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Abstract

High-valent transition metal-oxo complexes exhibit a wide range of reactivities and play essential roles
as active Oxygen Atom Transfer (OAT) species in many chemical and biological oxidation processes.
However, the detection and characterization of these intermediates are still challenging in view of their
high reactivity and short lifetimes and their transient nature makes their study complex. This review
highlights recent advancements in how photochemical reactions with visible light have emerged as
promising approaches to generate and study high-valent transition metal-oxo species with different
metals on various macrocyclic ligands. Investigating the reactivity of photo-induced high-valent metal-
oxo species through practical kinetic studies has offered valuable insights into the structure-function
relationships and an understanding of their involvement in oxidation reactions.

Keywords: Metal-oxo derivatives; Porphyrin; Corrole; Salen; Phthalocyanine, Oxidation; Visible light
photolysis; Kinetics

Abbreviations: ESI-MS: Electron Spray lonization-Mass Spectrometry; ET: Electron Transfer; LFP:
Laser Flash Photolysis; OAT: Oxygen Atom Transfer; Por: Porphyrin; Sub-0: Substrate oxidized product;
Salen N: N’-bis(salicylidene)ethylenediamine; tBu4-Pc: Tetra-tert-butyl-phthalocyanine; TDCPP:
5,10,15,20-tetra(2,6-dichlorophenyl) porphyrin; TDFPP: 5,10,15,20-tetra(2,6-difluorophenyl) porphyrin;
TMP: Tetramesitylporphyrin; TPP: Tetraphenylporphyrin; TPFPP: 5,10,15,20-tetra(pentafluorphenyl)
porphyrin; TPC: 5,10,15-triphenylcorrole; TPFC: 5,10,15-tripentafluorophenylcorrole.

Graphic Abstract

Through photo-induced ligand cleavage and photo-disproportionation reactions, diverse
high-valent transition metal-oxo derivatives supported by porphyrin, corrole, phthalocyanine
and salen ligands have been successfully explored. The reactivity of these metal-oxo species
and their catalytic implications are compared and discussed.

]
2
o

salen

M
o]

633


http://dx.doi.org/10.31031/PPS.2024.06.000633
https://crimsonpublishers.com/pps/

PPS.000633. 6(2).2024

634

Introduction

High-valent transition metal-oxo species are important Oxygen
Atom Transfer (OAT) species that play a significant role in a wide
range of oxidation reactions, catalysis and enzymatic processes [1-
3]. Remarkably, in nature, the ubiquitous cytochrome P450 enzymes
utilize an iron (IV)-oxo radical cation species to activate molecular
oxygen, facilitating the oxidation of unreactive C-H bonds with
exceptionally high efficiency and selectivity [4-6]. Consequently, the
effective production and examination of reactive metal-oxo species
have provided valuable insights into the identity of true oxidants
and further enhanced our understanding of oxidation mechanisms.
This, in turn, advances the development of enzyme-like catalysts
for practical applications. However, the characterization of high-
valent metal-oxo species is often challenging due to their transient
nature and low concentration [7,8]. In biomimetic model studies,
these oxo species are typically produced by the reaction of a
metal complex with a suitable terminal oxidant, such as hydrogen
peroxide, peroxyl acids or a hypervalent iodine reagent [9,10]. In
some cases, spectroscopic observation of these intermediates is
possible by rapid mixing techniques at low temperatures or by
generating relatively stable analogs [11-15]; but in many cases,
the actual metal-oxo species responsible for oxidation is not
formed at detectable amounts and therefore, remains the subject of
speculation. Indeed, the lack of kinetic and mechanistic information
often complicates the understanding of the nature of the active
oxidants in homogeneous catalysis.

Our research group has engaged in a general study to probe
oxidation catalysis that aims at photochemical generation and
direct examination of reactive high-valent transition metal-oxo
intermediatesinvolvedintherespective oxidation processes[16,17].
Photochemistry offers a promising alternative for producing highly
reactive metal-oxo transients with some advantages [18,19]. Unlike
conventional chemical methods that use toxic or polluting reagents,
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photochemical reactions involve the absorption of a photon
for activation without leaving any residue. More importantly,
photochemical approaches offer much higher temporal resolution
than the fastest mixing studies, which is essential for detecting
highly reactive transients [16]. For example, Laser Flash Photolysis
(LFP) techniques have been successfully employed to produce a
range of transient metal-oxo species on a timescale as short as a
sub-microsecond [20-24]. In this mini review, we describe our
progress in developing two distinct photochemical approaches
to probe high-valent transition metal-oxo derivatives supported
by various macrocycles. Meanwhile, we demonstrate that direct
kinetic studies in real time can offer mechanistic insights into the
reactivities and identities of the active oxidants in the catalytic
processes.

The first approach involves photo-induced ligand cleavage
reactions, in which we photolyze metal complexes in the n oxidation
state with oxygen-containing ligands such as chlorate, bromate or
nitrite. Homolysis of the 0-X bond in the ligand results in metal-
oxo species in (n+1) oxidation state, while heterolysis gives
(n+2) oxidation state metal-oxo species (Figure 1A). The specific
reaction pathways depend on many factors, such as the photo-
labile precursors, transition metals and their initial oxidation
states and the macrocyclic ligands. The second approach employs
photo-disproportionation reactions [25-27] in which photolysis
of a p-oxo dimeric M" complex produces an M"!-oxo species and
an M™! reduced product (Figure 1B). In the presence of large
concentrations of reductants, single turnover reactions with respect
to the metal-oxo oxidant can be achieved, enabling easy kinetic
measurements of second-order rate constants under pseudo-
first-order conditions. Although the concept of photo protocols for
producing metal-oxo species is straightforward, successful creation
requires considerable development of the requisite photochemical
reactions and especially the photo-labile precursors.

0o X
S - S
photo-disproportionation M

M = Fe, Mn, Ru, Cr

Ar

porphyrin

phthalocyanine

% @ ‘ Q@H -

corrole salen

Figure 1: Production of high-valent metal-oxo intermediates through (A) visible light-induced ligand cleavages, and
(B) photo-disproportionation reactions.

Progress Petrochem Sci

Copyright © Rui Zhang



PPS.000633. 6(2).2024

635

High-Valent Manganese-Oxo Species
Manganese (IV)-oxo porphyrins [Mn" (Por)(0)]

High-valent manganese-oxo species are known for their
reactivity in oxidation catalysis and have been extensively
examined as bioinspired synthetic catalysts [12,28]. In this context,
highly reactive porphyrin-manganese(V)-oxo derivatives have been
implicated as the primary oxidants [29,30] and their detection has
been achieved by chemical or LFP methods [31-33]. Additionally,
trans-dioxo manganese(V) porphyrins were chemically synthesized
and exhibited pH-dependent reactivities towards typical substrates
[34]. However, manganese (IV)-oxo porphyrins have received less
attention primarily due to their relatively low reactivity [35-38]. To
address this, we have explored two photochemical methods using
visible light to produce and study a series of porphyrin-manganese
(IV)-oxo species.

Visible light photolysis of the highly photo-labile porphyrin-
Mn'" chlorate or bromate salts (1) effectively produced three [Mn'
(Por)(0)] (2a-c) with varying electronic structures (Figure 2, path
a) [39]. The systems under study include [Mn" (TPFPP)(0)] (2a),
[Mn" (TDFPP)(0)] (2b) and [MnIV (TMP)(0)] (2c). The photo-
generation of 2 was rationalized by homolysis of the 0-X (X = Cl

a: Ar = C¢F5, TPFPP
b: Ar = 2, 6-F,CgH,, TDFPP
C: Ar = 2,4,6-M6306H2 y TMP

or Br) bonds in the ligands, resulting in one-electron oxidation on
the metal that is consistent with findings from previous LFP studies
[33]. The identification of photo-generated porphyrin-manganese
(IV)-oxo species was substantiated through ESI-MS analysis and
further validated by synthesizing the same species via chemical
oxidation of the corresponding manganese (III) chloride using Phl
(OAc), [39]. Alternatively, visible light irradiation of manganese
(II1)-p-oxo bis-porphyrins (3d-f) in three sterically unencumbered
porphyrin systems resulted in photo-disproportionation reactions
that directly led to the formation of manganese (IV)-oxo porphyrins
along with manganese (II) products (not shown here) in benzene
solutions (Figure 2, path b) [40]. Attempts to synthesize the
p-oxo dimers with sterically hindered porphyrins (3a-c) were
unsuccessful. In the absence of substrate, the initially formed
manganese (II) species was highly transient and underwent rapid
aerobic oxidation to give manganese (III) porphyrins. Continuous
irradiation ofdimanganese (I1I) p-oxo bis-porphyrinsin the presence
of strong donors such as Pyridine (Py) or Triphenylphosphine
(Ph,P) gave rise to the formation of stable [Mn" (Por)(Py)] or [Mn"
(Por)(PPh,)]. This observation provides additional support for the
photo-disproportionation mechanism previously established for
diiron (III) p-oxo bis-porphyrins [41].

homolysis

path b

d: Ar = 4-CF3CeH,
e: Ar = 4-FCgH, Ar
f: Ar = CgHs

Figure 2: Two photochemical entries to Mn'V-oxo porphyrins.

Manganese(V)-oxo corroles [Mn" (Cor)(0)]

Tri-anionic corroles are contracted analogues of porphyrins
and able to stabilize higher metal oxidation states. Consequently,
relatively stable manganese (V)-oxo corroles, denoted as [Mn"
(Cor)(0)], have been reported as active OAT species [42]. However,
the mechanism of the reactions involving [Mn" (Cor)(0)] are
intricate [43,44] and the factors governing their OAT reactivity
with organic substrates are not yet fully understood. As outlined
in Figure 3, photo-induced ligand cleavage reactions were utilized
to produce corrole-manganese(V)-oxo species cross three distinct
ligand systems [45,46]. To accomplish this, one-electron oxidations
of corrole-manganese (III) salts afforded corrole-manganese (IV)
chlorides [42] that underwent facile ligand exchange with AgXO0,
(X = Cl and Br) or AgNO, to generate the corresponding photo-
labile precursors (4). As anticipated, visible light irradiation of 4
led to homolytic cleavage of the ligand O-CI bond to give corrole-

manganese(V)-oxo species (5), showing the same UV-visible
spectra as those formed by chemical oxidations with ozone or
iodosylbenzne (PhlO) [42,47].

The reactivity and reaction pathways of [Mn" (Cor)(0)] are
markedly influenced by solvent and ligand effects [45]. In the polar
solvent CH,CN, the electron-deficient system [Mn" (TPFC)(0)] (5a)
reverted to Mnlll corrole at the end of the oxidation reactions.
Conversely, in the less polar solvent CH,CI, or in non-electron-
deficient systems (5b and 5c), the Mn'’ product was formed instead.
Moreover, the reactivity order of [Mn' (Cor)O] with the same
substrates and solvent was found to be 5c > 5b > 5a, contrary to
expectations based on the electron-demand of the corrole ligands.
The spectral and kinetic patterns align with multiple oxidation
pathways, wherein 5 acts as either a direct two-electron oxidant or
undergoes a disproportionation reaction to form a manganese (VI)-
oxo corrole as the primary oxidant [45].

Progress Petrochem Sci

Copyright © Rui Zhang



PPS.000633. 6(2).2024

636

a: Ar= CGFS s TPFC

b: Ar = 4-CF3CgH,
C: Ar= C6H5 , TPC

Figure 3: Photo-generation of manganese(V)-oxo corroles.

Manganese (IV)-oxo phthalocyanine [Mn" (Pc)(0)]

Metal Phthalocyanine Complexes (MPc’s) have gained a
significant interest as bioinspired catalysts due to their structural
similarity to heme-containing macrocycles and exceptional
redox and optical properties [48-51]. However, their mechanistic
understanding lags behind that of their metalloporphyrin
counterparts, mainly due to the lack of Pc-metal-oxo intermediates

and limited knowledge of their reactivities. Very recently, we made
an important advance by expanding the analogous photo-ligand
cleavage reactions to generate and examine a novel manganese
(IV)-oxo phthalocyanine species (6) (Figure 4) [52]. Prior to this
work, only one high-valent iron (IV)-oxo radical cation species on
the phthalocyanine platforms was detected and spectroscopically
characterized [53].
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Figure 4: Photo-generation of a new manganese (IV)-oxo phthalocyanine monitored by UV-vis spectroscopy.

The photo-generated species 6, i.e. [Mn'"V(tBu4-Pc) (0)], was
characterized by Electron Spray lonization Mass Spectrometry
(ESI-MS), revealing an expected molecular ion at m/z =808 along
with exchange of the oxo ligand with isotope-labelled H,'®0. This
observation aligns with the anticipated characteristic of high-
valent metal-oxo species. Following its generation, the reactivity
of the newly formed manganese (IV)-oxo species was kinetically
explored using various organic substrates such as alkenes,
benzylic hydrocarbons, alcohols and sulfides. The second-order
rate constants (k_ ) range from 4.1 x 10 M's! for cis-cyclooctene
to 1.3 Ms! for thioanisole, which are comparable to the known
manganese (IV)-oxo porphyrins (2) [39]. This study marks the first
photochemical generation and reactivity study of metal-oxo species
on the phthalocyanine platform that can be directly compared with
the related porphyrin-metal-oxo species.

High-Valent Iron-Oxo Porphyrins

Among high-valent metal-oxo species, reactive iron-oxo
porphyrins have particularly attracted attention due to their
importance in various oxidative enzymes found in nature and

their unique properties for broad applications [54,55]. The readily
accessible high oxidation state of iron is +4 and heme and non-
heme iron (IV)-oxo species are well-known and documented [3].
Catalytic cycles in heme-containing peroxidase, catalase, and
cytochrome P450 enzymes [56] as well as in synthetic models [11]
are often mediated by iron (IV)-oxo porphyrin radical cations, also
termed compound I. An exploration of the photo-induced ligand
reaction extended to produce iron (IV)-oxo radical cation species
(compound I derivatives) or iron (IV)-oxo porphyrin (compound
II derivatives), depending on electronic and steric factors within
the porphyrin ligands [57,58]. For instance, visible light photolysis
of porphyrin-iron (III) bromates or chlorates (7) in electron-rich
systems resulted in porphyrin-iron (IV)-oxo radical cations (9a-
d). In contrast, photolysis of complexes 7 with electron-deficient
and sterically encumbered ligands produced neutral iron (IV)-oxo
porphyrins (10e-g).

The profound ligand-dependent formation of iron (IV)-oxo
species 9 or 10 can be rationalized by a photo-induced heterolysis
of the O-X bond of 7, generating a putative porphyrin-iron(V)-
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oxo species (8) (Figure 5). In non-electron-deficient porphyrin
systems (a-d), the high-energy iron(V)-oxo species (8) could
undergo relaxation to compound [ models (9a-d) through internal
Electron Transfer (ET) from the porphyrin to the iron, as it is
thermodynamically favored (path a). However, the ET process from
highly electron-demanding porphyrin systems (e-f) to the iron is
apparently unfavorable due to a high redox potential. Instead, a
rapid comproportionating reaction of 8 with the remaining iron
(III) complex (path b) could produce iron (IV)-oxo derivatives
(10e-g). Earlier studies on manganese-oxo species indicated that
porphyrin-manganese (V)-oxo species rapidly comproportionate
with manganese (III) species, and corrole-manganese (V)-oxo
species react with manganese (III) species to produce manganese
(IV)-oxo species. The choice between these two possibilities is

OCXOZ (X =Brand cj)

heterolysis

Ar——— >

N\FeIII’N
N \N

influenced by the electronic structure and/or redox potential
of the porphyrin ligand. This, in turn, determines the electron
spin distribution of atomic orbitals and the bond reorganizations
required to form the two species.

As expected, the more oxidized compound [ derivatives 9
reacted 2-3 orders of magnitude faster than the compound II 10
with the same substrate. Interestingly, the reactivity order for
species 10 is inverted with the expectation on the basis of the
electron-withdrawing of the porphyrin macrocycles, suggesting that
compound II derivatives (10) could undergo a disproportionation
reaction to generate a more reactive iron (IV)-oxo porphyrin radical
cation (9) as the primary oxidant. Indeed, the direct spectroscopic
observation of disproportionation of 10 to 9 under acidic conditions
was previously reported [59].

Figure 5: Ligand-dependent photo-generation of porphyrin-iron (IV)-oxo compound I derivatives via ET (Path a) and
compound II species via comproportionating pathway (Path b).

High-Valent Ruthenium-Oxo Species
Ruthenium (V)-oxo porphyrins [Ru’ (Por)(0)]

Porphyrin-ruthenium (V)-oxo complexes are significant
as highly reactive oxidizing intermediates involved in efficient
oxidation processes [60-62]. Computational studies suggested
that they are thermodynamically more favorable than ruthenium
(IV)-oxo porphyrin radical cations [63]. Recently, spectroscopic
evidence along with kinetic and computational studies have
been reported to support the formation of the highly reactive
ruthenium(V)-oxo species as the active oxidant in the ruthenium
(IIN) porphyrin-catalyzed oxidations [64]. In this regard, two
distinct photochemical approaches were employed to generate the
porphyrin-ruthenium (V)-oxo species (Figure 6). The first involves
the photo-disproportionation of a bis-porphyrin-diruthenium (IV)
p-oxo dimer (11) that provides access to the reactive porphyrin-
ruthenium (V)-oxo intermediate (12) [27]. The second involves the
photo-cleavage of a ruthenium (III) N-oxide adduct (13) to afford
the same oxo transient 12 as a result of heterolytic cleavage of the

Ru-0 bond (Figure 6) [65]. The UV-vis spectra and kinetic behaviors
of transients generated from the two routes are indistinguishable.

The oxo species 12 showed remarkable reactivity with
representative second-order rate constants of k,_= 6.6 x 10° M
s for diphenylmethanol, k= 1.8 x 10> M s for cyclohexene
and k= 1.3 x 10° M"' s* for cis-cyclooctene. Notably, the potential
use of photo-disproportionation reactions for photocatalytic
aerobic oxidations is particularly appealing [26]. Accordingly, the
successful realization of the proposed photocatalytic cycle relies
on the crucial regeneration of the p-oxo dimers through aerobic
oxidation of the resulting ruthenium (III) intermediate [66]. In
this regard, a series of diruthenium (IV) p-oxo bis-porphyrins [27]
have demonstrated their ability to catalyze the demanding aerobic
oxidation of hydrocarbons through a photo-disproportionation
mechanism, similar to that of well-known diiron (III)-p -oxo bis-
porphyrin complexes [41]. The catalytic sequence is sustainable
because it uses visible light to activate molecular oxygen for organic
oxidations without the need for external co-reductants [67].
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Figure 6: Two photochemical entries to highly reactive Ru"-oxo porphyrins.

Trans-dioxoruthenium (VI) porphyrins [Ru"' (Por)(0),]

Trans-Dioxoruthenium (VI) porphyrins are structurally well-
defined model systems for heme-containing enzymes [68,69],
but they are much less reactive compared to ruthenium (V)-oxo
counterparts [70]. As for photochemical generation, the photo-
labile precursors dihalorate [Ru" (Por)(X0,),] (14, X = Cl or Br) were
obtained by facile exchange of the counterions in literature-known
[Ru" (Por)CL] [71] with AgXO,. Similarly to previously mentioned
for manganese (IV)-oxo and iron (IV)-oxo species, the visible light
photolysis of [Ru" (Por)(X0,),] proceeded simultaneous homolytic
cleavage of two X-O bonds (double homolysis), which resulted in
the formation of trans-dioxo species (15) within diverse electronic
and steric porphyrin systems (Figure 7). This photo protocol

demonstrated a broader generality compared to chemical methods
[72,73]. Under identical conditions, it was observed that the
bromate precursors exhibited greater photo efficiency compare to
the chlorates. The OAT reactions from 15 to organic sulfides were
kinetically investigated with tunable structural and electronic
properties [74]. The sulfoxidation reactions of dioxoruthenium (VI)
species 14 demonstrated impressive reactivity with second-order
rate constants ranging from 8 to 60 M! s, which are 3 orders of
magnitude larger than those of well-studied alkene epoxidations
and activated C-H bond oxidations [74]. In addition, the reactivity
order for 14 correlated well with the expectation based on
the electron-withdrawing and steric effects of the porphyrin
macrocycles.

Figure 7: Photosynthesis of trans-dioxoruthenium (VI) porphyrins.

High-Valent Chromium-Oxo Species
Chromium (V)-oxo [CrY (Por)(0)] and chromium (IV)-
oxo porphyrins [Cr'V (Por)(0)]

The chemistry of high-valent
porphyrins or salens have taken center stage as biomimetic models
because of their easy accessibility and stability [75]. In chromium

intricate chromium-oxo

porphyrin systems, two distinct high-valent species, chromium(V)-
oxo and chromium (IV)-oxo porphyrins, are well known [76,77].
We explored the photo-generation and kinetics of these species in
three systems for sulfoxidation reactions [78]. In addition to the
chemical oxidation of chromium (III) complexes by Phl (OAc),,

the visible-light irradiation of chromium (III) chlorates provides
alternative access to [Cr'Y (Por)(0)] (16). One-electron oxidation
[79] of the resulting species 16 with AgClO, produced chromium(V)-
oxo species, i.e. [Cr¥ (Por)(0)]* (17) in CH3CN solution (Figure 8).
Both the chromium (IV)- and chromium(V)-oxo species exhibited
sufficient stability for characterization by ESI-MS, displaying
distinct peaks at the expected M+1 ions, respectively. Additionally,
the ESI-MS measurement of chromium(V)-oxo species disclosed
an isotope exchange in the oxo ligand with H,'®0. As anticipated,
the diamagnetic nature of [Cr"V (TMP)(0)] was confirmed by well-
resolved 1H NMR spectroscopy.
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Figure 8: Generation of chromium (IV)/(V)-oxo porphyrins.

Comprehensive kinetic studies enable a direct comparison of
the reactivities of porphyrin-chromium (IV)/(V)-oxo complexes
in sulfoxidation reactions under identical conditions. Consistent
with expectation, chromium(V)-oxo species 17 are several orders
of magnitude more reactive than the respective 16. Among
chromium(V)-oxo species, substantially greater rate constants
were obtained with electron-deficient [Cr¥ (TDFPP)(0)]+ (17b) and
[Cr¥ (TDFPP)(0)]* (17c) systems compared to the electron-rich [Cr"
(TDFPP)(0)]* (17a). Hammett analyses indicate significant charge
transfer in the transition states for oxidation of para-substituted
thioanisoles by 17, suggesting a mechanism that involves the
electrophilic attack of the CrV-oxo at sulfides to form a sulfur cation
intermediate in the rate-determining step [42].

Chromium (V)-oxo salens [CrY (salen)(0)]

Metallosalens contain a cramp-like tetradentate motif and
share catalytic features in common with metalloporphyrin’s [80].
Due to their high stability, chromium (V)-oxo salens are well

Reactivities of Metal-Oxo Species and Implications
for Catalytic Oxidations

The photochemical generation of high-valent metal-oxo species
permits kinetic studies in a wide variety of oxidation reactions,
allowingforadirectcomparison oftheirreactivitiesunderanalogous
conditions. Table 1 contains some representative rate constants
of various metal-oxo species supported by different macrocyclic

heterolysis

X =ClorBr

tBu«dOH HO%}‘BU
Bu B
a

F F

F

known in literature and have been fully characterized by various
spectroscopic methods [81]. Recent progress was reported on the
visible light generation of chromium (V)-oxo complexes i.e., [CrY
(salen)O] (18) bearing the well-known Jacobsen salen ligand and
its derivative (Figure 9) [82]. This marks the first instance where
photochemical production of metal-oxo species extends beyond
porphyrinoid ligands, demonstrating feasibility of photochemical
approaches with simple, easily constructed salen-based complexes.
The photo-generated 18 exhibited a well-known characteristic
absorption feature and was further characterized by ESI-MS. Of note,
18 is spectroscopically and kinetically indistinguishable from that
formed by the reported chemical oxidation [81]. Additionally, our
unpublished results also indicated that photolysis of [Mn'"" (salen)
(X0,)] resulted in the formation of OAT species that were tentatively
assigned as cationic [Mn'(salen)O]* in view of their absorption
spectra and reactivity behaviors. Kinetic studies revealed that the
reactivity of [Mn"(salen)O]" is one order of magnitude greater than
that of 18 supported by the same salen ligand.

s

Figure 9: Photo-generation of chromium (V)-oxo salens.

ligands, including porphyrins, phthalocyanines, corroles or salen.
Table 1 also includes the rate constants of manganese(V)-oxo
porphyrin cation that were obtained from previous LFP kinetic
studies [33]. Upon reviewing Table 1, it becomes apparent that
the reactivity of metal-oxo species is predominantly dictated by
the metal center and its oxidation states. For example, porphyrin
manganese(V)-oxo derivatives have the same formal oxidation
state as the iron (IV)-oxo porphyrin radical cations, but they
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react 5 orders of magnitude faster than the latter with the same
substrate. Additionally, the porphyrin ruthenium(V)-oxo species
exhibits 3 to 5 orders of magnitude higher reactivity than the
porphyrin chromium(V)-oxo and salen chromium(V)-oxo species.
In general, higher oxidation states lead to greater reactivities with
manganese(V)/chromium(V)-oxo porphyrins being several orders
of magnitude more reactive than the corresponding meta I(IV)-oxo
counterparts with the same TPFPP ligand. Moreover, the nature
of the ligand coordinated with the metal center plays a significant

role in the reactivity due to the modification of the electronic and
steric properties of the metal-oxo species. For example, the corrole
ligands are trianionic, as opposed to dianionic porphyrin ligands,
and thereby corrole-manganese(V)-oxo species are inherently
more stable than the porphyrin-manganese(V)-oxo analogs. Lastly,
the nature of the substrate also impacts the reactivity as different
substrates possess varying nucleophilicities, steric hindrance, and
availability to the metal-oxo moiety, resulting in different oxidation
rates and/or OAT mechanisms.

Table 1: Second-order rate constants of various metal-oxo species under similar conditions.

Metal-oxo species Cis-cyclooctene Ethylbenzene Thioanisole
Mn" (TPFPP)(0)] (2a 1.5x10? 7.1x10" 1.7
[
[Mn'" (tBu4-Pc) (0)] (6) 41x10° 1.8x10%? 1.3
[Fe" (TPFPP)(0)] (10g) 1.8x 10 4.6x10% 46
[Cr'v (TPFPP)(0)] (16¢) n.db n.db 1.4
[Fe (TMP)(0)]*-(9a) 1.2x10? 6.2
[Mn" (TPFPP)(0)]* 6.1x10° 1.1x10°
[Mn" (TPFC)(0)] (5a) 2.9x10% 1.4x10* 49
[Ru¥ (TPP)(0)]* (12) 1.3x10%
[CrY(TPFPP)(0)]* (17¢) 8 2.2x10°
CrV (salen(0)]* (18 3.0x10% 5.8x10?
[Cr( (01" (18)

(a)Second-order rate constants in units of M s for reactions in CH,CN at 23 + 2 °C. (b) n. d. = not detected due to no
decay of species 16 in the presence of excess substrates. (c) from Ref. 33.

Meanwhile, available kinetic results from this study offer
profound insights into the identification of the actual OAT oxidants
in catalytic turnover conditions with transition metal catalysts,
where the concentrations of active oxidants, in most cases, do
not accumulate to detectable levels. By identifying the kinetically
competent oxidants, we could improve control over the catalytic
oxidation reactions, especially in terms of selectivity. To assess
whether the observed metal oxo species in our direct kinetic
studies are active oxidants under catalytic turnover conditions, one
approachisto compare the ratios of products formed under catalytic
turnover conditions to the ratios of rate constants measured
in the direct kinetic studies [16]. If the same oxidant is present
in both cases, the ratios of absolute rate constants from direct
measurements and relative rate constants from the competition
studies should be similar. When the ratios are not similar, however,
the active oxidants under the two sets of conditions must be
different. For example, competition studies with chromium (III)
porphyrin chloride and Phl (OAc), gave relative rate constants
for oxidations of competing thioanisoles that closely match ratios
of absolute rate constants from chromium(V)-oxo species (16),
suggesting it serves as true oxidants under catalytic conditions
[78]. However, our mechanistic studies of porphyrin-manganese
(IV)-oxo0 2, [39] corrole-manganese (V)-oxo 5, [20a] and porphyrin-
iron (IV)-oxo 10 [83] indicate that a high-valent metal-oxo species
detected in a reaction might not be the true or sole oxidant in these
systems.

Summary and Outlook

This mini review offers an overview of our recent advancements

in the photo-induced formation of diverse high-valent metal-oxo
species, as published to date. Generation of high-valent transition
metal-oxo derivatives through photochemical approaches holds
great promise for general synthetic utility, encompassing a variety
of known and unknown metal-oxo species featuring different
metals supported by porphyrin, corrole, phthalocyanine and salen
ligands. The photochemical approaches using visible light are
simple, green and appealing alternatives as a strategic departure
from conventional methods. In particular, the kinetics of oxidation
reactions with the photo-generated metal-oxo species can be
readily measured under pseudo-first-order conditions at ambient
temperatures without convolution from the excess oxidants
typically associated with chemical methods. This approach opens
avenues for directly comparing reactivities of various metal-oxo
species and provides valuable insights into understanding the true
oxidants involved in the catalytic oxidation reactions.

In future research, photo-synthetic methodologies will continue
tobeexploredtoproduce otherhigh-valentmetal-oxo intermediates,
especially those yet undiscovered. Despite the advancements made
in the current photochemical strategies, several challenges remain
to be addressed. Spectroscopic characterization of these metal-
oxo transients proves challenging due to their low concentration
and high reactivity. It should be noted that producing metal oxo
in most cases was limited to low concentrations, typically ranging
from 107 to 10°M. This is because higher concentrations resulted
in inert photochemical reactions due to the apparent blockage
of the light transmission. Thus, current assignments of photo-
generated metal-oxo species are based on limited spectroscopic
data obtained thus far. Therefore, more in-depth spectroscopic
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characterizations of these novel metal-oxo transients and related
species will be essential to provide crucial structural information.
To overcome this challenge, emerging photochemical methods
will be coupled with advanced technology, such as stopped-flow
spectrometers and batch methods at low temperatures, which may
be a direction of future works as they offer high temporal resolution
and high yield formation for in-depth characterization and studies.
As the demand for green and sustainable chemistry grows, the
use of visible light (sunlight) rather than a chemical reagent with
a photocatalyst offers an attractive means to harness solar energy
in applied synthesis [84-86]. A particular emphasis will also be
placed on the p-oxo metal (IV) dimeric complexes as promising
photocatalysts that undergo a photo-disproportionation sequence
to generate a catalytically reactive metal (V)-oxo species for aerobic
photo-oxidations [26,27,87]. The primary objective is to enhance
quantum yields and ultimately maximize the efficiency of the
photocatalytic process. To this end, we have recently augmented
the light-harvesting capabilities of porphyrin by incorporating
additional BODIP dye units, resulting in a significant enhancement
of the efficiency for photocatalytic oxidation reactions [88].
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