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[25] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. In Interna-
tional Conference on Learning Representations, 2017.

[26] Chen Wang, Yingtong Dou, Min Chen, Jia Chen, Zhiwei Liu, and S Yu
Philip. Deep fraud detection on non-attributed graph. In 2027 IEEE
International Conference on Big Data (Big Data), pages 5470-5473.
IEEE, 2021.

[27] Yanling Wang, Jing Zhang, Shasha Guo, Hongzhi Yin, Cuiping Li, and
Hong Chen. Decoupling representation learning and classification for
gnn-based anomaly detection. In Proceedings of the 44th international
ACM SIGIR conference on research and development in information
retrieval, pages 1239-1248, 2021.

[28] Lirong Wu, Haitao Lin, Zhangyang Gao, Cheng Tan, Stan Li, et al.
Graphmixup: Improving class-imbalanced node classification on graphs
by self-supervised context prediction. arXiv preprint arXiv:2106.11133,
2021.

[29] Ge Zhang, Jia Wu, Jian Yang, Amin Beheshti, Shan Xue, Chuan Zhou,
and Quan Z Sheng. Fraudre: Fraud detection dual-resistant to graph
inconsistency and imbalance. In 2021 IEEE International Conference
on Data Mining (ICDM), pages 867-876. IEEE, 2021.

[30] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Im-
balanced node classification on graphs with graph neural networks. In
Proceedings of the 14th ACM international conference on web search
and data mining, pages 833-841, 2021.

30

Authorized licensed use limited to: Florida State University. Downloaded on July 23,2024 at 20:56:25 UTC from IEEE Xplore. Restrictions apply.

