2023 International Conference on Computational Science and Computational Intelligence (CSCI) | 979-8-3503-6151-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/CSC162032.2023.00073

2023 International Conference on Computational Science and Computational Intelligence (CSCI)

Understanding the Computational Complexity of
Diverse Classes of Turing and Super-Turing
Computational Models

1% Ghada Abdelmoumin

2" Chunmei Liu

Department of Electrical Engineering and Computer Science Department of Electrical Engineering and Computer Science

Howard University
Washington, DC 20059 USA
ghada.abdelmoumin @bison.howard.edu

3" Danda Rawat
Department of Electrical Engineering and Computer Science
Howard University
Washington, DC 20059, USA
danda.rawat@howard.edu

Abstract—The need to solve scientific problems using auto-
mated means and hence analyze the performance and measure
the complexities of their algorithmic solutions had led to the
realization of various computational models. The underlying of
these computational models are the mathematical models that
provide intuitions for the problems in question and formally
describe the problem(s) to be solved by a particular model. In
the heart of these models of computations is the Turing Machines
abstractions model, a mathematical model of computation that
formed the basis of successive models of computations and
provided the theoretical foundation of computability. In this
paper, we explore various classes of computational models and
intuitively understand their computational complexity. We focus
on different Turing and super-Turing models of computations and
study their complexity in terms of space and time. We provide
a comparative analysis of infinitary, fuzzy, hyper and super-
Turing models using computational characteristics pertinent to
Turing computational models in general. Further, we show the
conjectured relationships of the four models to the Turing
machines and universal Turing machine.

Index Terms—computational models, complexity and com-
putability, infinitary, fuzzy, hyper-computing, super-computing,
neural, quantum

I. INTRODUCTION

The model of computations introduced by Alan Turing in
1936, known as the Turing Machine (TM), which abstractly
defined the notion of the programmable machine, forms the
basis of diverse formal models of computations that existed or
are in existence today. Further, the Turing model abstractions
inspired differentiable versions of classical and contemporary
computational models. The classical TM, which formalized
the notions of algorithm, computation, and computable, has
several variants with the same computational power, making
it an appropriate model of computation [17], [23]. In his
thesis titled "The Church-Turing Thesis," Turing conceived
using mathematical rigor the notion of a universal single
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computing machine that can adequately describe the use
of algorithmic means to perform tasks and simulate other
computing machines [8], [17], [20]. The assertion that there
exists a universal Turing Machine (UTM) made it possible to
study the computation properties of every possible computing
device and simulate any other TM.

Following the introduction of the UTM was the development
of numerous classes of computational models, both classical
and contemporary, some of which are merely variations or
extensions of the fundamental or standard TM model, and
others claim to either surpass or break the Turing limits, i.e.,
the TM has computational limits where it can never solve the
halting problem [3], [15], [19], [24], [26]. For example, the
class of hyper-computation models challenges the assertion
that no machine can compute more than the TM, and the
super-computing category of computational models challenges
the affirmation that no computing device can surpass the
computational model of TM or more potent than the UTM.

The literature on the computability and complexity of com-
putational models reports on numerous classical and contem-
porary formal models that range from Turing and super-Turing
to Non-Turing models. Consequently, several classes of com-
putational models exist. These classes include but not limited
to the discrete, analog, serial, symbolic, dynamic, stochas-
tic, hyper-computing, super-computing, and mem-computing
types of models. In this paper, we focus on models that
characterize as discrete, symbolic, analog, hyper-computing,
and super-computing classes of computational models. We
study the classical TM model and its variants, Infinite Time
Turing Machines (ITTMs), Fuzzy Turing Machines (FTMs),
and their variants, Neural Turing Machines (NTMs), and
Quantum Turing Machines (QTMs). While the first three
models of computations classify as discrete (or serial) and
symbolic models, the third and fourth models classify as
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analog hyper-computing, and analog super-computing models,
respectively.

The remainder of this paper organizes as follows. In section
II, we provide an overview of the TM and UTM as the ultimate
computational model and the standard model of computations.
In section III, we discuss the computability and complexity
theories and further define computational complexity from a
TM perspective as a reference model. In section IV and V,
we present the computational models in focus and discuss
their functions and computational complexity. In section VI,
we presents some comparison results. Then, we conclude and
discuss future work in section VII.

II. THE STANDARD TURING MACHINE MODEL

Computational models before the Turing machine model
had either limited memory or a restrictive memory allocation
method, which inevitably hindered their generalization to solv-
ing general-purpose computing problems. Unlike these early
models, the TM computational models addressed these short-
comings and accurately depicted a general-purpose computer
that can solve problems lying within the model theoretical
boundaries [27]. With it is infinite tape serving as unlimited
memory, a read/write head that moves across the tape, a set
of alphabets, and the ability to compute, it was strictly more
powerful compared to other models such as finite automata.

A formal description of the model defines a state transition
function (9) that describes the transition from one state to
another using simple transitions until the computation termi-
nates in a halting, i.e., accept or reject or non-halting state.
Fig. 1 [27] shows the TM formal definition.

A Turing machine is a 7-tuple, (Q.%.1". 0. q0. Gaceepts reject), Where
Q, 3, I are all finite sets and
1. Q is the set of states,
. ¥ is the input alphabet not containing the blank symbol v,
. I is the tape alphabet, where u € Tand X C T,
.0: Q xI'— @ x I' x {L., R} is the transition function,
. qo € Q is the start state,
« Gaceepr € Q s the accept state, and

NN s W

+ Greject € Q 1s the reject state, where Greject 7 Gaceepe-

Fig. 1. The Turing Machine (TM) computational model formal description

It is worth noting that the TM halting problem is undecid-
able, i.e., there exists no algorithmic solution to tell whether
a given TM halts on a given input [11]. Typically, a TM
accepts a collection of strings that comprise the language
recognized by the TM. Hence, a TM can either decide or
recognize a language it accepts as an input. In general, a
TM can “decide” an enumerable language and “recognize”
a recursively enumerable language.

Two subsequent variants of the classical TM are deter-
ministic TM (DTM) and non-deterministic TM (NDTM).
These two variants directly correspond to the determinis-
tic and non-deterministic algorithms, respectively [22]. The
single computation model is what distinguishes the DTM

412

from the NDTM with its many-to-many mapping and several
possibilities. Other classical variants include single-tape TM,
multi-tape TM, and write-once TM. A multi-tape TM has
a read-only input tape and a finite number of read-write
tapes. Sipser [27], states that every NDTM has an equivalent
DTM, and a multiple-tape TM is convertible into a single-tape
TM. There exist contemporary TM variants or differentiable
versions, therein, such as infinitary TM, ordinal TM, four-
dimensional parallel TM, one-tape two-way one-head off-line
linear-time TM, multiply-exponential write-once TM to name
some [4], [18], [29], [30], [33]. We cover the other variants
and differentiable versions of TM we noted in this paper in
section IV.

One of the most fundamental concepts of TM is its ability
to simulate other machines. The Church-Turing thesis has an
explicit algorithmic assertion, as well as an implicitly-stated
physical statement, in principle [8] [17] [27]. That is, a UTM
can compute every naturally computable function and simulate
every realizable or natural physical system. Consequently, TM
has an established view in the field of theoretical computing
as the reference model for subsequent and successive com-
putational models. Further, due to its simplistic mathematical
foundation and closeness to real computing machines, TM can
be used to analyze and measure the complexity of an algorithm
in a meaningful manner.

III. AN OVERVIEW OF COMPUTATIONAL COMPLEXITY

To solve a problem using algorithmic means, one must have
the ability to measure the time and space taken by the algo-
rithm used to solve the computational problem. Respectively,
computational complexity provides the required framework of
analysis to investigate the computational resources required to
solve computable problems. Two essential measures to classify
computational problems are the time and space taken by their
respective algorithms. While the time complexity constitutes
the basis for classifying problems according to the amount of
time taken to solve the problem, space complexity classifies
the problems based on the amount of space or memory
requirements.

It worth noting that the terms ‘“computability” and “com-
plexity” are not equivalent. Computability implies that all
reasonable models of computation are of equivalence, i.e., they
all decide the same class of languages [27]. Conversely, for
complexity, the choice of the model affects the time com-
plexity of computational languages. Hence, for complexity, all
languages are not decidable using the same amount of time. It
is notable to mention that we don’t mention space complexity
because, as noted by Sipser in [27], we can establish a
relationship between the complexity of time and space. In this
paper, we focus on the model complexity to understand the
computational complexity of the variants and differentiable
TMs we are investigating.

Concisely, the running time of an algorithm is a function of
the length of the input string irrespective of any other param-
eters [27]. Generally, it is strenuous to estimate the running
time of an algorithm accurately. As such, an estimate of the
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P = Uk TIME(n") where P is the class of languages that are decidable in

polynomial time on a deterministic single-tape Turing Machine and n is the size
of input and k is a constant.

Analogous to P, PSPACE = UkSPACE(n") is the class of languages that are
decidable in polynomial space on a deterministic Turing Machine and n is the size
of input and K is a constant.

Fig. 2. The theory of complexity definition

time is enough to study the time complexity of any algorithm.
Given the expression of the running time of an algorithm, the
asymptotic analysis provides the required frame of analysis to
estimate the running time. However, it stipulates an estimation
of the algorithm running time, considering only “large” inputs
and higher-order terms of the running time expression. When
performing asymptotic analysis, it is imperative to establish
upper and lower bounds, often referred to in the literature
as Big-O notation and small-o notation. When applied to
functions, Big-O notation indicates that one function f(n) is
no more than another g(n), i.e., f(n) < g(n), whereas, small-
o notation signals that one function is asymptotically less than
another (i.e., f(n) < g(n) ).

Although asymptotic notations help establish the upper and
lower bounds necessary to analyze the running time of an
algorithm for “large” inputs, notions such as polynomial time
and exponential time create further meaning. For example,
polynomial-time algorithms are faster than exponential-time
algorithms, and exponential algorithms exhaustively perform
the necessary computations to solve the problem. Therefore,
asymptotic analysis and polynomiality play a substantial role
in understanding the time complexity of computational mod-
els. A polynomial algorithm has a polynomial upper bound on
the number of steps it uses on an input of size n and performs
each computational step in polynomial time. Given this and
the definition in [27] that shows the description of complexity
theory (see Fig. 2), we may deduce that a particular class of
languages is decidable in polynomial time if there exists a
computational model that runs in polynomial time.

To understand the relationship between the computational
models investigated in this paper, we use asymptotic analysis
and polynomiality to assess their computational complexity.
Also, in developing an understanding of how to compare
computational models using simulations and the classical TM
as a reference model, we consider the result established in [8]
that all deterministic models are polynomially equivalent. For
the analysis of space complexity, we perceive that determin-
istic machines use a small amount of space to simulate non-
deterministic ones. Moreover, we observe the derivations that
a TM of time ¢(n) can use at most t(n) space for t(n) > n
and vice versa, and P C PSPACE, i.e., the speed of the
machine is proportional to its space requirement.

IV. VARIANTS OF TMS: INFINITARY AND FUZZY MODELS

In this section and the subsequent section, we present four
computational models, some of which are variants of the
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start
nput:{ 1 11 [0 1[1]0
scratch: || 0

output: 0]j]0)0]0]O0

Fig. 3. The hardware of the ITTM depicting the initial state

limit
mput: {1l 110100
scratch: || 0 1 1010 |1 ]|~
output:{ 1| 110 | 1 [1[1]..

Fig. 4. The ITTM hardware showing the limit configuration

classical TM, and others are differentiable (invariant) versions.
We first introduce the infinite Time Turing Machines (ITTMs)
and Fuzzy Turing Machines (FTMs), which are variants of the
standard or classical TM. ITTMs is the first natural infinitary
model of computability. Later, in section V, we introduce
the Neural Turing Machines (NTMs) and Quantum Turing
Machines (QTMs), respectively.

A. Infinite Time Turing Machines (ITTMs)

ITTMs is an extended version of the classical TM as defined
by Jeff Kider in 1989 and introduced by Hamkins and Lewis in
2000 [15]. In their work, the authors extended the operation
of the classical TM to infinite ordinal time, later expressed
as transfinite in [16], and used the set of real numbers (R)
to investigate the computational complexity of the resulting
model of supertasks (model with infinite computation steps).
Their concept of ITTM has led to the notion of relative
computability, and in examining the supertask computability,
the authors were able to establish that the resulting ITTM can
decide every 7!, set (a set that codes a well-ordered relation
on N) and the semi-decidable sets from a portion of the A',
sets.

Underlying an ITTM is the notion of infinite computability,
i.e., the model can complete infinite computational steps in
finite time. This model, which has the three tapes and a read-
write head, carries the computational steps in time, similar
to ordinal numbers. Fig. 3 and 4 [16] describe the hardware
in the initial and limit configurations, and Fig. 5 describes
the operation of an ITTM. The computational steps orders
ordinally as 0, 1, 2, ... w, w+l, w+2, . . ., w+ w+l, w+ w+2,
w+ w+3, . . ., and after each stage «, there is a distinctive
stage a+1.

ITTMs can compute any task that is computable by the
classical TM; hence it is more powerful than classical TM.
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Proceed with computations ordinally in time (i.e., 0,1, 2, .. .)

If the computation doesn’t halt at any finite stage 0, 1, 2, . ..
Enter the first infinite stage w

Continue withstagesw + 1, w +2, w + 3, ...

If computation doesn’t haltatany stagesw + 1, w + 2, w + 3, . ..
Enter the second limit stage w + @

Continue withstagesw +w + 1, w +w +2, w +w+3, ...

andso...

© N Uk WNR

Fig. 5. The operation of ITTM in time similar to ordinal numbers

In particular, it decides the halting problem , undecidable by
classical TM, in w many steps by simulating the operation of
program p undecidable by TM. To understand the time com-
plexity, Hamkins and Lewis defined a clockable mechanism
that he based on the notion of the clock and computation
step «, such that “« is clockable if there is a computation
on input O that takes exactly o many steps to complete [15].
“The authors used a simulation to run the clock and the
computations simultaneously, and when the ITTM halts, the
clock stops. A simple analysis using the clockable mechanism
and ITTM showed that « is clockable if the machine halts
after n step. Similarly, ordinal w and w? are clockable when
the machine halts when it encounters the limit.

The space complexity of ITTMs has been investigated by
Carl, Lowe, and Winter [5], [18], [32], and Deolalikar et
al. addressed ITTMs time complexity in [7]. Carl suggests
that unlike others, ITTMs computations don’t use the whole
tape length w, and therefore, don’t have the same space
usage. Conversely, Lowe suggests that tape of length w can
simulate larger-order tapes, hence the contents of the tape
during computations is a recommended measure of space
usage instead of the number cells used by the machine.
Further, he suggests that a relationship between time and space
complexity for ITTMs exists, a statement that Carl disapproved
mathematically by showing that sets of real numbers are
ITTM-decidable in space but are undecidable in time bounded
by «. Hence, the complexity of the contents doesn’t influence
the time complexity of the machine. Furthermore, Carl argued
that equalites P = PSPACE, Pt = PSPACE" and
Ptt = PSPACE™ don’t hold for ITTM.

The time complexity analysis of ITTMs is as follows. Given
the related problem P = NP, Deolalikar et al. established
that, for ITTMs, P € NP N co-NP; where NP N co-NP
is for the class of hyperarithmetic sets, and PT C NP¥
N co-NP*t1+, where NPt N co-NP*t*t is for the more
general classes of R. Further, the authors show that for
contiguous and non-contiguous blocks of clockable ordinals,
P, # NP,Nco-NP,, and Pg # N PgNco-N Pg, respectively.
Additionally, they establish that P/ # NP/ N co-NP/ for
more functions f : R? — ORD. In the following section, we
present the Fuzzy Turing Machines (FTMs) and discuss their
computational complexity.
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A non-deterministic Fuzzy Turing machine is a 9-tuble, (S, T, 1,4, b, q,, ar W,*), where

Sand T are finite sets and

1. Sis the finite set of states,

2. T isthe finite set of tape symbols,

3. [Iisthe set of input symbols; ICT,

4. Ais the next-move relation which is a subset
of SXTxSxTx{-1,0;1},

5. b,inT - I, isthe blank,

6. qo is the initial state,

7. ar is the final, or accepting state,

8. 4 - [0,1] is a function that to each move §

assigns the truth degree u(8) of its membership in 4, and
*isat-norm.

Fig. 6. The formal definition of the non-deterministic FTM

B. Fuzzy Turing Machines(FTMs)

The need to develop models of computations that can
solve the undecidable problems formulated by the Church-
Turing thesis and the establishment of the fundamentals of
fuzzy languages (fuzzy logic) has led to the development of
formal models of random or fuzzy computation [17], [22],
[31]. The classical FTMs are non-deterministic TM with
fuzzy algorithms or a set of fuzzy instructions, each with
an assigned degree of truth or a value between 0 and 1.
Wiederman in [31] observes that Fuzzy Turing Machines or
FTMs can solve undecidable problems and shows that FTMs
accept fuzzy languages that correspond to the union X% U7,
of recursively enumerable languages and their complements.
Additionally, he shows that the P class (polynomially time-
bounded computations) of FTMs corresponds to the union
NP Uco-NP.

With the introduction of FTMs, the once sought notion of
a super-Turing machine revived again. Thus, leading to two
variants: non-deterministic FTMs with classical-acceptance
criteria and non-deterministic FTMs with partially computable
acceptance criteria. While the later was an invariant of the
Church-Turing thesis, the former was able to solve unde-
cidable problems demonstrating super-Turing computational
power, hence a variant of the classical TM. The non-
deterministic FTM (NFTM) with a single-tape is a 9-tuple
(S, T,1,A,b1q0,qy, j1,*). Fig. 6 shows the formal definition
of NFTM. A t-norm is a binary operation * on [1,0], where
* is commutative and associative, non-decreasing in both
arguments, and for all z € [0,1],1 %2 =z and 0* 2z = 0.

The fuzzy language accepted by NFTM is the fuzzy set
of ordered pairs. Assume F to be an NFTM, then L(F) =
{(w, e(w))|w is accepted by F with truth degree e(w)}. To
analyze the time complexity and specify the efficiency of
the polynomial time-bound NFTM, one must first define the
time complexity for the classical FTM and the corresponding
classes of complexity. Fig. 7 shows these definitions, as well
as the specification of the efficiency of the polynomial time-
bounded NFTM, where FNP corresponds to ¢.

Li [17] studied, in addition to the NFTM, other variants
of FTMs such as deterministic FTM (DFTM), and universal
FTMs (UFTM), i.e., a universal FTM that can simulate any
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Time Complexity. Let F be an NFTM and L(F) be the language recognized by F, F is of
time complexity T (n) if for all n and all inputs of length n, F accepts all strings from L(F)
of length n in at most T'(n) steps.

Corresponding Complexity Class: NFTM(Time (T(n))) represents the class of all fuzzy
languages recognized by a classical NFTM in time T(n). FNP denotes the class of all
fuzzy languages recognized by a classical NFTM in polynomial time.

Polynomially time-bounded NFTM: FNP = NP U co-NP = X¥ u 1Y

Fig. 7. Definitions of classical FTM time complexity and corresponding
classes, and characterization of polynomial time-bounded NFTM

other FTM, and provided several notable formulations of
these variants. Also, he showed that while DFTM and NFTM
are nonequivalent in recognizing fuzzy languages, they are
equivalent in deciding fuzzy languages. Further, he indicated
that a UFTM only exists if the fuzzy set membership is
restrictive to the fixed finite set [0, 1] and proposed the
notions of fuzzy recursively enumerable languages and fuzzy
recursive languages. In the next subsection, we provide an
overview of Neural Turing Machines (NTM) and Quantum
Turing Machines (QTMs).

V. DIFFERENTIABLE VERSIONS OF TMS: HYPER- AND
SUPER-COMPUTATIONAL MODELS

The models introduced above broadly classify as discrete
or serial models. These models mainly performed classical
or natural computations on discrete data sets. The recent
advancements in computing have led to powerful computing
machines with intricately complex algorithms. With the revival
of neural computing, analog data models are rapidly emerging,
and the new paradigm shift in computing with the advance-
ment in quantum computing has sparked an interest in hyper-
and super-computations. Consequently, the widely accepted
assertion that no machine can be more potent than universal
TM or UTM can no longer remain unchallenged. Hence, there
is a growing interest in formal models of computation, such
as neural or hyper-computation and super-Turing computation
models, that challenges this notion of the UTM and go
beyond the limits of classical computations [8], [24], [25],
[31]. Principles of physics such as quantum, relativistic, or
infinitary computing had sparked a new interest in models that
can compute beyond the UTM. Hence, emerged FTM, neural
Turing machines (NTMs), and Quantum Turing machines
(QTMs), to name a few.

A. Neural Turing Machines(NTMs)

NTMs are instances of memory augmented neural networks
that decouple computation from memory through the addition
of an external memory unit [6], [12]. Generally, NTMs have
powerful random access memory and perform read/write op-
erations [13].

The architecture of an NTM consists of a neural network
controller, which interacts with the external environment using
input and output vectors, and a memory bank. Fig. 8 [12]
shows the underlying architecture of NTMs. On each cycle
of the machine, the controller receives input and emits out-
put. It uses a set of parallel read/write heads to read from

415

External Input External Output

NS

Controller
X N
Read Heads Write Heads
Memory

Fig. 8. The underlying architecture of NTMs

or write to the external memory. Graves et al. [12] have
empirically shown that NTM they implemented can solve a
problem by learning compact internal programs. While the
NTM is analogous to a TM, “it is differentiable end-to-
end.” Siegelemann [26] introduced an analog neural network
that keeps tracks of computational constraints while allowing
for supra-Turing computational power. The author proposed
the NTM as a standard for hyper-computation analogous to
the UTM and established a connection between the pro-
posed neural computational model and classical computability.
Siegelemann proved that classical TM is a subset of the
recurrent networks, a set of neural network algorithms that
can process sequential data (e.g., calculate continuous values
between 0 and 1). Thus, A network with rational weights
can simulate any multi-tape Turing machine in real-time (the
interconnection weight in a network are natural numbers).
Despite the various implementation of NTMs presented in
the literature and this paper that viewed in large as super-
Turing computational models that compute beyond the limit
of classical UTM, Sharma, and Upadhyay [24] expressed an
opposing view. In their work, the authors proved that NTMs
are not necessarily computing the incomputable, i.e., solve
the undecidable problem. They further asserted that models
compute beyond the Turing limits if they have in advance
a hyper computer as a supplementary unit. Otherwise, they
are equivalent to the TM model. Siegelmann [26] analyzed
the computational power of hyper-computational models and
stated that the analog recurrent neural network (ARNN) model,
which is hyper-computational, can compute in polynomial
time exactly the function in P/poly, where P is the class of
all recursive functions that are computable in polynomial time
and poly is used to denote that the sizes of the different neural
networks are polynomial in the input length.

B. Quantum Turing Machines(QTMs)

In 1985, Deutsch [8] showed that the notion of universality
in computation could extend beyond the UTM by noting that
there exists a class of computational models that is a quantum
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A quantum Turing machine (QTM) informally is a triple, (&, q, B) € X Q X XZ*, where
Q is a set of finite states and,

1. q e Qisthe current state,
2. P € It isthe right content of the tape, where

a. X is the tape alphabet,

b. The first symbol of f is the one in the current cell of the tape,

c. B = up', where uis the content of the current cell and B’ is the longest
string ending with different from blank, for example, when the current cell
and all right content of the tape is empty, QTM can be written as the triple
(a,q, 1), where 1 is the empty string, and

3. a,whichis either A or the longest string on the tape, is the left content of the tape.

Fig. 9. The Informal Definition of QTM

generalization of Turing machines and further proved that
universal quantum computers are compatible with the Church-
Turing thesis assertion of a universal Turing machine or UTM.
He prophesized that quantum Turing machines (QTMs) would
have remarkable non-producible properties by classical TMs.
In accord with Deutsch, Muller [20] showed that there exists
a universal quantum Turing machine (UQTM) that simulate
every other quantum Turing machine (QTM) until it halts and
then halts itself with probability one; its predecessor UQTM
can simulate every other QTM for arbitrary pre-assigned
number of time steps. In his work, Muller introduced the
notion of mutually orthogonal space and showed that the g-
bit encoded information could decompose into a classical and
quantum part. The QTM proposed by Muller, similar to TMs,
consists of an infinite tape, a control, and a read/write head.
Unlike the classical TM, the number of computational steps
is unknown in advance; hence the machine evolves unitarily
in discrete time steps. Guerrini et al. [14] introduced a new
class of QTMs (Fig. 9 shows an informal definition of QTM)
and defined a class of quantum computable functions. These
quantum functions are a general mapping form quantum state
to natural numbers with a probabilistic distribution.

The proposed QTM doesn’t change the content written in
its tape when it enters the final state; hence “its evolution
continues to remain in the final state.” This unitary evolution
of the machine is possible through the use of a counter.
Such evolution forces the machine to keep modifying its
configurations. An essential characteristic of this QTM is that
it doesn’t have a halting state. Instead, it continues its evolution
since the only possible evolution is to increment the counter
by one and keep the rest of its configurations unchanged.
These configurations include the internal state, read/write head
position and tape content. To define the transitions of QTM
graphically, first, a formal definition of QTM is obtained by
defining a pre-QTM (pQTM) and time evolution operator. Fig.
10 show QTM formal definition and Fig. 11 [14] shows QTM
transitions using a graph.

Given the formal definition of pre QTM, QTM formal def-
inition is as follows: A pQTM is a Quantum Turing Machine
(QTM) when its time evolution operator Uy, unitary.

The above transitions graph shows three types of transition:
a looping transition of the target node (left), a self-loop on any
target node (right), and a transition for every non-target node
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A pre quantum Turing machine (pQTM) is an ordered 7-tuple, (Z, Q,Qs,Qr 80, q:» qf) where
Z,Q,Qs, and Q; are all finite sets and

Q is the set of finite states,

Qg € Qis the set of source states,

Q; € Q is the set of target states,

q; € Qg is a source state, called the initial state,

qr € Qq is a target state, called the final state,

80: ((Q\ Q) X £) > £2((Q \ Q5) X £ X D) is the quantum transition function of
M, where D = {L, R}.

AR A

Fig. 10. Formal Definition of QTM in terms of pQTM

-1 +1
3 e @

Fig. 11. QTM Transitions Graph

(middle). In [29], Tus arova” defined a probabilistic quantum
Turing machine (pQTM) that is slightly different than the
classical TM to provide a formal definition to a QTM. Unlike
classical TM, which outputs one triple of the tape content,
new state, and new transition, pQTM output the triple’s proba-
bilistic distribution. Based on the pQTM definition, Tus arova”
informally defined QTM to be similar to pQTM except that
QTM output complex numbers or amplitudes instead of prob-
abilities and provided the formal definition shown in Fig. 12.
Additionally, Tus arova” defined the complexity class of QTM
as BQP (Bounded-error quantum polynomial time) where
he specifies BQP as follows: "A language L is in BQP if
there exists a polynomial p(n) such that L is accepted by
some quantum Turing machine with time complexity p(n).”
He further suggested that BQP € PSAPCE. Bernstein and
Vazirani [1] provided the first formal evidence that QTMs
violate the modern formulation of the Church-Turing thesis,
and showed that there exists a problem solvable in polynomial
time on a QTM, but requires super-polynomial time on a
bounded-error probabilistic TM. Further, they asserted that this
problem is not in the class BPP (bounded-error probabilistic
polynomial time), and argued given BPP C BQP C P#”, that
it is not possible to mathematically prove that QTMs are more
robust than the classical probabilistic TM.

A quantum Turing machine (QTM) is an ordered 6-tuple, (2, A,Q,9; qr 6‘) where
X and Q are both finite sets and

1. Q isthe set of states,

2. X assume it equals (0,1, 4) is a finite set, called alphabet, of all possible symbols,
3. A € ZXisthe blank symbol,

4. q; € Qs theinitial state,

5. qr € Q is the final state, and

6. &:Z x Q — H is the transition function and H is the Hilbert space spanned by
base vectors corresponding to triples from £ x Q x {L,R}.

Fig. 12. The QTM formal definition

Fortnow [10] argued that BQP and BPP exhibit similar
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behavior, mainly in their ability to perform searching and
information hiding. Spakowski et al. [28] introduce EQP
(zero-error BQP or exact quantum polynomial time), BQP,
and NQP (non-deterministic quantum polynomial time) as
three quantum complexity classes, analogous to P, BPP, and
NP, respectively, that represent the computational power of
quantum computers. All three classes represent the class of
languages L accepted by a QTM running in polynomial time,
but with varying probabilities. EQP, BQP, and NQP represent
the classes of languages L such that, for each =z € ¥*, if
r € L, QTM accepts EQP with probability 1, BQP with
probability 2/3 at least, and NQP with nonzero probability,
and if = ¢ L, QTM accepts EQP with probability 0 and BQP
with probability 1/3 at most.

VI. RESULTS AND DISCUSSION

In section IV and V, we described the variants and differen-
tiable end-to-end versions of the classical TMs and examined
their computational complexity. In this section, we compare
the four models: ITTMs, NTMs, FTMs, and QTMs based on
computational model characteristics such as type, accepted
language(s), undecidable problems, and computational com-
plexity (shown in Table 1, 2, 3 and 4). Also, we show the
conjectured relationship among the TM, UTM, and each one
of the four models in Fig. 13, separately. Given Fig. 13,
the first set of ovals on the top-left corner shows that UTM
can compute any tasks computed by TM and that ITTM
can compute any task computed by UTM and surpass UTM
by deciding the halting problem in finite time given infinite
computational steps. The second set of ovals on the top-right
corner shows that NFTM and DFTM can compute any task
computed by UTM and surpass it by solving undecidable
problems. The third set of ovals on the bottom-left corner
shows that the NTM can compute any task computed by UTM.
NTM can compute beyond the limits of the classical UTM.
Finally, the set of ovals on the bottom-right corner shows that
QTM can compute any tasks computed by the UTM and,
further, can surpass the TM limits by continuing to remain
in the final state, i.e., QTM does not have a halting state.

NFTM

DFTM

@ o n @ o am

Fig. 13. The Conjectured Relationship Between TM, UTM, and each of the
Four Models (ITTM, NFTM, NTM, and QTM

Our interest in the future is to evaluate all four models
as arbitrary models over arbitrary domains and measure the
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TABLE I
COMPARISON RESULT BASED ON TYPE

Model Type ITTMs NFTMs NTMs QTMs

Discrete X X - -

Serial X X - -

Analog - - X X

Hyper-computation ~ — - X -

Super-computation ~ — - - X
TABLE 11

COMPARISON RESULT BASED ON ACCEPTABLE LANGUAGES

Model Language ITTMs NFTMs NTMs QTMs

Recursive - - - -

Recursively Enumerable (re.) X X - -

Co- re. - X - -

EQP, BQP and NQP - - - X

Context-free - - X -

Regular - - X -

TABLE III
COMPARISON RESULT BASED ON THE HALTING PROBLEM

Model Decidability ITTMs NFTMs NTMs QTMs

Decidable X X X X

Undecidable - - - -
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TABLE IV
COMPARISON RESULT BASED ON TIME COMPLEXITY (P)

Model Complexity ITTMs NFTMs NTMs QTMs
PCNPNco-NP X - - -
NP Uco-NP - X - -
P/poly - - X -
BPPCBQPC P#Por BQP C PP — - - X

accepting times using a commonly accepted language and the
UTM as a reference model. More interesting is to show if a
conjectured relationship among TM, UTM, and all four models
can be formally derived.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented four computational models
spanning four classes of computations, classical, infinitary,
neural or hyper, and quantum or super. First, we introduced the
classical model of computations and provided an overview of
the notion of universality computation asserted by the Church-
Turing thesis and computational complexity in terms of time
and space. We then introduced the four computational models
in pursuit; ITTMs, FTMs, NTMs, and QTMs. We identified
their computational class, provided their formal definitions,
computable languages, connection to the universal computing
machine (UTM), and complexity analysis.

The class of quantum and neural computations is still
evolving, and several computation models are still materi-
alizing. Hence, they are more open questions to address
concerning their computational complexity and super-Turing
properties non-reproducible by UTM. Other interesting open
issues for future work include comparing the computational
power of the four models we presented in this paper over
arbitrary domains using the conceptual comparison framework
formalized by Boker and Dershowitz [2], and similar to Nayak
and Dash [21], investigating the gap between infinitary, hyper-
computation and super-computation models using a commonly
accepted language as input and acceptance timing as the eval-
uation criterion. Perhaps more interesting than the open issues
mentioned above is to use Diaz’s approach [9] to describe and
hence classify the behavior of the four models based on speed,
entropy, and complexity using machine learning. Further, to
evaluate current and subsequent super-Turing models, there
is a need to define the notion of super-Turing universality
and construct a super-Turing universal model to establish as a
reference model that can simulate any super-Turing models.
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