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A B S T R A C T 
Very metal-poor stars ([Fe / H] < −2) in the Milky Way are fossil records of early chemical evolution and the assembly and 
structure of the Galaxy. Ho we v er, the y are rare and hard to find. Gaia DR3 has pro vided o v er 200 million low-resolution 
( R ≈ 50) XP spectra, which provides an opportunity to greatly increase the number of candidate metal-poor stars. In this 
work, we utilize the XGBOOST classification algorithm to identify ∼200 000 very metal-poor star candidates. Compared to 
past work, we increase the candidate metal-poor sample by about an order of magnitude, with comparable or better purity 
than past studies. First, we develop three classifiers for bright stars ( BP < 16). They are Classifier-T (for Turn-off stars), 
Classifier-GC (for Giant stars with high completeness), and Classifier-GP (for Giant stars with high purity) with expected purity 
of 52 per cent/45 per cent/76 per cent and completeness of 32 per cent/93 per cent/66 per cent, respectively. These three classifiers 
obtained a total of 11 000/111 000/44 000 bright metal-poor candidates. We apply model-T and model-GP on faint stars ( BP > 
16) and obtain 38 000/41 000 additional metal-poor candidates with purity 29 per cent/52 per cent, respectively. We make our 
metal-poor star catalogues publicly available, for further exploration of the metal-poor Milky Way. 
Key words: methods: statistical – techniques: photometric – techniques: spectroscopic – stars: Population II. 

1  I N T RO D U C T I O N  
Very metal-poor stars (VMP, [Fe / H] < −2 1 ; Beers & Christlieb 
2005 ) are fossil records of early chemical enrichment history of 
the Universe. The most metal-poor stars are likely to be some 
of the oldest stars that exist today, and their atmospheres contain 
information about the abundance pattern of gas in the early Universe 
(e.g. Frebel & Norris 2015 ). Chemical abundances of a large 
sample of metal-poor stars can advance our understanding of early 
nucleosynthesis and thus constrain the early stellar masses, rota- 
tion rates, mixing processes, explosion energies, compact remnant 
masses (neutron stars or black holes), thermohaline convection, and 
other stellar properties (e.g. Heger & Woosley 2010 ; Limongi & 
Chieffi 2012 ; Wanajo 2018 ; Jones et al. 2019 ; Ishigaki et al. 
2021 ). Moreo v er, chemical abundances for these stars, together with 
kinematic data, can be utilized to understand the accretion history, 
and early formation of the Milky-Way (e.g. Hawkins et al. 2015 ; Das, 
Hawkins & Jofr ́e 2020 ; Horta et al. 2021 ; Belokurov & Kravtsov 
2022 ; Conroy et al. 2022 ; Rix et al. 2022 , see Helmi 2020 for a 
re vie w). 

Ho we ver, metal-poor stars are rare and difficult to find. Metal- 
poor stars only make up ∼0.1 per cent of Milky Way stars (e.g. 
⋆ E-mail: yyaoastro@gmail.com 
1 Standard nomenclature would be Very Metal-Poor for [Fe / H] < −2. From 
here we will refer to very metal-poor as just metal-poor. 

Starkenburg et al. 2017 ; El-Badry et al. 2018 ), and only few thousands 
of metal-poor stars have been spectroscopically confirmed in past 
surv e ys (e.g. Li, Tan & Zhao 2018 ; Placco et al. 2018 ; Chiti et al. 
2021a ). The typical method to search for metal-poor stars is first 
finding metal-poor candidates and then following up these stars with 
medium/high-resolution spectra to get more detailed information 
(e.g. Beers & Christlieb 2005 ). Objective-prism surveys, photometric 
surv e ys, and some wide area spectroscopic surv e ys are the major 
ways to search for metal-poor stars. Objectiv e-prism surv e ys (Bond 
1970 ; Bidelman & MacConnell 1973 ; Bond 1980 ) were once the 
most ef fecti ve method to search for candidate metal-poor stars, which 
utilized low-resolution spectra ( R ≈ 400) to estimate the strength of 
the Ca II K line at 393.36 nm. The HK-I, HK-II, and Hamburg/ESO 
surv e ys (Beers, Preston & Shectman 1985 , 1992 ; Frebel et al. 2006 ; 
Christlieb et al. 2008 ; Beers et al. 2017 ) found a total of ∼4500 VMP 
stars (Limberg et al. 2021a ). More recently, photometric surv e ys 
are utilized to identify candidate metal-poor stars. SkyMapper 
Southern Sk y Surv e y (SMSS) utilizes Sk yMapper v filter that reflect 
Ca II H&K absorption features, together with SkyMapper u , g , i 
photometry to derive metallicities (Onken et al. 2019 ; Chiti et al. 
2021a ). Analogously, Pristine utilizes a narrow-band filter that is 
centred on the Ca II H&K absorption lines, combined with SDSS 
broad-band g and i photometry to derive metallicities (Starkenburg 
et al. 2017 ; Aguado et al. 2019 ). Javalambre Photometric Local 
Univ erse Surv e y (J-PLUS) (Cenarro et al. 2019 ) and the Southern 
Photometric Local Universe Survey (S-PLUS) (Mendes de Oliveira 
et al. 2019 ) are also photometric surv e ys which utilize four SDSS- 
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like ( g , r , i , z) and one modified SDSS ( u ), and se ven narro w- 
band filters to identify low-metallicity stars in the Galactic halo 
(Placco et al. 2021 ; Galarza et al. 2022 ; Placco et al. 2022 ). Another 
photometric selection method is Best & Brightest (Schlaufman & 
Casey 2014 ) which utilizes all-sky APASS optical, 2MASS near- 
infrared, and WISE mid-infrared photometry to identify bright metal- 
poor star candidates through their lack of molecular absorption near 
4.6 microns (Placco et al. 2019 ; Reggiani et al. 2020 ; Limberg 
et al. 2021b ). Besides the aforementioned dedicated efforts, there 
are some large surv e ys that directly observe samples of stars at 
intermediate resolution spectra and estimate their metallicity, e.g. 
SEGUE, LAMOST, and RAVE surv e ys. These surv e ys hav e found 
several thousand of metal-poor stars. The Sloan Digital Sky Survey 
(SDSS; Eisenstein et al. 2011 ), and its Sloan Extension for Galactic 
Understanding and Exploration (SEGUE; Yanny et al. 2009 ) surv e y 
( R ≈ 2000), SEGUE-1 and SEGUE-2, which moti v ated se veral high- 
resolution follow-up campaigns (e.g. Aoki et al. 2012 ). The Large 
Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) 
surv e y ( R ≈ 1800; Deng et al. 2012 ), which has also triggered some 
high resolution observations (e.g. Li et al. 2022 ). LAMOST-I(DR7) 
released more than seven million spectra of stars in the Milky Way. 
The RAdial Velocity Experiment (RAVE; R ≈ 7000) (Kunder et al. 
2017 ) delivered spectra for about 480 000 stars. However, the number 
of candidate metal-poor stars found from each surv e y is about a few 
dozens to at most a few thousand, which is too small for a statistical 
investigation on metal-poor stars, especially for extremely metal- 
poor ([Fe / H] < −3) or ultra metal-poor regime ([Fe / H] < −4). 
Thus we need a surv e y that can provide a much larger number of 
stellar spectra to enable us to find such objects. 

The Gaia mission has brought a revolutionary change to Milky 
Way astronomy, because it provides astrometric data for billions 
of stars (Collaboration et al. 2016 , 2022 ). In Gaia Data Release 3 
(DR3), it released 200 million low-resolution XP spectra ( R ≈ 50; 
De Angeli et al. 2023 ). Because of its low-resolution, the XP spectra 
cannot provide detailed element abundances of stars. Additionally, 
Gaia GSP-Phot also does not provide accurate metallicity 
estimations for the most metal-poor stars (Andrae et al. 2023a ). 
Ho we ver, some works have demonstrated that these low resolution 
XP spectra can be utilized to estimate ef fecti ve temperature, surface 
gra vity, and metallicity (e.g. Xylakis-Dornb usch et al. 2022 ; Andrae, 
Rix & Chandra 2023b ; Zhang, Green & Rix 2023 ). Thus, these 200 
million low-resolution XP spectra give us an opportunity to greatly 
increase the number of candidate metal-poor stars, if we can make 
full use of them. 

In this work, we identify metal-poor stars in the Gaia DR3 XP 
spectra using the XGBOOST classification algorithm. In Section 2 , 
we describe the XP spectra and other data we utilized in this work. In 
Section 3 , we introduce XGBOOST , discuss the training process, and 
e v aluate the performance of the models. Then, we utilize XGBOOST 
models to make a prediction on the XP spectra, shown and discussed 
in Section 4 . Then, we compare our work with other surv e ys and 
projects and utilize existing high-resolution spectroscopic data to 
validate the performance of our models in Section 5 . Finally, we 
summarize this work in Section 6 . 
2  DATA  
2.1 Data sets 
In this work, the data utilized include Gaia DR3 XP spectra (De 
Angeli et al. 2023 ), Gaia DR3 photometry (Vallenari et al. 2023 ), 
LAMOST DR7 (Cui et al. 2012 ) metallicity, and Apache Point 

Observatory Galactic Evolution Experiment (APOGEE; Majewski 
et al. 2017 ) DR17 (Abdurro’uf et al. 2022 ) metallicity. 

Gaia XP spectra: Gaia DR3 released low-resolution blue and 
red photometer spectra ( BP / RP or XP spectra) for 210 million stars. 
Metallicities were derived from these spectra in the Gaia GSP-Phot, 
but they are not accurate at low metallicities (Andrae et al. 2023a ). 
Thus, it is not efficient to directly utilize the GSP-Phot metallicity 
[M/H] in Gaia DR3 to search for metal-poor stars. The XP spectra 
have wide wavelength coverage (330 to 1050 nm) and low-resolution. 
Because of its wide wavelength coverage, strong lines valuable for 
metallicity estimation are co v ered in it, such as Ca II K and Ca II 
infrared triplet, as well as broad-band or narrow-band photometry. 
Thus, in theory, XP spectra can be utilized to detect metal-poor stars. 
The XP spectra are released as Hermite function coefficients rather 
than flux es v ersus wav elength (Carrasco et al. 2021 ). In order to a v oid 
information loss (Carrasco et al. 2021 ), the input for XGBOOST model 
are XP spectra coefficients, rather than corresponding sampled XP 
spectra. XGBOOST requires the input vectors to be of the same length, 
so we do not truncate the XP coefficients. 

Before inputting the XP coefficients to the model, we first normal- 
ize and deredden them. We normalized XP coefficients by their first 
coefficient to remo v e apparent magnitude information. Additionally, 
to take into account reddening, we determined the extinction coef- 
ficients α, β, γ to correct the normalized XP coefficient vectors C 
for extinction C corrected = C − ( α + β ˆ C ) E B−V − γE 2 B−V . Here, the 
ˆ C is a truncated XP coefficient vector with first 10 elements, α, γ are 
vectors, and β is a matrix. We fit for α, β, γ by taking high extinction 
stars in APOGEE and matching them with stars with similar log g 
(surface gravity), T eff (ef fecti ve temperature), and metallicity, but at 
low extinction. The extinction utilized in this analysis is from a 2D 
map by Schlegel, Finkbeiner & Davis ( 1998 ). 

Gaia DR3 photometry: We also utilized Gaia DR3 photometry 
(Vallenari et al. 2023 ) in this work. Gaia’s G band co v ers a 
wavelength range from near ultraviolet ( ∼330 nm) to the infrared 
( ∼1050 nm). The other two bands, denoted BP and RP , co v er smaller 
wavelength ranges, from approximately 330 to 680 nm, and 630 to 
1050 nm, respectively. 2 We utilize the extinction law, as described 
in https:// www.cosmos.esa.int/ web/ gaia/ edr3- extinction- law , to get 
the intrinsic colour ( BP − RP ) 0 . 

LAMOST DR7 and APOGEE DR17 metallicity: In order to 
train our model to identify metal-poor stars, we need a sample of 
stars that already have reliable metallicity estimates to provide true 
labels. We utilized the spectroscopic metallicity from the LAMOST 
DR7 3 and APOGEE DR17 4 LAMOST spectra ( R ≈ 1800) co v er the 
optical band from 370 to 900 nm. APOGEE spectra ( R ≈ 22 500) 
are a good complement to LAMOST, because they cover the infrared 
band from 1.51 to 1.70 µm, which is more suited for dust extincted 
regions, i.e. the Galactic disc and bulge. In total, we have 4 × 10 6 
LAMOST and 6.5 × 10 5 APOGEE stars. 

Data queries and quality cuts: We utilized the Whole Sky 
Database (WSDB) 5 for all queries (see Appendix C for the ADQL 
queries), which ingested the entire catalogue for APOGEE DR17 
and LAMOST DR7. We did not do any significant quality cuts, but 
we do not think this will significantly affect the results for a few 
reasons. First, classification models are less sensitive to quality cuts 
than regression models. Secondly, after comparing the o v erlapping 
2 https:// www.cosmos.esa.int/ web/ gaia/ edr3-passbands 
3 https:// dr7.lamost.org/ 
4 https:// www.sdss4.org/ dr17/ 
5 https:// www.ast.cam.ac.uk/ ioa/ wikis/ WSDB/ index.php/ Main Page 
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Figure 1. Colour–magnitude diagram of our training and testing sets. The horizontal axis is the Gaia intrinsic colour ( BP − RP ) 0 , the vertical axis is the Gaia 
absolute G magnitude. The LAMOST and APOGEE samples, which primarily comprise main-sequence turn-off, giants, and dwarfs stars, are shown in the left 
and middle panels. The right panel shows the metal-poor stars from LAMOST and APOGEE. Metal-poor stars are primarily turn-off and giant stars. We divide 
the training and testing set into two parts, according to ( BP − RP ) 0 , as shown in the red dashed line in the figure. On the left/right side of red dashed line are the 
samples utilized to train the model to identify the turn-off/giants metal-poor stars. 
very metal-poor stars in LAMOST and APOGEE, we found that 
even if a star is flagged as bad spectral fitting solutions in either 
APOGEE or LAMOST, it often still carries sufficient information 
re garding being v ery metal-poor or not. F or e xample, for LAMOST 
we adopted quality flags of SNR > 20 and feh err < 0.5 (e.g. Zhang, 
Green & Rix 2023 ), which remo v ed 22 per cent of our metal-poor 
training set. Ho we v er, o v erlapping APOGEE spectra suggested that 
84 per cent of these were actually still v ery metal-poor. F or APOGEE, 
metal-poor stars run up against the edge of the spectral grid, so using 
quality flags (e.g. FE H FLAG = 0) remo v ed all stars with [Fe/H] 
< −2.25 even though they are very metal-poor in LAMOST. 
2.2 Training and testing sets 
The Gaia XP spectra with the LAMOST or APOGEE metallicity 
form the training and testing set in this work. We directly put 
them together because the average difference between LAMOST 
and APOGEE[Fe / H]is 0.007 dex, which is well below the typical 
uncertainty in metallicity of LAMOST ( > 0.2 dex) or APOGEE ( > 
0.1 dex). Therefore, we conclude that these surveys are on similar 
metallicity scales within the range of parameters tested. Before the 
training process, we need to set some constraints on the training 
and testing set by intrinsic colour ( BP − RP ) 0 , magnitude BP and 
extinction E ( B − V ). 

For the training set, we only consider stars with ( BP − RP ) 0 
> 0.5, because, as shown in the right panel of Fig. 1 , we do not 
have metal-poor samples with ( BP − RP ) 0 < 0.5. Note that the 
method utilized to calculate the ( BP − RP ) 0 excludes almost all of 
the E ( B − V ) > 2 stars, because the extinction coefficients should 
not be extrapolated outside the extinction range of this algorithm, as 
described in https:// www.cosmos.esa.int/ web/ gaia/ edr3-extinction- 
la w . Additionally, we e xclude fainter stars ( BP > 16) in the training 
set, because the XP spectra with BP > 16 generally do not have high 
signal-to-noise ratio (S/N < 300). Thus, for the training set, we only 
consider stars that satisfy the following criteria: 

(I) 0.5 < ( BP − RP ) 0 < 1.6 
(II) E ( B − V ) < 2 
(III) BP < 16 

Ho we ver, for the testing set, we only constrain the data by 0.5 < 
( BP − RP ) 0 < 1.6 and E ( B − V ) < 2. We aim to see whether our 
classifiers that are trained on bright stars ( BP < 16) can be utilized to 
identify the faint metal-poor stars ( BP > 16). Thus, we include stars 
that satisfy the following criteria in the testing set: 

(I) 0.5 < ( BP − RP ) 0 < 1.6 
(II) E ( B − V ) < 2 
After applying cuts, we get 2.5 × 10 6 LAMOST stars and 4.5 × 10 5 

APOGEE stars with XP spectra available, of which 4088 and 1295, 
respectively, are metal-poor stars with [Fe / H] < −2. In total, we 
utilize 2.9 × 10 6 spectra for training and testing, of which 0.2 per cent 
are metal-poor stars. We select 4 × 10 5 of them as testing set and 
2.5 × 10 6 of them as training set. 

Fig. 1 shows the colour–magnitude diagram of our training and 
testing sample. The horizontal axis is intrinsic colour ( BP − RP ) 0 , 
the vertical axis is the absolute G magnitude (without any parallax 
cut here). The left and middle panels show the stars from the 
LAMOST and APOGEE surv e ys in the training and testing sets, 
which comprises main-sequence turn-off, dwarf, and giant stars. 
The right panel shows the distribution of metal-poor stars in the 
training and testing set. The majority of metal-poor stars are turn- 
off and giant stars. Fig. 1 suggests that our algorithm should only 
confidently identify metal-poor giants and turn-off stars, because 
metal-poor stars in other evolutionary stages would be extrapolation. 
Note that it is harder to find very metal-poor turn-off stars than 
giants. Because the resolution of XP spectra are low, the information 
we can get from them are close to what we can get from narrow band 
photometric surv e ys, but the photometric features of turn-off stars 
are less metallicity dependent, because they are hotter and absorption 
features are suppressed. Consequently, we utilize different models to 
find metal-poor turn-off and giant stars. We divide the training and 
testing sample into two parts, according to ( BP − RP ) 0 < 0.8 or > 
0.8. The models trained on the former data set are responsible for 
finding turn-off metal-poor stars, and the other models trained on the 
latter data set are in charge of the giant metal-poor stars. As shown in 
the right panel of Fig. 1 , our data set does not hav e man y metal-poor 
dwarf stars, so we do not expect to find low-metallicity dwarf stars 
in this work. 
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Figure 2. ( BP − RP ) 0 , BP , and absolute Galactic latitude distribution of training, testing, and Gaia DR3 with ( BP − RP ) 0 > 0.5 and E ( B − V ) < 2 in this plot, 
which have XP spectra. We only randomly select 2 per cent of the Gaia DR3 data with XP spectra to display in this figure. 

The ( BP − RP ) 0 , BP , and | b | distribution of Gaia DR3 data, 
training, and testing set are shown in Fig. 2 . Note that, we only 
include Gaia DR3 data with ( BP − RP ) 0 > 0.5 and E ( B − V ) < 2 
that have XP spectra in this plot. We see that the distributions of the 
Gaia data included in this plot are pretty different from our training 
and testing set, especially for the ( BP − RP ) 0 and Galactic latitude 
b distributions, which reminds us that the metal-poor candidates we 
find may only be a small fraction of the total. 
3  M O D E L  T R A I N I N G  A N D  VA LIDATION  
We choose the XGBOOST algorithm to find metal-poor stars because 
it is a powerful and flexible algorithm that has been utilized in variety 
of sub-fields of astrophysics (e.g. Li et al. 2021 ; He, Luo & Chen 
2022 ; Lucey et al. 2023 ; Pham & Kaltenegger 2022 ; Rix et al. 2022 ). 
The algorithmic principles for XGBOOST are not complex. In short, 
XGBOOST repeatedly builds decision trees to fit the residuals from 
the previous tree, until the residuals stop shrinking or it reaches the 
maximum number of trees, which is a free parameter. Then it sums 
the results from each tree, which are weighted by a learning rate 
( η), and plug this value into the Sigmoid function, σ ( x) = 1 

1 + e −x , to 
calculate the probability of the input belonging to a certain category. 
For a detailed description of XGBOOST, see Chen & Guestrin ( 2016 ). 

In this work, we utilize the coefficients of normalized and dered- 
dened XP spectra together with their corresponding [Fe / H] from 
LAMOST or APOGEE to compose training and testing sets to train 
the XGBOOST model to identity metal-poor stars in Gaia DR3. We 
describe the training process and the performance of the well-trained 
models in this section. 
3.1 Training process 
In this work, we choose multiclassification algorithm to identify 
the metal-poor stars. The metallicity ([Fe/H]) of the training and 
testing samples ranges from −2.5 to + 1.0. We utilize XGBOOST 
models to classify the stars into four metallicity intervals: [Fe / H] < 
−2.0, −2.0 < [Fe / H] < −1.5, −1.5 < [Fe / H] < −1.0, and −1.0 
< [Fe / H] < + 1.0, with probabilities P 0 , P 1 , P 2 , P 3 , respectively. 
For a star, when its P 0 is larger than the other probabilities, it will 
be classified as metal-poor star. The prediction uncertainty can be 
calculated from the probabilities of the multiclassification result, see 

Appendix A for more details. We choose the XGBOOST classification 
algorithm, rather than the regression algorithm, for following four 
reasons. (i) The minimum [Fe / H] of the training and testing set is 
−2.5, because of LAMOST and APOGEE analyses limitations, even 
though we do know there exist metal-poor stars with [Fe / H] < −2.5 
in the data set. (ii) Regression would waste a lot of computational 
power on deciding the specific metallicity value for non-metal-poor 
stars ([Fe/H] > −2.0) which we do not care about. (iii) Unlike a 
regression algorithm, classification algorithm can more easily trade 
off completeness against purity. For samples that are difficult to 
identify, for example, turn-off stars and faint stars, we can sacrifice 
completeness for higher purity. 

We utilize completeness and purity calculated on the test set to 
e v aluate the performance of the models. Completeness refers to how 
completely our model can find all of the metal-poor stars. Purity 
refers to the fraction of true metal-poor stars for the set predicted to 
be metal-poor by our models. Completeness and purity are defined 
as: 
Completeness = True positive 

True positive + False negative (1) 
Purity = True positive 

True positive + False positive (2) 
Positiv e and ne gativ e samples here refer to the metal-poor ([Fe/H] 
< −2) and non-metal-poor ([Fe/H] > −2) stars, respectively. We 
divide the input samples into two training sets, according to their 
intrinsic colour: 0.5 < ( BP − RP ) 0 < 0.8 and 0.8 < ( BP − RP ) 0 , 
as shown in Fig. 1 , to find metal-poor turn-off and giant stars, 
respectively. Metal-poor giant stars make up 0.26 per cent of the 
training set with 0.8 < ( BP − RP ) 0 . Ho we ver, metal-poor turn-of f 
stars are much rarer, only make up 0.06 per cent of the training set 
with 0.5 < ( BP − RP ) 0 < 0.8. Thus, it could be expected that metal- 
poor turn-off stars will be more difficult to find than metal-poor giant 
stars. 

In preliminary tests, we found that the extreme imbalance between 
positive ([Fe/H] < −2) and negative ([Fe/H] > −2) samples badly 
hinders our training process. To solve this problem, we processed 
the training sets in the following two steps: 

Step I: Utilize random undersampling to randomly remo v e o v er- 
represented metal-rich stars in the training set. The ne gativ e ([Fe/H] 
> −2) to positive ([Fe/H] < −2) ratio of the training set after 
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Figure 3. The completeness and purity of classifiers as a function of 
training NPR. The horizontal-axis is the ne gativ e to positive ratio of the 
training sample; the vertical-axis is completeness and purity of models. 
At each NPR, the classifiers were ran with the optimized set of hyper- 
parameters. The vertical lines with different colours refer to the NPR were 
chosen for Classifier-GC, Classifier-GP, and Classifier-T. The corresponding 
completeness and purity can be read from the vertical lines. The purple curves 
refer to the classifiers trained to find metal-poor Giants stars and the red curves 
refer to the classifiers aimed to find metal-poor turn-off stars. 
undersampling is defined as NPR. We will change the NPR of the 
training set from 1 to the maximum value that the training set allowed. 

Step II: Adopt o v ersampling algorithm Synthetic Minority Over- 
sampling Technique ( SMOTE ) to populate the metal-poor stars in the 
training set that has been under sampled. The SMOTE algorithm is 
an o v er-sampling method which synthesizes new examples from the 
minority class by selecting neighbouring examples in the feature 
space and then synthesizing a new sample at the point along the line 
connecting these two samples (Chawla et al. 2002 ). 

We utilize RANDOMSEARCHCV from SCIKIT-LEARN (Pedregosa 
et al. 2011 ) to tune the XGBOOST hyperparameters. When training 
XGBOOST , a lot of hyperparameters can be adjusted, such as the 
learning rate ( η), the maximum depth of a tree, and the minimum 
loss reduction required to make a further partition on a leaf node 
of the tree ( γ ). In order to find the optimal set of parameters, we 
utilize RANDOMSEARCHCV from SCIKIT-LEARN (Pedregosa et al. 
2011 ). RANDOMSEARCHCV will go through points that are randomly 
selected from the predefined box in hyperparameter space, as shown 
below, to find the optimal set of parameters. 

(i) n estimators: from 100 to 1200 in steps of 50 
(ii) max depth: from 2 to 15 in steps of 1 
(iii) learning rate: from 0.05 to 1 in steps of 0.05 
(iv) subsample: from 0.5 to 1 in steps of 0.05 
(v) colsample bytree: from 0.3 to 0.9 in steps of 0.05 
(vi) min child weight: from 1 to 20 in steps of 1 
(vii) gamma: from 0 to 0.7 in steps of 0.02 
In this work, finding metal-poor stars trades off purity for com- 

pleteness. For each NPR, we utilize RANDOMSEARCHCV to find the 
optimal set of parameters. Fig. 3 shows the completeness and purity 
of the well optimized model as a function of the training set NPR. 

The purple curves refer to the classifiers that are trained to find 
metal-poor giant stars, and the red curves refer to the classifier to 
find metal-poor turn-off stars. From Fig. 3 we see that increasing 
the NPR of the training set will increase the purity but decrease 
the completeness of the classifiers, and it is much easier to find 
metal-poor giant stars than metal-poor turn-off stars, just as we 
discussed before. The three vertical lines indicate the NPR that 
are chosen for Classifier -GP (Green, 386), Classifier -GC (Yellow, 
40), and Classifier-T (Blue, 1000). Classifier-GC (Giant Complete) 
here denotes the model utilized to find metal-poor giants with high 
completeness, Classifier-GP (Giant Pure) denotes the model utilized 
to find metal-poor giants with high purity, and Classifier-T (Turn- 
off) denotes the model utilized to find turn-off metal-poor stars. The 
(completeness, purity) for our Classifier -T, Classifier -GC, Classifier - 
GP are (40.0 per cent, 47.2 per cent), (94.6 per cent, 47.2 per cent), 
(72.7 per cent, 74.1 per cent), respectively, which are derived by 3- 
fold cross-validation. 
3.2 Models evaluation 
After the training process, we utilize the testing sets to e v aluate the 
performance of the classifiers on different [Fe/H], BP , ( BP − RP ) 0 , 
and absolute Galactic latitude | b | . Typically, there are three factors 
that effect the performance of the classifiers: stellar species (turn-off 
or giants stars), brightness, and reddening. In this work, we utilize 
intrinsic colour ( BP − RP ) 0 to denote the type of stars, because 
we do not have metal-poor dwarf stars in the training and testing 
sets, as shown in Fig. 1 . BP magnitude denotes the brightness of the 
stars. Additionally, the absolute | b | can be utilized as an indicator of 
reddening, because stars in low | b | regions, such as disc and bulge, 
often have severe extinction. 

The metallicity distribution for stars in the testing set classified as 
metal-poor by different classifiers is shown in Fig. 4 . The metallicity 
distribution for True Positive (TP), False Positive (FP), and False 
Ne gativ e (FN) samples in the testing set are shown in left and right 
panels, respectively. Comparing the distributions of Classifier-GC 
and Classifier-GP in the left panel, we see that the Classifier-GP 
can ef fecti v ely remo v e the FP stars, although it loses some TP stars. 
On the other hand, the right panel shows that Classifier-GP loses 
some metal-poor stars with [Fe / H] < −2.8, which is the cost of 
high purity. This is why we provide Classifier-GC as supplement to 
Classifier -GP. Classifier -GC provides a high completeness data set 
and Classifier-GP provide a high purity data set. The good news for 
Classifier-GC is that most of the misclassified metal-poor still have 
rather low metallicity close to the [Fe/H] = −2 boundary. 

The completeness and purity distributions of the classifiers on 
different ( BP − RP ) 0 , BP , and | b | intervals are shown in Fig. 5 . We 
utilize different colours and symbols to denote different models, and 
dashed and solid lines to denote faint or bright stars. Let’s discuss the 
performance of the classifiers on bright stars ( BP < 16) first. Panel (a) 
and (d) show the performance of the classifiers as a function of ( BP 
− RP ) 0 . We see that Classifier-T has a comparable purity at the blue 
end of the classifiers-GP and classifiers-GC, but its completeness is 
lower than these two models, because it is harder to find metal-poor 
turn-off stars, we have to sacrifice the completeness for high purity, 
just as we discussed before. Panels (b) and (e) show the performance 
of classifiers as a function of brightness. We can see that bright stars 
tend to have higher purity and completeness than faint stars, because 
bright stars typically have higher signal-to-noise ratio. Panels (c) and 
(f) show the performance as a function of | b | . The completeness and 
purity of our classifiers are lower in low-latitude region, because in 
this region extinction makes classification more difficult even with 
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Figure 4. Left panel show the metallicity distribution of stars that are predicted to be metal-poor. The dashed line is the boundary of true positive samples and 
false positive samples. Right panel shows the metallicity distribution of false-ne gativ e stars (i.e. metal-poor stars missed by XGBOOST ). 

Figure 5. The completeness and purity of different classifiers as a function of intrinsic colour ( BP − RP ) 0 , BP band magnitude BP , and absolute Galactic 
latitude | b | . 
our coefficients extinction calibrations and higher contamination rate 
of metal-rich ([Fe / H] > −2) stars decrease the purity statistically. 
Note that, because there are few metal-poor turn-off stars at low or 
high Galactic latitude in our training and testing sets, we increased 
the bin size for turn-off stars in these two panels to a v oid statistical 
fluctuations. 

Most of the stars with XP spectra released by Gaia DR3 are faint 
( BP > 16), so it is worthwhile to e v aluate the performance of the 
classifiers, which are trained on bright stars, on the faint stars. We 
utilize Classifier-T and Classifier-GP to make the prediction on faint 
stars. As shown in the dashed lines and open symbols of Fig. 5 , 
the o v erall purity for Classifier-T is 29 per cent, for Classifier-GP is 
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Figure 6. ( BP − RP ) 0 , BP , and | b | distribution of the metal-poor candidates we found in Gaia DR3 by different classifiers. Note that the | b | for giants is skewed 
to very low | b | is because those are mostly towards the inner Galaxy (bulge/inner halo), as seen in Fig. 8 . 
52 per cent. This purity is better than we expected, so we include 
the faint stars in our catalogue. Ho we ver, as sho wn in panels (d), 
(e), and (f), the completeness for faint turn-off candidates is pretty 
low, less than 10 per cent, which means that the faint metal-poor 
turn-off stars we have in our final catalogues only make up a very 
small fraction of the total. Because of the low S / N ratio for faint stars, 
it is harder for us to find the genuine metal-poor ones. Thus, under 
this circumstance, purity has a higher priority than completeness. 
We can make a Shannon-Entropy cut on the final results to increase 
their purity. More details about the Shannon-Entropy cut are shown 
in Appendix A . 
4  RESULTS  
We have three reliable classifiers, Classifier -T, Classifier -GC, and 
Classifier-GP. We now classify the 200 million XP spectra released 
in Gaia DR3, and obtain three corresponding candidate metal-poor 
star catalogues, as shown in Tables 1 , 2 , and 3 , which in total contain 
200 000 metal-poor candidates. The distributions of the metal-poor 
candidates are shown in Fig. 6. 

The colour–magnitude diagram for these candidate metal-poor 
stars, without any parallax quality cut, is shown in Fig. 7 . The 
left/middle/right panel shows the colour-magnitude diagram for 
the candidate metal-poor stars identified by Classifier -T/Classifier - 
GC/Classifier-GP. From these panels we confirm that, in our cat- 
alogues, the candidate metal-poor stars are dominated by turn-off 
stars and giant stars. Ho we ver, there are a small number of dwarf 
stars present in the cooler regions of the main sequence, as shown 
in the middle and right panels ( M G > 4, below the red dashed line). 
These red dwarf stars may be wrongly classified as metal-poor stars, 
because there are almost no red dwarf stars in the training sets 
for Classifier-GP and Classifier-GC. Table 4 shows that red dwarfs 
only make up a very small fraction of the metal-poor stars found 
by Classifier-GC and Classifier-GP, i.e. 1.7 per cent for Classifier- 
GC, 0.7 per cent for Classifier-GP ( BP < 16) and 6.5 per cent for 
Classifier-GP ( BP > 16). Since the risk of contamination is higher, 
we include the absolute G band magnitude M G in our final catalogues 
if users would like to filter out any potential dwarf contamination. 

The distance distributions and Galactic coordinate projections of 
the candidates are shown in Figs 8 and 9 . Fig. 8 shows the distance 
distributions of the candidate metal-poor stars. The distances are 
calculated by inverting the Gaia DR3 parallax. The distance to the 

Galactic centre is marked by the red dashed line ( ∼8 kpc from the Sun 
Bland-Hawthorn & Gerhard 2016 ). The blue lines are the distribution 
of candidate turn-off metal-poor stars, and the orange and green 
lines are the distribution of candidate giant metal-poor stars. For 
the distance distribution, comparing to candidate metal-poor giant 
stars, the turn-off stars are located closer to the Sun, as expected 
gi ven their lo wer luminosities. The giants are distributed around the 
Galactic centre. This result indicates that the Galactic centre contain 
a large amount of metal-poor stars, i.e. the Milky Way hosts an 
ancient, metal-poor, and centrally concentrated stellar population 
(e.g. Rix et al. 2022 ). Fig. 9 shows the skymap of the candidate 
metal-poor stars we found in Gaia DR3. Because the dereddening 
process excludes almost all of the high E ( B − V ) stars ( E ( B − V ) > 
2), we do not obtain a lot of stars at low Galactic latitude, as shown 
in Fig. 9 . Bulge stars and halo stars are the dominant stars for our 
sample. 

The bright spots in the Galactic coordinate projections are globular 
clusters (Harris 2010 ). After testing, we found that comparing 
with Classifier-GC that includes many globular clusters with −1.5 
< [Fe/H] < −1.0, Classifier-GP excludes all of the globular clusters 
with average metallicity larger than −1.5 and most of the globular 
clusters with average metallicity within −2 to −1.5, but keeps all 
of the globular clusters with metallicity less than −2, which is a 
demonstration that Classifier-GP has relatively higher purity than 
Classifier-GC. Note that the Galactic coordinate projections are also 
affected by the Gaia scanning law (see De Angeli et al. 2023 ) and 
crowding issues for XP spectra in globular clusters. 

We created Table 5 to concisely summarize the main points from 
Section 3 and 4 . 
5  DI SCUSSI ON  
In this work, according to Table 4 , we add up the numbers of metal- 
poor candidates found by Classifier-T, Classifier-GC ( BP < 16 at 
all M G ), Classifier-GP ( BP > 16 at all M G ) and obtained a total of 
200 000 candidate metal-poor stars. Weighting each subsample by its 
purity in Table 4 , we expect the catalogue contains 88 000 genuine 
metal-poor stars (o v erall purity of 44 per cent). 

Though we only classify stars with [Fe / H] < −2, we can estimate 
how many stars are < −3 or < −4. We assume the slope of the 
metallicity distribution (Youakim et al. 2020 ; Chiti et al. 2021b ), 
although there are also much more pessimistic slopes of the metal- 
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Table 1. Metal-poor turn-off candidates found by Classifier-T. P 0 , P 1 , P 2 , P 3 refer to the probability of a stars with −2 . 5 < [Fe / H] < −2, 
−2 < [Fe / H] < −1.5, −1 . 5 < [Fe / H] < −1, −1 < [Fe / H] < + 1. (This table is available in its entirety in the online supplementary material). 

Candidates found by Classifier-T 
Gaia DR3 source id ( BP − RP ) 0 M G E ( B − V ) BP P 0 P 1 P 2 P 3 Shannon entropy 

(mag) (mag) (mag) 
6650038640545499264 0.59 3 .66 0.07 15 .65 0.97 0 .03 0 .0 0 .0 0 .17 
6650111586271008256 0.58 2 .96 0.06 16 .34 0.84 0 .15 0 .0 0 .0 0 .68 
6650144949575814016 0.61 − 0 .24 0.07 17 .65 0.83 0 .15 0 .0 0 .02 0 .77 
6650193499886281088 0.62 3 .76 0.07 16 .65 0.84 0 .14 0 .01 0 .0 0 .7 
6650230470965151360 0.78 3 .14 0.08 16 .9 0.85 0 .1 0 .0 0 .05 0 .76 

Table 2. Metal-poor giant candidates found by Classifier-GC. (This table is available in its entirety in the online supplementary material). 
Candidates found by Classifier-GC 

Gaia DR3 source id ( BP − RP ) 0 M G E ( B − V ) BP P 0 P 1 P 2 P 3 Shannon entropy 
(mag) (mag) (mag) 

4252405961205838208 0 .81 − 1 .55 0.68 15 .77 0 .6 0 .01 0 .01 0 .38 1 .12 
4252433105401980800 1 .5 − 8 .02 0.61 15 .65 0 .39 0 .21 0 .39 0 .01 1 .57 
4252454580242134912 0 .84 − 2 .07 0.78 15 .1 0 .93 0 .0 0 .02 0 .04 0 .42 
6032351905927100928 0 .98 − 0 .61 0.42 15 .69 0 .56 0 .02 0 .09 0 .34 1 .4 
6032356578851595392 1 .13 nan 0.48 15 .82 0 .95 0 .05 0 .0 0 .0 0 .3 

Table 3. Metal-poor giant candidates found by Classifier-GP. (This table is available in its entirety in the online supplementary material). 
Candidates found by Classifier-GP 

Gaia DR3 source id ( BP − RP ) 0 M G E ( B − V ) BP P 0 P 1 P 2 P 3 Shannon entropy 
(mag) (mag) (mag) 

6032364236763645056 1.14 nan 0.51 18 .31 0.45 0 .28 0.02 0.25 1.63 
6032371177430994048 1.24 − 0 .40 0.44 16 .68 0.4 0 .15 0.39 0.07 1.73 
6032371349229711616 0.96 0 .40 0.45 17 .26 0.42 0 .01 0.16 0.42 1.55 
6032372964137450240 1.19 1 .64 0.47 17 .9 0.51 0 .32 0.12 0.04 1.59 
6032408874375184896 1.06 nan 0.58 15 .92 0.5 0 .28 0.16 0.05 1.65 

Figure 7. Colour–magnitude diagram of metal-poor stars we found in Gaia DR3 by different classifiers. The horizontal axis is dereddened colour ( BP − RP ) 0 
and the vertical axis is the absolute G band magnitude (for stars without any parallax-quality cut). 
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Table 4. The number, purity, and completeness of metal-poor candidates we found by Classifier -T, Classifier -GC, and Classifier -GP in 
different M G and BP ranges. 
Classifier and brightness Number of stars Purity Completeness 
Classifier-T (BP < 16) 10995 52 per cent 32 per cent 
Classifier-T (BP > 16) 37763 29 per cent 8 per cent 
M G < 4 or M G > 4 M G > 4 M G < 4 M G > 4 M G < 4 M G > 4 M G < 4 
Classifier-GC (BP < 16) 1954 109493 27 per cent 45 per cent 56 per cent 94 per cent 
Classifier-GP (BP < 16) 291 43514 50 per cent 76 per cent 10 per cent 66 per cent 
Classifier-GP (BP > 16) 2542 38780 30 per cent 54 per cent 9 per cent 30 per cent 

Table 5. A summary table for Sections 3 and 4 . 
Summary of the models 

Model name Classifier-T Classifier-GC Classifier-GP Classifier-T Classifier-GP 
( BP − RP ) 0 < 0.8 > 0.8 > 0.8 < 0.8 > 0.8 
BP < 16 < 16 < 16 > 16 > 16 
Shannon entropy cutoff nan nan nan < 0.8 nan 
Percentage of MP-stars 0.06 per cent 0.28 per cent 0.28 per cent 0.06 per cent 0.28 per cent 
NPR of training set 1000 40 386 1000 386 
Test purity 47 per cent 47 per cent 74 per cent 40 per cent 53 per cent 
Test completeness 40 per cent 94 per cent 65 per cent 8 per cent 7 per cent 

Expected total purity 52 per cent 45 per cent 76 per cent 29 per cent 52 per cent 
Expected total completeness 32 per cent 93 per cent 66 per cent 8 per cent 28 per cent 
# Candidates 10 995 111 447 43 805 37 763 41 322 

Figure 8. The distance distribution of the candidate metal-poor stars we 
found in Gaia DR3. The red dashed line in the left panel refers to the Galactic 
centre. Lines with different colour refer to the candidate metal-poor stars 
identified by different classifiers. 
poor tail of the metallicity distribution function by Bonifacio et al. 
( 2021 ): 
log d N 

d [Fe/H] = γ (3) 
γ is 1 when −2.5 < [Fe / H] < −2.0 and 1.5 in −4 < [Fe / H] < −2.0. 
Based on this assumption, we can estimate the number of the actual 
metal-poor stars for these 188 000 candidate in each metallicity 
intervals. From −4 to −3.5, −3.5 to −3, −3 to −2.5, −2.5 to −2, the 

estimated number of actual metal-poor stars are 600, 2800, 17 000, 
and 64 000, respectively. 
5.1 Comparing with other sur v eys 
Table 6 shows our results compared to previous photometric se- 
lections. Huang et al. ( 2022 ) utilized SMSS DR2 and Gaia EDR3 
photometry to estimate metallicity for 24 million stars. They obtained 
half a million very metal-poor ([Fe / H] < −2 . 0) stars, and o v er 
25 000 extremely metal-poor ([Fe / H] < −3 . 0) stars. 48 270 very 
metal-poor candidates in Huang et al. ( 2022 ) are also predicted to 
be very metal-poor by our Classifiers. Chiti et al. ( 2021a ) utilized 
SMSS DR2 photometry to derive photometric metallicities. They 
present more reliable metallicities of ∼280 000 stars with −3.75 
≤[Fe / H] ≤−0.75 down to g = 17. 18 640 of them are candidate 
metal-poor stars ([Fe / H] < −2). After the validation by our training 
and testing set, we found their purity to be 49 per cent; and there 
are 9218 stars also predicted to be metal-poor by our Classifiers. 
Pristine surv e y does not publicly release their data, but according 
to Starkenburg et al. ( 2017 ) and Youakim et al. ( 2020 ), Pristine has 
co v ered a sky area of ∼2500 deg 2 , at the time of those papers. 
In each ∼de g 2 field, the y find ∼7 stars that have [Fe / H] < −2 . 5 
down to magnitude of V = 18. The purity of Pristine to find 
stars with [Fe / H] < −2 . 5 is 49 per cent (Aguado et al. 2019 ). The 
Best & Brightest initiative selected over 11 000 candidate VMP 
([Fe / H] < −2) and EMP stars ([Fe / H] < −3), with an o v erall purity 
of 30 per cent and 5 per cent, respectively (Schlaufman & Casey 
2014 ; Placco et al. 2019 ; Limberg et al. 2021b ). Comparing with 
other surv e ys, our work increases the number of candidate metal- 
poor stars by about an order of magnitude, but with similar or 
higher purity. The comparison results are shown in Table 6 . Recently, 
Andrae, Rix & Chandra ( 2023b ) utilized XGBOOST and XP spectra, 
together with 38 narrowband colours derived from XP spectra and 
broad-band surv e ys ( Gaia : G, BP, RP and CatWISE: W 1 , W 2 ), to 
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Figure 9. The Galactic coordinate projections of the candidate metal-poor stars we found through Classifier -GC, Classifier -GP, Classifier -T. The area of healpix 
pixel is 3.36 deg 2 . 
derive metallicity, T eff and log g for 175 million stars. They reduced 
the temperature-extinction degeneracy by introducing CatWISE W 1 
and W 2 , which extend to the infrared regions, into the model. The 
metallicity were derived using the XGBOOST regression model and 
the true labels came from APOGEE, and augmented by a set of very 
metal-poor stars (Li et al. 2022 ). Because we both utilize XGBOOST 
algorithm and deal with the same data set, it is worth comparing our 

results with them. The comparisons are shown in Table 7 . Tables 1 
and 2 are two tables published by Andrae, Rix & Chandra ( 2023b ). 
In short, table 2 is a high accuracy subset of bright ( BP < 16) giant 
stars of table 1. Table 7 shows that, for giant candidates, Classifier- 
GP has higher purity and more candidates comparing with tables 1 
and 2 (only including giant candidates with BP < 16). The purity for 
turn-off stars of table 1 is only 20 per cent, while our Classifier-T has 
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Table 6. Comparison to other photometric surv e ys. The purity mentioned 
abo v e are obtained from the comparison with LAMOST DR7 and APOGEE 
DR17. Except for Pristine, for which it is from Aguado et al. ( 2019 ), and not 
for [Fe / H] < −2 but −2.5. Note that, for Classifier-T or Classifier-GP, 29 per 
cent and 52 per cent are the purity for faint ( BP > 16) stars, 52 per cent and 
76 per cent are the purity for bright ( BP < 16) stars. 

Comparison to photometric selections 
Photometic surv e ys # [Fe / H] < −2 Purity 
SMSS (Turn-off) (Huang et al. 2022 ) 548 518 10 per cent 
SMSS (Giant) (Huang et al. 2022 ) 192 487 42 per cent 
SMSS (Turn-off) (Chiti et al. 2021a ) 522 46 per cent 
SMSS (Giant) (Chiti et al. 2021a ) 18 046 49 per cent 
Best & Brightest (Placco et al. 2019 ; 
Limberg et al. 2021b ) 11 000 30 per cent 
Pristine (Starkenburg et al. 2017 ; 
Youakim et al. 2020 ) 18 000 ∗([Fe / H] < −2 . 5) 49 per cent 
Classifier-T 48 758 29–52 per cent 
Classifier-GC 111 447 45 per cent 
Classifier-GP 85 127 52–76 per cent 
Table 7. Comparison to Andrae, Rix & Chandra ( 2023b ). The purity 
mentioned abo v e are obtained from the comparison with LAMOST DR7 
and APOGEE DR17. 

Comparison to Andrae, Rix & Chandra ( 2023b ) 
Table/Model # [Fe / H] < −2 Purity 
Andrae, Rix & Chandra ( 2023b ) table 1 
(Turn-off, BP < 16) 24 000 23 per cent 
Classifier-T ( BP < 16) 10 995 52 per cent 
Andrae, Rix & Chandra ( 2023b ) table 1 
(Giants, BP < 16) 38 000 70 per cent 
Classifier-GP ( BP < 16) 43 805 76 per cent 
Classifier-GC ( BP < 16) 111 447 45 per cent 
Andrae, Rix & Chandra ( 2023b ) table 1 
(Turn-off, BP > 16) 51 000 20 per cent 
Classifier-T ( BP > 16, Shannon entropy 
< 0.8) 37 763 29 per cent 
Andrae, Rix & Chandra ( 2023b ) table 1 
(Giants, BP > 16) 35 000 53 per cent 
Classifier-GP ( BP > 16) 41 322 52 per cent 
Andrae, Rix & Chandra ( 2023b ) table 2 18 000 70 per cent 
a higher purity of 29 per cent to 52 per cent. We suggest our models 
are better for finding metal-poor stars comparing with Andrae, Rix & 
Chandra ( 2023b ) for the following reasons: (i) We have larger number 
of metal-poor stars, which provides the models a training set with 
greater diversity. (ii) Their model is a regression model which is 
trying to fit the metallicity for all stars, especially for metal-rich 
stars. As a result, their model may not do as well for metal-poor 
stars, which are only a very small part of the whole. In contrast, our 
models are more specialized, and only focus on finding metal-poor 
stars. (iii) Because we choose classification algorithm rather than 
regression, we can trade off completeness against purity. For stars that 
are difficult to classify, for example turn-off stars, we can sacrifice 
the completeness to the higher purity with NPR (see Fig. 3 ) and 
SMOTE . (iv) The Gaia XP spectra we utilized has been dereddened, 
which may make our predictions more accurate, even without WISE 
photometry. Out of 148 000 very metal-poor candidates in Andrae, 
Rix & Chandra ( 2023b ), there are 65 949 stars are found to be very 
metal-poor with our Classifiers. Overall, we suggest that researchers 

and observers utilize this work together with Andrae, Rix & Chandra 
( 2023b ) to decide what metal-poor candidates to follow up. 

Zhang, Green & Rix ( 2023 ) utilized a forward model to estimate 
stellar parameters ([Fe/H], T eff , and log g ), revised distances and 
extinctions for 220 million stars with XP spectra. Ho we ver, there 
is a trend that the metallicity derived by the forward model tend to 
be o v erestimated at v ery-metal-poor end, which is ev en more biased 
than the metallicity derived by Andrae, Rix & Chandra ( 2023b ). We 
think this bias is caused by the imbalance of the numbers of the 
metal-poor and non-metal-poor stars in their training set. 

Martin et al. ( 2023 ) used the spectroscopic and photometric 
information of 219 million stars from Gaia DR3 to calculate 
synthetic narrow-band CaHK magnitudes sensitive to metallicity. 
CaHK magnitudes mimic the observations of Pristine surv e ys. The y 
derived the photometric metallicities for 30 million high signal-to- 
noise FGK stars. They identified 200 000 very metal-poor candidates 
and 8000 extremely metal-poor candidates ([Fe / H] phot < −2 and 
[Fe / H] phot < −3, respectively). Because their data were released 
while this paper was already in re vie w, we do not consider their 
results for our comparisons. 
5.2 Validation with existing high-resolution spectra 
There are plenty of high-resolution follow-up observations to the 
candidate metal-poor stars that have been obtained by previous 
studies. We can utilize these confirmed metal-poor stars to e v aluate 
the completeness of our XGBOOST models. The results are shown 
in Table 8 . In this table, we utilize six metal-poor halo stars data 
sets, three metal-poor bulge data sets, one metal-poor disc star, and 
one carbon-enhanced metal-poor (CEMP; [C/Fe] > + 0.7) data set 
to test our models. For each data set, we exclude stars of which 
dereddened colour ( BP − RP ) 0 < 0.5 and E ( B − V ) > 2. Then we 
divide each data set into turn-off metal-poor stars (( BP − RP ) 0 < 0.8) 
and giant metal-poor stars (( BP − RP ) 0 > 0.8). The total number of 
these stars are shown in third and fourth columns. Finally, we utilize 
the Classifier-T, Classifier-GC, and Classifier-GP to predict the 
metallicity of these turn-off and giant metal-poor stars, respectively, 
and get the corresponding completeness marked as completeness-T, 
completeness-GC, and completeness-GP. This table shows that the 
completeness from these data sets is very close to the results from 
our test set, especially for the halo stars. We also test our classifiers 
on CEMP stars as shown in the last row of Table 8 . As might be 
expected, the completeness of the classifiers on CEMP stars is not 
as high as other metal-poor stars, potentially because the enhanced 
carbon makes the metal-poor star spectra look more metal-rich. 
6  SUMMARY  
Metal-poor stars ([Fe / H] < −2) record the chemical enrichment 
history, accretion events, and early stages of the Milky Way. Ho we ver, 
they are rare and difficult to find. In this work, we train XGBOOST 
models to identify metal-poor stars in Gaia DR3. The input to 
the models are the coefficients of normalized and dereddened XP 
spectra. The classifiers split the stars into different [Fe / H] intervals 
of −2 . 5 < [Fe / H] < −2, −2 < [Fe / H] < −1.5, −1 . 5 < [Fe / H] < 
−1, −1 < [Fe / H] < + 1. Because of the extreme imbalance between 
positive and negative samples, we randomly exclude some negative 
samples and utilize the SMOTE algorithm to o v ersample the training 
sets and, then, utilize them to train the models. Finally, we get 
three classifiers, Classifier -T, Classifier -GC, and Classifier -GP and 
utilize them to identify the metal-poor turn-off and giant stars in 
Gaia DR3 with XP spectra. We present the histogram of the testing 
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Table 8. Prediction results for metal-poor stars that are confirmed by high-resolution spectra. 
Reference Region or type MP-Giants MP-turn-off Completeness-GC Completeness-GP Completeness-T 
Abohalima & Frebel ( 2018 ) Halo 266 115 98.9 per cent 82.3 per cent 54.8 per cent 
Li et al. ( 2022 ) Halo 152 79 92.8 per cent 71.1 per cent 55.7 per cent 
Roederer et al. ( 2014 ) Halo 68 111 100.0 per cent 77 per cent 56 per cent 
Jacobson et al. ( 2015 ) Halo 106 1 100.0 per cent 83 per cent 0 per cent 
Cohen et al. ( 2013 ) Halo 47 26 94 per cent 64 per cent 42 per cent 
Cayrel et al. ( 2004 ) Halo 25 0 100 per cent 48 per cent NAN 
Sestito et al. ( 2022 ) Bulge 8 5 100.0 per cent 37.5 per cent 40.0 per cent 
Howes et al. ( 2015 ) Bulge 21 0 100.0 per cent 71 per cent NAN 
Howes et al. ( 2016 ) Bulge 9 0 100.0 per cent 56 per cent NAN 
Schlaufman, Thompson & Casey ( 2018 ) Disc 0 1 NAN NAN 100 per cent 
Yoon et al. ( 2016 ) CEMP 106 34 84 per cent 55 per cent 41 per cent 

result and the completeness/purity distributions for these models in 
Figs 4 and 5 . 

In total, we obtained 200 000 metal-poor candidates with o v erall 
purity 44 per cent. This number of metal-poor candidates is around an 
order of magnitude larger than previous work (e.g. Best & Brightest, 
SkyMapper, and Pristine), which has similar or even better purity. 

We make the full catalogue available in the supplementary online 
material (Tables 1 , 2 , 3 ). 
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APPENDI X  A :  PREDI CTI ON  U N C E RTA I N T Y  
Shannon entropy is an indicator of the prediction uncertainty, which 
is defined as: 
Shannon entropy = − 3 ∑ 

i= 0 P i log 2 ( P i ) (A1) 
Shannon entropy is an indicator of prediction uncertainty, which can 
be utilized to filter the metal-poor candidates with high prediction 
uncertainty and increase the purity of catalogues. According to the 
definition A1 , Shannon entropy increases as the probabilities become 
evenly distributed and decrease as they become skewed distributed. 
Thus, higher Shannon entropy typically indicates greater prediction 
uncertainty. In this project, since we utilize multiclassification 
algorithm, each star in our catalogues is assigned four probabilities 
P 0 , P 1 , P 2 , and P 3 (summing to 1) that correspond to the probabilities 
of the star belonging to four metallicity intervals: [Fe / H] < −2, 
−2 < [Fe / H] < −1 . 5, −1 . 5 < [Fe / H] < −1, −1 < [Fe / H] < −1. 
By comparing Figs A1 and A2 , we see that most of our candidates 
have Shannon entropy smaller than 1.5, which indicates that most 
of the candidates have P 0 greater than 0.5, in other words, most of 
the candidates have low prediction uncertainty. Even so, we can still 
increase the purity of our catalogues by excluding the stars with 
high Shannon entropy (high prediction uncertainty). For example, as 
shown in Fig. A3 , by excluding the candidates with Shannon entropy 
> 0.8, we can get a faint ( BP > 16) metal-poor turn-off star catalogue 
with purity > 40 per cent. 

Additionally, our catalogues are also useful for the science goals 
requiring stars with [Fe / H] < −1 . 5 or [Fe / H] < −1 . 0. As shown 
in Table A1 , our Classifiers can also accurately and completely 
identify stars with [Fe / H] < −1 . 5 or [Fe / H] < −1 . 0. Comparing 
with finding stars with [Fe / H] < −2 . 0, finding stars with [Fe / H] < 
−1 . 5 or [Fe / H] < −1 . 0 is an easier task because there are many 
more positive samples in our training and testing sets for these 
tasks. 

It is important to see probability-distribution situations for the 
stars with [Fe / H] close to −2 because, as shown in Fig. 4 , there are 
a lot of stars with [Fe / H] close to −2 in our catalogues. Fig. A4 
shows [Fe / H] versus P 0 of testing sets. The left and middle panels 
are for Classifier-GC and Classifier-GP on bright stars (BP < 16), 
and the right panel is for Classifier-GP on faint stars (BP > 16) and 
Classifier-T. In these panels, red points refer to the stars predicted 
to be metal-poor, and blue points refer to those predicted to be non- 
metal-poor. The left and middle panels of Fig. A4 show that, as the 
increase of [Fe / H] from −2.5 to −1.5, P 0 sharply decreases from 1 to 
nearly 0, which indicates that the P 0 of Classifier-GC and Classifier- 
GP are sensitive to the metallicity variance (for bright stars). 
Additionally, there are a lot of blue points (false-ne gativ e samples) 
with [Fe / H] < −2 in the right panel of Fig. A4 , because we sacrificed 
the completeness of turn-off stars and faint giant stars to get higher 
purity, as discussed in Section 3 . Fortunately, ho we ver, most of the red 
points in the right panels are still metal-poor, which is a sign of high 
purity. 
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Table A1. Completeness and purity of the classifiers for stars with [Fe / H]< −1.5 or −1.0. 
[Fe/H] < −1.5 [Fe/H] < −1.0 

Completeness Purity Completeness Purity 
Classifier-T, BP < 16 36 per cent 79 per cent 61 per cent 90 per cent 
Classifier-T, BP > 16 34 per cent 75 per cent 55 per cent 91 per cent 
Classifier-GC, BP < 16, M G > 4 67 per cent 86 per cent 77 per cent 93 per cent 
Classifier-GC, BP < 16, M G < 4 17 per cent 74 per cent 17 per cent 80 per cent 
Classifier-GP, BP < 16, M G > 4 71 per cent 87 per cent 83 per cent 93 per cent 
Classifier-GP, BP < 16, M G < 4 27 per cent 66 per cent 31 per cent 72 per cent 
Classifier-GP, BP > 16, M G > 4 48 per cent 75 per cent 58 per cent 88 per cent 
Classifier-GP, BP > 16, M G < 4 31 per cent 75 per cent 21 per cent 80 per cent 

Figure A1. Shannon entropy distributions of the metal-poor candidates found by different Classifiers. 
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Figure A2. Distributions of mean P 0 , P 1 , P 2 , P 3 with 1 σ error bars of our three catalogues in different Shannon entropy intervals. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/4/10937/7471606 by U
niversity of C

hicago user on 23 July 2024



10952 Y . Y ao et al. 

MNRAS 527, 10937–10954 (2024) 

Figure A3. Number and purity of the remaining metal-poor faint ( BP > 16) 
turn-off candidates as a function of Shannon entropy threshold. 

APPENDI X  B:  E X T I N C T I O N  C O R R E C T I O N  O F  
T H E  BP/RP  COEFFI CI ENTS  
Since the BP and RP coefficients of the star with extinction will differ 
from the coefficients of the same star without extinction, here we try 
to directly correct the BP/RP coefficients for extinction effects. The 
extinction model we assume is the following. If C is the BP/RP 
coefficient vector of a star without extinction (the coefficient vector 
is normalized by the first coefficient). We assume that the effects of 
extinction can be described as 
C extincted − C = ( α + βC 0 ) E B−V + γE 2 B−V , (B1) 
where α, γ are vectors with the same number of elements as the 
length of the coefficient vector, and β is a matrix. The rationale 
behind this parametrization is that the first term in the right hand 
side of the equation is providing linear changes of coefficients with 
extinction and the extinction coefficients can differ for stars with 
different spectra (this is essentially a Taylor expansion). The final 
term allows some non-linearity of the coefficients with extinction 
(but without dependence on the coefficients themselves). 

To fit for the coefficients we take the APOGEE DR17 catalogue 
with Gaia BP/RP coefficients. For each star with extinction E B − V 

Figure A4. P 0 as a function of [Fe/H]. 
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> 0.05 and BP/RP coefficients C we find a nearest neighbour 
in the space of T eff , log g, [Fe / H] but with E B − V < 0.05. This 
provides us with the estimated unextincted BP/RP vector for that 
star. We then fit the relation (equation B1 ) between unextincted 
and extincted coefficients using regularized linear regression (as 
implemented in class LassoCV in sklearn package). We have 
found that the extinction coefficients mostly dependent on first few 
BP/RP coefficients (as those determine the broad spectral shape), 
thus we force the matrix β to only have first 10 non-zero rows. We 
provide the best fit α, β, γ for BP/RP in supplementary materials. 

The Fig. B1 demonstrates the effect of the extinction corrections. 
The top ro ws sho ws the differences between the coefficients of 
e xtincted v ersus non-e xtincted stars v ersus e xtinction. We can clearly 
see that several coefficients show strong dependence on E B − V as 
expected. The bottom panels show what happens after correcting 
the coefficients. We can see that the trends with extinction mostly 
disappeared. 

In this extinction correction we rely on the Schlegel, Finkbeiner & 
Davis ( 1998 ) 2D maps thus we essentially make an assumption that 
all of the stars are behind the dust layer. When this assumption is 
broken we expect that our corrections will not be appropriate. 

APPENDI X  C :  WSDB  A R C H I V E  QU E R I E S  
Following ADQL queries were utilized to cross-match LAMOST 
and APOGEE to Gaia DR3 source id with XP spectra on WSDB: 

Query utilized for APOGEE: 
select 
bp chi squared, 
rp chi squared, 
bp degrees of freedom, 
rp degrees of freedom, 
sfd ebv,gaiaedr3 phot g mean mag, 
source id,fe h,alpha m, 
logg,teff,ra,dec, 
gaiaedr3 parallax, 
gaiaedr3 parallax error, { COEFFS } 
from apogee dr17.allstar as a, 
gaia dr3.xp continuous mean spectrum as s 
where 
s.source id = a.gaiaedr3 source id 

Figure B1. Effect of extinction correction. The top panel show the difference between BP coefficients between stars with zero extinction and stars with same 
stellar atmospheric parameters, but significant extinction versus value of extinction. The bottom panel shows the same but after applying the best-fitting extinction 
correction from Section B . The red line shows where zero is. 
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and bp chi squared < 1.5 ∗bp degrees of freedom 
and rp chi squared < 1.5 ∗rp degrees of freedom 
Query utilized for LAMOST: 
with 
x as(select gaia source id, feh, teff, logg, 
rank() over 
(partition by gaia source id or- 

der by snrr desc) 
from lamost dr7.lrs stellar), 
y as (select gaia source id::bigint 
as sid,feh,teff,logg from x where rank = 1), 
z as (select feh,teff,logg, 
(select dr3 source id 
from gaia edr3.dr2 neighbourhood as g 
where g.dr2 source id = sid 

order by angular distance asc limit 1) 
as source id from y where sid > 0) 
select 
bp chi squared, rp chi squared, 
bp degrees of freedom, rp degrees of freedom, 
feh, ebv, phot g mean mag, 
g.source id, teff, 
logg, g.ra, g.dec, { COEFFS } 
from z as a, 
gaia dr3.xp continuous mean spectrum as s, 
gaia dr3.gaia source as g 
where g.source id = a.source id 
and s.source id = g.source id 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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