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Abstract—Various techniques in computer vision have been
proposed for water level detection. However, existing methods
face challenges during adverse conditions including snow, fog,
rain, and nighttime. In this paper, we introduce a novel
approach that analyzes images for water level detection by
incorporating a deblurring process to increase image clarity.
By employing real-time object detection technique YOLOVS,
we show that the proposed approach can achieve significantly
improved precision, during both daytime and nighttime under
under challenging weather circumstances.

Index Terms—Improved YOLOVS5s, Target detection, Intelli-
gent agriculture, Water level

I. INTRODUCTION

Monitoring water levels is essential for managing water
resources and ensuring environmental safety. Water level data
is often crucial for accurately predicting flood control in areas
near rivers, seas, and lakes [1], [2]. Continuous measuring
of water levels is increasingly essential for preventing urban
flooding and minimizing associated damages and resulting
recovery costs [3]-[5]. In coastal regions, water level changes
can also be introduced by movements of large ships such
as supertankers, posing unique environmental risks due to
potential flooding, increased erosion, and damage to ma-
rine ecosystems and infrastructures [6]. Awareness of these
changes is critical in understanding and managing the impact
of ship movements.

Water level measurement methods can generally be cat-
egorized into two traditional approaches: contact-based and
non-contact-based. Contact-based approaches are based on
various sensors placed directly in the water, such as sub-
mersible pressure sensors, to measure water levels. While
these sensors are often convenient, with long proven records,
they present potential challenges, including high costs, instal-
lation difficulties, and maintenance requirements [9]. Further,
they are often subject to fouling accumulation, leading to
inaccurate readings [11]. In contrast, non-contact sensors like
radar or ultrasonic sensors offer several advantages. They
require much less maintenance and consume significantly
less power [10]. However, installation limitations exist, as
mounting them on bridges or poles can introduce measure-
ment errors due to vibrations generated by these structures
[10]. Recently, numerous computer vision techniques have

been developed as non-contact approaches, enhancing the
precision of water level detection methods [11], [15]. How-
ever, these methods need help under challenging weather
conditions, which can compromise the quality of images or
videos of the measuring gauges. Such degradation, in turn,
can lead to inaccuracies in determining the water level.

To address the shortcomings of computer vision ap-
proaches in adverse weather conditions, we have developed a
cost-effective method for detecting water levels that perform
effectively across various weather conditions while leverag-
ing existing commonly available, off-the-shelf security cam-
eras. After gathering video data from security cameras, we
first assess the image quality using a threshold based method.
For images with quality falling below the given threshold,
we then enhance the image quality by perform deblurring.
Subsequently, images that meet the quality standards will
be fed into our waterline detection scheme based on the
YOLOVS framework [12] [13], known for its speed and
precision.

The rest of this paper is structured as follows. Section
IT presents the literature review of existing methods for
staff gauge detection and water level monitoring. Section
IIT details the proposed approach. Section IV presents the
performance evaluation, followed by the conclusion and
future work in Section V.

II. RELATED WORK

Low image or video quality poses significant challenges in
methods designed for detecting water levels. To address this
problem, numerous computer vision techniques have been
developed and refined. [7], [11], [14]. The authors in [14]
tackle image noises by applying a Gaussian filter to smooth
gray-scale images and remove noises. To further enhance
accuracy, they also introduce photogrammetric methods to
track camera movements, ensuring precise water level mea-
surements in the object space. However, the authors note
that identifying the water line in images of water gauges
is challenging at night due to low light. Additionally, the
proposed water line detection algorithm requires the water
to be relatively still to work effectively.

In [7], the authors employ the Otsu technique for straight-
forward image segmentation, separating the foreground and
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Fig. 1: System overview

background based on a threshold value. To enhance image
contrast, histogram equalization (HE) is employed. However,
HE methods tend to suffer from over-enhancement and
unnecessary noise amplification, leading to a morphology
filter. The morphology filter, prevalent in image segmen-
tation, excels in smoothing boundaries in noisy conditions
[8]. While the controlled setup of the study in [7] yields
highly accurate results, the contrasting reports from [11]
demonstrate reduced performance, attributed to image noise
and bias towards objects with more significant variances.

In [15], three water level detection methods were evalu-
ated, the difference method, dictionary learning, and a con-
volutional neural network (CNN) approach. The difference
method relies on the stationary nature of the measuring ruler
and detects water level changes by comparing consecutive
video frames. Dictionary learning segments the image into
water and ruler regions to determine the water level. The
CNN method, while similar to dictionary learning, utilizes
a convolutional neural network for enhanced precision and
reliability. However, the study does not elaborate on the
performance of these methods under adverse weather con-
ditions. As we will explain further in the paper, the key
difference between our proposed approach and this system
is that our proposed method addresses water level detection
limitations during nighttime and adverse weather conditions.
By combining image analysis, deblurring techniques, and
the YOLOVS5 computer vision technique, we aim to enhance
the accuracy and reliability of water level detection in
challenging scenarios.

III. WATER LEVEL MONITORING IN ADVERSE WEATHER

This section presents our proposed system for real-time
water level detection. Our goal is to detect the water level
accurately and continuously in a given environment from
collected videos, even in poor weather conditions, including
rainy and snowy situations. Fig. 1 depicts the system struc-
ture.

Fig. 2: Measuring staff gauge

A. System Overview

In the proposed system, a standard security camera is
utilized to focus on a staff gauge with markers that are
evenly spaced. Videos captured by the camera are analyzed
to detect the water level against the staff gauge. In our
deployment, an in-house-built staff gauge, measuring 220
cm in total length, is employed, with a specific 25-centimeter
segment used as a known reference measurement. The gauge
setup is shown in Fig. 2. The segment boxed with red lines
serves as the reference. During the processing of the gathered
images, the image quality of the staff gauge is first assessed.
Should the image quality be considered below an acceptable
threshold, the Restoration Transformer (Restormer) method,
as described in [16], is applied for image deblurring. Next,
the YOLOVS method detects the staff gauge and reference
segment. In the final step, pixel calculations are performed
to measure the size of the staff gauge above the water, which
is then subtracted from the total length of the staff gauge to
determine the waterline. This sequential workflow confirms
precise measurements, even in challenging image conditions.

B. Image Quality Check

This section explains the method for evaluating the quality
of images taken in foggy conditions. This evaluation process
can also apply to images captured in various other weather
scenarios. For image condition assessment, our approach
uses the Peak Signal-to-Noise Ratio (PSNR) [17]. PSNR is
a quantitative metric used in image processing to measure
the similarity and assess the quality of a reconstructed
image compared to its original version. The formulation is
presented in Equation (1). A higher PSNR indicates less
distortion and higher image quality. PSNR is derived by
computing the logarithm of an image’s Mean Square Error
(MSE). For RGB color images, the calculation of MSE
extends to M x N dimensions, as demonstrated in Equation
(2). The PSNR value was generated using the ratio of the
log-transformed maximum possible pixel value (MAX) to
the MSE. Clear weather images captured during day and
night are selected as reference images (/) to check the
image quality; differing levels of foggy noise were added to
these images, and then their PSNR values were calculated.
By comparing the PSNR values of fog-affected images (1),
significant changes are identified that indicate the threshold
level for foggy conditions.
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o Image Processing With Noise-Augmented Techniques:
To start the image augmentation process, a set of 180
images was selected for evaluation, and the PSNR of
each image was calculated as the first step. These
images were bifurcated into two groups: 90 captured
at nighttime and 90 in the daytime. In each set, nine
images were associated with a similar noise coefficient
ranging from 0.1 to 0.9; the average PSNR number
for each coefficient was calculated. The variability in
the noise coefficients allowed for the simulation of a
range of fog densities, from light mist to heavy fog,
creating a comprehensive testing environment. Table I
details the average PSNR values calculated for each
noise coefficient, linked with the visual representations
in Fig. 3 and Fig. 4. These figures show the application
of foggy noise coefficients using Albumentations, a
method highlighted in [18]. Albumentations, a com-
prehensive open-source library for image augmentation,
utilizes various techniques to simulate diverse weather
conditions. This is achieved by applying a range of aug-
mentation coefficients, enabling precise data adjustment
and predictions for specific weather scenarios, including
rainy, snowy, or foggy conditions.

A = max |aj;1 —aj 3)
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TABLE I: PSNR calculations for different times of day

Daytime Nighttime
Picture Name | Average PSNR | Picture Name | Average PSNR
do.1 3591 n0.1 48.50
do.2 35.47 n0.2 48.13
do.3 34.71 n0.3 48.05
do.4 31.42 n0.4 47.87
do.s 29.13 n0.5 29.71
do0.6 28.55 n0.6 29.12
do.7 28.25 n0.7 28.74
do.8 28.10 n0.8 28.31
do.9 27.97 n0.9 28.14

o Finding the Threshold: PSNR data for day and night
images collected from the previous section were ana-
lyzed to find the threshold. A significant change in the
PSNR value, according to Equation (3), was evident
when examining the data in Table I. This change was
particularly pronounced during the nighttime at point
n0.5, with a significant drop of 18.2 in the PSNR value
compared to the previous point, n0.4. Additionally, in
Table I, at point d0.4, there was a 3.3 PSNR drop
compared to the preceding point, d0.3. As a result,
the threshold point was established as n0.5 for the

(2) d0.7 (h) d0.8 (i) d0.9

Fig. 3: Day images with different levels of fog noise

(g) n0.7

(h) n0.8 (i) n0.9

Fig. 4: Night images with different levels of fog noise

nighttime case, and for the daytime, the threshold point
was determined to be d0.4. These noticeable reductions
in the case studies demonstrate the significance of
understanding such variations, especially in tasks related
to image deblurring, and highlight the importance of
setting informed thresholds for decision-making when
working with limited data.

C. Deblurring Images

The deblurring process must be implemented if the im-
age quality does not meet the acceptable threshold. We
use Restoration Transformer (Restormer) [16], an advanced
image-denoising model leveraging deep learning and trans-
former technology. Restormer introduces a multi-deconv
head transposed attention module (MDTA) for enhanced
efficiency and a deep convolution gated feed-forward net-
work (GDFN). It processes images through initial low-level
feature extraction via a 3 x 3 convolution, followed by a
4-level encoder-decoder structure for deeper feature devel-
opment. The model features multiple transformer blocks in
its encoder-decoder stages, with MDTA replacing standard
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Fig. 5: Images augmentation for different weather conditions

multi-head self-attention for effective high-resolution image
processing. MDTA utilizes deep convolution for generating
query (gq), key (k), and value (v), described in Equations
(4) and (5). GDFN within the transformer block ensures
selective information passage, filtering features through a
gating mechanism.

X = W, Artention(k,q,9) + X “)
Attention(§,k,9) = v So ftmax (k %) (5)

D. Staff Gauge Detection by YOLOvS

Once the image quality reaches an acceptable level, the
dimensions of the staff gauge and the reference part above
the waterline are identified and measured in pixels. This
study uses the YOLOvVS model [13] is utilized to detect the
staff gauge. The YOLOVS architecture comprises four main
components: the input end, the backbone network, the neck
feature fusion layer network, and the output end, as shown in
Fig. 6. The input end processes the image data, employing
Mosaic data enhancement and adaptive scaling. The back-
bone network, which includes Conv, C3, and SPPF mod-
ules, is the primary component for feature extraction. The
C3 module within this network integrates residual blocks.
The neck network further refines these features, aiming to
improve their efficacy for object detection. At the output
end, the model uses the CIOU loss function and NMS to
precisely identify object locations and categories. YOLOVS’s
structured design is focused on achieving accurate object
detection [19], [20].

Our model was trained using a dataset of 800 annotated
images, including two specific labels: one representing the
entire staff gauge and another identifying the 25-centimeter
measurement indicator, an essential reference. The dataset
was divided into training and validating sets in an 8:2 ratio.

E. Pixel Calculation

First, a reference of the staff gauge with a known length
(25 cm) in the real world is selected, and this segment
is measured in pixels within the image using a YOLOvS
detection coordinate box. The real-world length is then
divided by its pixel length to obtain a conversion factor,
which allows for translating pixel measurements into actual
sizes. To calculate the water level, as shown in Equation
(6), the total length of the staff gauge, which is 220 cm,
is taken, and the portion above water, measured in pixels,
is subtracted from it after converting to centimeters using

Backbone

Fig. 6: The YOLOVS network model diagram (adapted from
[201)

the conversion factor. The length of the gauge submerged
underwater indicates the waterline depth.

_ Staffgauge(pixellength) x 0.25m

Waterlevel =2.20
aterlevel(m) " Reference(pixellength)

©)

IV. PERFORMANCE EVALUATION AND DISCUSSION

Based on the image augmentation method, this section
assesses the deblurring method’s performance. Additionally,
the performance of the YOLOvVS detection method with the
validation data is analyzed.

A. Methodology and Augmentation Techniques:

Nine groups of images with different noise coefficients for
rainy and snowy weather during both daytime and nighttime
were generated. The predictions were then meticulously
compared to the actual water level value, and the error
value was calculated. Afterward, a deblurring method was
applied to these images, followed by another comparison
with the actual water level value. Finally, average error
calculations before and after the deblurring action were
evaluated. The weather augmentation method from Albumen-
tations called RandomRain and RandomSnow, were used for
image augmentation techniques. This method generated nine
augmented coefficients (with values ranging from 0.1 to 0.9);
as shown in Fig. 5, there are augmented image examples.

B. Improvement in Rainy and Snowy Weather:

According to Fig. 7 and Table II, significant improvements
are evident in rainy weather conditions. Specifically, during
rainy nights, there is a notable improvement of 65.75%, and
during rainy days, we observe a substantial improvement of
49.75%. In contrast, there is an improvement of 16.86% for
snowy days and 15.60% during snowy nights.

C. Augmented Noise Impact on Water Level Accuracy

The image augmentation technique involves introducing
elements like raindrops, snowflakes, and fog into the images.
Although this approach helps create a more diverse set of
images for analysis, it introduces a significant challenge. The
randomness of these elements can interfere with accurately
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Fig. 7: Error in different weather conditions

detecting specific details in the images. This is particularly
difficult when determining the pixel size of the staff gauge
and its essential reference part.

The increased error rate observed in Fig. 7d (noise co-
efficients of 0.7, 0.8, and 0.9) is primarily the result of
snow noise, which makes the staff gauge reference part hard
for YOLOVS to detect. This interference from snow noise
effectively hides the essential features needed for precise
water level measurement. This leads to a rise in the error
rate as the detection algorithms fail to determine the hidden
details against the snowy backdrop accurately.

D. YOLOv5 Detection Evaluation

This experiment used precision and recall as evaluation
indices of YOLOVS model training. Precision (P) is the ratio
of the positive samples that are predicted to be correct.

TP
TP+FP
TP (True Positive) and FP (False Positive) are correct and
incorrect predictions of positives, respectively. FN (False
Negative) and TN (True Negative) are incorrect and correct

Precision =

(O]

predictions of negatives. Recall (R) is the percentage of
positive samples correctly predicted [22].

TP

Recall = ————
TP+ FN

®)

Using Equations (7) and (8), our model shows a precision
of 85% and a recall of 100%. Fig. 8 indicates, from testing
over 400 epochs, that APsq (average precision at 50% IoU) is
99.2%, and APs.95 (mean precision from 50% to 95% IoU) is
68.7%. Fig. 9 shows our model’s effective recognition of the
staff gauge and reference in example images, as referenced
in [21].

TABLE II: Percentage improvement of an average error

Weather condition | Time | Improvement rate
Rainy Day 49.75
Rainy Night 65.75

Snowy Day 16.86
Snowy Night 15.60
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Fig. 9: Image of the YOLOVS model detection

V. CONCLUSION AND FUTURE WORK

This paper presents a novel method for accurate water
level detection in adverse weather, utilizing computer vision
and image deblurring techniques, including the YOLOVS
framework. This approach overcomes the limitations of tradi-
tional measurement methods, proving particularly effective in
challenging conditions like nighttime and inclement weather.
Our comprehensive system, which involves assessing image
quality and applying the Restoration Transformer for deblur-
ring, showed marked improvements in accuracy, especially
in rainy conditions.

In future work, the proposed method will be further refined
to improve its efficacy during snowy weather conditions,
where the observed improvements are currently minimal.
The expansion of the dataset, along with the integration
of advanced machine-learning techniques, is planned to
strengthen the model’s robustness and precision. The ultimate
goal is to develop a universally adaptable and highly accurate
water level detection system that ensures reliability under all
weather conditions, contributing significantly to the effec-
tiveness of environmental management and the formulation
of disaster prevention strategies.

ACKNOWLEDGMENT

The authors would like to thank the National Science
Foundation for supporting this work under Grant No.
2231557. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1]1 Y. Zhou, H. Liu, and H. Gao, “In-situ water level measurement using
NIRimaging video camera,” Flow Meas Instrum, vol. 67, pp. 95-106,
2019.

[2] H.-K. Lee, J. Choo, G. Shin, and S.-M. Kim, “On-site water level
measurement method based on wavelength division multiplexing for
harsh environments in nuclear power plants,” Nucl. Eng. Technol., vol.
52, no. 12, pp. 2847-2851, 2020.

[3] T. L. M. Barreto, J. Almeida, and F. A. M. Cappabianco, “Estimating
accurate water levels for rivers and reservoirs by using SAR prod-
ucts: A multitemporal analysis,” Pattern Recognit. Lett., vol. 83, pp.
224-233, 2016

[4] M. Moy De Vitry and J. P. Leitao, “~ The potential of proxy water
level measurements for calibrating urban pluvial flood models,” Water
Res, vol. 175, 2020.

[5] D. Mu et al., “Impact of temporal rainfall patterns on flash floods in
Hue City, Vietnam,” J. Flood Risk Manag., vol. 14, no. 1, 2021.

[6] K. E. Parnell and H. Kofoed-Hansen, “Wakes from large high-
speed ferries in confined coastal waters: Management approaches with
examples from New Zealand and Denmark,” Coastal Management, vol.
29, pp. 217 237, 2001.

[71 H. P. Li, W. Wang, F. C. Ma, H. L. Liu, and T. Lv, “The water level
automatic measurement technology based on image processing,” Appl.
Mech. Mater., vol. 303-306, pp. 621-626, 2013.

[81 G. Li, X. Liu, J. Tang, J. Li, Z. Ren, and C. Chen, “De-noising
low-frequency magnetotelluric data using mathematical morphology
filtering and sparse representation,” J. Appl. Geophy., vol. 172, no.
103919, p. 103919, 2020

[9]1 A. Gao et al., “A newly developed unmanned aerial vehicle (UAV)

imagery based technology for field measurement of water level,” Water

(Basel), vol. 11, no. 1, p. 124, 2019.

Q. Zhang, N. Jindapetch, R. Duangsoithong, and D. Buranapanichkit,

“Investigation of image processing based real-time flood monitoring,”

in 2018 IEEE 5th International Conference on Smart Instrumentation,
Measurement and Application (ICSIMA), 2018
[11] Jan, O.R.,Jo, H.S., & Jo, R. S. (2021). A critical review on water level
measurement techniques for flood mitigation. 2021 IEEE International
Conference on Signal and Image Processing Applications (ICSIPA).

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[13] X. Zhu, S. Lyu, X. Wang, and Q. Zhao, “TPH-YOLOVS5: Improved

YOLOVS based on transformer prediction head for object detection

on drone-captured scenarios,” arXiv [cs.CV], 2021.

Y.-T. Lin, Y.-C. Lin, and J.-Y. Han, “Automatic water-level detection

using single-camera images with varied poses,” Measurement (Lond.),

vol. 127, pp. 167-174, 2018.

[15] J. Pan, Y. Yin, J. Xiong, W. Luo, G. Gui, and H. Sari, “Deep learning-

based unmanned surveillance systems for observing water levels,”

IEEE Access, vol. 6, pp. 73561-73571, 2018

S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-

H. Yang, “Restormer: Efficient transformer for high-resolution image

restoration,” in 2022 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2022

[17] F. A. Fardo, V. H. Conforto, F. C. de Oliveira, and P. S. Rodrigues,

“A formal evaluation of PSNR as quality measurement parameter for

image segmentation algorithms,” arXiv [cs.CV], 2016.

B. Alexander, E. K. Vladimir, and I. I. Alexandr, Albumentations: fast

and fexible image augmentations.

[19] Z.Xu, G. Yang, and Y. Zhang, “Road target detection algorithm based

on improved YOLOVS,” in 2023 IEEE 7th Information Technology and
Mechatronics Engineering Conference (ITOEC), 2023.

(10]

[14]

[16]

(18]



[20]

[21]

[22]

Z. Ren, H. Zhang, and Z. Li, “Improved YOLOVS5 network for real-
time object detection in vehicle-mounted camera capture scenarios,”
Sensors (Basel), vol. 23, no. 10, 2023.

X. Liu, G. Tang, and W. Zou, “Improvement of detection accuracy
of aircraft in remote sensing images based on YOLOVS model,” in
2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS, 2021.

Z. Zhang, X. Lin, K. Yang, and H. Wang, “An improved merge-
YOLOVS algorithm for infant monitoring,” in 2022 5th International
Conference on Pattern Recognition and Artificial Intelligence (PRAI),
2022.



