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Abstract—Class imbalance is a well-recognized challenge in
GNN-based fraud detection. Traditional methods like re-sampling
and re-weighting address this issue by balancing class distribu-
tion. However, node class balancing with simple re-sampling or
re-weighting may significantly distort the data distributions and
eventually lead to the ineffective performance of GNNs. In this
paper, we propose a novel approach named Location-Adaptive
Generative Node Augmentation (LAGA), which improves GNN-
based fraud detection models by augmenting synthetic nodes of
the minority class. To increase the variety for the synthetic nodes,
LAGA utilizes the GAN framework to synthesize node features
and related edges of fake fraudulent nodes. Specifically, LAGA
include feature generation and edge generation modules. In order
to make sure the generated features are consistent in terms of
representing fraudulent nodes, we also design a location network
that uses node features to find the neighborhood of synthetic
nodes. Our empirical results on two real-world fraud datasets
demonstrate that LAGA improves the performance of GNN-
based fraud detection models by a large margin with much fewer
nodes than traditional class balance methods, and outperforms
recent graph augmentation methods with the same number of
synthetic nodes.

Index Terms—Graph Neural Networks, Fraud Detection, Node
Augmentation, Generative Adversarial Network

I. INTRODUCTION

Fraud detection has become increasingly crucial due to

a surge in fraudsters stealing unsuspecting individuals for

personal gain [6], [12]. Such deceptive actions manifest in di-

verse ways. For instance, there is the distortion of consumers’

shopping decisions via the spread of deceptive reviews by

opinion fraudsters [3], [29] and financial deceptions linked to

credit cards [13] and illicit money laundering activities [9]. In

this domain, graphs serve as valuable tools. They show pivotal

information useful in fraudulent entities and activities. A

typical graph contains both benign and fraudulent participants

and the connections between them. Thus, fraud detection is

often regarded as a node classification task [14], [23], [29].

Here, the mission is to categorize nodes (for instance, users)

within a graph as either benign or fraudulent. The rise of graph

neural networks (GNNs) [7], [25] has introduced innovative

methods to tackle graph data, accelerating the process of

integrating GNNs into fraud detection [3], [16], [23], [27],

[29].

In real-world fraud detection, datasets commonly suffer

from class imbalance problem, where the number of fraudulent

entities is significantly fewer than the benign ones [1]. As a

result, GNN-based fraud detection models often lean towards

predicting the predominant class, in other words, boosting

accuracy and simultaneously diminishing recall. Traditional

strategies to mitigate the class imbalance for i.i.d. data, includ-

ing re-sampling [13], [18] and re-weighting techniques [3],

[23], find limited applicability in graph data due to the inherent

interconnectedness of its nodes. Specifically, under-sampling

decreases the training data for the majority class, and over-

sampling not only replicates nodes but also their associated

edges within the minority class. This can lead to overfitting

because of ”neighborhood memorization” [19]. Re-weighting,

on the other hand, by merely adjusting weights in the loss

function, tends to overlook the graph edges. This oversight

disrupts the information exchange between neighboring nodes,

potentially causing overfitting in the minority class and under-

fitting in the majority class [19]. To deal with these challenges,

more recent studies [5], [19], [30] suggest the augmentation of

the minority class using node synthesis, aiming at balancing

class distribution in graph data.

However, node class balancing techniques using mere re-

sampling or re-weighting can significantly distort data distri-

butions, which in turn may adversely affect the effectiveness

of GNNs. While node synthesis techniques can improve per-

formance, they often neglect task-specific information during

node generation. For fraud detection, a better approach would

be to generate node features and neighborhoods that have the

structural characteristics of fraudsters.

In this paper, we introduce the Location-Adaptive

Generative Graph Augmentation (LAGA) model. This model

synthesizes nodes and their associated edges for the minority

class, with the objective of enhancing GNN-based fraud de-

tection performance. At its core, LAGAadopts a generative

adversarial network (GAN) framework, comprising feature

and edge generators along two discriminators. The feature

generator generates node features, ensuring they do not merely

interpolate features of existing nodes. The edge generator

generates edges for these synthetic nodes, which connect to

nodes and their neighborhood searched by a location network.

Different from conventional GANs, which employ a single

discriminator to differentiate between real and fake nodes, our

model incorporates an additional discriminator, which deter-

mines if nodes are fraudulent or benign, thereby reducing noise
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generation. Instead of balancing class distribution, our method

recommends the integration of a limited set of synthesized

nodes for the minority class to improve GNN performance in

fraud detection. We summarize our contributions of this paper

as follows:

• We propose to augment a few nodes in minority class

that is better than balancing node class for graph neural

networks.

• We propose a generative graph model for fraud detection

that generates fraudulent nodes without external knowl-

edge.

• We provide extensive experimental results to demonstrate

the effectiveness of the proposed model.

II. PROPOSED METHOD

The proposed LAGA automatically generates fake fraud-

sters Vf , their corresponding node features X f and edge

set Ef , and then places them into the original graph G =
(V, E ,X ), making the original GNN model work better. The

overall framework is shown in Fig. 1. It contains a generator

(G) including feature generator (Ga) and edge generator (Ge),

a discriminator (D1) that tells if generated nodes are real or

not, and another discriminator (D2) that determines if nodes

are benign or not. Two discriminators are the same GNN

model for fraud detection (Here, we use BWGNN [23] as our

discriminators). Next, we talk about how to generate feature

xf ∈ X f and edges Pf ⊂ Ef for a generated node vf .

A. Feature Generation

When generating node features, there are three options: (1)

interpolating node features of fraudulent nodes, (2) interpolat-

ing node features between fraudsters and other nodes from all

classes, and (3) using learnable variables. Previous works [19]

point out that only fraudulent nodes are often limited, causing

loss of generalizability while generating it from other classes

may be extremely hard examples for discriminators. Therefore,

we believe that the third option is the best choice. Formally, we

randomly sample a noise vector zf ∼ p(z), and we generate

a hidden embedding for a fake node by an Encoder composed

of MLP layers.

hf = Encoder(zf ). (1)

We regard the embedding to be the potential graph embedding

of the generated nodes in the potentially augmented graph.

Later, we combine it with the node embeddings of real nodes

to generate fake edges for generated nodes. To get the feature

vector of a node xf ∈ R
d in the original feature space, we

use a decoder composed by MLP, too.

xf = Decoder(hf ). (2)

B. Edge Generation

The fake fraudulent nodes should be in some ‘commu-

nities’ that can provide positive contributions to the second

discriminator D2. Therefore, by finding the ‘communities’ of

fraudulent nodes, we can synthesize reliable fraudulent nodes.

Moreover, the generated nodes need to match the distribution

of the original graph. Inspired by the idea, we propose three

steps to generate edges for the fake nodes including embedding

real nodes, finding insertion nodes, and generating edges.

1) Embedding Real Nodes: To make sure the model can

generate edges that mimic the real fraudulent nodes, the node

embeddings for real nodes should contain feature-level and

structure-level behavior information. Therefore, we propose

feature-attentive graph convolutional networks (FA-GCN) to

learn node embeddings, which contain a feature-attentive layer

and graph convolutional layers. Fraudsters often camouflage

themselves by having similar features to benign ones [3], thus,

we believe that each feature should be learned separately to

mitigate the feature camouflage issue. Thus, we propose a

feature-attentive layer to vary the contribution of each feature

for implying the true label. Formally, for the feature vector

xi of vi, we embed the individual feature xi(j) ∈ R into a

vector, where 1 ≤ j ≤ d, and then add corresponding position

vector pj to get the individual embedding hij ∈ R
h for j-th

feature of i-th real node.

hij = FeatureEncoderj (xi(j)) + pj . (3)

Note that pj is a constant position vector on index j [24].

After that, we use an attention vector af ∈ Rh to calculate

the importance of each feature vector. Formally, the weight

αij ∈ R can be calculated as

αij =
exp

(
γ
(
a�f hij

))
∑d

j=1 exp
(
γ
(
a�f hij

)) , (4)

ĥi = γ

⎛
⎝ d∑

j=1

αijhij

⎞
⎠ , (5)

where γ is LeakyReLU and a�f means the transposition of

the attention vector. To make sure the real node embedding

contains structure information, we use graph convolutional

layers as follows.

h
(l)
i = γ

( ∑
vk∈Ni

h
(l−1)
k W(l)

)
(6)

where W(l) ∈ R
h×h is a learnable weight at layer l, and

1 ≤ l ≤ L. The input of the GCN layers h
(0)
i is the output of

feature-attentive layer ĥi. Ni is the neighboring node set for

node vi. We can stack L graph convolutional layers and take

the average of outputs of all layers as the final embedding hi

of real node i.

hi =

∑L
l=1 h

(l)
i

L
. (7)

2) Finding Insertion Nodes: To locate where the fake node

should be inserted, we use a location network to find the nodes

to be connected. Additionally, we want to improve the variety

of ‘communities’ as well, so we want to sample a small of

number of nodes from the real nodes V . We use a locator to

locate the sampled nodes, which is consisted of simple MLP

layers. Assume we sample k nodes, then we have a vector
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Fig. 1: Model Architecture. The grey nodes are fraudulent nodes and the white nodes are benign nodes. Note that the

generated edges are single-directional so that the neighborhoods of the real nodes remain unchanged. The upper plot is the

overall framework of LAGA. The generator G uses a feature generator and an edge generator to generate node features and

edges for fake node vf , respectively. Then, the discriminator D1 determines if nodes are real or fake, and the discriminator D2

determines if nodes are benign or fraudulent. The lower plot shows the details in the edge generator. Firstly, the edge generator

embeds the real nodes via feature encoders and GCN layers. Then, it uses a locator to locate the potential neighborhood of the

generated node with d1f of fake node vf learned by D1 and d2f of vf learned by D2. Finally, it concatenates the embedding

of vf and the embeddings of potential neighbors to generate edges.

le ∈ [0, 1]k to represent indices of sampled nodes for the fake

node vf at e-th epoch. The sampled nodes for next epoch is

l(e+1) = Locator(d1f � d2f � le), (8)

where l(e+1) ∈ [0, 1]k, and d1f and d2f are the embeddings

of vf from D1 and D2, respectively � denotes concatenation

operation. To map the location vector into real indices, we use

the same methods stated in [17]. Then, we take the k sampled

nodes and their ego networks as the candidate set Cf to be

connected with the fake node.

3) Generating Edges: As we have the candidate set Cf , we

generate potential edges from it. Assume node vm is in Cf ,

an edge embedding ê(f,m) for a potential edge between vf
and vm can be obtained by concatenating the target generated

node embedding and the candidate node embedding as

ê(f,m) = EdgeGenerator (hf � hm) , (9)

where ê(f,m) ∈ R
2. To get the edge indicator, a Gumbel-

softmax is applied as

e(f,m)(i) =
exp

(
ê(f,m)(i)

τ

)
∑

i exp
(

ê(f,m)(i)

τ

) , (10)

where τ is the temperature and e(f,m) ∈ [0, 1]2. If e(f,m)(0) >
e(f,m)(1), then edge (vf , vm) is generated, otherwise, the edge

is not generated. However, to facilitate the training process on

edge generator, we treat e(f,m)(0) as the edge weight and

pass it to discriminators as the input later. The same process

is applied on all candidate nodes in Cf to obtain Pf . After

finishing generating all nodes, we can have the augmented

graph G′ = (V ∪ Vf , E ∪ Ef ,X ∪ X f ). If dealing with multi-

relational graphs, we just adopt the same process for each

single-relational graph and combine them together as the final

augmented graphs. It is worth to mention that the generated

edges are directed edges only pointing to generated nodes so

that the structures of the real nodes remain unchanged.

C. Framework Training
The adversial loss Ladv is adopted to generator and D1,

which is given by

Ladv = − 1

|Vf |
|Vf |∑
m=1

[logD1(vm|G) + log (1−D1 (vfm |G′))] .

(11)

where vm can be any fraudsters in training data and vfm ∈ Vf .

While for training D2 and G, we use the cross-entropy loss

Lce, which is

Lce = −
∑

vi∈Vtrain∪Vf

2∑
c=1

yi(c) log ŷi(c), (12)

where yi are ground truth while ŷi are predicted label of

D2. However, with Ladv and Lce, locator is not trained so far.
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TABLE I: Dataset Statistics
Dataset #Nodes #Edges Fraud%

Yelp 45,954
R-U-R R-T-R R-S-R

14.5%
49,315 573,616 3,402,743

T-finance 39,357 21,222,543 4.58%

Therefore, we use policy gradient of reinforcement learning to

update parameters in the generator and locator. In this view, the

agent needs to learn a policy π that, at each epoch e, maps the

previous ineraction with the environment se = le−1,d1f ,d2f

to a distribution over locations. In our case, we regard the

actions as the locations and rewards are determined by the

predictions of two discriminators. That is to say, only the

predictions of two discriminators are 1, the reward R = 1,

otherwise, R = −1. The objective is to maximize the reward

under the distribution J (θ) = Ep(se;θ) [R], where θ includes

all parameters in Ga, Ge and the locator. Therefore, the

reinforcement loss Lrl is given by

Lrl =
1

|Vf |
|Vf |∑
m=1

∇θ log π(l
m
e+1|sme ; θ)Rm. (13)

D1 is is firstly optimized to minimize the adversarial loss Ladv

and G is subsequently trained to maximize it. Then, both G
and D2 are trained to minimize Lce. Lastly, G is trained to

maximize Lrl with a hyperparameter λ to update G only.

III. EXPERIMENT

A. Experimental Setting

1) Experiment Setup and metrics: We conduct experiments

on Yelp and T-finance, whose statistics are shown in Table I.

We use 10% data of T-finance and 20% data of Yelp as the

training set, respectively. 20% of the rest data is the validation

set, and the remaining data is the testing set. All baselines

share the same embedding dimension h = 64. For feature

generation, Encoder contains 2 MLP layers while Decoder

contains 1 MLP layer. The sigmoid function is the activation

function in it. For edge generation, 2 GCN layers are applied

for real node embeddings, and 2 MLP layers for generating

edges. We also set λ = 0.001 for Lrl. For methods only adding

a few nodes, the number of generated nodes are respect to

sample ratio α and the number of real fraudsters n in the

training dataset, i.e., α∗n. Same number of augmentated nodes

is applied to all imbalanced methods. We set learning rates to

be 1×10−3, 1×10−4, 1×10−2 for feature and edge generators,

D1 and D2, respectively. We choose Adam to be the optimizer.

For all experiments, we set a fixed random seed.

Since the datasets are class imbalanced, we use AUC,

F1 and average precision (AP) and accuracy (ACC) as our

evaluation metrics.

2) Comparison Methods: We have ten baselines to com-

pare with LAGA. MLP with node features and the original

GNN model without augmentation as the first two baselines.

Three traditional class imbalance techniques including under-

sampling, over-sampling and re-weight. Three class balance

methods based on GNNs, including PC-GNN [12], FRAU-

DRE [29], and DAGAD [11]. Moreover, we compare with

GraphSMOTE [30] and GraphENS [19], which are two recent

GNN-based methods that use node synthesis for class imbal-

ance. All the baselines follow the settings in the corresponding

papers.

B. Overall Performance

The overall performance is shown in Table II. To get this

table, we set the number of sampled nodes k = 3 and

temperature τ = 1 × 10−3, sample ratio α = 0.2 for Yelp,

and set k = 3 and τ = 1 × 10−4, sample ratio α = 1.0 for

T-finance. From this table, we see the performances of GNNs

are generally better than MLP, which indicates graph struc-

ture provides useful information on classifying node labels.

Obviously, on the Yelp dataset, the traditional class balance

methods perform worse on AUC, ACC, and AP while better

on F1 compared to the original, which verifies that GNNs

easily overfit fraudulent nodes and underfit benign nodes with

class balancing methods with traditional methods. For GNN-

based class-balanced methods, like PC-GNN, FRAUDRE, and

DAGAD on the Yelp dataset, even though their GNNs are not

the same as the original, their performances are better than the

base model (original) and traditional class-balanced methods,

indicating the effectiveness of their models. However, the

performance of LAGA is better than those GNN-based class-

balanced methods, showing the proposed model enjoys better

effectiveness. However, class-balanced methods can improve

the performance but GNN-based class-balanced methods get

similar or lower results compared to the original one on

the T-finance dataset. Moreover, compared with GraphENS,

GraphSMOTE is the better performer on both datasets, and

both GraphENS and GraphSMOTE are both better than class-

balanced methods which illustrates synthesizing nodes is better

since they adaptively generate ‘new’ nodes that can avoid

overfitting for the minority class. LAGA outperforms all

baselines with only a few generated nodes, showing task-

specific information is learned by LAGA, which proves the

effectiveness of the proposed model.

C. Parameter Analysis

We conduct experiments on Yelp to discuss how three

important parameters affect the model, including the number

of GCN layers in FA-GCN, τ in edge generation, sample size

k in locator and the sample ratio α.

1) Number of GCN Layers: We show how the number

of GCN layers affects the performance of the proposed

model on Yelp with the number of GCN layers chosen from

{1, 2, 3, 4, 5}. From Fig. 2a, we see that F1 is relatively steady

with the first three layers and reaches a peak at the fourth layer.

While AP gets the best score with two GCN layers. Therefore,

adding more layers cannot improve the performance due to

oversmoothing problem. Since the difference on F1 is not big,

two GCN layers are the best option for LAGA.
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TABLE II: Classification results on two real-world datasets. The best scores are bold.

Datasets Metrics MLP Original

Balanced Methods Imbalanced Methods

Under-
sampling

Over-
sampling

Re-
weight

PC-
GNN

FRAU-
DRE

DAGAD
Graph-

SMOTE
Graph-
ENS

LAGA

Yelp

AUC 82.70 81.70 80.22 81.32 81.68 85.39 88.55 89.20 89.43 88.94 90.46
F1 42.26 42.46 45.14 47.13 47.88 54.76 59.39 59.60 57.87 58.82 62.46

ACC 87.08 86.23 76.80 78.29 82.84 84.60 87.09 86.95 88.78 87.06 88.93
AP 49.96 48.16 44.90 45.74 49.15 55.82 62.86 62.95 64.12 62.82 65.85

T-finance

AUC 92.72 96.20 96.14 95.53 96.14 90.40 95.19 96.18 96.34 96.17 96.47
F1 70.37 83.50 80.44 81.16 80.23 68.06 83.62 83.43 83.92 82.69 84.18

ACC 97.84 98.63 98.11 98.21 98.08 97.04 98.61 98.51 98.60 98.43 98.66
AP 73.04 87.55 87.83 87.56 87.84 72.47 86.22 87.78 87.19 87.33 88.35

(a) Number of GCN Layers (b) Temperature τ (c) Sample Size k (d) Sample Ratio α

Fig. 2: Parameter Analysis.

2) Temperature τ in Edge Generator: τ in the Gumbel-

softmax function is a key parameters in edge generation.

Fig. 2b shows LAGA performance at different temperatures.

We select τ ∈ {1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, 1×
10−1}, the performance increase from 1× 10−5 to 1× 10−3

and then decreases. F1 reaches peak when τ = 1×10−4 while

AP gets to the top when 1×10−3, indicating small τ is better

for the proposed model.

3) Sample Size k: We choose sample size k in locator from

{2, 4, 6, 8}. The effect of k is shown in Fig. 2c. We observed

that 4 is the best sample size among the four choices. It might

be because the communities found by the locator include few

fraudsters or the variety is relatively low when k is small

(e.g., 2 in this case). While having many sample nodes (i.e.,

k = 6or8inthis) results in too complex communities which

introduce noise instead.

4) Sample Ratio α: We choose sample ratio α from

{0.2, 0.4, 0.6, 0.8, 1.0, 1.2}. The effect of α (i.e., the number

of generated nodes) is shown in Fig. 2d. The performance

goes to the top when only generating nodes that are 40%
of the real fraudsters in the datasets. Then, the performance

goes down at first and then goes up along with the sample

ratio increases, and gradually becomes steady. Therefore, more

nodes do not guarantee better performance. With only a few

nodes, the performance can be improved by a large margin.

IV. RELATED WORK

A. Graph Neural Networks for Fraud Detection

Graph Neural Networks (GNNs) are applied to fraud de-

tection widely. Since fraudsters often camouflage themselves

both features and relations, works like GraphConsis [14],

CARE-GNN [3], DC-GNN [16], and DIGNN [10] consider

dropping neighborhood when aggregating information. For

example, CARE-GNN utilizes the BMBA module to control

the neighborhood selection threshold. GraphConsis samples

top-k neighbors by calculating the consistency score between

node embeddings. H2-FDetector [21] identifies homophilic

and heterophilic connections and then propagates similar infor-

mation on homophilic connections and different information

on heterophilic connections. DAGNN [8] augments dispar-

ity between the target node and its heterogenous neighbors

and similarity to homogenous neighbors. Other works like

DCI [27] assume the decoupling representation learning and

classification training is less biased by the hard instances,

so they propose an SSL training scheme to learn node em-

beddings. Different from other GNNs in the spatial domain,

BWGNN [23] has Beta Wavelet kernels to enable spectral

and spatial localized band-pass filter. AO-GNN [6] decou-

ples the AUC maximization process on GNNs to classifier

parameter searching and edge pruning policy searching in

order to maximize AUC. NGS [20] uses a differentiable neural

architecture search to determine the optimal message-passing

graph structure. Many works also explored specific methods

for various tasks. GEM [15] adopts an attention module to

discriminate the importance of node types in a heterogeneous

graph to detect malicious accounts. FD-NAG [26] embeds non-

target entities into edge features and pre-trains a GNN with

the graph with contrastive learning to leverage unlabeled data

to detect fraudsters in ride-sharing services.

B. Class Imbalance Learning for Node Classfication

Class imbalance learning for node classification is a crucial

research area as imbalanced class distributions can signif-

icantly impact the performance of Graph Neural Networks
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(GNNs). Recent studies in this field can be broadly cate-

gorized into data-level and algorithm-level approaches. At

the data level, besides traditional methods including under-

sampling and over-sampling, recent works generate nodes for

the minority class. For example, GraphSMOTE [30] synthe-

sizes nodes and edges for the minority class by interpolating

between two labeled training instances from the same class.

SORAG [5] synthesizes both labeled minority nodes and

unlabeled nodes enriched by label correlations. To mitigate the

”neighborhood memorization” issue, GraphENS [19] employs

a gradient-based feature saliency method to mix features

from a real minority node and a randomly selected target

node. GraphMixup [28] generates features, edges and labels

by mixing up their embeddings in the constructed semantic

space. On the algorithm level, methods focus on redesigning

the loss function to address class imbalance. In addition to

the traditional re-weighting technique, FRAUDRE [29] pro-

poses an imbalanced distribution-oriented loss that explicitly

considers the imbalance ratio between classes. ReNode [2]

tackles both quantity and topology imbalance by adaptively

re-weighting the influence of labeled nodes based on their

relative positions to class boundaries. DR-GCN [22] proposes

two novel regularization terms to handle multi-class imbalance

graphs. GCLE [4] transforms the original logical labels to

numerical labels by utilizing local label correlations among the

neighborhood and then uses the relative labeling importance

of the numeric label to handle the class imbalance problem.

DAGAD [11] uses an imbalance-tailored loss function for

the imbalance problem. While these approaches have made

significant contributions, the field of algorithm-level solutions

for class imbalance in node classification is still relatively

limited, calling for further research and exploration in the

future.

V. CONCLUSION

In this paper, we address the class imbalance problem in

GNN-based fraud detection. To mitigate this problem, we

propose a novel approach called LAGA, which generates fake

fraudulent nodes and their corresponding edges to augment

the original graph. This augmentation enriches the information

of the graph, leading to improved performance of GNN-

based fraud detection models. LAGA model adopts the GAN

framework, consisting of generators for node features and

edges, as well as two discriminators. The discriminators

distinguish between real and fake, as well as benign and

fraudulent. The feature generator focuses on generating node

features using learnable variants, while the edge generators

generate edges within the neighborhood of fraudulent nodes.

To learn node embeddings that capture both feature-level and

structural information, we introduce FA-GCN incorporating a

feature-attentive layer before the GCN layers and a locator to

search nodes adaptively. Then, we utilize the Gumbel-softmax

function to generate the edges. The results on two real-

world fraud detection datasets demonstrate that our proposed

approach outperforms existing methods and effectively tackles

the class imbalance problem in GNN-based fraud detection.
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