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Abstract:  
Despite being the dominant force of nature on large scales, gravity remains relatively elusive to 
precision laboratory experiments. Atom interferometers are powerful tools for probing e.g. 
Earth's gravity1, the gravitational constant2, deviations from Newtonian gravity3–6 and general 
relativity7. However, using atoms in free-fall limits measurement time to a few seconds8, and 15 
much less when measuring interactions with a small source mass2,5,6,9. Recently, interferometers 
with atoms suspended for 70 seconds in an optical lattice mode-filtered by an optical cavity have 
been demonstrated10–14. However, the optical lattice must balance Earth’s gravity by applying 
forces that are a billion-fold stronger than the putative signals, so even tiny imperfections may 
generate complex systematic effects. Thus, lattice interferometers have yet to be used for 20 
precision tests of gravity. Here, we optimize the gravitational sensitivity of a lattice 
interferometer and use a system of signal inversions to suppress and quantify systematic effects. 
We measure the attraction of a miniature source mass to be 𝑎mass = 33.3 ± 5.6stat ±
2.7syst nm s2⁄ , consistent with Newtonian gravity, ruling out “screened fifth-force” theories3,15,16 
over their natural parameter space. The overall accuracy of 6.2 nm/s2 surpasses by more than a 25 
factor of four the best similar measurements with atoms in free-fall5,6. Improved atom-cooling 
and tilt-noise suppression may further increase sensitivity for probing forces at sub-millimeter 
ranges17,18, compact gravimetry19–22, measuring the gravitational Aharonov-Bohm effect9,23 and 
the gravitational constant2, and testing whether the gravitational field has quantum properties24. 
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A vast experimental program has been dedicated to testing gravity, including the search for 
deviations from Newtonian gravity on various scales. Over the last decade, atom interferometry 
has emerged as a powerful player in this effort. Quantum experiments with atoms in high 
vacuum near a miniature source mass have been particularly sensitive to the ultra-weak-field 
regime3–6. This regime is relevant to theories such as the chameleon25,26 and symmetron27,28, 5 
whose fifth force is suppressed (“screened”) in high-density environments common to solar-
system and terrestrial physics experiments. This mechanism allows for building dark energy 
models that avoid existing experimental constraints, although the direct connection between 
“screened fifth force” theories and dark energy remains a lively point of discussion. Searches for 
such “screened” fields have also been performed with neutron interferometry29,30 or mechanical 10 
systems31–33.  

In this work, we use a lattice atom interferometer to measure the tiny acceleration 𝑎mass of atoms 
caused by their interaction with a miniature source mass. Our measurement improves existing 
constraints on “screened fifth forces”3–6 by factors of 3-5. Projected increases in sensitivity will 
probe a broad swath of parameter space. To further demonstrate the power of this novel atom 15 
interferometry method for precision tests of gravity, we also constrain a generic “Yukawa” 
scalar-mediated force and argue that the projected increase in sensitivity based on planned 
upgrades could make lattice interferometry competitive with state-of-the-art torsion balance 
constraints at sub-mm scale34–40.  

 20 
Figure 1. Experimental apparatus and lattice atom interferometer trajectories. a. A far-detuned, vertical 
optical lattice (dark blue, wavelength 𝜆latt = 943 nm) is formed by the mode of an optical cavity established by two 
mirrors (light blue), which is length-stabilized by a ring-piezo (purple). Atoms in a spatial superposition state 
(yellow circles surrounded by a dashed orange contour) are held in the high-intensity regions of the lattice. They 
measure the acceleration either above or below the source mass (green). In addition, the source mass can be moved 25 
near or far from the atoms. A differential measurement between the ℰ̃ ∈ {±1} and ℳ̃ ∈ {+1,0} configurations 
yields 𝑎mass. b. Trajectories of the atoms shown for the ℰ̃ = −1, ℳ̃ = +1 configuration. The cavity mode (blue 
stripes) passes through the center of the tungsten source mass (green). Pairs of π/2 pulses (wavy vertical lines) 
separated by time 𝑇 split, redirect, and interfere the atomic wavepackets. At their apex, the wavepackets are loaded 
into the optical lattice where they remain for time 𝜏. The internal atomic state is one of the 𝐹 = 3 (red, solid lines) or 30 
𝐹 = 4 (green, dashed lines) hyperfine levels. 
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Cesium (Cs) atoms are held by the optical lattice nearby a hollow tungsten cylinder with height 
and diameter of 25.4 mm (Fig. 1a), which acts as a source mass. Each atom is in a quantum 
spatial superposition state, with each interferometer arm held at two lattice sites along the 
interferometer axis 𝑧 that are separated by distance Δ𝑧. The atom interferometer measures the 
potential energy difference, Δ𝑈, between the two arms. 5 

The interaction acceleration, 𝑎mass, is measurable because it contributes a potential difference, 
Δ𝑈mass, between the interferometer arms. To isolate 𝑎mass from the ~300 million times larger 
acceleration due to Earth’s gravity, 𝑔, as well as systematic effects, we use two switches. The 
first switch reverses the direction of 𝑎mass by positioning the atomic superposition either above 
(ℰ̃ = +1)  or below (ℰ̃ = −1) the source mass. In addition, the source mass can be moved close 10 
to (ℳ̃ = +1) or far away from (ℳ̃ = 0) the atoms. Each of these switches not only reject the 
contributions from 𝑔 and a wide range of systematic errors, but also help us characterize 
systematic effects. 

The measured phase shift in state ℳ̃ ∈ {0,1}, ℰ̃ ∈ {−1,1}, due to 𝑔 and 𝑎mass is given by  

𝜙(ℳ̃, ℰ̃)  ≈ 𝛥𝑈𝜏 ℏ⁄ = 𝑚Cs(𝑔 + ℳ̃ℰ̃ 𝑎mass)Δ𝑧𝜏 ℏ⁄ , (1) 

where 𝑚Cs is the cesium atom mass, ℏ is the reduced Plank constant and 𝜏 is the interferometer 15 
hold time. The value of 𝑎mass is extracted from the change in 𝜙 that is correlated with the 
position of the atoms (ℰ̃) and position of the source mass (ℳ̃), that is with the product ℳ̃ℰ̃. By 
denoting this correlated component as 𝜙ℳℰ, we obtain 

 𝑎mass ≡ 𝑎ℳℰ = ℏ ⋅ 𝜙ℳℰ (𝜏 ⋅ 𝑚Cs ⋅ Δ𝑧)⁄ .  (2) 
 
Measurement of the interferometer phase 20 

Atoms are prepared in a magneto-optical trap (MOT) with subsequent polarization gradient 
cooling and Raman sideband cooling to produce a 300 nK sample of Cs atoms in the 
magnetically insensitive 𝑚𝐹 = 0 state of the ground state hyperfine manifold (see previous 
paper10 for details). The atoms are launched upwards with a moving optical lattice. A pair of 𝜋 2⁄  
Raman pulses (each acting as a 50-50 atomic wavepacket beamsplitter), separated by time 𝑇, 25 
splits the atomic matter-wave four-fold (Fig. 1b).  

We select two wavepackets that are separated vertically by a distance Δ𝑧 = 2𝑣𝑟𝑇, where 𝑣r =
 3.5 mm/s is the recoil velocity of Cs atoms from 852 nm photons. These wavepackets share the 
same internal quantum state and external momentum. When they reach the apex, they are 
adiabatically loaded into the high-intensity regions of a far-detuned optical lattice (wavelength 30 
𝜆latt = 943 nm and trap depth 𝑈) with a spatial periodicity 𝜆latt/2. The optical lattice beam is 
mode-filtered by an optical cavity11,41–43. During the hold, the interferometer wavepackets 
accumulate the relative phase shift, 𝜙, due to potential difference 𝛥𝑈 (Eq. 1). 

After a hold time 𝜏, the atomic wavepackets are adiabatically unloaded and recombined using a 
final pair of 𝜋 2⁄  pulses. Their phase difference 𝜙 determines the probabilities 𝑃3,4 = [1 ±35 
𝐶 cos(𝜙)]/2 that the atoms emerge in either the 𝐹 = 3 or 𝐹 = 4 state. The fringe contrast 𝐶 in 
the absence of decoherence is 𝐶0 = 0.5 because only two of the four interferometer outputs 
interfere. For detection, we excite the atoms on the Cs D2 line and image the resulting 
fluorescence signals 𝑆3,4, which are proportional to 𝑃3,4. To remove variations in the atom 
number, both signals are measured simultaneously on the same camera image, using a push beam 40 
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to spatially separate the 𝑆3,4 populations (Fig. 2a). From the populations, we then compute the 
asymmetry, 

 𝐴 = (𝑆3 − 𝑆4) (𝑆3 + 𝑆4)⁄ = 𝐶 cos (𝜙).  (3) 

We measure 𝜙 by recording 𝐴 while scanning the hold time 𝜏 in consecutive iterations (Fig. 2b) 
and fitting the resulting fringe to a sine wave with the phase 𝜙, contrast 𝐶 and an overall offset 
as fit parameters.  5 

 
Figure 2. Experiment timescales. a. Fluorescence image. 𝑆4 and 𝑆3 are the signal intensities summed over the red 
and green squares. b. Measured experimental fringe that typically consists of 10 asymmetry points versus hold time 
𝜏. c. Switches performed within a block. Switch ℰ̃ alternates from fringe to fringe, while switch ℳ̃ alternates every 
20 fringes. d. Dataset measuring 𝑎mass accumulated over about two months (contains 552 ‘blocks’, not all shown). 10 
The interferometer separation, Δ𝑧 (𝜇m), is varied between three values from block to block, over the entire dataset.  
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Sensitivity, data analysis and statistics 
While previous work focused on demonstrating long-lasting coherence10, here we require high 
sensitivity to acceleration within a given integration time and therefore a different optimization 
of the experiment. The theoretical statistical uncertainty at the standard quantum limit (SQL) per 
experiment shot is given by 5 

𝛿𝑎shot
SQL = ℏ (𝑚Cs ⋅ Δ𝑧 ⋅ 𝜏 ⋅ 𝐶√𝑁shot)⁄ , (4) 

where 𝑁shot is the number of measured atoms. In addition, we empirically determine that 
contrast decays as 𝐶 = 𝐶0Exp[−𝜏 Δ𝑧 𝑈/𝜅] (see reference 10), where the decay parameter 𝜅 =
120 𝜇m ⋅ s ⋅ 𝐸r  and 𝐸r = 𝑚Cs𝑣r

2 2⁄ = ℏ ⋅ 2𝜋 ⋅ 2.0663 kHz is the Cs atom recoil energy at 852 
nm. The atom number decays as 𝑁 = 𝑁0Exp[−𝜏 /(12 s)]. Given all these constraints, we find 
that parameters that optimize sensitivity are 𝜏 = 2.3 s and 𝑈 = 12 𝐸r.  10 

For the fringe shown in Figure 2b (which is representative of the entire dataset), 𝐶 = 0.13, Δ𝑧 =

4.2 𝜇m, and 𝑁shot ≈ 30,000, the SQL uncertainty (Eq. 4) is 𝛿𝑎shot
SQL ≈ 2.2 ⋅ 10−6 m/s2. This 

value is consistent with the measured 𝛿𝑎shot = 2.6 ⋅ 10−6 m/s2, showing that the sensitivity of 
our experiment is consistent with the SQL.  

Moreover, 𝛿𝑎shot is an order of magnitude smaller than could have been achieved in previous 15 
iterations of the apparatus11, thanks to several improvements, including improved sample 
preparation, imaging, and an efficient moving-lattice launch (described in detail in 10). We also 
implement an atom elevator based on a far detuned moving optical lattice (wavelength 𝜆latt =
943 nm) to shuttle the atoms to various positions along the cavity axis 𝑧 (such as ℰ̃ = ±1). 

We switch the atom position (ℰ̃ switch) from fringe to fringe and the mass position (ℳ̃ switch) 20 
every 20 fringes. This forms a ‘block’ of data, which takes ~40 minutes to record (Fig. 2c). Each 
block therefore contains 10 measurements of 𝜙 for each of the 22 states corresponding to {ℰ̃, 
ℳ̃}. We average the 10 measurements by weighing them by the uncertainty of each 
measurement. 

We then form ‘parity components’ 44,45 of the phase, 𝜙𝑋𝑌, which are linear combinations of the 25 
measurements that are odd under switch operations 𝑋 and 𝑌 and even under all the other switch 
operations considered. A superscript ‘nr’ (for non-reversing) denotes a quantity that is even to all 
switches. In particular, 𝑎mass is extracted from 𝜙ℳℰ , which is odd under the ℳ̃ and ℰ̃ switches 

𝜙ℳℰ = [𝜙(1,1) − 𝜙(1, −1) − 𝜙(0,1) + 𝜙(0, −1)]/2. (5) 

We then use Eq. 2 to obtain 𝑎mass.  

The 𝑎mass dataset consists of 552 ‘blocks’ that were taken over the duration of about two months 30 
(Fig. 2d). The block dataset time-series is shown in Figure 3a. To test whether 𝑎mass depends on 
wavepacket separation Δ𝑧, we also varied between three values Δ𝑧 = 4.2, 6.6, 9.4 𝜇m during 
dataset acquisition. We take approximately equal amounts of data at each separation. 𝜏 was not 
re-optimized since the sensitivity is within 15% of its maximum value for all values of Δ𝑧. We 
find that 𝑎mass is independent of Δ𝑧 (Figure 3d). 35 
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Figure 3. Measurement Dataset. a. Time series of 𝑎mass block values. b. Histogram of centered and normalized 
𝑎mass block values. The values are computed from (𝑎mass − ⟨𝑎mass⟩)/𝛿𝑎mass , where ⟨𝑎mass⟩ is the average value 
over the entire dataset. Error bars indicate the standard deviation in the bin expected from a Poisson distribution. 
The blue line shows a Gaussian fit to the histogram. c. Normal probability plot (green points) compared with a 5 
normal distribution (green dashed line). The vertical axis is scaled such that a Gaussian distribution appears linear. 
d. Values of 𝑎mass grouped according to separation, Δ𝑧, and combined for the entire dataset. Error bars correspond 
to 1𝜎 (68% confidence interval). 
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Figures 3b and c show the statistical distribution of 𝑎mass block data, which is consistent with a 
normal Gaussian distribution. A chi-squared test yields a reduced 𝜒𝑟

2 = 1.06 ± 0.04, which we 
account for by multiplying the statistical uncertainty of the measurement 𝛿𝑎ℳℰ by √𝜒𝑟

2. We 
observe additional excess noise in the channels 𝜙ℳ, 𝜙ℰ  and 𝜙nr, which are less protected by the 
ℳ̃, ℰ̃ switches. This shows that these switches eliminate noise and drift in the experiment.  5 

To prevent experimenter bias, we performed a blind analysis by subtracting an unknown offset 
from 𝑎ℳℰ. We revealed this offset only after data collection, statistical data and systematic error 
analyses were complete.  
 
Systematic errors 10 

As described above, we acquire repeated interferometer measurements under varying 
experimental conditions to (a) isolate the source mass acceleration, 𝑎ℳℰ, from other background 
noise and errors and (b) search for possible systematic errors. Since 𝑎ℳℰ is the acceleration 
component that is correlated with both ℳ̃ and ℰ̃ switches, each independently suppresses 
possible systematic influences of many experimental parameters 𝑃 on 𝑎ℳℰ. The uncorrelated 15 
parameters, 𝑃nr, are suppressed by both switches, while parameters correlated with only one 
switch, 𝑃ℳ and 𝑃ℰ , are still suppressed by the other switch. 

To search for sources of systematic error, we vary experimental parameters 𝑃 over a larger range 
than typically found in the experiment and measured their influence on 𝑎ℳℰ. If 𝑃 was measured 
(or is theoretically expected) to have a non-zero influence on 𝑎ℳℰ, we use additional 20 
measurements and modeling to determine the systematic dependence of 𝑎ℳℰ on 𝑃, 𝑎ℳℰ(𝑃). We 
use a separated auxiliary measurement to determine the time-averaged ambient value of 𝑃, ⟨𝑃⟩, 
and then compute the associated systematic shift, 𝑎𝑃

ℳℰ(⟨𝑃⟩). This data was used only for the 
determination of systematic shifts and uncertainties and is not included otherwise in the 
measurement dataset. 25 

The only parameter for which a nonzero shift was either observed or expected is blackbody 
radiation, which is known in our setup to generate forces on the atoms that are given by 𝑎BBR

ℳℰ =
−4.3 ± 0.6 ⋅ 10−8 (𝑇mass

4 − 𝑇0
4) nm (K4 s2)⁄ , where 𝑇mass is temperature of the source mass and  

𝑇0 is the temperature of the environment46. We use an infrared thermal sensor to measure 𝑇mass 
and 𝑇0, which we find to be equal to within 0.05 ± 0.3 K. We use this measurement to compute 30 
a shift and systematic uncertainty that are included in the systematic error budget (Table 1).  

Other parameters 𝑃 are neither observed nor expected to significantly affect 𝑎ℳℰ, but are 
nevertheless included in the error budget, as described below.  

AC Stark shift difference between upper and lower atom positions, 𝑎ℰ. In the fully retracted 
position (ℳ̃ = 0), the mass should cause no measurable difference (< 0.01 nm s2⁄ , see 35 
Methods) between the acceleration in the upper (ℰ̃ = +1) and lower (ℰ̃ = −1) positions of the 
atoms. In the experiment, however, we measure a significantly non-zero average 𝑎ℰ in the final 
dataset, ⟨𝑃⟩ = ⟨𝑎ℰ⟩ = −377 nm/s2  with uncertainty 𝛿𝑃 = 9 nm/s2. This value is consistent 
with a model based on the light-shift (AC Stark shift) between the two elevator (ℰ̃ = ±1) 
positions due to the divergence of the optical lattice mode, as described in detail in Methods. 40 

Ideally, any effect of 𝑎ℰ on 𝑎ℳℰ should be cancelled by the ℳ̃ (mass position) switch. To 
quantify the possible residual influence (“leakage”) from 𝑎ℰ to 𝑎ℳℰ, we generate a large 
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artificial 𝑎ℰ by applying a magnetic field gradient, 𝜕𝐵𝑧/𝜕𝑧. We assume a linear relationship 
between 𝑃 and 𝑎ℳℰ and use this data to determine the slope, 𝑆𝑃 = 𝜕𝑎ℳℰ/𝜕𝑃, which we measure 
to be 𝑆𝑎ℰ = 𝜕𝑎ℳℰ 𝜕𝑎ℰ⁄ = 2.6 ⋅ 10−4 with an uncertainty 𝛿𝑆𝑃 of 𝛿𝑆𝑎ℰ = 1.9 ⋅ 10−4. Since 𝑆𝑃 is 
consistent with zero, as expected, we apply no systematic correction but use the measured 𝑆𝑃, 
𝛿𝑆𝑃, ⟨𝑃⟩ and 𝛿𝑃 to determine the error bar from 5 

𝛿𝑎𝑃
ℳℰ = √(𝑆𝑃 ⋅ 𝛿𝑃)^2 + (𝛿𝑆𝑃 ⋅ ⟨𝑃⟩)^2   . (6) 

We include this error bar in the systematic error budget (Table 1, entry “𝑎ℰ(via 𝜕𝐵/𝜕𝑧)”). 

Contributions due to 𝑎ℰ and ℳ- correlated parameters. Additional leakage of 𝑎ℰ into 𝑎ℳℰ could 
result from another parameter that is correlated with the position of the source mass, 𝑃ℳ. We 
identify four such parameters: MOT position, lattice intensity, as well as axial and transverse 
magnetic fields. We determine the possible systematic error contributions by measuring their 10 
associated slopes: 𝑆𝑃ℳ = 𝜕𝑎ℳℰ 𝜕𝑃ℳ⁄ , which were all found to be consistent with zero 
(Extended Data Tables 1 and 2). We use 𝑆𝑃ℳ  and ⟨𝑃ℳ⟩ for each of the four parameters to 
calculate limits that we include in the systematic error budget using Eq. 6 (Table 1). We discuss 
each parameter in more detail in the following. 

When the mass is inserted (ℳ̃ = 0 → +1), we observe a change in the MOT position at the level 15 
of 10 𝜇m, which is due to the source mass mounting rod partially blocking one of the six MOT 
laser beams. However, we find that the position of the atoms during the measurement is 
determined by the cavity mode and therefore largely unaffected by the source mass position. 
This explains why there is no observed influence of the MOT position on 𝑎ℳℰ. 

Clipping of the cavity laser beam by the source mass is expected to be negligible, as the inner 20 
diameter is more than 20 times larger than the radius of the cavity mode. We use the 
transmission photodetector to observe the intensity of the lattice laser in the ℳ̃ = {0,1} positions 
and measure  ⟨𝑈ℳ⟩ consistent with zero at the 2 parts in 104 level. 
Ferromagnetic impurities may give rise to a magnetization of the source mass. We use an 
auxiliary measurement to determine the residual magnetic field difference between the ℳ̃ =25 
{0,1}  positions, ⟨𝐵ℳ⟩ to be consistent with zero and smaller than 1 mGauss (see reference5). We 
place independent systematic contributions due to axial (along 𝑧) and transverse (along 𝑥, 𝑦) 
magnetic fields since they have different effects on the interferometer phase. 
Source mass surface. The source mass is electrically grounded. However, thin films of surface 
oxidation may form an insulating layer, allowing surface voltages of up to 10 V to form. Using 30 
the ground state polarizability of cesium47, even these worst-case scenario voltages would cause 
a maximum acceleration of only 0.5 nm/s^2. We include this contribution in the systematic 
error budget (Table 1, entry “DC Stark Shift”). Casimir–Polder effects are negligible48, since the 
atoms never come closer to the source-mass surface than about 4 mm. 
In addition to effects above, we varied over 35 additional experimental parameters and measured 35 
their effect on 𝑎ℳℰ (Extended Data Tables 1 and 2). None of these were observed or expected to 
have an influence on 𝑎ℳℰ and therefore corresponding error bars were not included in the 
systematic error budget. 
 
 40 
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Parameter Shift (nm/s2) Uncertainty (nm/s2) 

Black-body radiation gradient 0.05 1.30 

𝑎ℰ(via 𝜕𝐵/𝜕𝑧)  0.07 

ℳ-correlated MOT position  1.86 

ℳ-correlated trap depth   0.31 

ℳ-correlated axial B-field  0.92 

ℳ-correlated transverse B-field  0.84 

DC Stark Shift  0.50 

Total systematic  0.05 2.66 
Statistical uncertainty  5.61 

Total uncertainty  6.21 

Source-mass calculated gravity 35.20 1.00 
Table 1. Systematic shifts and uncertainties in 𝒂𝐦𝐚𝐬𝐬.  All uncertainties are added in quadrature. 

 
Result and conclusions 

After unblinding, we find 𝑎mass = 33.3 ± 5.6stat ± 2.7syst nm s2⁄ = 33.3 ± 6.2 nm/s2 for the 
acceleration of the atoms towards the source mass. The expected acceleration is 𝑎mass

calc = 35.2 ±5 
1.0 nm s2⁄  (see Methods). The difference 𝑎anomaly ≡ 𝑎mass − 𝑎mass

calc = −1.9 ± 6.3 nm/s2 is 
consistent with zero. The combined statistical and systematic uncertainty of this measurement 
has been reduced fourfold from the previous best atom interferometric measurements of the 
gravity due to a cm sized source mass5,6. An upper limit |𝑎anomaly| < 13 nm/s2 is computed 
using a folded Gaussian at 95% confidence, which represents a factor of 6 improvement over the 10 
previous results achieved with interferometers where atoms are in free-fall5,6.  
Our measurement also improves on previous constraints on exotic “screened fifth forces” from 
chameleon or symmetron particles3–6,15,16 by factors of 3-5. Figure 4 shows the excluded 
parameter ranges for these models. The available parameter space for chameleons with 𝛬 ≈
2.4  meV (black line), the dark energy level required to drive cosmic acceleration today, is now 15 
fully excluded (Figure 4a). Significant regions of parameter space with the power index 
describing the shape of the chameleon potential 𝑛 > 1 have also been constrained (Figure 4b). 
Similar improvements are seen for symmetrons (Figure 4c). 
Our measurement also constrains modifications to the Newtonian inverse square law (Figure 4d, 
solid red line) that can be parametrized using a “generic Yukawa” scalar-mediated force V(r) =20 
−𝐺𝑁 𝑚1𝑚2 𝑟⁄ (1 + 𝛼𝑒−𝑟/𝜆). In addition, the red dotted line shows projected parameter space 
reached with the same sensitivity but a geometry optimized for testing Yukawa-type forces, 
where the atoms are held a distance of 100 𝜇m away from a high-quality cavity mirror that also 
acts as a source mass, while the red dashed line shows the parameter space probed with this 
geometry and the projected increased sensitivity. The procedure for obtaining these bounds and 25 
projections is described in more detail in Methods. 
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Figure 4. Constraints on deviations from Newtonian gravity. a. Chameleon fields. Shaded areas in the 𝑀 − Λ 
parameter plane of chameleon field are ruled out (see Ref5 for definitions). Λ ≈ 2.4  meV (black line) is the dark 
energy level required to drive cosmic acceleration today. Limits from previous experiments are shown: 
interferometry with atoms in free-fall5,6, neutron interferometry29,30, levitated force sensors31. b. Chameleon limits 5 
for n>1. Bounds with Λ ≈ 2.4 meV showing the narrowing gap in which chameleon gap remains viable. n is the 
power law index describing the shape of the chameleon potential. c. Symmetron fields. Constraints from atom 
interferometers and torsion balance experiments are shown. All shaded areas are ruled out at 95% confidence level. 
Projected increases in sensitivity based on planned upgrades in a table-top next-generation apparatus are shown 
(1000-fold higher gravitational sensitivity, red dashed line). d. Yukawa-type deviation from Newtonian law. 10 
Previous experimental bounds34–40 are shown as black lines and enclose the excluded region (yellow band). Bounds 
obtained using the data in this manuscript are shown as a solid red line. The parameter space reach of a new 
experiment geometry (see text) is shown with current sensitivity (dotted red line) and with projected increases in 
sensitivity (dashed red line). 

We have demonstrated that interferometry with atoms held in an optical lattice can measure the 15 
gravity of a small source mass with 6.2 nm/s2 accuracy, surpassing interferometry with atoms in 
free fall in at least this application. Further gains in the sensitivity of lattice-based 
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interferometers could come from increased atom numbers and improved coherence. Empirically 
and through simulations, we have found that the contrast-decay parameter 𝜅 is inversely 
proportional to atom temperature and the tilt power spectral density10. Using evaporative cooling 
may reduce the temperature 5-fold49 and active cancellation may reduce the tilt power spectral 
density ~200-fold at 1 Hz in a table-top setup50. This would increase the sensitivity by 3 orders 5 
of magnitude to ~5 nm s2⁄ /√Hz, improving upon the best free-fall gravimeters51. The lattice 
beam divergence effect described above can be reduced by many orders of magnitude by 
increasing the diameter of the lattice beam and by holding the atoms near the beam waist, where 
divergence is minimized. Long-term stability of the gravimeter at this level could be achieved by 
tilt stabilization of the cavity axis using piezos. This, along with the relative insensitivity to 10 
vibration11 and dc tilt52 (as opposed to tilt noise) makes lattice interferometry attractive for 
inertial sensing19,53,54 and mobile gravimetry20–22.  
New tests of fundamental physics are also within reach, such as measuring a gravitational phase 
shift in the absence of forces9,23 or signals from non-classical gravity17,24. This increased 
sensitivity along with the use of kg-scale masses, could also enable measurements of G, the 15 
gravitational constant2, which would benefit from the more precise positioning of the atoms with 
respect to the source mass enabled by the optical lattice and by holding atoms near source masses 
smaller than used previously whose density and volume are easier to characterize. Using 
schemes that measure G from the phase difference between saddle points of the potential23, 
where the spatial dependence is second order (rather than from a potential gradient), would 20 
reduce atom positioning errors even further. In the longer term, further sensitivity gains could be 
achieved with larger scale upgrades, such as demonstrated vibration isolation in gravitational-
wave detectors55 and increased atom numbers. 
 
 25 
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Methods 
Determination of source mass Newtonian gravitation attraction 
We use a combination of analytics, finite element analysis modeling, and spatial triangulation to 
determine the expected Newtonian gravitational acceleration from the source mass, 𝑎mass

calc .  5 

The tungsten source mass is a hollow cylinder with a height of 25.4 mm, outer diameter of 25.4 
mm and inner diameter of 10.0 mm. A rectangular slot with width of 5.7 mm allows for insertion 
and removal of the source mass without blocking the cavity mode. The mass is manufactured 
using wire electron discharge machining (EDM) with tolerances better than 10 𝜇m. The 
calculated source mass volume is consistent with its measured weight given the density of 10 
tungsten to within <1%.  

 
Extended Data Figure 1. Atom sample entering source mass. Sequence of images showing the Cs 
atom sample at various positions along its atomic elevator trajectory. Acquiring this sequence from three 
different perspectives triangulates the position of the atom sample with respect to the source mass with an 15 
accuracy better than 1 mm. 
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To determine the source mass position relative to the atoms, we record sequential images of the 
atom sample and source mass (Extended Data Figure 1) using three different camera positions. 
Measuring the position of the atom sample at three different heights along the atomic elevator 
axis (which coincides with the cavity axis) fully determines (through triangulation) the 
orientation of the elevator axis with respect to the source mass. This procedure provides a 5 
measurement of the two elevator atom positions (ℰ̃ = ±1) with respect to the source mass with 
better than 1 mm accuracy. 

To estimate the gravitational acceleration 𝑎mass
calc  at this position, we first analytically calculate the 

gravitational field along the axis of a simple hollow cylinder, disregarding the existence of the 
slot. We use this calculation to verify the results of a finite element analysis software (COMSOL 10 
Multiphysics; since COMSOL does not offer a gravitational module by default, we use the 
electrostatic module, modifying the “charge” of the source-mass to the density of tungsten and 
using the gravitational constant instead of electrostatic constant). We find good agreement to 
better than 0.1%. We then add the rectangular slot to the finite-element model to generate a 
three-dimensional map of the gravitational field (Extended Data Figure 2). 15 

 

 
Extended Data Figure 2. Map of source mass gravity. A 2D slice of the 𝑧 component of the 
gravitational field calculated using fine element analysis in COMSOL is shown. The black square shows 
the extent of the hollow cylinder. Gravity is stronger on the left side of the map due to the presence of the 20 
rectangular slot on the right side. 
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At the triangulated positions, we find the average source mass gravitational acceleration along 
the interferometer axis to equal 𝑎mass

calc ≡ (𝑎mass
ℰ+ + 𝑎mass

ℰ− ) 2⁄ = 35.2 ± 1.0 nm s2⁄ . This 
uncertainty is dominated by the uncertainty in positioning of the atoms with respect to the source 
mass. The acceleration in the mass-out position (ℳ̃ = 0) is < 0.01 nm s2⁄  and therefore 
negligible.  5 
 
Systematic investigation: 𝑎ℰphase shift model 

We describe here in detail our investigations into the mechanism causing the shift in the 𝑎ℰ 
channel described in the main text. We identify the primary contribution to 𝑎ℰ as a light-shift 
(AC Stark shift) that is differential between the two interferometer arms, 𝑎ls. It differs between 10 
the two elevator positions (ℰ̃ = ±1) and varies linearly with 𝑧 due to the divergence of the 
optical lattice mode. 

Modelling the lattice laser beam as a Gaussian beam, its intensity varies as 𝐼(𝑧) =  𝐼0[1 −

(𝜆 𝑧)2 (π𝑤0
2)⁄

2
], where 𝑤0 = 760 𝜇m is the waist and 𝑧 is the position along the cavity axis 

with respect to the waist. At each vertical interferometer position, 𝑧, the difference between the 15 
intensity of the two interferometer arms is given by  

Δ𝐼(𝑧) = 𝜕𝐼 𝜕𝑧⁄ ⋅ Δ𝑧 = − 2𝐼0𝜆2 (𝜋𝑤0
2)2 𝑧⁄ 𝛥𝑧.  

Using Eq. 1, the measured acceleration is given by 

𝑎ls(𝑧) = Δ𝑈 (𝑚Cs ⋅ Δ𝑧)⁄ = −2 𝑈0𝜆2 (𝜋𝑤0
2)2 𝑧⁄ /𝑚Cs.  

This results in a differential acceleration shift during usual data-taking of 𝑎ℰ = (𝑎ls(𝑧ℰ+) −20 
𝑎ls(𝑧ℰ−))/2, where 𝑧ℰ± are the vertical positions of the atoms at the two elevator positions. 

 
Extended Data Figure 3. Acceleration shift due to lattice divergence 𝒂𝐥𝐬 . In an auxiliary 
measurement, we observe a linear change in measured acceleration 𝑎ls as a function of vertical position 𝑧. 
This is due to the differential AC Stark shift from the changing trap potential, Δ𝑈(𝑧), as the atoms are 25 
held in various positions along the diverging lattice potential. We observe good agreement between the 
analytic equation derived above, simulation, and experiment. The bands correspond to 95% (2 sigma) 
confidence intervals. 
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To verify this model, we recorded an auxiliary dataset to measure 𝑎ls(𝑧) − 𝑎ls(0) at various 𝑧 
positions along the lattice axis in an auxiliary measurement (blue datapoints and fitted blue bands 
in Extended Data Figure 3).  
Since the above model unrealistically assumes atoms at zero temperature, we also estimate 5 
𝑎ls(𝑧) based on simulations of the trajectories of the atoms inside the optical lattice at the 
observed temperature of 300 nK, as described in10. Both the analytical model (green dashed line 
in Extended Data Figure 3) and the simulation (purple dotted-dashed line in Extended Data 
Figure 3) are found to be in good agreement with the slope extracted from the value of 𝑎ℰ for the 
entire dataset divided by the separation between the two elevator positions, 2⟨𝑎ℰ⟩/(𝑧ℰ+-𝑧ℰ−) =10 
−27 (nm 𝑠2⁄ )/mm (red solid line in Extended Data Figure 3). The model was further confirmed 
by our observation of a linear scaling of 𝑎ℰ with the trap depth 𝑈0. 
 
Parameters varied in the search for systematic errors 
Extended Data Table 1 lists parameters that were varied while searching for unexpected system-15 
atic errors. The procedure for performing these checks is described in the main text. 
 
Category Parameter 

Varied 
Unit Applied 

value(s)
(𝐮𝐧𝐢𝐭) 

Ambient 
variation,
𝜹𝑷 (𝐮𝐧𝐢𝐭) 

Slope Mean, 
𝑺𝑷 
(𝐧𝐦/𝐬𝟐/𝐮𝐧𝐢𝐭) 

Slope 
Uncertainty, 𝜹𝑺𝑷 
(𝐧𝐦/𝐬𝟐/𝐮𝐧𝐢𝐭) 

Lattice  
parameters 

Trap depth arb 
unit 0.9, 1.2, 1.6 0.01 165 180 

Separation 𝜇m 4.2, 6.6, 9.4 0.05 74 133 

Hold time s 1.5, 2.2, 2.8, 
3.6 

10−6 0.0179 0.0581 

Lattice laser 
polarization ellipticity % 0,40 1 -0.62 2.37 

Lattice laser frequency 
noise 

arb 
unit 1,20 1 7.6 4.6 

Transverse 
temperature (via LG10 
mode) 

mK 0.3,0.16 0.001 690 1443 

Beamsplitters 

Raman laser detuning kHz -34,16 2 9.2 6.17 

Raman laser intensity 
all pulses V 1.8,2.1,2.5 0.01 219 228 

Raman laser intensity 
one pulse V 2.1,2.5,2.9 0.01 -154.5 290.9 

Beamsplitter height ms 7,11,14 0.01 -26.3 17.2 

Interferometer  
Environment 

𝑧 B-field offset V -0.6, -0.25, 0. 0.002 91.8 450.2 

𝑥 B-field offset V -0.35, 0.0, 
0.25 0.002 108 286 

𝑦 B-field offset V 
-0.5, -0.3, -

0.1, 0.0, 0.1, 
0.2, 0.6 

0.002 -53.9 208 

MOT B-field applied 
during interferometer 

mG/ 
cm 15000 10 0.022 0.015 
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Tracer intensity mW 1,4 0.01 37.5 66.9 

Experiment tilt V 3 0.05 13.8 32.4 

Mass 
Correlated 
Parameters 

Trap depth correlated 
with ℳ̃ 

 0.2,0.04 0.00032 340 914 

𝑥 MOT B-field 
correlated with ℳ̃ V 0.5, 0.85 0.007 -57.9 259 

𝑦 Interferometer B-
field correlated with ℳ̃ V 0.3 0.002 206 413 

𝑧 Interferometer B-field 
correlated with ℳ̃ V 0.3 0.002 -119 404 

Sample prep 
- after launch 

Velocity selection 
disabled 

 3 0.01 54.7 121.7 

Velocity selection 
duration 𝜇s 130, 260 1.3 -1.04 0.7 

Velocity selection 
detuning kHz -22, 0, 6, 14 2 3.587 7.22 

Atom number (via 
microwave 𝜋-pulse 
duration) 

𝜇s 24, 44 3 -9.23 6.79 

Launch laser intensity V 2,4,8 0.1 16.3 31.8 

Elevator laser intensity V 2,4,6,10 0.1 -20.5 17.6 

Sample prep  
- before 
launch  

RSC duration ms 2,4,40 0.001 1.24 2.95 

RSC 1D beam 
intensity V 0.5, 1.1, 2 0.1 -411 485 

RSC 2D beam 
intensity V 5, 6, 7, 8, 10 0.5 -43.5 37.5 

RSC pumping intensity arb 
unit 1, 0.5 0.1 164 187 

PGC duration ms 0, 10, 50 0.001 -21.2 18.9 

Hold time after sample 
prep ms 1.8, 200, 500 0.001 0.055 0.4 

Sample prep  
B-fields 

MOT B-field 𝑥 offset V -0.35, 0.0, 
0.55 0.05 -196 304 

MOT B-field 𝑦 offset V -0.2, 0.0, 0.2 0.05 410.2 427 

MOT B-field 𝑧 offset V -0.8, -0.6, 0.0 0.05 -102 110 

Imaging 

Camera exposure time ms 1, 2, 4 0.001 50.6 31.4 

Atom imaging position 
2 mm higher ms 10 0.1 -3.3 13.45 

Atom imaging position 
1 mm higher ms 5 0.1 -31 19 

Blowaway time ms 14, 20 0.1 -1.97 8.67 

Extended Data Table 1. Parameters varied in the search for unexpected systematic errors.  
Parameters are categorized by the part of the experimental cycle they belong to. Each parameter is varied 
over a range that is as large as possible, limited by decreases in signal size or contrast. Slope and 



19 
 

uncertainty resulting from fitting the data to a linear slope are shown. RSC refers to Raman Sideband 
Cooling and PGC refers to Polarization Gradient Cooling. 

 
 
Prospects for probing the inverse square law 5 
 
Modifications to the Newtonian gravitational potential can be parametrized by a Yukawa-type 
potential correction with strength 𝛼 and range 𝜆 

V(r) = −𝐺𝑁
𝑚1𝑚2

𝑟
(1 + 𝛼𝑒−𝑟/𝜆).  

To explore the sensitivity of our current experiment and future iterations to such new forces, we 10 
calculate their effect on the measured acceleration in our experiment, 𝑎mass. We use a simple 
expression that includes the Yukawa term to compute the potential along the axis of the cylin-
der56: 
 

𝑉Yuk(z) = (𝑉Newt(𝑧, 𝑅2, 𝐿) − 𝑉Newt(𝑧, 𝑅1, 𝐿)) − 2𝜋𝐺𝜌𝛼𝜆 (𝐼(𝑧, 𝑅2, 𝐿, 𝜆) − 𝐼(𝑧, 𝑅1, 𝐿, 𝜆)),  15 

where 𝑅2, 𝑅1and 𝐿 are the outer, inner radii and length of the cylinder, 

𝐼(𝑧, 𝑅, 𝐿, 𝜆) = ∫ 𝑒−√𝑠2+𝑅2 𝜆⁄ 𝑑𝑠
𝐿 2⁄ −𝑧

0
+ ∫ 𝑒−√𝑠2+𝑅2 𝜆⁄ 𝑑𝑠

𝐿 2⁄ +𝑧

0
,  

and the gravitational potential along the axis of a cylinder is 

𝑉Newt(𝑧, 𝑅, 𝐿) = −𝜋𝐺𝜌 [(𝐿 2⁄ − 𝑧)√(𝐿 2⁄ − 𝑧)2 + 𝑅2 − (𝐿 2⁄ − 𝑧)2

+ (𝐿 2⁄ + 𝑧)√(𝐿 2⁄ + 𝑧)2 + 𝑅2 + (𝐿 2⁄ + 𝑧)2]. 20 

Using these, we calculate the Newtonian acceleration,  

𝑎mass
Newt(𝑧) = 𝑐1𝜕(𝑉Newt(𝑧, 𝑅2, 𝐿) − 𝑉Newt(𝑧, 𝑅1, 𝐿))/𝜕𝑧  

and the acceleration that includes the Yukawa term, 𝑎mass
Yuk (𝑧) = 𝑐1𝜕𝑉Yuk(z)/𝜕𝑧, where the 

factor 𝑐1 = 0.85 accounts for the missing mass from the rectangular slot in the hollow cylinder 
source mass. 25 

We then calculate the cumulative distribution function of the value of |𝛼| that leads to a 2𝜎 
deviation (corresponding to 95% confidence interval) between the Newtonian value of 
acceleration, 𝑎mass

Newt and the value that includes the Yukawa term, 𝑎mass
Yuk , for each value 𝜆.  

The resulting bounds are plotted in Figure 4d, along with projections based on an experiment 
where the atoms are held at a distance of 100 𝜇m from a cavity mirror and measure deviations 30 
from the expected mirror Newtonian gravity. Several experiments have used atoms near a mirror 
for measurement17,57–59 demonstrating the feasibility of this experimental geometry. 
To explore whether diffuse scattering from the mirror could limit interferometer coherence, we 
ran simulations using the numerical framework described in a previous manuscript10. We 
quantify decoherence due to the difference in scattered intensity between the two atom 35 
interferometer arms. The scattered light distribution is assumed to follow a Lambertian cosine 
law. We assume the worst-case scenario that the entire scattered intensity is concentrated at a 
single point. Extended Data Figure 4 shows the resulting decoherence rate as a function of 
scattered intensity. Decoherence sets in when surface scatter is above 100 ppm of the incident 
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power. High quality mirrors with scatter ~5 ppm range60,61 have been demonstrated, sufficient to 
avoid decoherence. Differentiating between the signal and surface effects, such as from Casimir 
forces could be done using different internal atomic states62. 

 
Extended Data Figure 4. Atom interferometer decoherence rate as a function of scatter. Projected 5 
lattice atom interferometer decoherence (contrast decay 𝜅) vs. level of scatter of the surface of the mirror. 
The atoms are held 100 𝜇m from the mirror at three different offset distances between the atom cloud and 
scatterer positions: 0, 0.3 and 1 mm. We observe significant decoherence when the scattered intensity is 
above 100 ppm of incident laser power. 

 10 
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