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Abstract—Human body motion segmentation plays a major
role in many applications, ranging from computer vision to
robotics. Among a variety of algorithms, graph-based approaches
have demonstrated exciting potential in motion analysis owing
to their power to capture the underlying correlations among
joints. However, most existing works focus on the simpler single-
layer geometric structures, whereas multi-layer spatial-temporal
graph structure can provide more informative results. To pro-
vide an interpretable analysis on multilayer spatial-temporal
structures, we revisit the emerging field of multilayer graph
signal processing (M-GSP), and propose novel approaches based
on M-GSP to human motion segmentation. Specifically, we
model the spatial-temporal relationships via multilayer graphs
(MLG) and introduce M-GSP spectrum analysis for feature
extraction. We present two different M-GSP based algorithms
for unsupervised segmentation in the MLG spectrum and vertex
domains, respectively. Our experimental results demonstrate the
robustness and effectiveness of our proposed methods.

Index Terms—multilayer graph signal processing, motion seg-
mentation, unsupervised learning.

I. INTRODUCTION

HUMAN motion analysis has been an important tool and
an active research field, stemming from its broad appli-

cations in many areas, ranging from human-robot interaction to
autonomous driving [1]–[3]. Among a variety of tasks, human
motion segmentation serves as an important analytical step,
benefiting a wide range of motion/action-related tasks, such
as gesture recognition, human activity recognition, and human
gait analysis [4]. Generally, human motion segmentation aims
to divide a long sequence of motion frames into several short,
non-overlapping temporal sections [5], each of which has its
distinct physical meaning, as shown in Fig. 1(a). Specifically,
we aim to process motion skeleton data extracted from video
or synthesized from multiple sensors, instead of the raw video
footage. Thus, the question of how to cluster the motion
video/sequence into meaningful clips has a vital role in human
motion analysis.

Despite many works focusing on temporally segmenting
videos about motions [6]–[8], existing motion segmentation
methods within the scope of processing motion sequences
can be categorized into either unsupervised segmentation or
supervised classification. Unsupervised motion segmentation
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Fig. 1. Illustration of Human Motion: (a) Example of Motion Segmentation;
(b) Spatial-Temporal Relationships Modeled By Multilayer Graph.

usually utilizes the temporal dependency in the video se-
quence, including that in accelerometer and gyroscope data, to
segment different motions. Typical clustering methods include
low-rank transfer clustering [5], hierarchical aligned cluster
analysis (HACA) [9], and subspace clustering [10]. How-
ever, these clustering-based approaches usually stress temporal
information and require some external information, such as
the exact number of different actions, which may not be
available within the datasets themselves. On the other hand,
supervised approaches usually assume pre-labeled datasets to
train the deep learning networks. For example, in [11], a deep
neural network is proposed for human action classification.
Other methods also include long short-term memory networks
(LSTM) [12] and few-shot learning [17]. Despite some notable
successes, most learning based methods need training sets that
are often labeled by human supervisors, which may be inac-
curate and unavailable in real applications, thereby limiting
the practicability of supervised learning. The development of
a more efficient method for motion segmentation remains an
open direction of endeavor.

Recent development of geometric approaches, including
graph signal processing (GSP) [18] and graph neural net-
works (GNN) [19], [20], has provided another promising
alternative in human motion segmentation, for both super-
vised and unsupervised scenarios. In [21], a spatial temporal
graph convolutional networks (ST-GCN) is introduced for
skeleton-based action recognition. Extended from ST-GCN,
the authors of [22] proposed a multi-stage spatial-temporal
graph convolutional neural network (MS-GCN). Another work
[28] introduced spatio-temporal graph cuts for event-based
motion segmentation. However, most existing works assume



2

that human motions would fit a homogeneous spatial graph
structure whereas, in fact, an alternative multilayer heteroge-
neous structure could be more informative. As shown in Fig.
1(b), joints in each temporal framework might have different
underlying geometric structures due to the motion dynamics,
suitable for a multilayer graph (MLG) structure. Moreover,
limited by the homogeneous spatial structure, existing works
are inefficient in processing the inter-layer (temporal) and
intra-layer (spatial) correlations jointly, by conducting separate
spatial and temporal analysis. How to jointly extract spatial-
temporal geometric features remains a critical challenge. For-
tunately, within the context of GSP, a multilayer graph signal
processing (M-GSP) framework has been introduced for MLG
based on tensor representation [30]. Different from the more
traditional multiway GSP (MWGSP) [31], M-GSP allows
different spatial layers to represent heterogeneous geometric
structures, and defines a joint MLG spectral space for data
analysis. M-GSP has exhibited some strong potentials in image
compression [32] and hyperspectral image segmentation [33].

To capture the heterogeneous underlying geometry and
address the spatial-temporal relationships jointly, we apply M-
GSP and propose two novel MLG-based methods for unsu-
pervised human motion segmentation. Compared with deep-
learning based methods, our proposed MLG-based unsuper-
vised algorithm is capable of addressing limited labeled data
without requiring fine-tuning, leading to substantial reductions
in labeling efforts for practical applications. More specifically,
we first introduce the MLG modeling for human motion
datasets and define a MLG singular space for motion analysis.
We then investigate the M-GSP spectral properties and design
a M-GSP Haar-like highpass filter for feature extraction, based
on which spectral segmentation is implemented. To reduce
complexity and enhance efficiency, we present another M-GSP
based approach according to the tensor representation of MLG.
Our experimental results demonstrate the power of M-GSP
in extracting spatial-temporal features, as well as the efficacy
of the proposed methods. We summarize our contributions as
follows:

• To characterize spatial-temporal geometric correlations
in human motion sequences, we introduce an MLG
model, together with its tensor representation, for motion
segmentation. To our best knowledge, we are the first to
propose M-GSP/GSP for human motion analysis.

• To reveal geometric features of human motions, we
propose an M-GSP spectral method for unsupervised
motion segmentation, and to investigate the properties in
the MLG singular space.

• Beyond spectral analysis, we develop an M-GSP based
motion segmentation method in the vertex domain by
exploring tensorial and structural features of MLG.

• Using our suggested guidelines for parameter selection,
our experimental results demonstrate the efficacy of the
proposed methods in both unsupervised and supervised
testing setups.

We organize the rest of the paper as follows. In Section
II, we first review related works on motion segmentation
of motion capture data. We then provide fundamentals of

M-GSP with respect to the preliminaries and notations in
Section III. Next, we present the MLG models for human
motion datasets in Section IV, with which we propose two
novel unsupervised motion segmentation algorithms in spec-
trum domain and vertex domain, respectively, in Section V.
We present experimental results of the proposed methods in
both supervised and unsupervised setup in Section VI, before
summarizing our work in Section VII.

II. RELATED WORKS

In this section, we first briefly review prior works on
motion segmentation. Generally, existing motion segmentation
solutions belong to either unsupervised motion clustering or
supervised motion recognition.

A. Unsupervised motion clustering

The unsupervised motion clustering usually exploits global
information of a motion sequence, and divides the sequence
into several meaningful sections [36]. In traditional unsuper-
vised setup, conventional clustering algorithms, such as K-
means clustering [34] and spectral clustering (SC) [35], can
be applied for human motion segmentation. However, these
traditional clustering algorithms are often inefficient to capture
geometric information in human motions. For example, the
efficacy of some conventional clustering algorithms, such as
K-means clustering, are constrained by the fact that they are
only optimal for spherical clusters, making them unsuitable for
capturing distinctive distances of sections in motion sequences
[9]. Furthermore, even for the same motion, the lengths of
segments in human motion vary due to inconsistency in
movement speeds, leading to difficulties for these basic clus-
tering algorithms. Extending traditional clustering, an aligned
cluster analysis (ACA) together with its extension hierarchical
ACA (HACA) is introduced in [9] as a generalization of
kernel k-means (KKM) and SC for time series clustering
and embedding. The ACA algorithm combines dynamic time
alignment kernel (DTAK) with KKM and SC to better cap-
ture features of segments with different lengths. Leveraging
ACA, the HACA provides a hierarchical structure at different
temporal scales to refine temporal segmentation results while
reducing computational complexity. Other typical algorithms
also include low-rank transfer clustering [5], transfer subspace
clustering, kernel subspace clustering [10] and auto-encoder
[37].

In addition, most existing clustering algorithms focus on
temporal dynamics while ignoring joint spatial-temporal in-
formation that can be more informative in realistic scenarios.
These algorithms simply treat all data within the same time
frame as a vector of features. However, in realistic scenarios,
changes of spatial connections within a single frame, along
with the consideration of joint spatial-temporal connections
can provide more informative insights. As shown in Fig. 1,
a multilayer graph (MLG) built on the motion sequence
can naturally capture spatial-temporal connections. Also, the
M-GSP framework proposed in [30] has shown its ability
to capture and process joint spatial-temporal information.
Therefore, in this work, we investigate the application of
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M-GSP on motion clustering by introducing an MLG-based
clustering algorithm. This algorithm characterizes both spatial
and temporal correlations and is capable of efficient joint
spatial-temporal processing.

B. Supervised Motion Recognition

Supervised motion recognition usually assumes a given
prior-labeled dataset to train the neural networks. For example,
a deep neural network called SE3-NETS was proposed in [11]
to segment point clouds into distinct objects and jointly predict
their rigid body motion. Another typical type of learning
framework is temporal convolutional networks (TCN). Based
on the framework of TCN, a multi-stage temporal convolu-
tional networks (MS-TCN) was proposed in [50]. By stacking
multiple stages sequentially, MS-TCN can process all temporal
resolutions of videos to achieve better results. However, the
predictions of each stage in MS-TCN tend to have over-
segmentation errors. To address this issue, MS-TCN++ was
proposed in [13] by introducing a dual dilated layer, which
combines both large and small receptive fields. Additionally,
the authors in [14] proposed a new cascading paradigm and a
smoothing operation to enhance the adaptability and improve
prediction confidence of the model for ambiguous frames.
Another approach called efficient two-step network (ETSN)
was introduced in [15] by using local burr suppression (LBS)
to significantly reduce the over-segmentation errors. To further
improve the performance, [16] presented a hierarchical action
segmentation refiner (HASR), which can be plugged into MS-
TCN model to refine the segment labels by referring to the
entire video.

Recently, graph neural networks have attracted significant
attention in motion segmentation. A spatial temporal graph
convolutional network (ST-GCN) has been introduced in [21]
for skeleton-based action recognition. Later, the authors in
[23] extended ST-GCN by introducing the stacked hourglass
architecture to improve the accuracy. Meanwhile, a decoupling
GCN model was proposed in [24]. Similar to the decoupling
aggregation mechanism in CNNs, this decoupling GCN model
can improve the graph modeling ability without additional
cost. Another graph convolutional network called central dif-
ference graph convolution (CDGC) was proposed in [25] by
considering aggregating both node and gradient information
in the learning model. Despite the successes, their graph
modeling are normally limited by physical adjacency of the
elements. To address this issue, the authors in [26] introduced
two separate GCN models for spatial and temporal information
modeling. To further improve the performance, the authors of
[22] combined temporal convolutional neural network (TCN)
with ST-GCN blocks to build a multi-stage spatial-temporal
graph convolutional neural network (MS-GCN), which can
lead to better segmentation. In addition, the authors of [17]
added the connectionist temporal classification (CTC) into
MS-GCN to improve temporal alignment between network
predictions and ground truth. In [48], a local self-expression
subspace learning network was proposed, where local self-
expression layers maintain the representation relations between
temporally adjacent motion frames. Besides, an end-to-end

involving distinguished temporal graph convolutional networks
called IDT-GCN was introduced in [27], where an involving
distinction graph convolutional model and temporal segment
regression module could enhance the spatial and temporal
modeling capacity, respectively. However, most learning-based
methods require training datasets that are often labeled by
human supervisors, which are often unavailable and/or inaccu-
rate in many practical applications. Our proposed MLG-based
unsupervised algorithm is designed with easy-tuning with a
minimal amount of labeled data, offering significant savings
in labeling efforts for real-world applications.

III. PRELIMINARIES

In this section, we provide the preliminaries and notations
of M-GSP.

A. Multilayer Graph Signal Processing

1) Overview of GSP: Graph signal processing (GSP) has
recently emerged as an important tool for structural data
analysis [18] due to its power in capturing underlying data cor-
relations. Representing the geometric relationships by graph
models, a spectral space called graph Fourier space can be
defined for data analysis [38], which shows great potentials
in massive applications, including point cloud analysis [39],
signal denoising [40] and data resampling [41]. To leverage the
power of GSP in higher order correlations, high-dimensional
GSP, such as hypergraph signal processing [42], [43] and topo-
logical signal processing [44], are developed. Among these
high-dimensional GSP, multilayer graph signal processing (M-
GSP) represents an efficient low complexity tool for spatial-
temporal signal analysis [30], [33].

2) Preliminaries of M-GSP: M-GSP is a tensor-based
framework for MLG analysis [30]. A multilayer graph with
M layers and N nodes in each layer can be viewed as
projecting N virtual entities {u1, · · · , uN} into M layers
{ℓ1, · · · , ℓM}, such as spectrum band frames for hyperspectral
images and color frames for RGB images. In skeleton-based
human motion dataset, each joint can be viewed as an entity
ui and each temporal frame serves layer ℓα. Then, a motion
sequence as shown in Fig. 1(b) can be modeled as an MLG
with the same number of nodes in each layer. In M-GSP, such
an MLG structure can be represented by a 4-th order adjacency
tensor defined as follows:

A = (Aαiβj) ∈ RM×N×M×N , (1)

where 1 ≤ α, β ≤ M, 1 ≤ i, j ≤ N .
Here, each entry Aαiβj of adjacency tensor A indicates the

edge strength between entity j’s projected node in layer β
and entity i’s corresponding node in layer α. Note that tensor
representation requires each layer to have the same number of
nodes. We can generate such an MLG by:

• Adding isolated nodes to layers with fewer nodes to
reach N nodes and set the interpolated signals as zeros;
Since isolated node does not connect to any other nodes,
they would not affect the message passing in MLG. This
method is suitable for physical networks, such as smart
grid and cyber-physical systems [45].
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• Aggregating similar nodes as supernodes to reduce the
node number to N : This can be an intuitive method for
image processing, where several pixels can be grouped
into superpixels.

Similar to traditional GSP, we define the MLG Fourier space
via tensor decomposition. In an undirected MLG, the adja-
cency A is partially symmetric between orders one and three,
and between orders two and four, respectively. Then, it can be
approximated via orthogonal CANDECOMP/PARAFAC (CP)
decomposition [30] as

A ≈
M∑
α=1

N∑
i=1

λαi · fα ◦ ei ◦ fα ◦ ei, (2)

where ◦ is the tensor outer product [30], fα ∈ RM and
ei ∈ RN are orthonormal bases characterizing the properties
of layers and entities, respectively.

Besides MLG Fourier space, the singular space is defined
from HOSVD [46] as an alternative subspace of MLG, i.e.,

A = S×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4). (3)

Here, ×n denotes the n-mode product introduced in [30],
which can be used to modify the dimension of the n-th order.
U(n) ∈ RIn×In is a unitary matrix with I1 = I3 = M and
I2 = I4 = N [33]. Similar to MLG Fourier space, there are
two modes of singular spectra, i.e., (γα, fα) for mode 1, 3, and
(σi, ei) for mode 2, 4. More specifically, U(1) = U(3) = (fα)
and U(2) = U(4) = (ei). Both singular tensor analysis
and spectral analysis are efficient tools for image processing
depending on specific tasks. In this work, we explore MLG
singular analysis in human motion.

We now introduce the M-GSP singular transform (M-GST).
Suppose that the singular vectors form Wf = [f1 · · · fM ] ∈
RM×M and We = [e1 · · · eN ] ∈ RN×N . Given an MLG
signal s = (sαi) ∈ RM×N , the layer-wise M-GST can be
defined as

šL = WT
f s ∈ RM×N , (4)

and the entity-wise M-GST can be defined as

šN = sWe ∈ RM×N . (5)

The joint M-GST can be calculated by

š = WT
f sWe ∈ RM×N . (6)

For brevity, here we only present the basic concepts of M-
GSP. Interested readers could refer to [30] for more details,
including M-GSP spectral transform, filter design and spectral
analysis.

IV. PROBLEM DESCRIPTION AND MODELING

We now introduce our problem description, together with
the MLG models of the human motion sequence.

Fig. 2. Example of Skeleton-based Human Motion Dataset in CMU graphics
lab motion capture database.

Fig. 3. Example of MLG model for one motion sequence.

A. Problem Description

Similar to [21], we focus on the skeleton-based human
motion segmentation for wearable sensors. Such skeleton-
based motion dataset can be collected by body sensors or
reconstructed from videos [47]. As shown in Fig. 2, a human
body in motion within the skeleton dataset is abstracted into
N joints, which can be annotated with additional information,
including three-dimensional (3D) coordinates, accelerometer
data and gyroscope data. Suppose that the human motion
sequence contains M frames. Then, the annotated signals of
the joint i in layer α is defined by a feature vector xαi. Our
goal in this work is to segment the N temporal frames into
several successive sections, which could capture the features of
human behavior and match the realistic human motion. Instead
of training on prior-labeled data samples, we focus on the
unsupervised human motion segmentation.

B. Multilayer Graph Construction

Next, we introduce the MLG construction for human motion
sequence. For most skeleton-based motion data captured by
sensors, the number of data points within one frame is constant
for one motion sequence. Thus, we can apply an MLG with
the same number of nodes on each layer to model one such
motion sequence shown as Fig. 3. Suppose that the motion
sequence contain M temporal frames and N joints in each
frame. Intuitively, such multilayer spatial-temporal structure
can be viewed as projecting N entities into M layers, where
the entity is defined by the spatial joints and the layer is
defined by temporal frames. Note that, as we mentioned in
Section III-A2, if the motion data sequence contains unequal
numbers of joints across layers, we can add some dummy
nodes in the MLG to keep the same number of nodes across
different layers. These dummy nodes are isolated to all other
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nodes, and would not change the topological structure of the
original multilayer architecture.

With such definition, any skeleton-based motion sequence
can be intuitively modeled by an MLG, which can be repre-
sented by the forth-order adjacency tensor

A = (Aαiβj) ∈ RM×N×M×N , (7)

where 1 ≤ α, β ≤ M, 1 ≤ i, j ≤ N .
Here, α, β ∈ [1,M ] are the indices of layer in MLG, while

i, j ∈ [1, N ] are the indices of joints in each layer. Each entry
in the adjacency tensor, i.e., Aαiβj , represents the relationship
between the i-th joint in α-th temporal layer and the j-th joint
in β-th temporal layer. Now, we need to define the weights
of Aαiβj to capture the geometric similarity among different
joints. One common choice is to set the value of the element
Aαiβj by Gaussian kernel [18], i.e.,

Aαiβj = exp

(
−∥xαi − xβj∥2

σ2

)
, (8)

where xαi and xβj represent data vectors, such as the coor-
dinates, of the i-th joint in α-th temporal layer and the j-th
node in β-th temporal layer, respectively. Also, the standard
deviation σ controls the support of the kernel function.

Considering the different natures in the interlayer (inter-
temporal) and intralayer (spatial) connections, we apply dif-
ferent σ. i.e., σ = σs when calculating the (spatial) similarity
between two nodes within the same layer with α = β, while
using σ = σt when calculating the (temporal) similarity
between two nodes in different layers with α ̸= β. More
specially, the value of σs and σt should be related to the
statistics of all spatial and temporal distances. Thus, we apply
the average of all distances as the value in this work, i.e.,

σs =
1

Ns

∑
i,j∈[1,N ],α=β

∥xαi − xβj∥, (9)

and
σt =

1

Nt

∑
α∈[1,M−1],β=α+1,i=j

∥xαi − xβj∥, (10)

where Ns is the total number of point pairs that are on the
same frame, Nt is the total number of point pairs that are on
the successive frames with the same index.

To highlight the interlayer correlations from the same joint,
we utilize the multiplex structure in which each node only
connects to its counterparts in its successive layers with i = j
and |α − β| = 1. This structure further simplifies the inter-
layer geometric models. Then, the final weight of each entry
Aαiβj shall be calculated as

Aαiβj =


exp

(
−∥xαi−xβj∥2

σ2
s

)
if α = β

exp
(
−∥xαi−xβj∥2

σ2
t

)
if i = j and |α− β| = 1

0 otherwise

.

(11)

With the calculated adjacency tensor A, tensor decompo-
sition can be applied via Eq. (2) or Eq. (3) to obtain the
MLG Fourier space or singular space for data analysis. Since
the HOSVD is faster and more robust in comparison with

Fig. 4. Example of window cuts in motion sequence and the multilayer
network construction.

CP decomposition, we calculate the singular space of the
undirected multilayer graph via HOSVD for spectral feature
extraction. More details regarding M-GSP singular analysis
shall be discussed later in Section V-A.

V. M-GSP BODY MOTION SEGMENTATION

We now introduce our MLG-based body motion segmen-
tation. Since many body motion sequences in most dataset
have thousands of frames with dozens of data points in each
frame, it is unpractical, in terms of memory and computational
time, to build the MLG and decompose the MLG for the
entire sequence. To solve this problem, we focus on a short-
time processing method. As shown in Fig. 4, we first cut
the entire motion sequence into Nseg shorter segments with
window length Wd for temporal frames. Successive segments
may overlap with one other to give a smooth representation
of the current motion. For each segment, we build an MLG
using the 3D coordinates or other annotated information by
using the model introduced in Section IV-B. We then extract
features from the MLG as representation of the corresponding
motion. In this work, we have two different MLG segmentation
approaches: 1) spectrum-based MLG motion segmentation
based on spectral signals; and 2) vertex-based MLG motion
segmentation based on structure signals.

A. Spectrum-based MLG Motion Segmentation

As shown in Fig. 1(a), the body motion sequence consists
of some major movements, which can be captured by the low-
frequency components, and detailed joint actions, which can
be captured by the high-frequency components. To highlight
the detailed behavior of body motions, such as leg movement
and hand waving, we apply an M-GSP filter for feature
extraction. To locate high-frequency components in M-GSP
singular domain, we first estimate the singular space of each
segment using HOSVD in Eq. (3). We then transform the
signal into the singular space using these spectrum bases.
Given the features of motion sequences, we denote the features
of the joint i in layer α as xαi ∈ RK , where K is the feature
dimension of each joint in a given temporal frame, including
angles, coordinates and other available features. Suppose that
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Fig. 5. Block Diagram of Spectrum-based MLG Motion Segmentation.

xαi[a] is the a-th annotated feature of the joint i in layer α.
The whole signals for the a-th feature is represented by

x[a] = (xαi[a]) ∈ RM×N (12)

According to Eq. (6), the joint M-GST of the a-th feature
signal can be calculated by

x̌[a] = WT
f x[a]We ∈ RM×N . (13)

Next, we aggregate all features into one signal š = (šαi) ∈
RM×N , where each entry is calculated as

šαi = ||[x̌αi[1]], · · · , x̌αi[K]||22, (14)

where K is the dimension of features.
For the aggregated signals, an M-GSP highpass filter can

be designed to extract the details in body motions. In this
work, we combine two different kinds of highpass filters: ideal
highpass filter and Haar-like highpass filter. Given the singular
domain signal š ∈ RM×N , we first flatten it into a vector, and
keep top k elements in the high frequency part, i.e., š′ =
[š1, · · · , šk, 0, · · · , 0] ∈ RMN .

Thereafter, we use a Haar-like highpass filter VHaar to
process š′. Suppose that λαi = γασi. The filter VHaar is
defined as

VHaar = I− diag(λ) (15)

=

1− λ11 · · · 0
...

. . .
...

0 · · · 1− λMN

 . (16)

The filtered signal is calculated as

y̌ = VHaar š
′ ∈ RMN . (17)

Finally, we reshape y̌ into š′′ ∈ RM×N and implement the
inverse M-GST to get the vertex domain signal y, which can
be expressed as

y = Wf šW
T
e ∈ RM×N . (18)

Upon obtaining the vertex domain signal for all Nseg seg-
ments in one body motion sequence, we calculate a similarity
graph Asim ∈ RNseg×Nseg , whose elements are given by

Asim[m,n] = e−||y(m)−y(n)||22 , (19)

where y(m) and y(n) are the vertex domain signal for m-th and
n-th segment in the motion sequence, respectively. We then

convert the similarity graph Asim into a sparse self similarity
matrix (SSSM) M ∈ RNseg×Nseg by finding the peak values
in Asim in each row. The threshold for finding the peaks is set
to top 3% largest value among all elements in Asim. To keep
the M symmetric, once the element Asim[m,n] is selected in
each row as the peak values, the element Asim[n,m] will also
be set to the same value. All these peaks and its symmetrical
elements are considered as the nearest neighbors.

To find the cutting frame based on the SSSM M, we use
a similar region growing search technique introduced in [36].
The search technique contains two steps: forward step and
backward step. The forward step starts from the upper left
corner of M and attempts to extend the connected region to
the next row, while the backward step starts from the lower
right corner of M and tries to extend the connected region
to the previous row. In the forward step, a connected region
starts as a seed denoted by M[1, 1]. The region is extended to
the next rows as long as the nearest neighbors in the updated
region increases. Similarly, in the backward step, a connected
region starts as a seed i.e., M[Nseg, Nseg], and the region is
extended to the previous rows as long as the nearest neighbors
in the updated region increases. If no new neighbors are found
between segment i and i + ω in the larger region, except for
the neighbors from the main diagonal of M, then the current
region search is considered complete. The parameter ω is set to
8 in our experiments. The major steps of spectrum-based MLG
Motion Segmentation (SMLGS) is presented in Algorithm 1.

B. Vertex-based MLG Segmentation

To reduce complexity, another set of features to consider
is the multilayer graph structure signal. To extract structural
features in the vertex domain, we first reshape the adjacency
tensor A ∈ RM×N×M×N into a feature vector after construct-
ing the MLG for each overlapping shorter segment with length
Wd. We denote the feature vector for the m-th segment as
z(m) ∈ RM2N2

. Once we get z(m) for all Nseg segments, we
concatenate all z(m) into one matrix

z = [z(1), z(2), · · · , z(Nseg)] ∈ RM2N2×Nseg . (20)

We subsequently reduce the size of z by keeping top k
elements with highest variance across all segments as follows:

• We first calculate the variance for each row in z, and
concatenate them into σ2(z) ∈ RM2N2
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Fig. 6. Block Diagram of Vertex-based MLG Motion Segmentation.

Algorithm 1 Spectrum-based MLG Segmentation (SMLGS)
Input: Features of motion sequences with M temporal
frames and N joints in each frame, where each joint in
a given frame is annotated by K-dimensional features.
1. Calculate the spatial and temporal intrinsic resolutions,
σs and σt, of motion sequences in Eq. (9) and Eq. (10);
2. Cut the motion sequences into overlapping segments of
length Wd in frames;
for each segment do

3. Construct the adjacency tensor based on Eq. (11);
4. Estimate the singular bases using HOSVD in Eq. (3);
5. Transform the signals/features to the singular space
using these spectrum bases;
6. Use a Haar-like highpass filter to extract features as
Eq. (15) and Eq. (17);

end for
7. Calculate the similarity graph using the extracted features
as Eq. (19);
8. Find the cutting frame based on the similarity graph using
the region growing search technique in [36].

• Then we find indices of the elements in σ2(z) with
k largest variances and denote the indices by I =
{I1, · · · , Ik} ∈ Rk;

• Finally, we construct the sampled feature matrix z′ ∈
Rk×Nseg by keeping the rows in z with same indices in
I, i.e., the pth row in z′ is the Ip-th row of z.

In this way we can remove the low frequency elements in the
feature matrix.

With the extracted high-frequency structure signals, we use
the column vector of z′ to calculate the similarity graph Asim.
Let a′(m) be the m-th column vector of a′. The similarity
graph Asim is calculated by

Asim[m,n] = exp
(
−||z′(m) − z′(n)||22

)
. (21)

We then convert the similarity graph Asim into an SSSM as
SMLGS, and find the cutting frames using the region growing
search technique introduced in Section V-A. The major steps
of vertex-based MLG Motion Segmentation (VMLGS) is
presented in Algorithm 2.

Algorithm 2 Vertex-based MLG Segmentation (VMLGS)
Input: Features of motion sequences with M temporal
frames and N joints in each frame, where each joint in
a given frame is annotated by K-dimensional features.
1. Calculate the spatial and temporal intrinsic resolutions,
σs and σt, of motion sequences in Eq. (9) and Eq. (10);
2. Cut the motion sequences into overlapping windows of
length Wd in frames;
for each segment do

3. Construct the adjacency tensor based on Eq. (11) and
reshape it into a vector z(m);

end for
4. Concatenate all z(m) into feature matrix z and calculate
the variance for each row of z;
5. Select the rows in z with k highest variance to form the
sampled feature matrix z′;
6. Calculate the similarity graph using the extracted features
as Eq. (21);
7. Find the cutting frame based on the similarity graph using
the region growing search technique in [36].

VI. EXPERIMENTS

We now present the experimental results of the proposed al-
gorithms in both unsupervised and supervised setup compared
to the existing clustering and recognition approaches.

A. Dataset

In our experiment, we test over two different datasets: 1)
the CMU Graphics Lab Motion Capture Database; and 2) the
Human Gait Database.

1) CMU Graphics Lab Motion Capture Database: The
CMU graphics lab motion capture database1 have 2605 trials
in 6 categories and 23 subcategories. They are captured at 120
Hz with images of 4 megapixel resolution. An example motion
trail in the database is shown in Fig. 2. We test all motion
segmentation methods on trails 01 to 14 of subject 86, which
have the human (supervisor)-labeled motion segmentation. In
this work, we use the optimal cutting frame as the ground truth.
We do not account for transitions between distinct actions in
a manner similar to that of [9].

1http://mocap.cs.cmu.edu/
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Fig. 7. Example of the location of inertial measurement units in HuGaDB.

TABLE I
ACCURACY OF MOTION SEGMENTATION ON CMU 86 DATASET

Dataset Method

SMLGS VMLGS SC ACA EUTS

86 01 0.9067 0.9558 0.7372 0.9212 0.9505
86 02 0.9387 0.9396 0.8916 0.8891 0.9469
86 03 0.9277 0.9488 0.8406 0.8953 0.9262
86 04 0.9138 0.9294 0.7539 0.8735 0.9267
86 05 0.8928 0.9228 0.6523 0.8963 0.9252
86 06 0.9058 0.9631 0.7325 0.9237 0.9068
86 07 0.9377 0.9537 0.8920 0.9214 0.9449
86 08 0.9527 0.9317 0.7808 0.9384 0.9682
86 09 0.9471 0.9235 0.8334 0.8761 0.9058
86 10 0.9709 0.9666 0.9626 0.8928 0.9238
86 11 0.9380 0.9603 0.9228 0.9147 0.9672
86 12 0.9150 0.9712 0.8730 0.8498 0.9275
86 13 0.7671 0.8612 0.8075 0.8206 0.6073
86 14 0.9136 0.9131 0.6049 0.7308 0.9216

Average 0.9163 0.9386 0.8061 0.8817 0.9106

2) Human Gait Database (HuGaDB): HuGaDB is an ac-
tion segmentation dataset, where the subjects record typical
lower limb activities, e.g. walking, running, and cycling [4].
18 subjects are included in this dataset. MoCap was performed
with 6 inertial measurement units (IMUs) at a sampling
frequency of 60 Hz in HuGaDB. Each IMU contains one
accelerometer and one gyroscope. The IMUs were placed
on the right and left thighs, shins and feet, as shown in
Fig. 7. This dataset contains 364 IMU trials in 12 action
categories. Since the accelerometer data and gyroscope data
are different captures of the same motion, they should be
processed in different ways. In our test, we further divide each
trial into three datasets: accelerometer only (ACC) dataset,
gyroscope only (GYRO) dataset, and one dataset containing
both accelerometer and gyroscope data. We test all motion
segmentation methods on all these three datasets to further
investigate the robustness of motion segmentation methods on
different kinds of data.

B. Unsupervised Motion Segmentation

We first evaluate the performance of proposed methods in
unsupervised setup. Here, we compare our proposed method
with four unsupervised motion methods: spectral clustering

TABLE II
AVERAGE ACCURACY OF MOTION SEGMENTATION ON HUGADB DATASET

Dataset Method

SC ACA HACA SMLGS VMLGS

ACC 0.6162 0.7167 0.7210 0.8171 0.7667
GYRO 0.4738 0.5436 0.5276 0.7000 0.8495
Both 0.4540 0.5341 0.5314 0.8249 0.8551

(SC), Aligned Cluster Analysis (ACA), Hierarchical Aligned
Cluster Analysis (HACA) [9], and Efficient Unsupervised
Temporal Segmentation (EUTS) [36] on CMU and HuGaDB
datasets. For the CMU dataset, we convert data into 3D
coordinates of all joints as input for our proposed algorithm,
i.e., xαi ∈ R3. For the HuGaDB dataset, we directly use the
accelerometer data aαi ∈ R3 and gyroscope data gαi ∈ R3

as the input of out proposed algorithm, where xαi ∈ R6. The
parameters of the proposed method are fixed for all trials in
one dataset. We vary the window size Wd from 2 to 10 in
our experiment. We chose the parameters of all the existing
methods based on the set of parameters provided in the original
paper and codes with the best performance. To evaluate the
clustering accuracy, we calculate the mean intersection over
union (mIoU) on each trial.

We summarize the average accuracy and segmentation re-
sults on CMU datasets in Table. I and Fig. 8, respectively.
As shown in Fig. 8, our proposed spectrum-based (SMLGS)
algorithm tends to segment each motion sequence into larger
sections, whereas the vertex-based (VMLGS) algorithm cuts
the motion sequence into finer sections. This distinction high-
lights the focus of SMLGS algorithm in capturing significant
differences between distinct motions, whereas the VMLGS
algorithm excels at detecting subtle variations among ele-
ments, even within the same motion. The average accuracy
results presented in Table I indicate that VMLGS algorithm
achieves superior overall accuracy. However, the increased
number of segments generated by VMLGS may pose a greater
challenge to the classifier in real-world applications. On the
other hand, the number of segments generated by SMLGS
closely aligns with the ground truth in the majority of CMU
86 datasets. The average accuracy results on HuGaDB dataset
are shown in Table II, and an example of segmentation on
the first dataset in HuGaDB is shown in Fig. 10. The best
performance is marked in bold font and the second best result
uses underlined font. From these test results, VMLGS provides
the best performance in most of the dataset while SMLGS
often ranks as the second best. The results demonstrate the
strength of M-GSP in body motion analysis and the robustness
of our proposed algorithms. From the visualization results,
our proposed algorithms provide fewer segments and a clearer
segment boundary which is closer to ground truth. This further
demonstrates the benefits of applying M-GSP in body motion
analysis.

C. Supervised Motion Recognition

Although our algorithms are designed under unsupervised
setup, we also test and provide comparison with supervised
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Fig. 8. Segmentation result on CMU trial 86.

Fig. 9. Example of the similarity matrix for different window sizes on HuGaDB dataset with GYRO data.

motion segmentation. To ensure a fair comparison, we tune the
parameters of our algorithms based on the best performance
from the training dataset. Here, we compare our proposed
method with several existing supervised motion methods:
(1) bidirectional long short term memory-based network (Bi-
LSTM) [12], (2) temporal convolutional neural networks
(TCN) [49], (3) spatial-temporal graph convolutional neural

network (ST-GCN) [21], (4) multi-stage temporal convolu-
tional neural networks (MS-TCN) [50], and (5) multi-stage
spatial-temporal graph convolutional neural networks (MS-
GCN) [22] on HuGaDB datasets.

We present the results in Table III. From the results, our pro-
posed algorithms have competitive performance against super-
vised learning machines, even without ever utilizing the label
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Fig. 10. Segmentation result on HuGaDB trial 01 data 00.

TABLE III
AVERAGE ACCURACY ON HUGADB DATASET WITH BOTH

ACCELEROMETER AND GYROSCOPE DATA.

Method Accuracy (%)

Bi-LSTM 86.1
TCN 88.3
ST-GCN 88.7
MS-TCN 86.8
MS-GCN 90.4
SMLGS (w. optimal parameters) 87.9
VMLGS (w. optimal parameters) 90.2

information for clustering. This demonstrates the effectiveness
of our proposed method in terms of feature extraction from
body motion sequences. Note that our clustering algorithms
can be easily integrated with the supervised learning machines
to further improve the performance. Furthermore, our proposed
MLG-based algorithms do not require large amount of labeled
data, leading to significant saving in labeling efforts for
practical applications. We shall investigate application of M-
GSP in deep learning in our future works.

D. Ablation study on window size

In this section we test our proposed method under dif-
ferent window sizes to show its characteristics as a short-
time processing method. We test the average accuracy on
CMU dataset, ACC dataset in HuGaDB and GYRO dataset
in HuGaDB. We only change the window size Wd of each
segment where we extract the features while keeping all other
parameters fixed. From Fig. 11, our result indicates that the
optimal window size would vary for different datasets. While
a larger window size tends to decrease the average accuracy

Fig. 11. Average accuracy for different window sizes.

performance once it exceeds the optimal value (as shown in
Fig. 11), both SMLGS and VMLGS exhibit a performance loss
under 5% when compared the result obtained with a window
size of Wd = 10 and the optimal configuration. In practice,
such consistency and stability in performance make it easier in
selecting parameters for our proposed algorithms. As shown
in Fig. 9, the similarity matrix of window size Wd = 10 is
smoother than the similarity matrix of Wd = 2, which makes
it more difficult to accurately locate the cut frame between
two body motions. In practice, the optimal window size may
be estimated from a small subset within the entire dataset.

Note also that SMLGS performs better in the ACC dataset
in HuGaDB while the VMLGS is more robust across different
datasets. The reason is that SMLGS implements the spectrum
decomposition to extract additional features while introducing
uncertainty during HOSVD. Thus, for simpler datasets, such
as CMU data with only coordinate information, it could lead to
superior performance with extracted spectral features. On the
other hand, VMLGS evaluates the MLG via structural features,
which is more stable and robust in complicated dataset, such
as HuGaDB.

E. Robustness

In this part of test, we compare our proposed method with
Efficient Unsupervised Temporal Segmentation (EUTS) [36]
on CMU dataset with Gaussian noise. We add the Gaussian
noise directly to the original dataset with varying standard
deviation σ between 0.1 and 0.2. To test robustness against
different level of noise, we add the Gaussian noise to 10% to
90% of the frames in the sequence. These noisy frames are
randomly selected with equal probability and we repeat the
process 10 times for each trial for each noisy frame ratio. In
order to minimize the effect of randomness, we average the
accuracy over these 10 noisy samples to arrive at the final
result. As shown in Fig. 12, our proposed method exhibits
stronger robustness against additive Gaussian noise.
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(a)

(b)

Fig. 12. Average accuracy on CMU trial 86 with different noisy frame ratio.
(a) σ = 0.1; (b) σ = 0.2.

VII. CONCLUSIONS

This work studies the use of M-GSP for body motion anal-
ysis. More specially, we introduce the MLG models for body
motion sequence, with which we propose two different M-GSP
filter-based algorithms for motion segmentation. Our proposed
methods are easier to implement, and show robustness across
multiple datasets. Our experimental results demonstrated the
efficacy of the proposed methods and the potentials of M-
GSP in motion analysis. This work establishes M-GSP as
an efficient tool to model multilateral relationship and to
extract features in motion sequence applications. In our future
works, we shall investigate new ways to integrate machine
learning methods and M-GSP for better feature extraction. The
interpretation of body motion from the perspective of graph
Fourier space is another interesting direction for exploration.
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