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Abstract—The need to solve scientific problems using auto-
mated means and hence analyze the performance and measure
the complexities of their algorithmic solutions had led to the
realization of various computational models. The underlying of
these computational models are the mathematical models that
provide intuitions for the problems in question and formally
describe the problem(s) to be solved by a particular model. In
the heart of these models of computations is the Turing Machines
abstractions model, a mathematical model of computation that
formed the basis of successive models of computations and
provided the theoretical foundation of computability. In this
paper, we explore various classes of computational models and
intuitively understand their computational complexity. We focus
on different Turing and super-Turing models of computations and
study their complexity in terms of space and time. We provide
a comparative analysis of infinitary, fuzzy, hyper and super-
Turing models using computational characteristics pertinent to
Turing computational models in general. Further, we show the
conjectured relationships of the four models to the Turing
machines and universal Turing machine.

Index Terms—computational models, complexity and com-
putability, infinitary, fuzzy, hyper-computing, super-computing,
neural, quantum

I. INTRODUCTION

The model of computations introduced by Alan Turing in

1936, known as the Turing Machine (TM), which abstractly

defined the notion of the programmable machine, forms the

basis of diverse formal models of computations that existed or

are in existence today. Further, the Turing model abstractions

inspired differentiable versions of classical and contemporary

computational models. The classical TM, which formalized

the notions of algorithm, computation, and computable, has

several variants with the same computational power, making

it an appropriate model of computation [17], [23]. In his

thesis titled "The Church-Turing Thesis," Turing conceived

using mathematical rigor the notion of a universal single

computing machine that can adequately describe the use

of algorithmic means to perform tasks and simulate other

computing machines [8], [17], [20]. The assertion that there

exists a universal Turing Machine (UTM) made it possible to

study the computation properties of every possible computing

device and simulate any other TM.

Following the introduction of the UTM was the development

of numerous classes of computational models, both classical

and contemporary, some of which are merely variations or

extensions of the fundamental or standard TM model, and

others claim to either surpass or break the Turing limits, i.e.,

the TM has computational limits where it can never solve the

halting problem [3], [15], [19], [24], [26]. For example, the

class of hyper-computation models challenges the assertion

that no machine can compute more than the TM, and the

super-computing category of computational models challenges

the affirmation that no computing device can surpass the

computational model of TM or more potent than the UTM.

The literature on the computability and complexity of com-

putational models reports on numerous classical and contem-

porary formal models that range from Turing and super-Turing

to Non-Turing models. Consequently, several classes of com-

putational models exist. These classes include but not limited

to the discrete, analog, serial, symbolic, dynamic, stochas-

tic, hyper-computing, super-computing, and mem-computing

types of models. In this paper, we focus on models that

characterize as discrete, symbolic, analog, hyper-computing,

and super-computing classes of computational models. We

study the classical TM model and its variants, Infinite Time

Turing Machines (ITTMs), Fuzzy Turing Machines (FTMs),

and their variants, Neural Turing Machines (NTMs), and

Quantum Turing Machines (QTMs). While the first three

models of computations classify as discrete (or serial) and

symbolic models, the third and fourth models classify as
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analog hyper-computing, and analog super-computing models,

respectively.

The remainder of this paper organizes as follows. In section

II, we provide an overview of the TM and UTM as the ultimate

computational model and the standard model of computations.

In section III, we discuss the computability and complexity

theories and further define computational complexity from a

TM perspective as a reference model. In section IV and V,

we present the computational models in focus and discuss

their functions and computational complexity. In section VI,

we presents some comparison results. Then, we conclude and

discuss future work in section VII.

II. THE STANDARD TURING MACHINE MODEL

Computational models before the Turing machine model

had either limited memory or a restrictive memory allocation

method, which inevitably hindered their generalization to solv-

ing general-purpose computing problems. Unlike these early

models, the TM computational models addressed these short-

comings and accurately depicted a general-purpose computer

that can solve problems lying within the model theoretical

boundaries [27]. With it is infinite tape serving as unlimited

memory, a read/write head that moves across the tape, a set

of alphabets, and the ability to compute, it was strictly more

powerful compared to other models such as finite automata.

A formal description of the model defines a state transition

function (δ) that describes the transition from one state to

another using simple transitions until the computation termi-

nates in a halting, i.e., accept or reject or non-halting state.

Fig. 1 [27] shows the TM formal definition.

Fig. 1. The Turing Machine (TM) computational model formal description

It is worth noting that the TM halting problem is undecid-

able, i.e., there exists no algorithmic solution to tell whether

a given TM halts on a given input [11]. Typically, a TM

accepts a collection of strings that comprise the language

recognized by the TM. Hence, a TM can either decide or

recognize a language it accepts as an input. In general, a

TM can “decide” an enumerable language and “recognize”

a recursively enumerable language.

Two subsequent variants of the classical TM are deter-

ministic TM (DTM) and non-deterministic TM (NDTM).

These two variants directly correspond to the determinis-

tic and non-deterministic algorithms, respectively [22]. The

single computation model is what distinguishes the DTM

from the NDTM with its many-to-many mapping and several

possibilities. Other classical variants include single-tape TM,

multi-tape TM, and write-once TM. A multi-tape TM has

a read-only input tape and a finite number of read-write

tapes. Sipser [27], states that every NDTM has an equivalent

DTM, and a multiple-tape TM is convertible into a single-tape

TM. There exist contemporary TM variants or differentiable

versions, therein, such as infinitary TM, ordinal TM, four-

dimensional parallel TM, one-tape two-way one-head off-line

linear-time TM, multiply-exponential write-once TM to name

some [4], [18], [29], [30], [33]. We cover the other variants

and differentiable versions of TM we noted in this paper in

section IV.

One of the most fundamental concepts of TM is its ability

to simulate other machines. The Church-Turing thesis has an

explicit algorithmic assertion, as well as an implicitly-stated

physical statement, in principle [8] [17] [27]. That is, a UTM

can compute every naturally computable function and simulate

every realizable or natural physical system. Consequently, TM

has an established view in the field of theoretical computing

as the reference model for subsequent and successive com-

putational models. Further, due to its simplistic mathematical

foundation and closeness to real computing machines, TM can

be used to analyze and measure the complexity of an algorithm

in a meaningful manner.

III. AN OVERVIEW OF COMPUTATIONAL COMPLEXITY

To solve a problem using algorithmic means, one must have

the ability to measure the time and space taken by the algo-

rithm used to solve the computational problem. Respectively,

computational complexity provides the required framework of

analysis to investigate the computational resources required to

solve computable problems. Two essential measures to classify

computational problems are the time and space taken by their

respective algorithms. While the time complexity constitutes

the basis for classifying problems according to the amount of

time taken to solve the problem, space complexity classifies

the problems based on the amount of space or memory

requirements.

It worth noting that the terms “computability” and “com-

plexity” are not equivalent. Computability implies that all

reasonable models of computation are of equivalence, i.e., they

all decide the same class of languages [27]. Conversely, for

complexity, the choice of the model affects the time com-

plexity of computational languages. Hence, for complexity, all

languages are not decidable using the same amount of time. It

is notable to mention that we don’t mention space complexity

because, as noted by Sipser in [27], we can establish a

relationship between the complexity of time and space. In this

paper, we focus on the model complexity to understand the

computational complexity of the variants and differentiable

TMs we are investigating.

Concisely, the running time of an algorithm is a function of

the length of the input string irrespective of any other param-

eters [27]. Generally, it is strenuous to estimate the running

time of an algorithm accurately. As such, an estimate of the
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Fig. 2. The theory of complexity definition

time is enough to study the time complexity of any algorithm.

Given the expression of the running time of an algorithm, the

asymptotic analysis provides the required frame of analysis to

estimate the running time. However, it stipulates an estimation

of the algorithm running time, considering only “large” inputs

and higher-order terms of the running time expression. When

performing asymptotic analysis, it is imperative to establish

upper and lower bounds, often referred to in the literature

as Big-O notation and small-o notation. When applied to

functions, Big-O notation indicates that one function f(n) is

no more than another g(n), i.e., f(n) ≤ g(n), whereas, small-

o notation signals that one function is asymptotically less than

another (i.e., f(n) < q(n) ).

Although asymptotic notations help establish the upper and

lower bounds necessary to analyze the running time of an

algorithm for “large” inputs, notions such as polynomial time

and exponential time create further meaning. For example,

polynomial-time algorithms are faster than exponential-time

algorithms, and exponential algorithms exhaustively perform

the necessary computations to solve the problem. Therefore,

asymptotic analysis and polynomiality play a substantial role

in understanding the time complexity of computational mod-

els. A polynomial algorithm has a polynomial upper bound on

the number of steps it uses on an input of size n and performs

each computational step in polynomial time. Given this and

the definition in [27] that shows the description of complexity

theory (see Fig. 2), we may deduce that a particular class of

languages is decidable in polynomial time if there exists a

computational model that runs in polynomial time.

To understand the relationship between the computational

models investigated in this paper, we use asymptotic analysis

and polynomiality to assess their computational complexity.

Also, in developing an understanding of how to compare

computational models using simulations and the classical TM

as a reference model, we consider the result established in [8]

that all deterministic models are polynomially equivalent. For

the analysis of space complexity, we perceive that determin-

istic machines use a small amount of space to simulate non-

deterministic ones. Moreover, we observe the derivations that

a TM of time t(n) can use at most t(n) space for t(n) ≥ n
and vice versa, and P ⊆ PSPACE, i.e., the speed of the

machine is proportional to its space requirement.

IV. VARIANTS OF TMS: INFINITARY AND FUZZY MODELS

In this section and the subsequent section, we present four

computational models, some of which are variants of the

Fig. 3. The hardware of the ITTM depicting the initial state

Fig. 4. The ITTM hardware showing the limit configuration

classical TM, and others are differentiable (invariant) versions.

We first introduce the infinite Time Turing Machines (ITTMs)

and Fuzzy Turing Machines (FTMs), which are variants of the

standard or classical TM. ITTMs is the first natural infinitary

model of computability. Later, in section V, we introduce

the Neural Turing Machines (NTMs) and Quantum Turing

Machines (QTMs), respectively.

A. Infinite Time Turing Machines (ITTMs)

ITTMs is an extended version of the classical TM as defined

by Jeff Kider in 1989 and introduced by Hamkins and Lewis in

2000 [15]. In their work, the authors extended the operation

of the classical TM to infinite ordinal time, later expressed

as transfinite in [16], and used the set of real numbers (R)

to investigate the computational complexity of the resulting

model of supertasks (model with infinite computation steps).

Their concept of ITTM has led to the notion of relative

computability, and in examining the supertask computability,

the authors were able to establish that the resulting ITTM can

decide every π1
1 set (a set that codes a well-ordered relation

on N) and the semi-decidable sets from a portion of the Δ1
2

sets.

Underlying an ITTM is the notion of infinite computability,

i.e., the model can complete infinite computational steps in

finite time. This model, which has the three tapes and a read-

write head, carries the computational steps in time, similar

to ordinal numbers. Fig. 3 and 4 [16] describe the hardware

in the initial and limit configurations, and Fig. 5 describes

the operation of an ITTM. The computational steps orders

ordinally as 0, 1, 2, . . . ω, ω+1, ω+2, . . ., ω+ ω+1, ω+ ω+2,

ω+ ω+3, . . ., and after each stage α, there is a distinctive

stage α+1.

ITTMs can compute any task that is computable by the

classical TM; hence it is more powerful than classical TM.
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Fig. 5. The operation of ITTM in time similar to ordinal numbers

In particular, it decides the halting problem , undecidable by

classical TM, in ω many steps by simulating the operation of

program p undecidable by TM. To understand the time com-

plexity, Hamkins and Lewis defined a clockable mechanism

that he based on the notion of the clock and computation

step α, such that “α is clockable if there is a computation

on input 0 that takes exactly α many steps to complete [15].

“The authors used a simulation to run the clock and the

computations simultaneously, and when the ITTM halts, the

clock stops. A simple analysis using the clockable mechanism

and ITTM showed that α is clockable if the machine halts

after n step. Similarly, ordinal ω and ω2 are clockable when

the machine halts when it encounters the limit.

The space complexity of ITTMs has been investigated by

Carl, Löwe, and Winter [5], [18], [32], and Deolalikar et

al. addressed ITTMs time complexity in [7]. Carl suggests

that unlike others, ITTMs computations don’t use the whole

tape length ω, and therefore, don’t have the same space

usage. Conversely, Löwe suggests that tape of length ω can

simulate larger-order tapes, hence the contents of the tape

during computations is a recommended measure of space

usage instead of the number cells used by the machine.

Further, he suggests that a relationship between time and space

complexity for ITTMs exists, a statement that Carl disapproved

mathematically by showing that sets of real numbers are

ITTM-decidable in space but are undecidable in time bounded

by α. Hence, the complexity of the contents doesn’t influence

the time complexity of the machine. Furthermore, Carl argued

that equalities P = PSPACE, P+ = PSPACE+ and

P++ = PSPACE++ don’t hold for ITTM.

The time complexity analysis of ITTMs is as follows. Given

the related problem P = NP , Deolalikar et al. established

that, for ITTMs, P ⊂ NP ∩ co-NP ; where NP ∩ co-NP
is for the class of hyperarithmetic sets, and P+ ⊂ NP+

∩ co-NP++, where NP+ ∩ co-NP++ is for the more

general classes of R. Further, the authors show that for

contiguous and non-contiguous blocks of clockable ordinals,

Pα �= NPα∩co-NPα, and Pβ �= NPβ∩co-NPβ , respectively.

Additionally, they establish that P f �= NP f ∩ co-NP f for

more functions f : R2 → ORD. In the following section, we

present the Fuzzy Turing Machines (FTMs) and discuss their

computational complexity.

Fig. 6. The formal definition of the non-deterministic FTM

B. Fuzzy Turing Machines(FTMs)

The need to develop models of computations that can

solve the undecidable problems formulated by the Church-

Turing thesis and the establishment of the fundamentals of

fuzzy languages (fuzzy logic) has led to the development of

formal models of random or fuzzy computation [17], [22],

[31]. The classical FTMs are non-deterministic TM with

fuzzy algorithms or a set of fuzzy instructions, each with

an assigned degree of truth or a value between 0 and 1.

Wiederman in [31] observes that Fuzzy Turing Machines or

FTMs can solve undecidable problems and shows that FTMs

accept fuzzy languages that correspond to the union Σ0
1 ∪π0

1

of recursively enumerable languages and their complements.

Additionally, he shows that the P class (polynomially time-

bounded computations) of FTMs corresponds to the union

NP ∪ co-NP .

With the introduction of FTMs, the once sought notion of

a super-Turing machine revived again. Thus, leading to two

variants: non-deterministic FTMs with classical-acceptance

criteria and non-deterministic FTMs with partially computable

acceptance criteria. While the later was an invariant of the

Church-Turing thesis, the former was able to solve unde-

cidable problems demonstrating super-Turing computational

power, hence a variant of the classical TM. The non-

deterministic FTM (NFTM) with a single-tape is a 9-tuple

(S, T, I,Δ, b1q0, qf , μ,*). Fig. 6 shows the formal definition

of NFTM. A t-norm is a binary operation ∗ on [1, 0], where

∗ is commutative and associative, non-decreasing in both

arguments, and for all x ∈ [0, 1], 1 ∗ x = x and 0 ∗ x = 0.

The fuzzy language accepted by NFTM is the fuzzy set

of ordered pairs. Assume F to be an NFTM, then L(F ) =
{(w, e(w))|w is accepted by F with truth degree e(w)}. To

analyze the time complexity and specify the efficiency of

the polynomial time-bound NFTM, one must first define the

time complexity for the classical FTM and the corresponding

classes of complexity. Fig. 7 shows these definitions, as well

as the specification of the efficiency of the polynomial time-

bounded NFTM, where FNP corresponds to φ.

Li [17] studied, in addition to the NFTM, other variants

of FTMs such as deterministic FTM (DFTM), and universal

FTMs (UFTM), i.e., a universal FTM that can simulate any
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Fig. 7. Definitions of classical FTM time complexity and corresponding
classes, and characterization of polynomial time-bounded NFTM

other FTM, and provided several notable formulations of

these variants. Also, he showed that while DFTM and NFTM

are nonequivalent in recognizing fuzzy languages, they are

equivalent in deciding fuzzy languages. Further, he indicated

that a UFTM only exists if the fuzzy set membership is

restrictive to the fixed finite set [0, 1] and proposed the

notions of fuzzy recursively enumerable languages and fuzzy

recursive languages. In the next subsection, we provide an

overview of Neural Turing Machines (NTM) and Quantum

Turing Machines (QTMs).

V. DIFFERENTIABLE VERSIONS OF TMS: HYPER- AND

SUPER-COMPUTATIONAL MODELS

The models introduced above broadly classify as discrete

or serial models. These models mainly performed classical

or natural computations on discrete data sets. The recent

advancements in computing have led to powerful computing

machines with intricately complex algorithms. With the revival

of neural computing, analog data models are rapidly emerging,

and the new paradigm shift in computing with the advance-

ment in quantum computing has sparked an interest in hyper-

and super-computations. Consequently, the widely accepted

assertion that no machine can be more potent than universal

TM or UTM can no longer remain unchallenged. Hence, there

is a growing interest in formal models of computation, such

as neural or hyper-computation and super-Turing computation

models, that challenges this notion of the UTM and go

beyond the limits of classical computations [8], [24], [25],

[31]. Principles of physics such as quantum, relativistic, or

infinitary computing had sparked a new interest in models that

can compute beyond the UTM. Hence, emerged FTM, neural

Turing machines (NTMs), and Quantum Turing machines

(QTMs), to name a few.

A. Neural Turing Machines(NTMs)

NTMs are instances of memory augmented neural networks

that decouple computation from memory through the addition

of an external memory unit [6], [12]. Generally, NTMs have

powerful random access memory and perform read/write op-

erations [13].

The architecture of an NTM consists of a neural network

controller, which interacts with the external environment using

input and output vectors, and a memory bank. Fig. 8 [12]

shows the underlying architecture of NTMs. On each cycle

of the machine, the controller receives input and emits out-

put. It uses a set of parallel read/write heads to read from

Fig. 8. The underlying architecture of NTMs

or write to the external memory. Graves et al. [12] have

empirically shown that NTM they implemented can solve a

problem by learning compact internal programs. While the

NTM is analogous to a TM, “it is differentiable end-to-

end.” Siegelemann [26] introduced an analog neural network

that keeps tracks of computational constraints while allowing

for supra-Turing computational power. The author proposed

the NTM as a standard for hyper-computation analogous to

the UTM and established a connection between the pro-

posed neural computational model and classical computability.

Siegelemann proved that classical TM is a subset of the

recurrent networks, a set of neural network algorithms that

can process sequential data (e.g., calculate continuous values

between 0 and 1). Thus, A network with rational weights

can simulate any multi-tape Turing machine in real-time (the

interconnection weight in a network are natural numbers).

Despite the various implementation of NTMs presented in

the literature and this paper that viewed in large as super-

Turing computational models that compute beyond the limit

of classical UTM, Sharma, and Upadhyay [24] expressed an

opposing view. In their work, the authors proved that NTMs

are not necessarily computing the incomputable, i.e., solve

the undecidable problem. They further asserted that models

compute beyond the Turing limits if they have in advance

a hyper computer as a supplementary unit. Otherwise, they

are equivalent to the TM model. Siegelmann [26] analyzed

the computational power of hyper-computational models and

stated that the analog recurrent neural network (ARNN) model,

which is hyper-computational, can compute in polynomial

time exactly the function in P/poly, where P is the class of

all recursive functions that are computable in polynomial time

and poly is used to denote that the sizes of the different neural

networks are polynomial in the input length.

B. Quantum Turing Machines(QTMs)

In 1985, Deutsch [8] showed that the notion of universality

in computation could extend beyond the UTM by noting that

there exists a class of computational models that is a quantum
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Fig. 9. The Informal Definition of QTM

generalization of Turing machines and further proved that

universal quantum computers are compatible with the Church-

Turing thesis assertion of a universal Turing machine or UTM.

He prophesized that quantum Turing machines (QTMs) would

have remarkable non-producible properties by classical TMs.

In accord with Deutsch, Muller [20] showed that there exists

a universal quantum Turing machine (UQTM) that simulate

every other quantum Turing machine (QTM) until it halts and

then halts itself with probability one; its predecessor UQTM

can simulate every other QTM for arbitrary pre-assigned

number of time steps. In his work, Muller introduced the

notion of mutually orthogonal space and showed that the q-

bit encoded information could decompose into a classical and

quantum part. The QTM proposed by Muller, similar to TMs,

consists of an infinite tape, a control, and a read/write head.

Unlike the classical TM, the number of computational steps

is unknown in advance; hence the machine evolves unitarily

in discrete time steps. Guerrini et al. [14] introduced a new

class of QTMs (Fig. 9 shows an informal definition of QTM)

and defined a class of quantum computable functions. These

quantum functions are a general mapping form quantum state

to natural numbers with a probabilistic distribution.

The proposed QTM doesn’t change the content written in

its tape when it enters the final state; hence “its evolution

continues to remain in the final state.” This unitary evolution

of the machine is possible through the use of a counter.

Such evolution forces the machine to keep modifying its

configurations. An essential characteristic of this QTM is that

it doesn’t have a halting state. Instead, it continues its evolution

since the only possible evolution is to increment the counter

by one and keep the rest of its configurations unchanged.

These configurations include the internal state, read/write head

position and tape content. To define the transitions of QTM

graphically, first, a formal definition of QTM is obtained by

defining a pre-QTM (pQTM) and time evolution operator. Fig.

10 show QTM formal definition and Fig. 11 [14] shows QTM

transitions using a graph.

Given the formal definition of pre QTM, QTM formal def-

inition is as follows: A pQTM is a Quantum Turing Machine

(QTM) when its time evolution operator UM unitary.

The above transitions graph shows three types of transition:

a looping transition of the target node (left), a self-loop on any

target node (right), and a transition for every non-target node

Fig. 10. Formal Definition of QTM in terms of pQTM

Fig. 11. QTM Transitions Graph

(middle). In [29], Tusˇarova´ defined a probabilistic quantum

Turing machine (pQTM) that is slightly different than the

classical TM to provide a formal definition to a QTM. Unlike

classical TM, which outputs one triple of the tape content,

new state, and new transition, pQTM output the triple’s proba-

bilistic distribution. Based on the pQTM definition, Tusˇarova´

informally defined QTM to be similar to pQTM except that

QTM output complex numbers or amplitudes instead of prob-

abilities and provided the formal definition shown in Fig. 12.

Additionally, Tusˇarova´ defined the complexity class of QTM

as BQP (Bounded-error quantum polynomial time) where

he specifies BQP as follows: "A language L is in BQP if

there exists a polynomial p(n) such that L is accepted by

some quantum Turing machine with time complexity p(n).”
He further suggested that BQP ∈ PSAPCE. Bernstein and

Vazirani [1] provided the first formal evidence that QTMs

violate the modern formulation of the Church-Turing thesis,

and showed that there exists a problem solvable in polynomial

time on a QTM, but requires super-polynomial time on a

bounded-error probabilistic TM. Further, they asserted that this

problem is not in the class BPP (bounded-error probabilistic

polynomial time), and argued given BPP ⊆ BQP ⊆ P#P , that

it is not possible to mathematically prove that QTMs are more

robust than the classical probabilistic TM.

Fig. 12. The QTM formal definition

Fortnow [10] argued that BQP and BPP exhibit similar
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behavior, mainly in their ability to perform searching and

information hiding. Spakowski et al. [28] introduce EQP

(zero-error BQP or exact quantum polynomial time), BQP,

and NQP (non-deterministic quantum polynomial time) as

three quantum complexity classes, analogous to P, BPP, and

NP, respectively, that represent the computational power of

quantum computers. All three classes represent the class of

languages L accepted by a QTM running in polynomial time,

but with varying probabilities. EQP, BQP, and NQP represent

the classes of languages L such that, for each x ∈ Σ∗, if

x ∈ L, QTM accepts EQP with probability 1, BQP with

probability 2/3 at least, and NQP with nonzero probability,

and if x /∈ L, QTM accepts EQP with probability 0 and BQP

with probability 1/3 at most.

VI. RESULTS AND DISCUSSION

In section IV and V, we described the variants and differen-

tiable end-to-end versions of the classical TMs and examined

their computational complexity. In this section, we compare

the four models: ITTMs, NTMs, FTMs, and QTMs based on

computational model characteristics such as type, accepted

language(s), undecidable problems, and computational com-

plexity (shown in Table 1, 2, 3 and 4). Also, we show the

conjectured relationship among the TM, UTM, and each one

of the four models in Fig. 13, separately. Given Fig. 13,

the first set of ovals on the top-left corner shows that UTM

can compute any tasks computed by TM and that ITTM

can compute any task computed by UTM and surpass UTM

by deciding the halting problem in finite time given infinite

computational steps. The second set of ovals on the top-right

corner shows that NFTM and DFTM can compute any task

computed by UTM and surpass it by solving undecidable

problems. The third set of ovals on the bottom-left corner

shows that the NTM can compute any task computed by UTM.

NTM can compute beyond the limits of the classical UTM.

Finally, the set of ovals on the bottom-right corner shows that

QTM can compute any tasks computed by the UTM and,

further, can surpass the TM limits by continuing to remain

in the final state, i.e., QTM does not have a halting state.

Fig. 13. The Conjectured Relationship Between TM, UTM, and each of the
Four Models (ITTM, NFTM, NTM, and QTM

Our interest in the future is to evaluate all four models

as arbitrary models over arbitrary domains and measure the

TABLE I
COMPARISON RESULT BASED ON TYPE

Model Type ITTMs NFTMs NTMs QTMs

Discrete X X – –

Serial X X – –

Analog – – X X

Hyper-computation – – X –

Super-computation – – – X

TABLE II
COMPARISON RESULT BASED ON ACCEPTABLE LANGUAGES

Model Language ITTMs NFTMs NTMs QTMs

Recursive – – – –

Recursively Enumerable (r.e.) X X – –

Co- r.e. – X – –

EQP, BQP and NQP – – – X

Context-free – – X –

Regular – – X –

TABLE III
COMPARISON RESULT BASED ON THE HALTING PROBLEM

Model Decidability ITTMs NFTMs NTMs QTMs

Decidable X X X X

Undecidable – – – –
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TABLE IV
COMPARISON RESULT BASED ON TIME COMPLEXITY (P)

Model Complexity ITTMs NFTMs NTMs QTMs

P ⊂ NP ∩ co-NP X – – –

NP ∪ co-NP – X – –

P/poly – – X –

BPP⊆BQP⊆ P#P or BQP ⊆ PP – – – X

accepting times using a commonly accepted language and the

UTM as a reference model. More interesting is to show if a

conjectured relationship among TM, UTM, and all four models

can be formally derived.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented four computational models

spanning four classes of computations, classical, infinitary,

neural or hyper, and quantum or super. First, we introduced the

classical model of computations and provided an overview of

the notion of universality computation asserted by the Church-

Turing thesis and computational complexity in terms of time

and space. We then introduced the four computational models

in pursuit; ITTMs, FTMs, NTMs, and QTMs. We identified

their computational class, provided their formal definitions,

computable languages, connection to the universal computing

machine (UTM), and complexity analysis.

The class of quantum and neural computations is still

evolving, and several computation models are still materi-

alizing. Hence, they are more open questions to address

concerning their computational complexity and super-Turing

properties non-reproducible by UTM. Other interesting open

issues for future work include comparing the computational

power of the four models we presented in this paper over

arbitrary domains using the conceptual comparison framework

formalized by Boker and Dershowitz [2], and similar to Nayak

and Dash [21], investigating the gap between infinitary, hyper-

computation and super-computation models using a commonly

accepted language as input and acceptance timing as the eval-

uation criterion. Perhaps more interesting than the open issues

mentioned above is to use Diaz’s approach [9] to describe and

hence classify the behavior of the four models based on speed,

entropy, and complexity using machine learning. Further, to

evaluate current and subsequent super-Turing models, there

is a need to define the notion of super-Turing universality

and construct a super-Turing universal model to establish as a

reference model that can simulate any super-Turing models.
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