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ARTICLE INFO ABSTRACT

Keywords: Emotion dysregulation is linked to differences in frontoparietal (FPN) and default mode (DMN) brain network
Neurodevelopment functioning. These differences may be identifiable early in development. Temperamental negative affectivity has
Earl,y childhood been identified as a precursor to later emotion dysregulation, though the underlying neurodevelopmental
fr;};lrr:lgahzing mechanism is unknown. The present study explores concurrent and prospective associations between FPN and

DMN connectivity in infants and measures of negative affectivity. 72 infants underwent 5.03-13.28 min of
resting state fMRI during natural sleep (M+SD age=4.90 + 0.84 weeks; 54% male; usable data=9.92 + 2.15
min). FPN and DMN intra- and internetwork connectivity were computed using adult network assignments.
Crying was obtained from both parent-report and day-long audio recordings. Temperamental negative affectivity
was obtained from a parent-report questionnaire. In this preregistered study, based on analyses conducted with a
subset of this data (N = 32), we hypothesized that greater functional connectivity within and between FPN and
DMN would be associated with greater negative affectivity. In the full sample we did not find support for these
hypotheses. Instead, greater DMN intranetwork connectivity at age one month was associated with lower con-
current parent-reported crying and temperamental negative affectivity at age six months (8s>—0.35, ps<.025),
but not crying at age six months. DMN intranetwork connectivity was also negatively associated with inter-
nalizing symptoms at age eighteen-months (3=—0.58, p = .012). FPN intra- and internetwork connectivity was
not associated with negative affectivity measures after accounting for covariates. This work furthers a neuro-
developmental model of emotion dysregulation by suggesting that infant functional connectivity at rest is
associated with later emotional functioning.

Resting-state functional connectivity

New work also suggests that the global efficiency-the average inverse
connectivity distance between all region pairs, which is thought to
reflect capacity for parallel information processing—of the DMN and FPN

1. Introduction

Emotion dysregulation is associated with differences in neurobio-

logical functioning in adults, however the etiology is not well under-
stood. Adult resting state and task-based functional magnetic resonance
imaging (fMRI) meta-analyses have identified connectivity in two
cognitive networks, the default mode network (DMN) and frontoparietal
network (FPN), to be linked to psychopathology (e.g., reduced DMN and
FPN connectivity for anxiety (Sylvester et al., 2012); increased DMN
connectivity, decreased FPN connectivity, and increased DMN-FPN
connectivity for depression (Dalili, Penton-Voak, Harmer, & Munafo,
2015; Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015); and
decreased DMN connectivity for bipolar disorder (Wang et al., 2020)).
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during frustration is increased in youth with high irritability (Linke
et al., 2022). Taken together, this suggests that differences in DMN and
FPN functioning may be closely linked to emotion dysregulation.
Importantly, both DMN and FPN have a protracted development as
compared to other cognitive networks, with the adult-like functional
architecture emerging in late infancy (Gao et al., 2009, 2015; Gao & Lin,
2012) and connectivity patterns continuing to mature well into
adolescence (Camacho et al., 2020; Fan et al., 2021; Grayson & Fair,
2017a, 2017b; Uddin, 2010). It is possible that early differences in the
functioning of these networks may offer the ability to identify risk for
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disorder before the onset of symptoms. Further, these networks are
associated with higher level emotion processing such that they are
implicated in emotion cognition and experience (Satpute & Lindquist,
2019), social processing (Buckner & DiNicola, 2019), and self-regulation
(Marek & Dosenbach, 2018). There is some evidence to suggest that
explicit emotion regulation (i.e., needing conscious effort and active
monitoring of emotion) is associated with activation of the FPN,
including the dorsolateral prefrontal cortex, ventrolateral prefrontal
cortex, and parietal cortex, and implicit emotion regulation (i.e., evoked
automatically by the stimulus and involves no conscious monitoring of
emotion) is associated with the DMN (Etkin et al., 2015). Differences in
DMN and FPN function may precede the development of emotion dys-
regulation symptoms in youth. For instance, recent work has found that
decreases in DMN connectivity and activation as well as decreases in
FPN connectivity predict greater depression and anxiety symptoms at
follow-up in previously undiagnosed youth (Ernst et al., 2019; Shapero
et al., 2019). Further, adolescent girls with a parental history of mood
dysregulation have been shown to have lower within-network connec-
tivity of the FPN relative to low-risk comparison groups (Clasen et al.,
2014). Disorders of emotion dysregulation are influenced by negative
affect—which has both state (i.e., temporary discomfort caused by un-
certain events) and trait (i.e., baseline) features. DMN within and be-
tween network functional connectivity has been positively associated
with trait rather than state negative affectivity (Li et al., 2022). Thus,
characterizing associations between DMN and FPN connectivity and
trait-like negative affectivity (i.e., precursors to psychopathology)—
before symptoms emerge-in infancy could therefore yield important
insight to the early etiology of emotion dysregulation.

Temperamental negative affectivity—which includes fearful, crying,
anger/frustration, and shy behaviors—assessed in early life is a strong
predictor of later emotion dysregulation, increasing the odds of devel-
oping a related disorder by up to seven times (Clauss & Blackford, 2012;
Dougherty et al., 2013; Michelini et al., 2022). For example, maternal
reports of early behavioral inhibition, defined as signs of fear, reticence,
and wariness to unfamiliar situations and withdrawal from unfamiliar
individuals, has been associated with nearly four times increased odds of
a lifetime social anxiety disorder diagnosis (Chronis-Tuscano et al.,
2009a, 2009b). Similarly, other studies examining child negative
affectivity indicate that increased child fear and distress is associated
with higher levels of later depression and anxiety symptoms (Crawford
et al., 2011; Dougherty et al., 2010; Michelini et al., 2022). Toddler and
preschool anger and frustration, fear, and distress have also been asso-
ciated with later depression, bipolar disorder, and clinical irritability
(Luby & Navsaria, 2010; Wakschlag et al., 2015; Wiggins et al., 2018).
Thus, child trait-like negative affectivity may be an important early in-
dicator of vulnerability.

Recent work suggests that the neurobiological correlates of early
emotional functioning may be present at birth, before the emergence of
emotion dysregulation. Specifically, neonatal amygdala resting-state
connectivity was positively associated with parent-reported internal-
izing symptoms at age two-years (Rogers et al., 2017) and DMN
resting-state connectivity at birth was negatively associated with
parent-reported behavioral inhibition at age two-years (Sylvester et al.,
2018). Another study found that newborn amygdala-DMN connectivity
was positively associated with parent-reported fearful behaviors at
six-months of age (Graham et al., 2016). Considering how rapidly the
brain develops during gestation and across the first year of life (Gilmore
et al., 2018; Grayson & Fair, 2017a, 2017b; Thomason, 2020), early
infancy is a uniquely vulnerable period for perturbations in foundational
brain development that could portend long-term consequences for infant
mental health. Thus, fully understanding how infant brain networks at
birth are associated with later functioning would provide important
insight to risk and intervention for emotion dysregulation. Further,
examining brain network connectivity and negative affectivity in early
infancy enables examination of markers for emerging psychopathology
prior to postnatal influences on brain and behavior development.
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In this preregistered study (https://doi.org/10.17605/0SF.10/
8ZRHT), we aim to characterize concurrent and longitudinal associa-
tions between one-month DMN and FPN intra- and internetwork con-
nectivity and negative affectivity. The DMN and FPN were selected as
networks of interest as, (1) along with their protracted developmental
course as noted above, we aim to examine trait-like emotion processing
(Pan et al., 2018) as opposed to visceral sensation processing that are
associated with limbic structure networks (Aziz et al., 2000); (2) less is
known about how these two networks in particular are associated with
negative affectivity in infancy; and (3) these cortical networks have high
signal-to-noise ratio, thereby enabling more accurate estimation of
functional connectivity (Maugeri et al., 2018). We use multiple methods
for indexing negative affectivity, including both parent-report and
objective measures of infant behavior (audio recordings). Based on our
preliminary data analyses (presented in the preregistration) and past
literature, we hypothesized that functional connectivity both within and
between these networks would be positively associated with negative
affectivity.

2. Methods
2.1. Participants

Families were recruited during pregnancy from the greater Nashville
area from obstetrics clinics and through social media advertisements on
Facebook and Instagram to take part in a longitudinal study of infant
brain and behavioral development. All study procedures were approved
by the Vanderbilt University Institutional Review Board. Interested in-
dividuals were first screened via phone to confirm eligibility. Eligibility
included being 18 years or older, currently pregnant with a singleton
pregnancy, fluent in English, a U.S. Citizen or permanent resident, and
having no immediate plans to move out of the greater Nashville area
given the longitudinal nature of the study. After their due date, partic-
ipants were screened again to assess their infant’s eligibility for MRI
scanning. Exclusion criteria were parent-report of severe complications
during birth, infant head trauma, infant premature birth (prior to 36
weeks gestation) and any infant MRI contraindication (e.g., metal
implant). Informed consent was obtained from all participants prior to
their participation, including for their infant to participate following
birth. While data collection and processing are ongoing, at the time of
manuscript preparation, scanning was attempted on 137 infants and
usable T1-weighted, T2-weighted, and resting-state functional connec-
tivity data was obtained from 79 infants. Five out of the 79 subjects with
functional MRI data were excluded due to poor data quality (e.g., sig-
nificant motion during the fieldmap scan). Two participants with less
than five minutes of resting-state functional data (<0.2 mm framewise
displacement) at this stage were removed, leaving 72 infants for data
analysis (See Table 1 for detailed sample characteristics). There were no
statistically significant differences (p < .05) in demographic character-
istics (i.e., infant sex, infant age at assessment (corrected for due date),
infant race, infant ethnicity, caregiver education, income-to-needs
ratio), negative affectivity measures (i.e., age 1 month recorded and
parent-report crying, age 6 months recorded and parent-report crying,
and age 6 months temperamental negative affectivity), and age 18
months internalizing and externalizing symptoms between the final
sample and those excluded (See Supplemental Table 1 for results on
group differences).

2.2. Procedures

Eligible infants underwent MRI scanning during natural sleep when
they were between four and six weeks of age while parents completed a
battery of questionnaires. Mother-infant dyads were subsequently
invited back for a follow-up assessment at infant age six-months and
eighteen-months during which parents were asked to complete a battery
of questionnaires as well.
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Table 1
Sample demographic characteristics.

Infant sex

Infant age at scan

Infant race
American Indian or Alaska Native 0 (0%)
Asian 1 (2%)

39 Males (54%)
4.90 weeks (3.43-6.86)

Black or African American 3 (4%)
Native Hawaiian or Other Pacific Islander 0 (0%)
White 57 (79%)
Other 11 (15%)

Infant ethnicity
Caregiver education

5 Hispanic/Latinx (7%)

High school graduate or equivalent 2 (3%)
Trade/technical/vocational training 0 (0%)
Some college credit, no degree 7 (10%)
Associate’s degree 3 (4%)
Bachelor’s degree 26 (36%)
Graduate degree 34 (47%)

Income-to-needs ratio 1.61 (0.13-2.53)

Note. N (%) except for infant age at scan and income-to-needs ratio, in which
mean (range) are provided.

At both the one- and six-month assessments, families were asked to
collect audio recordings of their infant’s home environment via the
Language Environment Analysis (LENA) digital language processors
(DLPs). The LENA DLPs are small wearable devices that record audio
continuously and the LENA software is designed to detect audio events
(e.g., infant crying, words, conversations, etc.) in the child’s environ-
ment. Families were provided with two LENA DLPs along with vests, in
which the devices were placed, for the infants to wear. Participants were
asked to record using the LENA for two days, 16 h each day (most often
one weekday and one weekend day). Participants were instructed to
begin recording at the start of the day and to keep the devices on the
child or near the child when removal was necessary (e.g., bath time).

Study data were collected and managed using REDCap electronic
data capture tools hosted at Vanderbilt University (Harris et al., 2009a,
2009b, 2019a, 2019b). Participants were compensated $20/hour for
participation at each timepoint.

2.3. MRI acquisition

MR images were acquired at infant age of ~one-month at the Van-
derbilt University Institute of Imaging Science (VUIIS) Center for Human
Imaging using a Philips Ingenia Elition 3.0 T equipped with a 32-channel
head coil. Infants were prepared using the “swaddle and soothe” method
and scanned during natural sleep in the evenings (for more details, see
Camacho et al., 2020). Families arrived at the imaging suite typically
between 5:30 pm and 7:30 pm. The infant was changed into a disposable
diaper and swaddled using a muslin blanket before being wrapped by a
MedVac immobilizer designed for infants. The infant was then fitted
with hearing protection which included placing silicone ear putty in
their ears secured with skin-safe medical tape and covering their ears
with Natus MiniMuffs (Styrofoam pads with adhesives) for additional
noise reduction. Parents were then encouraged to feed their infant and
put their infant to sleep. Once the infant was asleep for at least 20 min,
the infant was transferred to the scanner bed and slim-fit headphones
playing pink noise intermixed with rain sounds were placed on their
ears. The infant’s head and the headphones were secured with foam
pads to fill out the head coil space and reduce likelihood of motion
during scanning. If the infant remained soundly asleep, acquisition was
initiated, otherwise the infant was given additional time to move back
into a deep sleep before starting the scan. A trained research assistant
remained with the infant during the scan to monitor the infant and alert
the scan technician if the infant woke up. The researcher soothed the
infant back to a deep sleep if the infant woke up before resuming
scanning. This process was repeated until either all data were collected
or the family decided to end the session.
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The scans collected included a T1l-weighted anatomical image
(TR=10 ms, TE=4.6 ms, TI=700 ms, flip angle=8 degrees,
FOV=256x256x150mm, resolution = 1x1x1mm?®), T2-weighted
anatomical image (TR=2500 ms, TE=310 ms, flip angle=90 degrees,
FOV=220x220x144mm, resolution=0.8 x0.8 x0.8 mm?), and resting-
state fMRI (resolution=2.0 x1.9 x1.9 mm3, 54 axial slices, 96 x96
acquisition matrix, flip angle=60 degrees, TR=1410 ms, TE=30 ms, 3
simultaneous slices, 270 contiguous volumes). Framewise Integrated
Real-time MRI monitoring (FIRMM) software was installed by VUIIS
partway through data collection and, since its installation, was used to
monitor motion in real time for the resting-state scan and the sequence
was repeated until approximately 10-minutes of fMRI data under 0.2
mm framewise displacement was collected. All MR images were visually
inspected for artifacts prior to processing.

2.4. MRI processing

2.4.1. Anatomical processing

MR image preprocessing was conducted using Nibabies (https://
nibabies.readthedocs.io/en/latest/), an open-source software pipeline
designed and optimized to process anatomical and functional magnetic
resonance imaging data from human infants between 0 and 2 years old.
Nibabies utilizes Infant FreeSurfer (https://surfer.nmr.mgh.harvard.
edu/fswiki/infantFS) to process T1-weighted and T2-weighted
anatomical images (Zollei et al., 2020). Registration of each partici-
pant’s anatomical image to the template (MNIInfant:cohort-1) was
inspected for accuracy before subsequent processing.

2.4.2. Functional connectivity processing

The fMRI data preprocessing was performed using fMRIPrep 21.0.1
+ 0.g0c07d63.dirty (Esteban et al., 2019), which is based on Nipype
1.6.1 (Gorgolewski et al., 2011). A Byp-nonuniformity map (or fieldmap)
was estimated based on two (or more) echo-planar imaging (EPI) ref-
erences with topup (FSL 5.0.11). BOLD runs were slice-time corrected to
0.666 s (0.5 of slice acquisition range 0-1.33 s) using 3dTshift from AFNI
(Cox & Hyde, 1997). Head-motion parameters with respect to the BOLD
reference (transformation matrices, and six corresponding rotation and
translation parameters) are estimated before any spatiotemporal
filtering using mecflirt (FSL 5.0.11, Jenkinson et al., 2002). The BOLD
time-series (including slice-timing correction when applied) were
resampled onto their original, native space by applying the transforms to
correct for head-motion. These resampled BOLD time-series will be
referred to as preprocessed BOLD in original space, or just preprocessed
BOLD. The BOLD reference was then co-registered to the T1-weighted
reference using flirt (FSL 5.0.11, Jenkinson & Smith, 2001) with the
boundary-based registration (Greve & Fischl, 2009) cost-function.
Co-registration was configured with nine degrees of freedom to ac-
count for distortions remaining in the BOLD reference. First, a reference
volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. Several confounding time-series were
calculated based on the preprocessed BOLD: framewise displacement
(FD), DVARS and three region-wise global signals. FD was computed
using two formulations following Power (absolute sum of relative mo-
tions; Power et al., 2014) and Jenkinson (relative root mean square
displacement between affines; Jenkinson et al., 2002). FD and DVARS
are calculated for each functional run, both using their implementations
in Nipype (following the definitions by Power et al., 2014). The three
global signals are extracted within the CSF, the WM, and the
whole-brain masks. The confound time series derived from head motion
estimates and global signals were expanded with the inclusion of tem-
poral derivatives and quadratic terms for each (Satterthwaite et al.,
2013). The BOLD time-series were resampled into standard space,
generating a preprocessed BOLD run in MNIInfant:cohort-1 space. First,
areference volume and its skull-stripped version were generated using a
custom methodology of fMRIPrep. All resamplings can be performed
with a single interpolation step by composing all the pertinent



S. Ravi et al.

transformations (i.e., head-motion transform matrices, susceptibility
distortion correction when available, and co-registrations to anatomical
and output spaces). Gridded (volumetric) resamplings were performed
using antsApplyTransforms (ANTs), configured with Lanczos interpo-
lation to minimize the smoothing effects of other kernels (Lanczos,
1964). Registration of each participant’s functional MRI image to the
anatomical image and to the template was inspected for accuracy before
subsequent processing. 5 out of the 79 subjects with functional MRI data
were excluded due to errors in processing.

Preprocessed functional MRI data were denoised, bandpass filtered,
and high motion volumes dropped before functional connectivity anal-
ysis. Specifically, motion metrics obtained during rigid realignment
were notch filtered at 30-60 breaths per minute to remove breathing
artifacts from head motion estimates (Fair et al., 2020; Kaplan et al.,
2022). Nuisance regressors removed during denoising included global
signal, filtered motion estimates, Volterra expansion of the first deriv-
ative of filtered motion estimates (lagged 6 times), and censoring of
volumes that exceeded 0.09 filtered FD, for a total of 43 nuisance re-
gressors plus censoring. Denoised data were next bandpass filtered
(0.009-0.1 Hz) and volumes that were censored were dropped from the
timeseries. 2 participants with less than 5-minutes of data at this stage
were removed, leaving 72 infants for the connectivity analysis. We
included global signal regression because it has been found to reduce
artifacts, including motion-related and respiratory-related artifacts,
thereby enhancing brain-behavior associations (Ciric et al., 2017; J. Li
et al., 2019; Zhang et al., 2019). Regression of global signal shifts con-
nectivity correlations across the brain from positive values to being
centered at approximately zero (Murphy et al., 2009; Murphy & Fox,
2017) and thus negative correlations should be interpreted as relatively
less connectivity as opposed to negative connectivity.

2.4.3. Connectivity analysis

The DMN and FPN were defined using a recently published volume
space regions of interest (ROI) and network designations (Seitzman
et al., 2020). We chose to use an adult network schema due to recent
evidence suggesting that the functional architecture of these networks
may be present but weak at one-month of age (Sylvester et al., 2022) and
because we are interested in connectivity of regions that will become the
networks identified in adults. Specifically, the volume space 5 mm ROIs
were warped to the infant template and manually corrected for accuracy
(Fig. 1). For each infant, intra- and inter-network connectivity was
computed as the Pearson correlation between ROIs, which was then
z-scored (Fisher Z) and averaged across parcels, resulting in a single

Regions of Interest
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measure for each infant for each DMN intranetwork, FPN intranetwork,
and DMN-FPN internetwork connectivity.

2.5. Negative affectivity

2.5.1. Infant crying

Infant crying estimates were obtained using two methods at ages
one- and six-month assessments. First, parents completed a brief ques-
tionnaire that asked them to provide estimates of the number of hours,
on average, that their infant cried over each 24-hour period over the past
week (e.g., “Approximately how many hours did your baby cry today”,
“Approximately how many hours did your baby cry yesterday”,
“Approximately how many hours did your baby cry two days ago”, etc.).
The reported hours of crying were then averaged across the one-week
period to obtain a single estimate of parent-reported infant crying for
both age one-month (N = 72, M=1.62, SD=1.04) and six-month time-
points (N =55, M=1.12, SD=0.92). Parent-reported infant crying
demonstrated excellent internal consistency with Cronbach’s o = .97
and.96 for age one- and six-months respectively.

Second, we obtained an estimate of infant crying from approximately
32 h of home audio recordings collected across two days (~16 h per
day) using the LENA recording devices using the crying detection model
developed by Yao et al. (2022) and obtained from github.
com/AgnesMayYao/Infant-Crying-Detection. Infant crying noises have
a mean FO range of 441.8-502.9 Hz (Rothganger, 2003). LENA re-
cordings were first preprocessed to filter out any acoustic events that
were not crying noises (e.g., segments that were silent above a 350 Hz
threshold). The remaining audio segments were then analyzed for crying
noises. Estimates were produced for one-second intervals and filtered as
either “crying” or “not crying.” These one-second intervals were then
concatenated into five-minute segments. To ensure accuracy of the
crying estimates, a random five-minute segment from each of four
random subjects was manually annotated at the second-by-second level.
Automatic labeling was then compared to the manually labeled data for
accuracy and precision of crying labels. The automatic labeling had a
94.25% accuracy with 71.49% precision, lending confidence in our
crying estimates. Average crying estimate per hour for one- (N = 24,
M=185.59s, SD=104.93s) and six-month (N =42, M=225.83s,
SD=102.72 s) timepoints were used for further analysis.

2.5.2. Temperamental negative affectivity
Parents completed the Infant Behavior Questionnaire-Short Form
Revised (IBQ-SF-R; Putnam et al., 2014) at age six-month assessment

Group Mean Connectivity

DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
DMN
FPN
FPN
FPN
FPN
FPN
FPN
FPN
FPN
FPN

=020

—0.15

Region Network Label
(1 uosieay) AyAiosuuod

--0.20

Fig. 1. FPN and DMN cortical regions of interest (ROIs) from the Seitzman atlas (Seitzman et al., 2020) and sample group mean connectivity. Each region was 5 mm
in diameter and manually edited to ensure placement consistent with adult template landmarks.
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(N =54). This 91-item questionnaire has excellent interrater and
test-retest reliability (Putnam et al., 2014). The IBQ-SF-R comprises 13
subscales which assess infants’ tendencies toward reactivity, emotion-
ality, and regulation. Our analyses focused on the Negative Affectivity
domain, which included the following subscales: Sadness, Distress to
Limitations, Fear, and Falling Reactivity (reverse scored).

2.6. Toddler emotion dysregulation symptoms

Parent-report of child emotion dysregulation (internalizing symp-
toms) were obtained using the preschool version of the Child Behavior
Checklist for ages 1.5-5 (CBCL; Achenbach & Edelbrock, 1983) at age
eighteen-month assessment (N = 25). We asked parents to reflect on
their child’s behavior over the past six months and to rate each of the
items on the questionnaire (preschool vision consisted of 99 items) on a
3-point Likert scale (0 = not true; 1 = somewhat or sometimes true; 2 =
very true/often). The CBCL demonstrates strong psychometric proper-
ties (Achenbach & Edelbrock, 1983; Warnick et al., 2008a, 2008b). The
ratings yield scores on internalizing symptoms, externalizing symptoms,
and overall difficulties (i.e., total problems score). The internalizing and
externalizing symptoms scores were used for exploratory analysis.

2.7. Pre-registered data analytic plan

Robust linear regression was used to test the pairwise associations
among one-month DMN and FPN intra- and internetwork resting-state
functional connectivity and one- and six-months infant negative affec-
tivity as it de-weights potential outliers. Infant age at assessment (cor-
rected for due date) and average motion were entered as covariates.
Additional potential covariates (i.e., parity [first child vs. not], sex of the
infant, maternal age, and income-to-needs ratio) were evaluated using a
model fitting approach to determine whether to also include in the final
model. Specifically, to preserve model parsimony, only covariates that
were significantly associated with functional connectivity, as deter-
mined by the Pillai’s test statistic with p-value of less than.05, in the
multivariate multiple regression model were included.

Exploratory analysis examined associations among one-month DMN
and FPN intra- and internetwork resting-state functional connectivity,
ages one- and six-month negative affectivity, and internalizing and
externalizing symptoms at age eighteen-months.

2.8. Deviations from the pre-registration

We deviated from our pre-registered plan (https://doi.org/10.1760
5/0SF.I0/8ZRHT) in four ways. First, we had originally planned to
analyze the data in surface space using parcels. Given a delay in the
availability of usable surfaces, we chose to analyze the brain data using
volume space—and ROIs defined for volume space analyses—instead.
Second, we had stated that we would extract average crying per day
from the LENA recordings. Due to some subjects having two days of
recordings while others only had one, we chose to use average crying per
hour instead. Third, correlation analysis was conducted in place of the
Pillai’s test to determine which covariates to include in the regression
analyses. Finally, while data collection and processing are ongoing, at
the time of manuscript preparation, scanning was attempted on 137
infants and usable T1-weighted, T2-weighted, and resting-state func-
tional connectivity data was obtained from 79 infants. Five out of the 79
subjects with functional MRI data were excluded due to poor data
quality (e.g., significant motion during the fieldmap scan). Two partic-
ipants with less than five minutes of resting-state functional data at this
stage were removed, leaving 72 infants for the connectivity analysis.
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3. Results
3.1. Associations among variables of interest

Distribution of all variables of interest were examined using histo-
gram plots and given outliers in recorded crying estimates, Spearman
bivariate correlation analysis was conducted to examine associations
among variables (Table 2). Results revealed that DMN connectivity was
positively and statistically associated with FPN and internetwork con-
nectivity, and FPN connectivity was positively and statistically associ-
ated with internetwork connectivity. Parent-reported crying at age one-
month was positively and statistically associated with parent-reported
crying at age six-months, temperamental negative affectivity at age
six-months, and internalizing symptoms at age eighteen-months. Parent-
reported crying at age six-months was positively and statistically asso-
ciated with temperamental negative affectivity at age six-months.
Recorded crying at age six-months was positively and statistically
associated with externalizing symptoms at age eighteen-months.
Temperamental negative affectivity at age six-months was positively
and statistically associated with internalizing symptoms at age eighteen-
months. Internalizing symptoms and externalizing symptoms were
positively and statistically associated at age eighteen-months.

Spearman bivariate correlation analyses with covariates of non-
interest revealed that maternal age was negatively and statistically
associated with temperamental negative affectivity at age six-months
and internalizing symptoms at age eighteen-months. Income-to-needs
ratio was negatively and statistically associated with DMN and FPN
intra- and internetwork connectivity as well as temperamental negative
affectivity at age six-months.

3.2. Concurrent associations between one-month DMN and FPN
connectivity and Negative Affectivity

Robust linear regression models included infant age at assessment
(corrected for due date), average motion, income-to-needs ratio, and
infant sex as covariates of non-interest. In contrast to our hypotheses,
DMN connectivity at one-month was negatively associated with parent-
reported crying (f=-0.36, 95% CI [-0.62, —0.11], p =.006,
N = 66; Fig. 2). In the subset of infants with DMN and recorded crying,
the magnitude of the effect was similar although not statistically sig-
nificant (f = —0.27, 95% CI [—0.83, 0.28], p = .341, N = 19). Further,
contrary to our hypotheses, FPN intra- and internetwork connectivity
were not statistically associated with concurrent negative affectivity
(Bs<—0.03, ps>.713, Ns>19). See Table 3 for full model statistics for
significant associations.

3.3. Longitudinal associations between one-month DMN and FPN
connectivity and age six-months negative affectivity

Robust linear regression models included infant age at assessment
(corrected for due date), average motion, income-to-needs ratio, and
infant sex as covariates of non-interest. For the regression model with
recorded crying at age six-months, parity was included as an additional
covariate of non-interest due to statistically significant group differ-
ences, t(24) = —3.35, p =.003 (Cohen’s d=-1.16, 95% CI [-1.82,
—0.49]), such that first-born infants cried less than those infants with
older siblings. DMN connectivity at one-month was negatively and sta-
tistically associated with age six-months temperamental negative
affectivity (p = —0.35, 95% CI= [-0.66, —0.05], p =.025, N = 49;
Fig. 2) but not with recorded or parent-reported crying (ps<0.16,
ps>.280, Ns>36). See Table 3 for full model statistics for significant
associations.

3.4. Exploratory analyses with eighteen-month symptoms

Robust linear regression models included infant age at assessment
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Table 2
Bivariate spearman correlations between all measures of interest.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 DMN Connectivity -
2 FPN Connectivity 0.29* -
3 DMN-FPN Connectivity 0.62* 0.59* -
4 Parent-reported Crying at Age One- -0.19 0.06 -0.10 -
Month
5 Parent-reported Crying at Age Six- 0.09 0.03 0.03 0.47*
Months
6 Recorded Crying at Age One-Month -0.18 -0.05 -0.16 0.34 0.39 -
7 Recorded Crying at Age Six-Months 0.11 -0.21 0.04 0.11 0.21 0.19 -
8 Temperamental Negative Affectivity =~ 0.03 0.06 0.18 0.48* 0.48* 0.25 0.02
at Age Six-Months
9 Internalizing Symptoms at Age -0.35 0.01 -0.24 0.45* -0.05 -0.08 0.49*
Eighteen-Months
10  Externalizing Symptoms at Age -0.27 -0.40* -0.25 0.19 -0.16 0.49* 0.28 0.62*
Eighteen-Months
11  Maternal Age -0.22 -0.08 -0.11 -0.10 -0.16 -0.21  0.30 -0.42*  -0.41*  -0.22
12 Infant Age 0.14 0.05 0.09 -0.14 0.09 -0.09  0.06 0.00 0.19 -0.16  -0.15 -
13 Income-to-needs Ratio -0.40* -0.25* -0.24* -0.13 -0.18 -0.18  0.11 -0.37* -0.23 -0.06 0.63* 0.00 -
14  fMRI Motion -0.22 -0.20 -0.24 -0.22 -0.15 -0.09 -0.15 -0.12 0.23 0.20 -0.08 -0.02  0.00

p < .05. No value is provided when bivariate associations were unavailable to be calculated.

One-month DMN Connectivity and
Concurrent Parent-reported Crying

5 . *  B=-0.36, p=.006

Parent-reported Crying (one-month)

One-month DMN Connectivity and Six-
month Parent-reported Temperamental
Negative Affectivity

N

B=-0.35, p=.025

=}

Temperamental Negative Affectivity

N
.

DMN Connectivity (residuals)

-2 -1 0 1 2
DMN Connectivity (residuals)

Fig. 2. Associations between one-month DMN connectivity and concurrent parent-reported crying (left) and six-month temperamental negative affectivity (right).
Residualized DMN data statistically corrected for age at scan, sex, mean motion, and income-to-needs ratio.

(corrected for due date), average motion, income-to-needs ratio, and
infant sex as covariates of non-interest. DMN connectivity at one-month
was negatively and statistically associated with age eighteen-months
internalizing symptoms (= —0.58, 95% CI= [-0.99, -0.16],
p =.012, N = 20; Fig. 3). The association was in the same direction but
weaker in magnitude for externalizing symptoms, and was not statisti-
cally significant (p = —0.28, 95% CI= [—0.66, 0.09], p = .165, N = 20).
FPN intra- and internetwork connectivity were not statistically associ-
ated with age eighteen-months symptoms (Bs<0.03, ps>.225). See
Table 3 for full model statistics for significant associations.

4. Discussion

In this study, we sought to characterize the longitudinal associations
between one-month FPN and DMN connectivity and concurrent and age
six-months negative affectivity. We used multiple measures of negative
affectivity, including parent-reported temperament and crying, as well
as quantitative measures of crying from naturalistic recordings. In
contrast to our preregistered hypotheses, we found evidence for a
negative association between connectivity within DMN and age one- and
six-months negative affectivity measures as well as with age eighteen-

months internalizing symptoms. We also found no associations among
one-month FPN connectivity and negative affectivity. This work furthers
a neurodevelopmental model of emotion dysregulation by suggesting
that infant brain connectivity is associated with later emotional
functioning.

Our findings suggest that DMN brain functioning at birth is associ-
ated with future socio-emotional behavior. Research in adult pop-
ulations indicates that the DMN plays a strong role in affective
experience (Satpute & Lindquist, 2019) and social processing (Brand-
man et al., 2021; Buckner & DiNicola, 2019). Specifically, the DMN is
composed of regions that integrate sensory stimuli and regions that
interface with each saliency and executive function processing networks
of the brain, which dynamically shift in connectivity strength during
social processing (Yeshurun et al., 2021). Though there is little research
examining infant DMN functional connectivity in relation to negative
affectivity, a recent study found that functional connectivity of the
amygdala—superior frontal gyrus (a region of the DMN) functional
connectivity at four months of age was positively correlated with
negative affectivity concurrently (Filippi et al., 2020). Another study
examining amygdala-DMN functional connectivity found that newborn
connectivity was positively associated with fearful behaviors at six
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Table 3

Robust regression results for DMN connectivity predicting infant crying at age
one-month, temperamental negative affectivity at age six-months, and inter-
nalizing symptoms at age eighteen-months.

Model i se t Robust F-test
Dependent Variable: Infant Crying at age one-month F=8.22, p=.006
Constant 0.40 0.36 1.12

DMN Connectivity -0.36  0.13 -2.84

fMRI Motion -0.34 0.12 -2.89

Infant Age (weeks) -0.13 0.11 -1.13

Income-to-needs Ratio  -0.35  0.13 -2.67

Infant Sex -0.29  0.23 -1.23

Dependent Variable: Temperamental Negative Affectivity at age =~ F=5.37, p=.025

six-months

Constant 0.46 0.43 1.08

DMN Connectivity -0.35 0.16 -2.26

fMRI Motion -0.14  0.13 -1.08

Infant Age (weeks) -0.11 0.12 -0.92

Income-to-needs Ratio  -0.59  0.16 -3.63

Infant Sex -0.34  0.29 -1.17

Dependent Variable: Internalizing Symptoms at age eighteen- F=7.67, p=.012

months

Constant 0.08 0.53 0.14

DMN Connectivity -0.58  0.21 -2.74

fMRI Motion 0.04 0.19 0.22

Infant Age (weeks) 0.09 0.14 0.61

Income-to-needs Ratio  -0.40  0.17 -2.29

Infant Sex -0.17 0.36 -0.48

One-month DMN Connectivity and
Eighteen-month Internalizing Symptoms

B=-0.58, p=.012

Internalizing Symptoms

-2 -1 0 1 2

DMN Connectivity (residuals)

Fig. 3. Association between one-month DMN connectivity and eighteen-month
internalizing symptoms.

months of age (Graham et al., 2016), though concurrent negative
affectivity was not examined. Together, these findings suggest a link
between DMN connectivity and socio-emotional functioning from birth.
Notably, in contrast to these findings and to our hypotheses, our results
revealed a negative association between intra-network DMN connec-
tivity, and negative affectivity and internalizing symptom measures.
Past work suggests that adolescents and adults at high versus low fa-
milial risk for depression exhibit increased DMN intra-network con-
nectivity and these findings remain statistically significant even after
excluding individuals with a current or lifetime history of depression
(Posner et al., 2016). There is also evidence to suggest increased con-
nectivity between the PCC and DMN regions in children with known
depression during the preschool period (Gaffrey et al., 2012). However,
in youth age 9-15 years who were followed annually over a 3-year
period, greater depressive symptomatology was found to be associated
with significant decreases in within-network DMN connectivity over
time (Son et al., 2023). Thus, it is possible for the associations to change
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over time as the DMN is understood to reach maturity in adulthood
(Grayson & Fair, 2017a, 2017b).

Our results also revealed that DMN and FPN intranetwork connec-
tivity were positively associated with one another. Past work on brain
development in early life examined correlations between these networks
across three timepoints in infancy (neonates, 1-year-olds, and 2-year-
olds); these networks were positively correlated in neonates but, by
age 1 year they were negatively, and further the magnitude of the
negative correlation was larger still at age 2 years (Gao et al., 2013). This
suggests these networks segregate across the first year or life. Results
from our work adds to this body of literature and underscores the
importance of future work examining longitudinal changes in connec-
tivity in the first year of life.

We also found that DMN and FPN intra- and internetwork connec-
tivity was not associated with age six-months crying. One possible
explanation is the change in how infants communicate—and, by
extension, how their caregivers respond—over the first six months of
life. Our naturalistic recordings indicate that infants cried, on average,
about the same amount at one- and six-months, which is consistent with
other research (Wolke et al., 2017). However, while overall levels are
consistent, the reasons for crying—as well as how caregivers interpret
crying- shifts from birth to middle infancy. In early infancy, humans are
not yet capable of speech and have limited vision and motor control. As a
result, their primary means of signaling to their caregivers is through
crying (Keller & Scholmerich, 1987; Wolke et al., 2017). Early crying
may not, therefore, be a product of distress so much as it is a signal for
caregiver attention, resulting in caregivers typically responding by
troubleshooting what the infant needs (T. G. Power et al., 1990). In
contrast, by six months of age, infants typically have a more diverse
repertoire in terms of types of vocalizations (Keller & Scholmerich,
1987; Oller et al., 2013), can reach (Berthier, 1996; Kirk et al., 2022),
have control of their upper bodies, and otherwise use social signals to
communicate with caregivers. Further, colic represents a larger pro-
portion of crying observed at six-months than at newborn (Wolke et al.,
2017). As a result, caregivers may be more likely to interpret crying in
older infants as fussiness (T. G. Power et al., 1990), eliciting more
diverse reactions that are dependent on the caregivers own attitudes,
mood state, and parenting style.

The foundations of the networks supporting cognitive development,
including the DMN, at one month of age are thus likely associated with
how the infant interacts with their caregivers as well as how they receive
the scaffolding that caregivers provide to deal with negative mood
states, which in turn may be associated with how the infant expresses
themselves later in life. It is therefore possible that while associations
between DMN connectivity near birth and crying do not persist, each
infant’s unique DMN functioning near birth may still be associated with
emotion functioning more broadly. Further research is needed to char-
acterize how early postnatal experiences interact with foundational
brain development to shape emotional development. For instance,
future work could examine associations between functional connectivity
at age one-month and caregiving behavior at age six-months as well as
whether caregiving behavior mediates associations between functional
connectivity at age one-month and negative affectivity at age eighteen-
months months. Moreover, given that six-month-olds with older siblings
exhibited more crying than first-born infants, it is possible amount of
crying may be influenced by the presence of siblings such that multiple
children result in competing caregiving demands and reduced respon-
siveness to the infant. A not-mutually exclusive alternative is that older
siblings may engage in behaviors that elicits greater crying. Our findings
differ from evidence from Wikander and Theorell (1995) which found
that infants with two or more siblings cried significantly less than other
infants. However, in this study crying estimates were obtained solely via
parent-report. Taken together, examining transactional associations
between postnatal influences such as, caregiving behavior and presence
of siblings, and functional connectivity and negative affectivity is critical
to elucidating pathways implicated in the development of early
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indicators of emerging psychopathology.

We found evidence for associations between the functional archi-
tecture of the DMN near birth and emotional functioning. It is possible
that these early brain connectivity metrics are under genetic control.
However, it is also possible that experience prenatally may be shaping
neurodevelopment. Recent research has found that prenatal cortisol and
inflammation (Graham et al., 2018, 2019; Rudolph et al., 2018; Spann
et al., 2018), prenatal stress and mental health (Humphreys et al., 2020;
Rifkin-Graboi et al., 2013, 2015; Scheinost et al., 2020), and prenatal
socioeconomic status and environmental stressors (Brady et al., 2022;
Lean et al., 2022) have all been associated with newborn infant brain
structure and function, with a principle focus on the so-called limbic
system (amygdala, hippocampus, insula, and cingulate). It is thus
possible that the associations between DMN connectivity near birth and
later functioning may be, in part, due to the prenatal environment
shaping top—down systems with protracted development such as the
DMN. Another consideration is genetic influences which may influence
foundational (and prospective) infant brain development. For instance,
adoption studies have demonstrated that genetic offspring of individuals
with emotion dysregulation are at an elevated and transdiagnostic risk
(Shih et al., 2009), indicating a partial genetic component to such dis-
orders. A careful examination of to what degree genetic, prenatal, and
postnatal factors contribute to functional network and infant emotional
development will be critical for teasing apart the unique influences of
each.

This study has several strengths, including both the use of a longi-
tudinal sample with multiple measures of negative affectivity and the
use of both objective (crying estimates from LENA audio recordings) and
subjective (parent-report) measures of infant negative affectivity. There
are also several limitations to this work. First, while the sample size is
larger than most previous work examining infant functional connectiv-
ity (Pollatou et al., 2022), recent work conducted in older children and
adults suggest that much larger sample sizes are needed to find repli-
cable brain-behavior associations (Marek et al., 2022). Though finding
the same association across multiple measures of negative affectivity
lends confidence to our results, this finding must be replicated in a
separate sample before strong conclusions can be made. Second, given
the novelty of using a crying detection algorithm on LENA recordings to
obtain crying estimates, it is unclear how reliable it may be in capturing
infant crying. While preliminary examination of accuracy by manually
coding a random five-minute segment from each of four random subjects
at each of the timepoints revealed high accuracy with acceptable pre-
cision, future work utilizing such crying detection models might benefit
from other tools to capture crying to compare with the estimates ob-
tained from the algorithm as well as examining correlations with other
forms of crying measures. Third, although not all participants in our
sample shared the same racial identity or were from the same social
class, relative to the U.S. population our sample was more likely to
identify their infants as White and to report annual household incomes
that were middle-class or higher. Fourth, due to time constraints and the
difficulties associated with processing infant MRI data (Korom et al.,
2022), we ultimately processed the data in volume space, which is
known to have poorer participant-participant registration than surface
space analysis in children (Ghosh et al., 2010). Future research will aim
to use new tools that enable more accurate segmentation of infant brains
and allow for surface-based registration across participants. Finally,
while there is an established literature linking infant negative affectivity
and increased risk for later psychiatric diagnoses, no psychiatric di-
agnoses were assessed given the age of the toddlers at follow-up. As a
result, it is unclear whether there is clinical significance to the associa-
tions and levels of functioning demonstrated in this sample. Future work
replicating this work in large longitudinal datasets such as, the HEALthy
Brain and Child Development study will be crucial in shedding light on
the degree to which these associations may be adaptive or maladaptive
across development.

In summary, we found evidence that DMN connectivity at one-month
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was associated with greater negative affectivity at ages one and six
months, as well as with internalizing symptoms at age 18 months, sug-
gesting that infant functional connectivity at rest is associated with later
emotional functioning.” Given this association is present shortly after
birth, it suggests that factors such as genetics and/or prenatal environ-
ment may account for some of the variance in the neural circuitry and
negative affectivity. Our study adds to a growing body of research
suggesting that brain functioning as early as near birth may be pertinent
to young children’s emotional development, thus rendering itself to be a
critical time for potential early interventions.
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