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ABSTRACT
Class imbalance is a well-recognized challenge in GNN-based fraud
detection. Traditional methods like re-sampling and re-weighting
address this issue by balancing class distribution. However, node
class balancingwith simple re-sampling or re-weightingmay greatly
distort the data distributions and eventually lead to the ineffective
performance of GNNs. In this paper, we propose a novel approach
named Graph Generative Node Augmentation (GGA), which im-
proves GNN-based fraud detection models by augmenting synthetic
nodes of the minority class. GGA utilizes the GAN framework to
synthesize node features and related edges of fake fraudulent nodes.
To introduce greater variety in the generated nodes, we employ an
MLP for feature generation. We also introduce an attention module
to encode feature-level information before graph convolutional
layers for edge generation. Our empirical results on two real-world
fraud datasets demonstrate that GGA improves the performance of
GNN-based fraud detection models by a large margin with much
fewer nodes than traditional class balance methods, and outper-
forms recent graph augmentation methods with the same number
of synthetic nodes.

CCS CONCEPTS
• Information systems→ Information retrieval; Information
systems applications.

KEYWORDS
Fraud Detection; Data Augmentation; Graph Representation Learn-
ing; Data Mining
ACM Reference Format:
Lin Meng, Hesham Mostafa, Marcel Nassar, Xiaonan Zhang, and Jiawei
Zhang. 2023. Generative Graph Augmentation for Minority Class in Fraud

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3615255

Detection. In Proceedings of the 32nd ACM International Conference on In-
formation and Knowledge Management (CIKM ’23), October 21–25, 2023,
Birmingham, United Kingdom. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3583780.3615255

1 INTRODUCTION
Fraud detection [4, 7] has gained significant importance in response
to the escalating number of fraudsters exploiting victims for per-
sonal gain. These fraudulent activities encompass various forms,
including the manipulation of individuals’ shopping behaviors
through the dissemination of unreliable reviews by opinion fraud-
sters [2, 17] and financial scams involving credit cards [8] or illegal
money laundering [6]. Graphs have been a useful tool in fraud
detection, as they capture essential information that aids in iden-
tifying fraudulent users and activities. Graphs typically comprise
both benign and fraudulent individuals, along with the interactions
between them. Accordingly, fraud detection is commonly framed
as a node classification task [9, 13, 17], where the objective is to
classify nodes (e.g., users) in a graph as either benign or fraudulent.
Recent advancements in graph neural networks (GNNs) [5, 15]
have opened up new avenues for analyzing and addressing this
problem, leading to a multitude of studies applying GNNs to fraud
detection [2, 10, 13, 16, 17].

However, real-world fraud detection datasets often exhibit a sub-
stantial class imbalance, with fraudsters constituting a minority
portion of the overall population [1]. Consequently, GNN-based
fraud detection models tend to predict the majority class, result-
ing in high accuracy but low recall. Traditional approaches for
handling class imbalance of i.i.d. data, such as re-sampling [8, 11]
and re-weighting methods [2, 13], cannot be directly applied to
graph data due to the interconnected nature of nodes in graphs.
Under-sampling reduces the training data for the majority class,
while over-sampling replicates nodes and their related edges in the
minority class [2], leading to overfitting due to the phenomenon
"neighborhood memorization" [12]. Re-weighting techniques sim-
ply assign weights in the loss function, disregarding the edges in
the graphs. This approach impacts the knowledge exchange process
among neighboring nodes, potentially resulting in overfitting the
minority class and underfitting the majority class [12]. To address
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these issues, recent works [3, 12, 18] propose to augment minority
class by node synthesis to balance class distribution in graph data.

Nonetheless, node class balancing with simple re-sampling or
re-weighting may greatly distort the data distributions and lead
to the ineffective performance of GNNs. Moreover, methods that
synthesize nodes can improve performance, but they ignore task-
specific information when generating nodes. Therefore, we propose
a Graph Generative Node Augmentation (GGA) model that syn-
thesizes nodes and their corresponding edges for minority class
in order to improve the performance of GNN-based fraud detec-
tion models. Specifically, GGA is a generative adversarial network
(GAN)-based graph augmentation model that has feature and edge
generators and two discriminators. The model first generates the
node features that do not interpolate node features of real nodes
and then generates edges of fake nodes around the ‘communities’
that real fraudsters are in. Note that we introduce an additional
discriminator to determine whether nodes are fraudulent or benign.
This additional discriminator mitigates the generation of noise that
could potentially compromise the quality of the generated graphs.
Rather than focusing on balancing the class distribution by adding
minority nodes, our approach suggests adding a small number of
generated nodes belonging to the minority class to enhance the
performance of GNNs for fraud detection.

2 PROPOSED METHOD
The proposed GGA automatically generates fake fraudsters V 𝑓 ,
their corresponding node features X 𝑓 and edge set E 𝑓 , and then
places them into the original graph G = (V, E,X), making the
original GNN model work better. The overall framework is shown
in Fig. 1. It contains feature generator (𝐺𝑎) and edges generator
(𝐺𝑒 ), a discriminator (𝐷1) that tells if generated nodes are real or
not, and another discriminator (𝐷2) that determines if nodes are
benign or not. Two discriminators are the same GNN model for
fraud detection (Here, we use BWGNN [13] as our discriminators).
Next, we talk about how to generate feature x𝑓 ∈ X 𝑓 and edges
P𝑓 ⊂ E 𝑓 for a generated node 𝑣 𝑓 .

2.1 Feature Generation
Previous works [12] point out that combining features of minor-
ity nodes are often limited, causing loss of generalizability, and
generating with other classes may be extremely hard examples for
discriminators. In our paper, we simply adopt learnable variables
to improve variety. Formally, we randomly sample a noise vector
z𝑖 ∼ 𝑝 (z), and we generate a hidden embedding for a fake node by
an Encoder composed of MLP layers.

h𝑓 = Encoder(z𝑖 ). (1)

We regard the embedding to be the potential graph embedding of
the generated nodes in the potentially augmented graph. Later, we
combine it with the node embeddings of real nodes to generate
fake edges for generated nodes. To get the feature vector of a node
x𝑓 ∈ R𝑑 in the original feature space, we use a decoder composed
by MLP, too.

x𝑓 = Decoder(h𝑓 ). (2)

2.2 Edge Generation
We want to imitate the relational behavior of real fraudsters. There-
fore, by finding the ‘communities’ of fraudulent nodes, we synthe-
size reliable fraudulent nodes. Also, the generated nodes need to
match the distribution of the original graph. Therefore, we propose
three steps to generate edges for fake nodes including embedding
real nodes, finding insertion nodes, and generating edges.

Embedding Real Nodes. To make sure the model generate
edges that mimic the real fraudulent nodes, the node embeddings
for real nodes should contain feature-level and structure-level be-
havior information. Therefore, we use a feature-attentive layer and
graph convolutional layers. Since fraudsters often camouflage them-
selves by having similar features to benign ones [2], we believe
each feature should be learned separately to mitigate the feature
camouflage issue. Thus, we use a feature-attentive layer to vary the
contribution of each feature for implying the true label. Formally,
we embed the individual feature x𝑖 ( 𝑗) ∈ R of 𝑣𝑖 into a vector, where
1 ≤ 𝑗 ≤ 𝑑 , and then add a corresponding position vector 𝑝 𝑗 to get
the embedding h𝑖 𝑗 ∈ Rℎ for 𝑗-th feature of 𝑖-th real node.

h𝑖 𝑗 = FeatureEncoder𝑗 (x𝑖 ( 𝑗)) + p𝑗 . (3)

Note that p𝑗 is a constant position vector on index 𝑗 [14]. After that,
we use an attention vector a𝑓 ∈ Rℎ to calculate the importance of
each feature vector. Formally, the weight 𝛼𝑖 𝑗 ∈ R can be calculated
as

ĥ𝑖 = 𝛾
©­«

𝑑∑
𝑗=1

𝛼𝑖 𝑗h𝑖 𝑗
ª®¬ , where 𝛼𝑖 𝑗 =

exp
(
𝛾

(
a⊤
𝑓
h𝑖 𝑗

))
∑𝑑

𝑗=1 exp
(
𝛾

(
a⊤
𝑓
h𝑖 𝑗

)) , (4)

where 𝛾 is LeakyReLU and a⊤
𝑓
means the transposition of the at-

tention vector. To make sure the real node embedding contains
structure information, we use graph convolutional layers as fol-
lows.

h(𝑙)
𝑖

= 𝛾
©­«
∑

𝑣𝑘 ∈N𝑖

h(𝑙−1)
𝑘

W(𝑙)ª®¬ (5)

whereW(𝑙) ∈ Rℎ×ℎ is a learnable weight at layer 𝑙 , and 1 ≤ 𝑙 ≤ 𝐿.
The input of the GCN layers h(0)

𝑖
is the output of feature-attentive

layer ĥ𝑖 . N𝑖 is the neighboring node set for node 𝑣𝑖 . We can stack
𝐿 graph convolutional layers and take the average of outputs of all
layers as the final embedding h𝑖 of real node 𝑖 .

h𝑖 =

∑𝐿
𝑙=1 h

(𝑙)
𝑖

𝐿
. (6)

Finding Insertion Nodes. To find where the fake node should
be inserted, we use the most similar fraudulent nodes and their
‘communities’. Here, we define the 1-hop neighborhood of real
fraudsters as their ‘communities’. Formally, we caculate the similar-
ities between a fake fraudulent node 𝑣 𝑓 and all known fraudulent
nodes from training set {𝑣𝑚 |𝑦𝑚 = 1 ∪ 𝑣𝑚 ∈ V𝑡𝑟𝑎𝑖𝑛}. Then, we
take the top-𝑘 most similar nodes and their ego networks as the
candidate set C𝑓 to be connected with the fake node.

Generating Edges. As we have the candidate set C𝑓 , we gen-
erate potential edges from it. Assume node 𝑣𝑚 is in C𝑓 , an edge
embedding ê(𝑓 ,𝑚) for a potential edge between 𝑣 𝑓 and 𝑣𝑚 can be
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Figure 1: Model Architecture. The grey nodes are fraudulent nodes and the white nodes are benign nodes. Note that the gen-
erated edges are single-directional so that the neighborhoods of real nodes maintain unchanged.

obtained by concatenating the target generated node embedding
and the candidate node embedding as

ê(𝑓 ,𝑚) = EdgeGenerator
(
h𝑓 ⊔ h𝑚

)
, (7)

where ê(𝑓 ,𝑚) ∈ R2. To get the edge indicator, a Gumbel-softmax is
applied as

e(𝑓 ,𝑚) (𝑖) =
exp

( ê(𝑓 ,𝑚) (𝑖)
𝜏

)
∑
𝑖 exp

( ê(𝑓 ,𝑚) (𝑖)
𝜏

) , (8)

where 𝜏 is the temperature and e(𝑓 ,𝑚) ∈ [0, 1]2. If e(𝑓 ,𝑚) (0) >

e(𝑓 ,𝑚) (1), then edge (𝑣 𝑓 , 𝑣𝑚) is generated, otherwise, the edge is
not generated. The same process is applied on all candidate nodes in
C𝑓 to obtain P𝑓 . After finishing generating all nodes, we can have
the augmented graph G′ = (V ∪V 𝑓 , E ∪ E 𝑓 ,X ∪ X 𝑓 ). Note that
the generated edges are directed edges only pointing to generated
nodes so that the structures of the real nodes remain unchanged.
Moreover, in order to update the parameters in edge generation,
we take the first element in edge indicators e(𝑓 ,𝑚) (0) as the edge
weight to be involved in the learning of discriminators, so that the
parameters for edge generation can be updated.

2.3 Framework Training
We have two losses to train the model. For 𝐷1, we adopt the adver-
sarial loss L𝐷1 and cross-entropy loss L𝐷2 for 𝐷2.

L𝐷1 = −
∑

𝑥𝑖 ∈X𝑡𝑟𝑎𝑖𝑛

log (𝐷1 (𝑥𝑖 )) −
∑
𝑧𝑖 ∈Z

[1 − log (𝐷1 (𝐺 (𝑧𝑖 )))] .

(9)

L𝐷2 = −
∑

𝑣𝑖 ∈V𝑡𝑟𝑎𝑖𝑛∪V 𝑓

2∑
𝑘=1

y𝑖 (𝑘) log ŷ𝑖 (𝑘), (10)

where y𝑖 is ground truth while ŷ𝑖 is predicted label of 𝐷2. We
first train 𝐷1, then we train feature generator 𝐺𝑎 and edge gen-
erator 𝐺𝑒 . Lastly, we train 𝐷2 and two generators together. For a
multi-relational graph, we apply the same process on each relation
separately and then take the average node features of all relations
as the final node feature.

Table 1: Dataset Statistics

Dataset #Nodes #Edges Fraud%

Yelp 45,954 R-U-R R-T-R R-S-R 14.5%49,315 573,616 3,402,743

T-finance 39,357 21,222,543 4.58%

3 EXPERIMENT
3.1 Experimental Setting
3.1.1 Experiment Setup and metrics. We conduct experiments on
Yelp and T-finance, whose statistics are shown in Table 1. We use
10% data as the training set and 20% of the rest data as the validation
set, and the remaining data is the testing set. All baselines share the
same embedding dimension ℎ = 64. In𝐺𝑎 , Encoder contains 2 MLP
layers while Decoder contains 1 MLP layer. The sigmoid function
is the activation function in it. In 𝐺𝑒 , 2 GCN layers are applied,
𝑘 = 2 and 𝜏 = 1× 10−4. We set learning rates are 5× 10−4, 1× 10−4,
1 × 10−2 for feature and edge generators, 𝐷1 and 𝐷2, respectively.
We choose Adam to be the optimizer. For methods only adding a
few nodes, we add 200 nodes for Yelp and 360 nodes for T-finance.

Since the datasets are class imbalanced, we use AUC, F1 and av-
erage precision (AP) and accuracy (ACC) as our evaluation metrics.

3.1.2 Comparison Methods. We have eight baselines. MLP only
uses node features. Original GNN model without augmentation.
Three traditional class imbalance techniques based on GNN, in-
cluding under-sampling, over-sampling and re-weight. We also
compare with over-sampling method which only adds a few nodes.
Moreover, we compare with GraphSMOTE [18] and GraphENS [12],
which are two recent GNN-based methods that use node synthesis
for class imbalance.

3.2 Overall Performance
The overall performance is shown in Table 2. We see the perfor-
mances of GNNs are generally better than MLP, which indicates
graph structure provides good information on classifying node la-
bels. Obviously, on the Yelp dataset, the traditional class balance
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Table 2: Classification results on two real-world datasets. The best scores are bold and the second best scores are underlined.

Dataset Metrics MLP Original
Class balanced methods Adding few nodes

Under-
sampling

Over-
sampling Re-weight Over-

sampling GraphSMOTE GraphENS GGA

Yelp

AUC 80.72 87.20 86.61 85.24 86.30 86.35 84.75 86.12 87.57
F1 32.11 55.18 54.20 54.31 53.49 53.15 51.35 54.04 56.91

ACC 86.80 86.67 82.35 82.95 82.33 80.79 85.71 85.37 86.66
AP 46.35 56.87 55.45 53.85 53.12 51.89 51.48 53.37 59.08

T-finance

AUC 92.72 93.79 96.14 95.53 96.14 96.53 96.34 96.17 96.59
F1 70.37 72.85 80.44 81.16 80.23 79.47 83.92 82.69 84.05

ACC 97.84 97.97 98.11 98.21 98.08 98.03 98.60 98.43 98.67
AP 73.04 76.17 87.83 87.56 87.84 87.03 87.19 87.33 88.64

(a) Number of GCN Layers (b) 𝜏 in Edge Generation (c) Number of Generated Nodes

Figure 2: Parameter Analysis.

methods perform worse on AUC, ACC and AP while better on F1
compared to the original, which verifies that GNNs easily overfit
fraudulent nodes and underfit benign nodes with class balancing
methods. However, class-balanced methods can improve the per-
formance on the T-finance dataset. Moreover, among methods only
adding a few nodes, except GGA, GraphENS is the best performer
on Yelp while GraphSMOTE is the best performer on T-finance,
and they are both better than over-sampling a few nodes, which
illustrates synthesizing nodes is better since they adaptively gen-
erate ‘new’ nodes that can avoid overfitting for the minority class.
GGA outperforms all baselines by a large margin, which means
GGA has the ability to generate ‘unknown’ useful node features
and edges that not only improve GNN’s performance but also avoid
overfitting for minority class, indicating the effectiveness of GGA.

3.3 Parameter Analysis
We also conduct experiments on Yelp to discuss how three impor-
tant parameters affect the model.

3.3.1 Number of GCN Layers. We show the results with different
layers on Yelp. From Fig. 2a. We see two metrics increase until the
number of layers is 2 and then decrease rapidly. It illustrates that
2-hop neighbors are positively related to the generation for GNN
models, but higher-order neighborhood actually brings noise even
negative information for two discriminators.

3.3.2 𝜏 in Edge Generator. Fig. 2b shows GGA performance at
different temperatures. We select 𝜏 ∈ {1×10−5, 1×10−4, 1×10−3, 1×
10−2, 1 × 10−1}, the performance decreases until 1 × 10−2 and then
increase a little, and when 𝜏 = 1 × 10−5, GGA gets the best score,
which indicates the smaller 𝜏 can get better performance.

3.3.3 Number of Generated Nodes. The effect of the number of
generated nodes is shown in Fig. 2c. The performance goes up
within 200 nodes. Then the performance goes down along with the
number of nodes increases, and the performance is similar to the
scores by class-balanced methods. Therefore, GGA can get overfit
when there are too many nodes injected even though the generated
nodes may be new compared with the real ones.

4 CONCLUSION
In this paper, we address the class imbalance problem in GNN-
based fraud detection. To mitigate this problem, we propose a novel
framework called GGA, which generates fraudulent nodes and
their corresponding edges to augment the original graph. This
augmentation enriches the information of the graph, leading to
improved performance of GNN-based fraud detection models. GGA
model adopts a GAN framework to generate the graph node fea-
tures and edges. The feature generator focuses on generating node
features using learnable variants, while the edge generators gen-
erate edges within the neighborhood of fraudulent nodes where
we incorporate a feature-attentive layer before the GCN layers and
utilize the Gumbel-softmax to generate edges. The experimental
results demonstrate that our proposed approach outperforms exist-
ing methods and effectively tackles the class imbalance problem in
GNN-based fraud detection.
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