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ABSTRACT

Very metal-poor stars ([Fe/H] < —2) in the Milky Way are fossil records of early chemical evolution and the assembly and
structure of the Galaxy. However, they are rare and hard to find. Gaia DR3 has provided over 200 million low-resolution
(R =~ 50) XP spectra, which provides an opportunity to greatly increase the number of candidate metal-poor stars. In this
work, we utilize the XGBOOST classification algorithm to identify ~200000 very metal-poor star candidates. Compared to
past work, we increase the candidate metal-poor sample by about an order of magnitude, with comparable or better purity
than past studies. First, we develop three classifiers for bright stars (BP < 16). They are Classifier-T (for Turn-off stars),
Classifier-GC (for Giant stars with high completeness), and Classifier-GP (for Giant stars with high purity) with expected purity
of 52 per cent/45 per cent/76 per cent and completeness of 32 per cent/93 per cent/66 per cent, respectively. These three classifiers
obtained a total of 11 000/111 000/44 000 bright metal-poor candidates. We apply model-T and model-GP on faint stars (BP >
16) and obtain 38 000/41 000 additional metal-poor candidates with purity 29 per cent/52 per cent, respectively. We make our

metal-poor star catalogues publicly available, for further exploration of the metal-poor Milky Way.
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1 INTRODUCTION

Very metal-poor stars (VMP, [Fe/H]<—2'; Beers & Christlieb
2005) are fossil records of early chemical enrichment history of
the Universe. The most metal-poor stars are likely to be some
of the oldest stars that exist today, and their atmospheres contain
information about the abundance pattern of gas in the early Universe
(e.g. Frebel & Norris 2015). Chemical abundances of a large
sample of metal-poor stars can advance our understanding of early
nucleosynthesis and thus constrain the early stellar masses, rota-
tion rates, mixing processes, explosion energies, compact remnant
masses (neutron stars or black holes), thermohaline convection, and
other stellar properties (e.g. Heger & Woosley 2010; Limongi &
Chieffi 2012; Wanajo 2018; Jones et al. 2019; Ishigaki et al.
2021). Moreover, chemical abundances for these stars, together with
kinematic data, can be utilized to understand the accretion history,
and early formation of the Milky-Way (e.g. Hawkins et al. 2015; Das,
Hawkins & Jofré 2020; Horta et al. 2021; Belokurov & Kravtsov
2022; Conroy et al. 2022; Rix et al. 2022, see Helmi 2020 for a
review).

However, metal-poor stars are rare and difficult to find. Metal-
poor stars only make up ~0.1 percent of Milky Way stars (e.g.
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!'Standard nomenclature would be Very Metal-Poor for [Fe/H] < —2. From
here we will refer to very metal-poor as just metal-poor.
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Starkenburg et al. 2017; El-Badry etal. 2018), and only few thousands
of metal-poor stars have been spectroscopically confirmed in past
surveys (e.g. Li, Tan & Zhao 2018; Placco et al. 2018; Chiti et al.
2021a). The typical method to search for metal-poor stars is first
finding metal-poor candidates and then following up these stars with
medium/high-resolution spectra to get more detailed information
(e.g. Beers & Christlieb 2005). Objective-prism surveys, photometric
surveys, and some wide area spectroscopic surveys are the major
ways to search for metal-poor stars. Objective-prism surveys (Bond
1970; Bidelman & MacConnell 1973; Bond 1980) were once the
most effective method to search for candidate metal-poor stars, which
utilized low-resolution spectra (R & 400) to estimate the strength of
the Ca11 K line at 393.36 nm. The HK-I, HK-II, and Hamburg/ESO
surveys (Beers, Preston & Shectman 1985, 1992; Frebel et al. 2006;
Christlieb et al. 2008; Beers et al. 2017) found a total of ~4500 VMP
stars (Limberg et al. 2021a). More recently, photometric surveys
are utilized to identify candidate metal-poor stars. SkyMapper
Southern Sky Survey (SMSS) utilizes SkyMapper v filter that reflect
Call H&K absorption features, together with SkyMapper u, g, i
photometry to derive metallicities (Onken et al. 2019; Chiti et al.
2021a). Analogously, Pristine utilizes a narrow-band filter that is
centred on the Call H&K absorption lines, combined with SDSS
broad-band g and i photometry to derive metallicities (Starkenburg
et al. 2017; Aguado et al. 2019). Javalambre Photometric Local
Universe Survey (J-PLUS) (Cenarro et al. 2019) and the Southern
Photometric Local Universe Survey (S-PLUS) (Mendes de Oliveira
et al. 2019) are also photometric surveys which utilize four SDSS-
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like (g, r, i, z) and one modified SDSS (u), and seven narrow-
band filters to identify low-metallicity stars in the Galactic halo
(Placco et al. 2021; Galarza et al. 2022; Placco et al. 2022). Another
photometric selection method is Best & Brightest (Schlaufman &
Casey 2014) which utilizes all-sky APASS optical, 2MASS near-
infrared, and WISE mid-infrared photometry to identify bright metal-
poor star candidates through their lack of molecular absorption near
4.6 microns (Placco et al. 2019; Reggiani et al. 2020; Limberg
et al. 2021b). Besides the aforementioned dedicated efforts, there
are some large surveys that directly observe samples of stars at
intermediate resolution spectra and estimate their metallicity, e.g.
SEGUE, LAMOST, and RAVE surveys. These surveys have found
several thousand of metal-poor stars. The Sloan Digital Sky Survey
(SDSS; Eisenstein et al. 2011), and its Sloan Extension for Galactic
Understanding and Exploration (SEGUE; Yanny et al. 2009) survey
(R ~2000), SEGUE-1 and SEGUE-2, which motivated several high-
resolution follow-up campaigns (e.g. Aoki et al. 2012). The Large
Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)
survey (R &~ 1800; Deng et al. 2012), which has also triggered some
high resolution observations (e.g. Li et al. 2022). LAMOST-I(DR7)
released more than seven million spectra of stars in the Milky Way.
The RAdial Velocity Experiment (RAVE; R &~ 7000) (Kunder et al.
2017) delivered spectra for about 480 000 stars. However, the number
of candidate metal-poor stars found from each survey is about a few
dozens to at most a few thousand, which is too small for a statistical
investigation on metal-poor stars, especially for extremely metal-
poor ([Fe/H] < —3) or ultra metal-poor regime ([Fe/H] < —4).
Thus we need a survey that can provide a much larger number of
stellar spectra to enable us to find such objects.

The Gaia mission has brought a revolutionary change to Milky
Way astronomy, because it provides astrometric data for billions
of stars (Collaboration et al. 2016, 2022). In Gaia Data Release 3
(DR3), it released 200 million low-resolution XP spectra (R =~ 50;
De Angeli et al. 2023). Because of its low-resolution, the XP spectra
cannot provide detailed element abundances of stars. Additionally,
Gaia GSP-Phot also does not provide accurate metallicity
estimations for the most metal-poor stars (Andrae et al. 2023a).
However, some works have demonstrated that these low resolution
XP spectra can be utilized to estimate effective temperature, surface
gravity, and metallicity (e.g. Xylakis-Dornbusch et al. 2022; Andrae,
Rix & Chandra 2023b; Zhang, Green & Rix 2023). Thus, these 200
million low-resolution XP spectra give us an opportunity to greatly
increase the number of candidate metal-poor stars, if we can make
full use of them.

In this work, we identify metal-poor stars in the Gaia DR3 XP
spectra using the XGBOOST classification algorithm. In Section 2,
we describe the XP spectra and other data we utilized in this work. In
Section 3, we introduce XGBOOST, discuss the training process, and
evaluate the performance of the models. Then, we utilize XGBOOST
models to make a prediction on the XP spectra, shown and discussed
in Section 4. Then, we compare our work with other surveys and
projects and utilize existing high-resolution spectroscopic data to
validate the performance of our models in Section 5. Finally, we
summarize this work in Section 6.

2 DATA

2.1 Data sets

In this work, the data utilized include Gaia DR3 XP spectra (De
Angeli et al. 2023), Gaia DR3 photometry (Vallenari et al. 2023),
LAMOST DR7 (Cui et al. 2012) metallicity, and Apache Point
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Observatory Galactic Evolution Experiment (APOGEE; Majewski
et al. 2017) DR17 (Abdurro’uf et al. 2022) metallicity.

Gaia XP spectra: Gaia DR3 released low-resolution blue and
red photometer spectra (BP/RP or XP spectra) for 210 million stars.
Metallicities were derived from these spectra in the Gaia GSP-Phot,
but they are not accurate at low metallicities (Andrae et al. 2023a).
Thus, it is not efficient to directly utilize the GSP-Phot metallicity
[M/H] in Gaia DR3 to search for metal-poor stars. The XP spectra
have wide wavelength coverage (330 to 1050 nm) and low-resolution.
Because of its wide wavelength coverage, strong lines valuable for
metallicity estimation are covered in it, such as Call K and Call
infrared triplet, as well as broad-band or narrow-band photometry.
Thus, in theory, XP spectra can be utilized to detect metal-poor stars.
The XP spectra are released as Hermite function coefficients rather
than fluxes versus wavelength (Carrasco et al. 2021). In order to avoid
information loss (Carrasco et al. 2021), the input for XGBOOST model
are XP spectra coefficients, rather than corresponding sampled XP
spectra. XGBOOST requires the input vectors to be of the same length,
so we do not truncate the XP coefficients.

Before inputting the XP coefficients to the model, we first normal-
ize and deredden them. We normalized XP coefficients by their first
coefficient to remove apparent magnitude information. Additionally,
to take into account reddening, we determined the extinction coef-
ficients &, B, y to correct the normalized XP coefficient vectors C
for extinction Ceorreciea = C — (¢ + BC)Ep_y — y E3_,. Here, the
C is a truncated XP coefficient vector with first 10 elements, &, y are
vectors, and B is a matrix. We fit for a, 8, y by taking high extinction
stars in APOGEE and matching them with stars with similar log g
(surface gravity), Tes (effective temperature), and metallicity, but at
low extinction. The extinction utilized in this analysis is from a 2D
map by Schlegel, Finkbeiner & Davis (1998).

Gaia DR3 photometry: We also utilized Gaia DR3 photometry
(Vallenari et al. 2023) in this work. Gaia’s G band covers a
wavelength range from near ultraviolet (~330nm) to the infrared
(~1050 nm). The other two bands, denoted BP and RP, cover smaller
wavelength ranges, from approximately 330 to 680 nm, and 630 to
1050 nm, respectively.> We utilize the extinction law, as described
in https://www.cosmos.esa.int/web/gaia/edr3-extinction-law, to get
the intrinsic colour (BP — RP).

LAMOST DR7 and APOGEE DR17 metallicity: In order to
train our model to identify metal-poor stars, we need a sample of
stars that already have reliable metallicity estimates to provide true
labels. We utilized the spectroscopic metallicity from the LAMOST
DR7? and APOGEE DR17* LAMOST spectra (R ~ 1800) cover the
optical band from 370 to 900 nm. APOGEE spectra (R =~ 22 500)
are a good complement to LAMOST, because they cover the infrared
band from 1.51 to 1.70 um, which is more suited for dust extincted
regions, i.e. the Galactic disc and bulge. In total, we have 4 x 10°
LAMOST and 6.5 x 10° APOGEE stars.

Data queries and quality cuts: We utilized the Whole Sky
Database (WSDB)’ for all queries (see Appendix C for the ADQL
queries), which ingested the entire catalogue for APOGEE DR17
and LAMOST DR7. We did not do any significant quality cuts, but
we do not think this will significantly affect the results for a few
reasons. First, classification models are less sensitive to quality cuts
than regression models. Secondly, after comparing the overlapping

Zhttps://www.cosmos.esa.int/web/gaia/edr3-passbands

3https://dr7 Jamost.org/

“https://www.sdss4.org/dr17/
Shttps://www.ast.cam.ac.uk/ioa/wikis/WSDB/index.php/Main_Page
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Figure 1. Colour—magnitude diagram of our training and testing sets. The horizontal axis is the Gaia intrinsic colour (BP — RP)o, the vertical axis is the Gaia
absolute G magnitude. The LAMOST and APOGEE samples, which primarily comprise main-sequence turn-off, giants, and dwarfs stars, are shown in the left
and middle panels. The right panel shows the metal-poor stars from LAMOST and APOGEE. Metal-poor stars are primarily turn-off and giant stars. We divide
the training and testing set into two parts, according to (BP — RP)y, as shown in the red dashed line in the figure. On the left/right side of red dashed line are the

samples utilized to train the model to identify the turn-off/giants metal-poor stars.

very metal-poor stars in LAMOST and APOGEE, we found that
even if a star is flagged as bad spectral fitting solutions in either
APOGEE or LAMOST, it often still carries sufficient information
regarding being very metal-poor or not. For example, for LAMOST
we adopted quality flags of SNR >20 and feh_err <0.5 (e.g. Zhang,
Green & Rix 2023), which removed 22 per cent of our metal-poor
training set. However, overlapping APOGEE spectra suggested that
84 per cent of these were actually still very metal-poor. For APOGEE,
metal-poor stars run up against the edge of the spectral grid, so using
quality flags (e.g. FE_LH_.FLAG = 0) removed all stars with [Fe/H]
< —2.25 even though they are very metal-poor in LAMOST.

2.2 Training and testing sets

The Gaia XP spectra with the LAMOST or APOGEE metallicity
form the training and testing set in this work. We directly put
them together because the average difference between LAMOST
and APOGEE[Fe/H]is 0.007 dex, which is well below the typical
uncertainty in metallicity of LAMOST (>0.2 dex) or APOGEE (>
0.1 dex). Therefore, we conclude that these surveys are on similar
metallicity scales within the range of parameters tested. Before the
training process, we need to set some constraints on the training
and testing set by intrinsic colour (BP — RP),, magnitude BP and
extinction E(B — V).

For the training set, we only consider stars with (BP — RP),
> 0.5, because, as shown in the right panel of Fig. 1, we do not
have metal-poor samples with (BP — RP), < 0.5. Note that the
method utilized to calculate the (BP — RP), excludes almost all of
the E(B — V) > 2 stars, because the extinction coefficients should
not be extrapolated outside the extinction range of this algorithm, as
described in https://www.cosmos.esa.int/web/gaia/edr3-extinction-
law. Additionally, we exclude fainter stars (BP > 16) in the training
set, because the XP spectra with BP > 16 generally do not have high
signal-to-noise ratio (S/N < 300). Thus, for the training set, we only
consider stars that satisfy the following criteria:

1) 0.5<(BP—-RP)y <16

AHEB-V)<2

(1) BP < 16

However, for the testing set, we only constrain the data by 0.5 <
(BP — RP)j < 1.6 and E(B — V) < 2. We aim to see whether our
classifiers that are trained on bright stars (BP <16) can be utilized to
identify the faint metal-poor stars (BP >16). Thus, we include stars
that satisty the following criteria in the testing set:

1) 0.5 <(BP—RP), < 1.6

AHEB-V)<2

After applying cuts, we get 2.5 x 10 LAMOST starsand 4.5 x 10°
APOGEE stars with XP spectra available, of which 4088 and 1295,
respectively, are metal-poor stars with [Fe/H] < —2. In total, we
utilize 2.9 x 10° spectra for training and testing, of which 0.2 per cent
are metal-poor stars. We select 4 x 103 of them as testing set and
2.5 x 10° of them as training set.

Fig. 1 shows the colour—-magnitude diagram of our training and
testing sample. The horizontal axis is intrinsic colour (BP — RP)y,
the vertical axis is the absolute G magnitude (without any parallax
cut here). The left and middle panels show the stars from the
LAMOST and APOGEE surveys in the training and testing sets,
which comprises main-sequence turn-off, dwarf, and giant stars.
The right panel shows the distribution of metal-poor stars in the
training and testing set. The majority of metal-poor stars are turn-
off and giant stars. Fig. 1 suggests that our algorithm should only
confidently identify metal-poor giants and turn-off stars, because
metal-poor stars in other evolutionary stages would be extrapolation.
Note that it is harder to find very metal-poor turn-off stars than
giants. Because the resolution of XP spectra are low, the information
we can get from them are close to what we can get from narrow band
photometric surveys, but the photometric features of turn-off stars
are less metallicity dependent, because they are hotter and absorption
features are suppressed. Consequently, we utilize different models to
find metal-poor turn-off and giant stars. We divide the training and
testing sample into two parts, according to (BP — RP)y < 0.8 or >
0.8. The models trained on the former data set are responsible for
finding turn-off metal-poor stars, and the other models trained on the
latter data set are in charge of the giant metal-poor stars. As shown in
the right panel of Fig. 1, our data set does not have many metal-poor
dwarf stars, so we do not expect to find low-metallicity dwarf stars
in this work.
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Figure 2. (BP — RP), BP, and absolute Galactic latitude distribution of training, testing, and Gaia DR3 with (BP — RP)y > 0.5 and E(B — V) < 2 in this plot,
which have XP spectra. We only randomly select 2 per cent of the Gaia DR3 data with XP spectra to display in this figure.

The (BP — RP),, BP, and |b| distribution of Gaia DR3 data,
training, and testing set are shown in Fig. 2. Note that, we only
include Gaia DR3 data with (BP — RP)y > 0.5and E(B — V) <2
that have XP spectra in this plot. We see that the distributions of the
Gaia data included in this plot are pretty different from our training
and testing set, especially for the (BP — RP), and Galactic latitude
b distributions, which reminds us that the metal-poor candidates we
find may only be a small fraction of the total.

3 MODEL TRAINING AND VALIDATION

We choose the XGBOOST algorithm to find metal-poor stars because
it is a powerful and flexible algorithm that has been utilized in variety
of sub-fields of astrophysics (e.g. Li et al. 2021; He, Luo & Chen
2022; Lucey et al. 2023; Pham & Kaltenegger 2022; Rix et al. 2022).
The algorithmic principles for XGBOOST are not complex. In short,
XGBOOST repeatedly builds decision trees to fit the residuals from
the previous tree, until the residuals stop shrinking or it reaches the
maximum number of trees, which is a free parameter. Then it sums
the results from each tree, which are weighted by a learning rate
(n), and plug this value into the Sigmoid function, o (x) = H%, to
calculate the probability of the input belonging to a certain category.
For a detailed description of XGBOOST, see Chen & Guestrin (2016).

In this work, we utilize the coefficients of normalized and dered-
dened XP spectra together with their corresponding [Fe/H] from
LAMOST or APOGEE to compose training and testing sets to train
the XGBOOST model to identity metal-poor stars in Gaia DR3. We
describe the training process and the performance of the well-trained
models in this section.

3.1 Training process

In this work, we choose multiclassification algorithm to identify
the metal-poor stars. The metallicity ([Fe/H]) of the training and
testing samples ranges from —2.5 to +1.0. We utilize XGBOOST
models to classify the stars into four metallicity intervals: [Fe/H] <
—-2.0, —2.0 <[Fe/H]< —1.5, —1.5 <[Fe/H]< —1.0, and —1.0
<[Fe/H]< +1.0, with probabilities Py, P;, P,, P3, respectively.
For a star, when its Py is larger than the other probabilities, it will
be classified as metal-poor star. The prediction uncertainty can be
calculated from the probabilities of the multiclassification result, see
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Appendix A for more details. We choose the XGBOOST classification
algorithm, rather than the regression algorithm, for following four
reasons. (i) The minimum [Fe/H] of the training and testing set is
—2.5, because of LAMOST and APOGEE analyses limitations, even
though we do know there exist metal-poor stars with [Fe/H]< —2.5
in the data set. (ii) Regression would waste a lot of computational
power on deciding the specific metallicity value for non-metal-poor
stars ([Fe/H] > —2.0) which we do not care about. (iii) Unlike a
regression algorithm, classification algorithm can more easily trade
off completeness against purity. For samples that are difficult to
identify, for example, turn-off stars and faint stars, we can sacrifice
completeness for higher purity.

We utilize completeness and purity calculated on the test set to
evaluate the performance of the models. Completeness refers to how
completely our model can find all of the metal-poor stars. Purity
refers to the fraction of true metal-poor stars for the set predicted to
be metal-poor by our models. Completeness and purity are defined
as:

True positive
Completeness = — - M
True positive + False negative

Purit True positive @)
urity =
Y True positive + False positive

Positive and negative samples here refer to the metal-poor ([Fe/H]
<—2) and non-metal-poor ([Fe/H] >—2) stars, respectively. We
divide the input samples into two training sets, according to their
intrinsic colour: 0.5 < (BP — RP)y < 0.8 and 0.8 < (BP — RP),,
as shown in Fig. 1, to find metal-poor turn-off and giant stars,
respectively. Metal-poor giant stars make up 0.26 percent of the
training set with 0.8 < (BP — RP)y. However, metal-poor turn-off
stars are much rarer, only make up 0.06 per cent of the training set
with 0.5 < (BP — RP)y < 0.8. Thus, it could be expected that metal-
poor turn-off stars will be more difficult to find than metal-poor giant
stars.

In preliminary tests, we found that the extreme imbalance between
positive ([Fe/H] <—2) and negative ([Fe/H] >—2) samples badly
hinders our training process. To solve this problem, we processed
the training sets in the following two steps:

Step I: Utilize random undersampling to randomly remove over-
represented metal-rich stars in the training set. The negative ([Fe/H]
>—2) to positive ([Fe/H] <—2) ratio of the training set after
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completeness and purity can be read from the vertical lines. The purple curves
refer to the classifiers trained to find metal-poor Giants stars and the red curves
refer to the classifiers aimed to find metal-poor turn-off stars.

undersampling is defined as NPR. We will change the NPR of the
training set from 1 to the maximum value that the training set allowed.

Step II: Adopt oversampling algorithm Synthetic Minority Over-
sampling Technique (SMOTE) to populate the metal-poor stars in the
training set that has been under sampled. The SMOTE algorithm is
an over-sampling method which synthesizes new examples from the
minority class by selecting neighbouring examples in the feature
space and then synthesizing a new sample at the point along the line
connecting these two samples (Chawla et al. 2002).

We utilize RANDOMSEARCHCV from SCIKIT-LEARN (Pedregosa
et al. 2011) to tune the XGBOOST hyperparameters. When training
XGBOOST, a lot of hyperparameters can be adjusted, such as the
learning rate (1), the maximum depth of a tree, and the minimum
loss reduction required to make a further partition on a leaf node
of the tree (). In order to find the optimal set of parameters, we
utilize RANDOMSEARCHCV from SCIKIT-LEARN (Pedregosa et al.
2011). RANDOMSEARCHCYV will go through points that are randomly
selected from the predefined box in hyperparameter space, as shown
below, to find the optimal set of parameters.

(i) n_estimators: from 100 to 1200 in steps of 50

(ii) max_depth: from 2 to 15 in steps of 1

(iii) learning_rate: from 0.05 to 1 in steps of 0.05
(iv) subsample: from 0.5 to 1 in steps of 0.05

(v) colsample_bytree: from 0.3 to 0.9 in steps of 0.05
(vi) min_child_weight: from 1 to 20 in steps of 1
(vii) gamma: from O to 0.7 in steps of 0.02

In this work, finding metal-poor stars trades off purity for com-
pleteness. For each NPR, we utilize RANDOMSEARCHCYV to find the
optimal set of parameters. Fig. 3 shows the completeness and purity
of the well optimized model as a function of the training set NPR.
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The purple curves refer to the classifiers that are trained to find
metal-poor giant stars, and the red curves refer to the classifier to
find metal-poor turn-off stars. From Fig. 3 we see that increasing
the NPR of the training set will increase the purity but decrease
the completeness of the classifiers, and it is much easier to find
metal-poor giant stars than metal-poor turn-off stars, just as we
discussed before. The three vertical lines indicate the NPR that
are chosen for Classifier-GP (Green, 386), Classifier-GC (Yellow,
40), and Classifier-T (Blue, 1000). Classifier-GC (Giant Complete)
here denotes the model utilized to find metal-poor giants with high
completeness, Classifier-GP (Giant Pure) denotes the model utilized
to find metal-poor giants with high purity, and Classifier-T (Turn-
off) denotes the model utilized to find turn-off metal-poor stars. The
(completeness, purity) for our Classifier-T, Classifier-GC, Classifier-
GP are (40.0 percent, 47.2 per cent), (94.6 per cent, 47.2 per cent),
(72.7 percent, 74.1 per cent), respectively, which are derived by 3-
fold cross-validation.

3.2 Models evaluation

After the training process, we utilize the testing sets to evaluate the
performance of the classifiers on different [Fe/H], BP, (BP — RP)o,
and absolute Galactic latitude |b|. Typically, there are three factors
that effect the performance of the classifiers: stellar species (turn-off
or giants stars), brightness, and reddening. In this work, we utilize
intrinsic colour (BP — RP), to denote the type of stars, because
we do not have metal-poor dwarf stars in the training and testing
sets, as shown in Fig. 1. BP magnitude denotes the brightness of the
stars. Additionally, the absolute |b| can be utilized as an indicator of
reddening, because stars in low |b| regions, such as disc and bulge,
often have severe extinction.

The metallicity distribution for stars in the testing set classified as
metal-poor by different classifiers is shown in Fig. 4. The metallicity
distribution for True Positive (TP), False Positive (FP), and False
Negative (FN) samples in the testing set are shown in left and right
panels, respectively. Comparing the distributions of Classifier-GC
and Classifier-GP in the left panel, we see that the Classifier-GP
can effectively remove the FP stars, although it loses some TP stars.
On the other hand, the right panel shows that Classifier-GP loses
some metal-poor stars with [Fe/H]< —2.8, which is the cost of
high purity. This is why we provide Classifier-GC as supplement to
Classifier-GP. Classifier-GC provides a high completeness data set
and Classifier-GP provide a high purity data set. The good news for
Classifier-GC is that most of the misclassified metal-poor still have
rather low metallicity close to the [Fe/H] = —2 boundary.

The completeness and purity distributions of the classifiers on
different (BP — RP)y, BP, and |b| intervals are shown in Fig. 5. We
utilize different colours and symbols to denote different models, and
dashed and solid lines to denote faint or bright stars. Let’s discuss the
performance of the classifiers on bright stars (BP < 16) first. Panel (a)
and (d) show the performance of the classifiers as a function of (BP
— RP),. We see that Classifier-T has a comparable purity at the blue
end of the classifiers-GP and classifiers-GC, but its completeness is
lower than these two models, because it is harder to find metal-poor
turn-off stars, we have to sacrifice the completeness for high purity,
just as we discussed before. Panels (b) and (e) show the performance
of classifiers as a function of brightness. We can see that bright stars
tend to have higher purity and completeness than faint stars, because
bright stars typically have higher signal-to-noise ratio. Panels (c) and
(f) show the performance as a function of |b|. The completeness and
purity of our classifiers are lower in low-latitude region, because in
this region extinction makes classification more difficult even with
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Metallicity distribution of predicted metal-poor stars
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Figure 4. Left panel show the metallicity distribution of stars that are predicted to be metal-poor. The dashed line is the boundary of true positive samples and
false positive samples. Right panel shows the metallicity distribution of false-negative stars (i.e. metal-poor stars missed by XGBOOST).
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Figure 5. The completeness and purity of different classifiers as a function of intrinsic colour (BP — RP)o, BP band magnitude BP, and absolute Galactic

latitude |b|.

our coefficients extinction calibrations and higher contamination rate
of metal-rich ([Fe/H] > —2) stars decrease the purity statistically.
Note that, because there are few metal-poor turn-off stars at low or
high Galactic latitude in our training and testing sets, we increased
the bin size for turn-off stars in these two panels to avoid statistical

fluctuations.

MNRAS 527, 10937-10954 (2024)

Most of the stars with XP spectra released by Gaia DR3 are faint
(BP > 16), so it is worthwhile to evaluate the performance of the
classifiers, which are trained on bright stars, on the faint stars. We
utilize Classifier-T and Classifier-GP to make the prediction on faint
stars. As shown in the dashed lines and open symbols of Fig. 5,

the overall purity for Classifier-T is 29 per cent, for Classifier-GP is
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Figure 6. (BP — RP)o, BP, and |b| distribution of the metal-poor candidates we found in Gaia DR3 by different classifiers. Note that the |b| for giants is skewed
to very low |b| is because those are mostly towards the inner Galaxy (bulge/inner halo), as seen in Fig. 8.

52 percent. This purity is better than we expected, so we include
the faint stars in our catalogue. However, as shown in panels (d),
(e), and (f), the completeness for faint turn-off candidates is pretty
low, less than 10 percent, which means that the faint metal-poor
turn-off stars we have in our final catalogues only make up a very
small fraction of the total. Because of the low S/N ratio for faint stars,
it is harder for us to find the genuine metal-poor ones. Thus, under
this circumstance, purity has a higher priority than completeness.
We can make a Shannon-Entropy cut on the final results to increase
their purity. More details about the Shannon-Entropy cut are shown
in Appendix A.

4 RESULTS

We have three reliable classifiers, Classifier-T, Classifier-GC, and
Classifier-GP. We now classify the 200 million XP spectra released
in Gaia DR3, and obtain three corresponding candidate metal-poor
star catalogues, as shown in Tables 1, 2, and 3, which in total contain
200000 metal-poor candidates. The distributions of the metal-poor
candidates are shown in Fig. 6.

The colour-magnitude diagram for these candidate metal-poor
stars, without any parallax quality cut, is shown in Fig. 7. The
left/middle/right panel shows the colour-magnitude diagram for
the candidate metal-poor stars identified by Classifier-T/Classifier-
GC/Classifier-GP. From these panels we confirm that, in our cat-
alogues, the candidate metal-poor stars are dominated by turn-off
stars and giant stars. However, there are a small number of dwarf
stars present in the cooler regions of the main sequence, as shown
in the middle and right panels (M > 4, below the red dashed line).
These red dwarf stars may be wrongly classified as metal-poor stars,
because there are almost no red dwarf stars in the training sets
for Classifier-GP and Classifier-GC. Table 4 shows that red dwarfs
only make up a very small fraction of the metal-poor stars found
by Classifier-GC and Classifier-GP, i.e. 1.7 per cent for Classifier-
GC, 0.7 percent for Classifier-GP (BP < 16) and 6.5 per cent for
Classifier-GP (BP > 16). Since the risk of contamination is higher,
we include the absolute G band magnitude Mg in our final catalogues
if users would like to filter out any potential dwarf contamination.

The distance distributions and Galactic coordinate projections of
the candidates are shown in Figs 8 and 9. Fig. 8 shows the distance
distributions of the candidate metal-poor stars. The distances are
calculated by inverting the Gaia DR3 parallax. The distance to the

Galactic centre is marked by the red dashed line (~8 kpc from the Sun
Bland-Hawthorn & Gerhard 2016). The blue lines are the distribution
of candidate turn-off metal-poor stars, and the orange and green
lines are the distribution of candidate giant metal-poor stars. For
the distance distribution, comparing to candidate metal-poor giant
stars, the turn-off stars are located closer to the Sun, as expected
given their lower luminosities. The giants are distributed around the
Galactic centre. This result indicates that the Galactic centre contain
a large amount of metal-poor stars, i.e. the Milky Way hosts an
ancient, metal-poor, and centrally concentrated stellar population
(e.g. Rix et al. 2022). Fig. 9 shows the skymap of the candidate
metal-poor stars we found in Gaia DR3. Because the dereddening
process excludes almost all of the high E(B — V) stars (E(B — V) >
2), we do not obtain a lot of stars at low Galactic latitude, as shown
in Fig. 9. Bulge stars and halo stars are the dominant stars for our
sample.

The bright spots in the Galactic coordinate projections are globular
clusters (Harris 2010). After testing, we found that comparing
with Classifier-GC that includes many globular clusters with —1.5
<[Fe/H]<—1.0, Classifier-GP excludes all of the globular clusters
with average metallicity larger than —1.5 and most of the globular
clusters with average metallicity within —2 to —1.5, but keeps all
of the globular clusters with metallicity less than —2, which is a
demonstration that Classifier-GP has relatively higher purity than
Classifier-GC. Note that the Galactic coordinate projections are also
affected by the Gaia scanning law (see De Angeli et al. 2023) and
crowding issues for XP spectra in globular clusters.

We created Table 5 to concisely summarize the main points from
Section 3 and 4.

5 DISCUSSION

In this work, according to Table 4, we add up the numbers of metal-
poor candidates found by Classifier-T, Classifier-GC (BP < 16 at
all M), Classifier-GP (BP > 16 at all M) and obtained a total of
200 000 candidate metal-poor stars. Weighting each subsample by its
purity in Table 4, we expect the catalogue contains 88 000 genuine
metal-poor stars (overall purity of 44 per cent).

Though we only classify stars with [Fe/H] < —2, we can estimate
how many stars are <—3 or <—4. We assume the slope of the
metallicity distribution (Youakim et al. 2020; Chiti et al. 2021b),
although there are also much more pessimistic slopes of the metal-
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Table 1. Metal-poor turn-off candidates found by Classifier-T. Py, Pj, P2, P3 refer to the probability of a stars with —2.5 < [Fe/H] < —2,
—2 < [Fe/H] < —1.5, —1.5 < [Fe/H] < —1, —1 < [Fe/H] < +1. (This table is available in its entirety in the online supplementary material).

Candidates found by Classifier-T

Gaia DR3 source id (BP — RP)y Mg EB-YV) BP Py
(mag) (mag)  (mag)
6650038640545499264 0.59 3.66 0.07 15.65 0.97
6650111586271008256 0.58 2.96 0.06 16.34 0.84
6650144949575814016 0.61 —0.24 0.07 17.65 0.83
6650193499886281088 0.62 3.76 0.07 16.65 0.84
6650230470965151360 0.78 3.14 0.08 16.9 0.85

Py

0.03
0.15
0.15
0.14
0.1

P

0.0
0.0
0.0
0.01
0.0

P3

0.0
0.0
0.02
0.0
0.05

Shannon entropy

0.17
0.68
0.77
0.7

0.76

Table 2. Metal-poor giant candidates found by Classifier-GC. (This table is available in its entirety in the online supplementary material).

Candidates found by Classifier-GC

Gaia DR3 source id (BP — RP)y Mg EB-YV) BP Py
(mag) (mag) (mag)
4252405961205838208 0.81 —1.55 0.68 15.77 0.6
4252433105401980800 1.5 —8.02 0.61 15.65 0.39
4252454580242134912 0.84 —2.07 0.78 15.1 0.93
6032351905927100928 0.98 —0.61 0.42 15.69 0.56
6032356578851595392 1.13 nan 0.48 15.82 0.95

Py

0.01
0.21
0.0

0.02
0.05

P>

0.01
0.39
0.02
0.09
0.0

Ps3

0.38
0.01
0.04
0.34
0.0

Shannon entropy

1.12
1.57
0.42
1.4
0.3

Table 3. Metal-poor giant candidates found by Classifier-GP. (This table is available in its entirety in the online supplementary material).

Candidates found by Classifier-GP

Gaia DR3 source id (BP — RP)y Mg EB-V) BP Py
(mag) (mag)  (mag)
6032364236763645056 1.14 nan 0.51 18.31 0.45
6032371177430994048 1.24 —0.40 0.44 16.68 0.4
6032371349229711616 0.96 0.40 0.45 17.26 0.42
6032372964137450240 1.19 1.64 0.47 17.9 0.51
6032408874375184896 1.06 nan 0.58 15.92 0.5

Py

0.28
0.15
0.01
0.32
0.28

Py

0.02
0.39
0.16
0.12
0.16

P3

0.25
0.07
0.42
0.04
0.05

Shannon entropy

1.63
1.73
1.55
1.59
1.65

Classifier-GC

Mg (mag)

6.5

%.'8 09 1.0 11121314 1.5- 1.6
(BP - RP)o {mag)

7'8.50 0.55 0.60 0.65 0.70 0.75 0.80
(BP - RP)o (mag)

Figure 7. Colour—-magnitude diagram of metal-poor stars we found in Gaia DR3 by different classifiers. The horizontal axis is dereddened colour (BP — RP)g

and the vertical axis is the absolute G band magnitude (for stars without any parallax-quality cut).
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Table 4. The number, purity, and completeness of metal-poor candidates we found by Classifier-T, Classifier-GC, and Classifier-GP in

different M and BP ranges.

Classifier and brightness Number of stars Purity Completeness
Classifier-T (BP < 16) 10995 52 per cent 32 per cent
Classifier-T (BP > 16) 37763 29 per cent 8 per cent
MG<40ng>4 MG>4 MG<4 MG>4 MG<4 MG>4 M(;<4
Classifier-GC (BP < 16) 1954 109493 27 per cent 45 per cent 56 per cent 94 per cent
Classifier-GP (BP < 16) 291 43514 50 per cent 76 per cent 10 per cent 66 per cent
Classifier-GP (BP > 16) 2542 38780 30 per cent 54 per cent 9 per cent 30 per cent
Table 5. A summary table for Sections 3 and 4.
Summary of the models
Model name Classifier-T  Classifier-GC Classifier-GP Classifier-T Classifier-GP
(BP — RP)y <0.8 > 0.8 > 0.8 <0.8 > 0.8
BP <16 < 16 <16 > 16 > 16
Shannon entropy cutoff nan nan nan < 0.8 nan
Percentage of MP-stars 0.06 per cent ~ 0.28 per cent 0.28 per cent 0.06 per cent 0.28 per cent
NPR of training set 1000 40 386 1000 386
Test purity 47 per cent 47 per cent 74 per cent 40 per cent 53 per cent
Test completeness 40 per cent 94 per cent 65 per cent 8 per cent 7 per cent
Expected total purity 52 per cent 45 per cent 76 per cent 29 per cent 52 per cent
Expected total completeness 32 per cent 93 per cent 66 per cent 8 per cent 28 per cent
# Candidates 10995 111447 43805 37763 41322
800 I — estimated number of actual metal-poor stars are 600, 2800, 17 000,
1 1 Cassifier-GC and 64 000, respectively.
I [ dassifier-GP
7007 ; [ dassifierT
600 ‘%q 5.1 Comparing with other surveys
ﬂ&! Table 6 shows our results compared to previous photometric se-
500 1 Q , lections. Huang et al. (2022) utilized SMSS DR2 and Gaia EDR3

number per bin

N w B
(=] [ (o]
o o o
1 L 1
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Distance (kpc)

1071 10°

Figure 8. The distance distribution of the candidate metal-poor stars we
found in Gaia DR3. The red dashed line in the left panel refers to the Galactic
centre. Lines with different colour refer to the candidate metal-poor stars
identified by different classifiers.

poor tail of the metallicity distribution function by Bonifacio et al.
(2021):
) dN 3)
og ——— =
SaFem) ~ 7
y is 1 when —2.5 <[Fe/H]< —2.0 and 1.5 in —4 <[Fe/H]< —2.0.
Based on this assumption, we can estimate the number of the actual

metal-poor stars for these 188000 candidate in each metallicity
intervals. From —4 to —3.5, —=3.5t0o —3, —3to —2.5, —2.5to —2, the

photometry to estimate metallicity for 24 million stars. They obtained
half a million very metal-poor ([Fe/H] < —2.0) stars, and over
25000 extremely metal-poor ([Fe/H] < —3.0) stars. 48270 very
metal-poor candidates in Huang et al. (2022) are also predicted to
be very metal-poor by our Classifiers. Chiti et al. (2021a) utilized
SMSS DR2 photometry to derive photometric metallicities. They
present more reliable metallicities of ~280000 stars with —3.75
<[Fe/H]<—0.75 down to g = 17. 18640 of them are candidate
metal-poor stars ([Fe/H] < —2). After the validation by our training
and testing set, we found their purity to be 49 percent; and there
are 9218 stars also predicted to be metal-poor by our Classifiers.
Pristine survey does not publicly release their data, but according
to Starkenburg et al. (2017) and Youakim et al. (2020), Pristine has
covered a sky area of ~2500 deg?, at the time of those papers.
In each ~deg2 field, they find ~7 stars that have [Fe/H] < —2.5
down to magnitude of V = 18. The purity of Pristine to find
stars with [Fe/H] < —2.5 is 49 per cent (Aguado et al. 2019). The
Best & Brightest initiative selected over 11000 candidate VMP
([Fe/H] < —2) and EMP stars ([Fe/H] < —3), with an overall purity
of 30 percent and 5 percent, respectively (Schlaufman & Casey
2014; Placco et al. 2019; Limberg et al. 2021b). Comparing with
other surveys, our work increases the number of candidate metal-
poor stars by about an order of magnitude, but with similar or
higher purity. The comparison results are shown in Table 6. Recently,
Andrae, Rix & Chandra (2023b) utilized XGB0OST and XP spectra,
together with 38 narrowband colours derived from XP spectra and
broad-band surveys (Gaia: G, BP, RP and CatWISE: W, W,), to

MNRAS 527, 10937-10954 (2024)

20z AINnr €2 uo sesn oBeoly) Jo Aysieniun AQ 9091 Ly2/L€601/v/L2G/RI01HE/SEIUW WO dNO"0IWepED.)/:SdY WOy papeojumoq



10946 Y. Yao et al.
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Figure 9. The Galactic coordinate projections of the candidate metal-poor stars we found through Classifier-GC, Classifier-GP, Classifier-T. The area of healpix

pixel is 3.36 deg?.

derive metallicity, T.¢ and log g for 175 million stars. They reduced
the temperature-extinction degeneracy by introducing CatWISE W,
and W,, which extend to the infrared regions, into the model. The
metallicity were derived using the XGBOOST regression model and
the true labels came from APOGEE, and augmented by a set of very
metal-poor stars (Li et al. 2022). Because we both utilize XGBOOST
algorithm and deal with the same data set, it is worth comparing our

MNRAS 527, 10937-10954 (2024)

results with them. The comparisons are shown in Table 7. Tables 1
and 2 are two tables published by Andrae, Rix & Chandra (2023b).
In short, table 2 is a high accuracy subset of bright (BP < 16) giant
stars of table 1. Table 7 shows that, for giant candidates, Classifier-
GP has higher purity and more candidates comparing with tables 1
and 2 (only including giant candidates with BP < 16). The purity for
turn-off stars of table 1 is only 20 per cent, while our Classifier-T has
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Table 6. Comparison to other photometric surveys. The purity mentioned
above are obtained from the comparison with LAMOST DR7 and APOGEE
DR17. Except for Pristine, for which it is from Aguado et al. (2019), and not
for [Fe/H]< —2 but —2.5. Note that, for Classifier-T or Classifier-GP, 29 per
cent and 52 per cent are the purity for faint (BP > 16) stars, 52 per cent and
76 per cent are the purity for bright (BP < 16) stars.

Comparison to photometric selections

Photometic surveys #[Fe/H] < -2 Purity

SMSS (Turn-off) (Huang et al. 2022) 548518 10 per cent
SMSS (Giant) (Huang et al. 2022) 192487 42 per cent
SMSS (Turn-off) (Chiti et al. 2021a) 522 46 per cent
SMSS (Giant) (Chiti et al. 2021a) 18046 49 per cent
Best & Brightest (Placco et al. 2019; 11000 30 per cent

Limberg et al. 2021b)
Pristine (Starkenburg et al. 2017;
Youakim et al. 2020)

18 000«([Fe/H] < —2.5) 49 per cent

Classifier-T 48758 29-52 per cent
Classifier-GC 111447 45 per cent
Classifier-GP 85127 52-76 per cent

Table 7. Comparison to Andrae, Rix & Chandra (2023b). The purity
mentioned above are obtained from the comparison with LAMOST DR7
and APOGEE DR17.

Comparison to Andrae, Rix & Chandra (2023b)

Table/Model #[Fe/H] < -2 Purity
Andrae, Rix & Chandra (2023b) table 1 24000 23 per cent
(Turn-off, BP < 16)

Classifier-T (BP < 16) 10995 52 per cent
Andrae, Rix & Chandra (2023b) table 1 38000 70 per cent
(Giants, BP < 16)

Classifier-GP (BP < 16) 43805 76 per cent
Classifier-GC (BP < 16) 111447 45 per cent
Andrae, Rix & Chandra (2023b) table 1 51000 20 per cent
(Turn-off, BP > 16)

Classifier-T (BP > 16, Shannon entropy 37763 29 per cent
< 0.8)

Andrae, Rix & Chandra (2023b) table 1 35000 53 per cent
(Giants, BP > 16)

Classifier-GP (BP > 16) 41322 52 per cent
Andrae, Rix & Chandra (2023b) table 2 18000 70 per cent

a higher purity of 29 per cent to 52 per cent. We suggest our models
are better for finding metal-poor stars comparing with Andrae, Rix &
Chandra (2023b) for the following reasons: (i) We have larger number
of metal-poor stars, which provides the models a training set with
greater diversity. (ii) Their model is a regression model which is
trying to fit the metallicity for all stars, especially for metal-rich
stars. As a result, their model may not do as well for metal-poor
stars, which are only a very small part of the whole. In contrast, our
models are more specialized, and only focus on finding metal-poor
stars. (iii) Because we choose classification algorithm rather than
regression, we can trade off completeness against purity. For stars that
are difficult to classify, for example turn-off stars, we can sacrifice
the completeness to the higher purity with NPR (see Fig. 3) and
SMOTE. (iv) The Gaia XP spectra we utilized has been dereddened,
which may make our predictions more accurate, even without WISE
photometry. Out of 148 000 very metal-poor candidates in Andrae,
Rix & Chandra (2023b), there are 65 949 stars are found to be very
metal-poor with our Classifiers. Overall, we suggest that researchers
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and observers utilize this work together with Andrae, Rix & Chandra
(2023b) to decide what metal-poor candidates to follow up.

Zhang, Green & Rix (2023) utilized a forward model to estimate
stellar parameters ([Fe/H], T, and logg), revised distances and
extinctions for 220 million stars with XP spectra. However, there
is a trend that the metallicity derived by the forward model tend to
be overestimated at very-metal-poor end, which is even more biased
than the metallicity derived by Andrae, Rix & Chandra (2023b). We
think this bias is caused by the imbalance of the numbers of the
metal-poor and non-metal-poor stars in their training set.

Martin et al. (2023) used the spectroscopic and photometric
information of 219 million stars from Gaia DR3 to calculate
synthetic narrow-band CaHK magnitudes sensitive to metallicity.
CaHK magnitudes mimic the observations of Pristine surveys. They
derived the photometric metallicities for 30 million high signal-to-
noise FGK stars. They identified 200 000 very metal-poor candidates
and 8000 extremely metal-poor candidates ([Fe/H]phot < —2 and
[Fe/H]phot < —3, respectively). Because their data were released
while this paper was already in review, we do not consider their
results for our comparisons.

5.2 Validation with existing high-resolution spectra

There are plenty of high-resolution follow-up observations to the
candidate metal-poor stars that have been obtained by previous
studies. We can utilize these confirmed metal-poor stars to evaluate
the completeness of our XGB0OOST models. The results are shown
in Table 8. In this table, we utilize six metal-poor halo stars data
sets, three metal-poor bulge data sets, one metal-poor disc star, and
one carbon-enhanced metal-poor (CEMP; [C/Fe] > + 0.7) data set
to test our models. For each data set, we exclude stars of which
dereddened colour (BP — RP)y < 0.5 and E(B — V) > 2. Then we
divide each data set into turn-off metal-poor stars ((BP — RP)y < 0.8)
and giant metal-poor stars ((BP — RP), > 0.8). The total number of
these stars are shown in third and fourth columns. Finally, we utilize
the Classifier-T, Classifier-GC, and Classifier-GP to predict the
metallicity of these turn-off and giant metal-poor stars, respectively,
and get the corresponding completeness marked as completeness-T,
completeness-GC, and completeness-GP. This table shows that the
completeness from these data sets is very close to the results from
our test set, especially for the halo stars. We also test our classifiers
on CEMP stars as shown in the last row of Table 8. As might be
expected, the completeness of the classifiers on CEMP stars is not
as high as other metal-poor stars, potentially because the enhanced
carbon makes the metal-poor star spectra look more metal-rich.

6 SUMMARY

Metal-poor stars ([Fe/H] < —2) record the chemical enrichment
history, accretion events, and early stages of the Milky Way. However,
they are rare and difficult to find. In this work, we train XGBOOST
models to identify metal-poor stars in Gaia DR3. The input to
the models are the coefficients of normalized and dereddened XP
spectra. The classifiers split the stars into different [Fe/H] intervals
of —2.5 < [Fe/H] < —2, -2 < [Fe/H] < —1.5, —1.5 < [Fe/H] <
—1,—1 < [Fe/H] < +1. Because of the extreme imbalance between
positive and negative samples, we randomly exclude some negative
samples and utilize the SMOTE algorithm to oversample the training
sets and, then, utilize them to train the models. Finally, we get
three classifiers, Classifier-T, Classifier-GC, and Classifier-GP and
utilize them to identify the metal-poor turn-off and giant stars in
Gaia DR3 with XP spectra. We present the histogram of the testing
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Table 8. Prediction results for metal-poor stars that are confirmed by high-resolution spectra.

Reference Region or type MP-Giants ~ MP-turn-off Completeness-GC Completeness-GP ~ Completeness-T
Abohalima & Frebel (2018) Halo 266 115 98.9 per cent 82.3 per cent 54.8 per cent
Lietal. (2022) Halo 152 79 92.8 per cent 71.1 per cent 55.7 per cent
Roederer et al. (2014) Halo 68 111 100.0 per cent 77 per cent 56 per cent
Jacobson et al. (2015) Halo 106 1 100.0 per cent 83 per cent 0 per cent
Cohen et al. (2013) Halo 47 26 94 per cent 64 per cent 42 per cent
Cayrel et al. (2004) Halo 25 0 100 per cent 48 per cent NAN
Sestito et al. (2022) Bulge 8 5 100.0 per cent 37.5 per cent 40.0 per cent
Howes et al. (2015) Bulge 21 0 100.0 per cent 71 per cent NAN
Howes et al. (2016) Bulge 9 0 100.0 per cent 56 per cent NAN
Schlaufman, Thompson & Casey (2018) Disc 0 1 NAN NAN 100 per cent
Yoon et al. (2016) CEMP 106 34 84 per cent 55 per cent 41 per cent

result and the completeness/purity distributions for these models in
Figs 4 and 5.

In total, we obtained 200 000 metal-poor candidates with overall
purity 44 per cent. This number of metal-poor candidates is around an
order of magnitude larger than previous work (e.g. Best & Brightest,
SkyMapper, and Pristine), which has similar or even better purity.

We make the full catalogue available in the supplementary online
material (Tables 1, 2, 3).
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APPENDIX A: PREDICTION UNCERTAINTY

Shannon entropy is an indicator of the prediction uncertainty, which
is defined as:
3
Shannon entropy = — Z P; log,(P;) (Al)
i=0

Shannon entropy is an indicator of prediction uncertainty, which can
be utilized to filter the metal-poor candidates with high prediction
uncertainty and increase the purity of catalogues. According to the
definition A1, Shannon entropy increases as the probabilities become
evenly distributed and decrease as they become skewed distributed.
Thus, higher Shannon entropy typically indicates greater prediction
uncertainty. In this project, since we utilize multiclassification
algorithm, each star in our catalogues is assigned four probabilities
Py, Py, Py, and P3 (summing to 1) that correspond to the probabilities
of the star belonging to four metallicity intervals: [Fe/H] < —2,
—2 < [Fe/H] < —1.5, —1.5 < [Fe/H] < —1, —1 < [Fe/H] < —1.
By comparing Figs Al and A2, we see that most of our candidates
have Shannon entropy smaller than 1.5, which indicates that most
of the candidates have Py greater than 0.5, in other words, most of
the candidates have low prediction uncertainty. Even so, we can still
increase the purity of our catalogues by excluding the stars with
high Shannon entropy (high prediction uncertainty). For example, as
shown in Fig. A3, by excluding the candidates with Shannon entropy
> 0.8, we can get a faint (BP > 16) metal-poor turn-off star catalogue
with purity > 40 per cent.

Additionally, our catalogues are also useful for the science goals
requiring stars with [Fe/H] < —1.5 or [Fe/H] < —1.0. As shown
in Table Al, our Classifiers can also accurately and completely
identify stars with [Fe/H] < —1.5 or [Fe/H] < —1.0. Comparing
with finding stars with [Fe/H] < —2.0, finding stars with [Fe/H] <
—1.5 or [Fe/H] < —1.0 is an easier task because there are many
more positive samples in our training and testing sets for these
tasks.

It is important to see probability-distribution situations for the
stars with [Fe/H] close to —2 because, as shown in Fig. 4, there are
a lot of stars with [Fe/H] close to —2 in our catalogues. Fig. A4
shows [Fe/H] versus Py of testing sets. The left and middle panels
are for Classifier-GC and Classifier-GP on bright stars (BP < 16),
and the right panel is for Classifier-GP on faint stars (BP > 16) and
Classifier-T. In these panels, red points refer to the stars predicted
to be metal-poor, and blue points refer to those predicted to be non-
metal-poor. The left and middle panels of Fig. A4 show that, as the
increase of [Fe/H] from —2.5 to —1.5, P, sharply decreases from 1 to
nearly 0, which indicates that the P of Classifier-GC and Classifier-
GP are sensitive to the metallicity variance (for bright stars).
Additionally, there are a lot of blue points (false-negative samples)
with [Fe/H] < —2in the right panel of Fig. A4, because we sacrificed
the completeness of turn-off stars and faint giant stars to get higher
purity, as discussed in Section 3. Fortunately, however, most of the red
points in the right panels are still metal-poor, which is a sign of high
purity.
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Table A1. Completeness and purity of the classifiers for stars with [Fe/H]< —1.5 or —1.0.

[Fe/H] < —1.5 [Fe/H] < —1.0
Completeness Purity Completeness Purity
Classifier-T, BP < 16 36 per cent 79 per cent 61 per cent 90 per cent
Classifier-T, BP > 16 34 per cent 75 per cent 55 per cent 91 per cent
Classifier-GC, BP < 16, Mg > 4 67 per cent 86 per cent 77 per cent 93 per cent
Classifier-GC, BP < 16, Mg < 4 17 per cent 74 per cent 17 per cent 80 per cent
Classifier-GP, BP < 16, Mg > 4 71 per cent 87 per cent 83 per cent 93 per cent
Classifier-GP, BP < 16, Mg <4 27 per cent 66 per cent 31 per cent 72 per cent
Classifier-GP, BP > 16, Mg > 4 48 per cent 75 per cent 58 per cent 88 per cent
Classifier-GP, BP > 16, Mg <4 31 per cent 75 per cent 21 per cent 80 per cent

Classifier-GC: Shannnon Entropy Distribution

0.0

0.5

Number of candidates

1.0 1.5
Shannon Entropy

14000

12000

10000

8000

6000

4000

2000

Classifier-GP: Shannnon Entropy Distribution

Classifier-T: Shannnon Entropy Distribution

0.5

1.0 1.5

Shannon Entropy

2500

- N
u (=}
o o
o o

ot
[=]
[=3
o

Number of candidates

500

0.5 1.0 1.5
Shannon Entropy

Figure A1. Shannon entropy distributions of the metal-poor candidates found by different Classifiers.
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Figure A2. Distributions of mean Py, P, P>, P3 with 1 o error bars of our three catalogues in different Shannon entropy intervals.
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APPENDIX B: EXTINCTION CORRECTION OF
THE BP/RP COEFFICIENTS

Since the BP and RP coefficients of the star with extinction will differ
from the coefficients of the same star without extinction, here we try
to directly correct the BP/RP coefficients for extinction effects. The
extinction model we assume is the following. If C is the BP/RP
coefficient vector of a star without extinction (the coefficient vector
is normalized by the first coefficient). We assume that the effects of
extinction can be described as

Cex[incted —C= (0[ + ,BCO)EBfV + VEtzi_v7 (Bl)

where «, y are vectors with the same number of elements as the
length of the coefficient vector, and B is a matrix. The rationale
behind this parametrization is that the first term in the right hand
side of the equation is providing linear changes of coefficients with
extinction and the extinction coefficients can differ for stars with
different spectra (this is essentially a Taylor expansion). The final
term allows some non-linearity of the coefficients with extinction
(but without dependence on the coefficients themselves).

To fit for the coefficients we take the APOGEE DRI17 catalogue
with Gaia BP/RP coefficients. For each star with extinction Ep _ y

[Fe/H] v.s. Py of Classifier-GC (BP < 16)
i b
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Figure A4. Py as a function of [Fe/H].
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> 0.05 and BP/RP coefficients C we find a nearest neighbour
in the space of T.ss,logg, [Fe/H] but with Ez_y < 0.05. This
provides us with the estimated unextincted BP/RP vector for that
star. We then fit the relation (equation B1) between unextincted
and extincted coefficients using regularized linear regression (as
implemented in class LassoCV in sklearn package). We have
found that the extinction coefficients mostly dependent on first few
BP/RP coefficients (as those determine the broad spectral shape),
thus we force the matrix g to only have first 10 non-zero rows. We
provide the best fit «, 8, y for BP/RP in supplementary materials.

The Fig. B1 demonstrates the effect of the extinction corrections.
The top rows shows the differences between the coefficients of
extincted versus non-extincted stars versus extinction. We can clearly
see that several coefficients show strong dependence on Ep_y as
expected. The bottom panels show what happens after correcting
the coefficients. We can see that the trends with extinction mostly
disappeared.

In this extinction correction we rely on the Schlegel, Finkbeiner &
Davis (1998) 2D maps thus we essentially make an assumption that
all of the stars are behind the dust layer. When this assumption is
broken we expect that our corrections will not be appropriate.

10953

APPENDIX C: WSDB ARCHIVE QUERIES

Following ADQL queries were utilized to cross-match LAMOST
and APOGEE to Gaia DR3 source id with XP spectra on WSDB:

Query utilized for APOGEE:

select

bp-chi_squared,

rp-chi_squared,

bp_degrees_of_freedom,

rp-degrees_of_freedom,

sfd_ebv,gaiaedr3_phot_gmean_mag,

source_id, fe h,alpham,

logg, teff,ra,dec,

gaiaedr3_parallax,

gaiaedr3_parallax._error, {COEFFS}

from apogee_drl7.allstar as a,
gaia_dr3.xp_continuous_mean_spectrum as s

where
s.source_id = a.gaiaedr3_source_id

C-Co

Ccorrected'CO

T o Tl 5
: !

co o by by g by by by v b Sty by 8y vy S Py S Y b S

oL, Wt
(N 3
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Figure B1. Effect of extinction correction. The top panel show the difference between BP coefficients between stars with zero extinction and stars with same
stellar atmospheric parameters, but significant extinction versus value of extinction. The bottom panel shows the same but after applying the best-fitting extinction

correction from Section B. The red line shows where zero is.
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and bp.chi_squared < 1.5xbp.-degrees_of_freedom order by angular.distance asc limit 1)

and rp-chi_squared < 1.5%xrp.-degrees_of_freedom as source_id from y where sid>0)

Query utilized for LAMOST:

with

x as(select gaila._source_id, feh, teff, logg, select

rank () over bp_chi_squared, rp._chi_squared,

(partition by gaia_-source_id or- bp-degrees_of _freedom, rp.-degrees_of_freedom,
der by snrr desc) feh, ebv, phot_g.mean._mag,

from lamost_dr7.lrs_stellar), g.source_id, teff,

logg, g.ra, g.dec, {COEFFS}

y as (select gaia_source_id::bigint

as sid, feh,teff,logg from x where rank = 1), from z as a,
gaia_dr3.xp_continuous_mean_spectrum as s,
gaia_dr3.gaia_source as g

z as (select feh,teff, logg, where g.source_id = a.source_id

(select dr3_source_id and s.source_id = g.source_id

from gaia_edr3.dr2 neighbourhood as g

where g.dr2_source_id = sid This paper has been typeset from a TEX/IATEX file prepared by the author.
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