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Abstract. Many important problems in extremal combinatorics can be stated as certifying
polynomial inequalities in graph homomorphism numbers, and in particular, many ask to certify
pure binomial inequalities. For a fixed collection of graphs U, the tropicalization of the graph profile
of U essentially records all valid pure binomial inequalities involving graph homomorphism numbers
for graphs in Y. Building upon ideas and techniques described by Blekherman and Raymond in
2022, we compute the tropicalization of the graph profile for the graph containing a single vertex as
well as stars where one edge is subdivided. This allows pure binomial inequalities in homomorphism
numbers (or densities) for these graphs to be verified through an explicit linear program where the
number of variables is equal to the number of edges in the biggest graph involved.
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1. Introduction. The number of homomorphisms from a graph H to a graph
G, denoted by hom(H;G), is the number of maps from V(H) to V(G) that yield
a graph homomorphism, i.e., that map every edge of H to an edge of G. Many
important problems and results in extremal graph theory can be framed as certifying
the validity of polynomial inequalities in the number of graph homomorphisms which
are valid on all graphs. In particular, in many cases, those polynomials are pure
binomial inequalities. For example, the Sidorenko conjecture [Sid93] can be stated as
hom(Py; G)2EUDI=IVUDI . hom(H; G) > hom(Py; G)FUDI for any bipartite graph H,
where P; denotes the path with ¢ edges. The Erdés—Simonovits conjecture [ES82],
which was proven in [Sag18] and then generalized in [BR22], states that hom(Py,; G)?-
hom( Py, 1;G)?'~172% > hom(Py,_1; G)?*F172% for u < v (the original conjecture was
for w =0). Another example is the Kruskal-Katona theorem [Kru63, Kat68], which
states that hom(K,;G)? > hom(K,; G)P for 2 < p < ¢, where K,, is the complete
graph on m vertices.

Graph profiles essentially record all valid polynomial inequalities in homomor-
phism numbers of some given graphs. In [BRST22, BR22], it was shown that the trop-
icalization of graph profiles is a way of capturing all true pure binomial inequalities.
Graph profiles are complicated objects—for instance, they need not be semialgebraic.
Very few two-dimensional density profiles are known (see, e.g., [Raz08, Nik11, Reil6]),
and none are known in higher dimensions. Though it still retains interesting infor-
mation, the tropicalization of a graph profile is a much simpler object: it is always
a closed convex cone, and it has been computed for some arbitrarily large families of
graphs [BRST22, BR22]. Moreover, all tropicalizations computed thus far have been
rational polyhedral cones.
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Fia. 1. The Sy 43 tree.

In this paper, for m € N, we explicitly compute the rational polyhedral cone
forming the tropicalization of the graph profile for the collection of graphs U =
{S0,82,10,8211,...,85 1m-1}, where Sy is a single vertex and Sy 1« is the tree where
V(Sg1x)=1{1,2,...,k+3} and E(Sy 1) ={{1,5}|j€{2,3,....k+2}JU{{k + 2,k +
3}}, ie., a (k+1)-star where one edge is subdivided. The notation comes from think-
ing of the branch lengths of this subdivision of a star as a partition of the number of
edges in the graph. (Note that Sy 10 and Sp 11 are respectively paths with two and
three edges.) The tree Sy 15 is depicted in Figure 1. As a consequence, the validity of
any pure binomial inequality in the graphs of &/ can be checked in a finite way from
an explicit finite collection of binomial inequalities, and this can be done through a
linear program.

We believe that understanding the tropicalization for all trees would be highly
interesting but sadly out of reach at the moment. An ambitious intermediary goal
might be to study the tropicalization of all possible subdivisions of a star up to a cer-
tain size, i.e., in our notation, Sy for any partition A of n < N for some fixed N € N.
Indeed, given that the tropicalization for stars is quite simple, whereas the tropical-
ization for paths is much more complicated [BR22], we expect this tropicalization to
be highly nontrivial and to teach us some important ingredients necessary towards
developing our understanding of the tropicalization of all trees. The family of graphs
in this paper was chosen as a first step towards understanding the tropicalization for
S)\7S.

We now give a precise description of the aforementioned ideas.

1.1. Definitions, results, and proof strategies. The number graph profile of
a collection of connected graphs U = {Hj,..., Hs}, denoted as Ny, is the set of all
vectors (hom(H;; @), hom(Hs;G),. .. ,hom(H,;G)) as G varies over all graphs. For
any U, the number graph profile Ny, is contained in N*. Understanding all s-tuples
that can occur as homomorphism numbers in U/ is essentially equivalent to under-
standing all polynomial inequalities in homomorphism numbers which are valid on all
graphs. It is known that the problem of checking whether a polynomial expression in
homomorphism numbers is nonnegative on all graphs is undecidable [TR95].

A pure binomial inequality has the form z$* .- z% > 22" ...20 where x =
(x1,...,25), a == (a1,...,as), B := (f1,...,0s) € RY,. As mentioned in the in-
troduction, pure binomial inequalities in homomorphism numbers are of interest in
extremal graph theory. To study such inequalities, let log : R, — R® be defined as
log(v) := (log(v1),...,log(vs)). For a set S CRY), we define log(S) :=log(S NRL ).
The tropicalization of S, which is also called the logarithmic limit set of S, is defined
to be
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trop(S) := li_>m log,.(S).

In [BRST22, Lemma 2.2], it was shown that trop(Ny) is a closed convex cone equal
to the closure of the conical hull of log(Ny), i.e., trop(Ny) = cl(cone(log(Ny))).
Each pure binomial inequality in numbers for Ny, corresponds to a linear inequality
in logarithms {a,logx) > (B,logx) for trop(Ny). An important fact we will use is
that the extreme rays of the dual cone trop(Ny)* generate all of the pure binomial
inequalities valid on M. Note that trop(NVy) C R, since Ny NRE,, contains only
points where every coordinate is at least one. In [BR22, Proposition 2.4], it was
shown that no spurious binomial inequalities are added by removing points with zero
coordinates from Ny,.

Blekherman and Raymond conjectured that trop(N,) is in fact a rational polyhe-
dral cone for any finite collection of graphs & [BR22, Conjecture 2.14]. They proved
that this is the case when U consists of complete graphs, even cycles, odd cycles, or
paths by fully characterizing trop(Ny,) in those settings. They also showed that the
conjecture holds for the following collections of graphs.

THEOREM 1.1 (see [BR22, Theorems 3.2 and 1.2]). Let U be a finite collection
of chordal series-parallel graphs. Then trop(Ny) is a rational polyhedral cone. Fur-
thermore, there exists a finite collection of binomial inequalities such that any pure
binomial inequality in the graphs of U can be deduced in a finite way from this finite
collection.

Note that this theorem already implies that trop(MN) is a rational polyhedral
cone for the collection of graphs we are interested in, namely U = {Sp, S5 10, S2 11,. . .,
Sa,1m-1}, since all of these graphs are chordal and series-parallel. The main contribu-
tion of this paper is finding an explicit description for trop(/Ny).

THEOREM 5.1. Let U = {S(), 52710, 52711,. cey 5271711—1}, and let

—y1+y22>0

4y1 —3y2 >0

3y1 —3yzs +ys >0

Y1 +2ym—1 _2ym20

Yo + Ym—1 —Ym =0

Yo —2y1 +y3 >0

Yie1—2Yi +Yir1 20 V2<i<m—1
m'ymfl_(m_l)'ymzo

Q={yeRm!

Then trop(Ny) = Q.

Having such an explicit description of trop(Ny) allows one to check the validity
of any pure binomial inequality in the graphs of U through an explicit linear program.
It is more convenient to check the validity of a binomial inequality for N, by checking
the validity of the corresponding linear inequality for trop(Ny). There, we simply
need to show that this linear inequality can be written as a conical combination of
the defining inequalities for trop(Ay). If there is no such conical combination, then
the original pure binomial inequality is not valid for Ay;. Finding such a conical
combination can be done via a linear program. Indeed, suppose one wants to check
whether S5 [T " Seitt > 850 [Tyt S5t is a valid inequality for some ay, B; (some
of which can be 0). This is equivalent to checking that agyo + 2211 ;Y — Boyo —
S Biyi >0 on trop(Ny) (since yo = log(hom(Sp; G)) and y; =log(hom(Ss 1i-1;G))

n

for 1 <4 <m). Thus one can simply minimize agpyg + 22:1 a3y — Boyo — 2211 Biyi
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over the cone @) of Theorem 5.1. If the optimal value is 0, then the inequality is
valid, and the dual solution gives the conical combination of inequalities of @) that
yields aoyo + D oieq aiyi — Boyo — Dieyq Biyi > 0, i.e., how one recovers this inequality
from the pure binomial inequalities associated to the inequalities in Q). Otherwise,
the inequality is not valid.

Note that these ideas carry on over to homomorphism densities. The homo-
morphism density from a graph H to a graph G, denoted as t(H;G), is the prob-
ability that a map from V(H) to V(G) is a graph homomorphism, i.e., t(H;G) =
l‘?(()g)(‘% The density graph profile Dy, of some finite collection of graphs U is
the closure of the points (¢(H1;G),t(Ha; G), ..., t(Hs; G)) as G varies over all graphs.
It is more natural to write certain problems from extremal graph theory as certi-
fying the validity of a polynomial inequality in densities. In this setting again, it
is known that the problem of checking whether a polynomial expression in densi-
ties is nonnegative on all graphs is undecidable [HN11]. Note that any pure bino-
mial inequality in homomorphism densities, say t(H;;G) — t(Hs;G) > 0 (where H;
and Hs need not be connected graphs), can be rewritten as a pure binomial in-

equality in homomorphism numbers. Indeed, t(Hy;G) — t(Hs; G) = Wh?g)ﬂ% —
m%, and since |V(G)| = hom(K7;G), the previous inequality can be rewrit-

ten as hom(K;; G)IVH2)I=IVH) hom (H,; G) — hom(Ha; G) > 0 if |[V(Hy)| > |V (Hy)|
or hom(Hy;G) — hom(K1; G)VEHII=IVU) hom(Hy; G) > 0 if [V(Hy)| > |V(Hy)|.
Therefore, checking the validity of t(Hy; G) — t(Ha; G) > 0 over Dy where U contains
all connected components in H; and Hy can be done by checking the corresponding
pure binomial inequality in homomorphism numbers over Ay if U contains K; or
over Ny where U’ =U U {K;} otherwise. In our setting, U contains K; = Sy, so by
Theorem 5.1, the validity of any pure binomial inequality in densities in U can also
be checked through the linear program described in the previous paragraph.

Our strategy to prove Theorem 5.1 is to first certify that all of the inequalities
of Q come from valid pure binomial inequalities on the profile Ny, thus showing that
trop(Ny) C Q. Certification is done using some standard techniques as well as tools
presented in [KR11]. To show that @ C trop(Ny), we find all extreme rays of @ and
show that these rays are realizable. We say a ray r is realizable if there exists a sequence
of graphs G,, on n vertices such that a(loghom(H1;G,),...,loghom(Hy;G,)) = r
as n — oo for some constant o € R>(g. These sequences of graphs often arise by
constructing blow-up graphs and taking tensor powers and disjoint unions of those
graphs.

The reader might notice that all inequalities in () have a single negative term.
This is no coincidence: Corollary 2.9 of [BR22| proves that each extreme ray of the
dual cone trop(Ny)* for any finite collection of connected graphs U is spanned by a
vector with at most one negative coordinate.

Another nice property of trop(Ny) is that it is maz-closed: if (z1,...,2s), (Y1, .,
ys) € trop(My), then (z1,...,z5) ® (y1,-..,¥s) := (max{z1,y1},...,max{zs,ys}) €
trop(MNy). Given a cone & C R, the double hull of S is the smallest closed and
max-closed convex cone containing S. A point p € S is said to be maz-extreme if
whenever p=x@y with x,y €S, then p=x or p=y. Furthermore, p € § is said to
span a doubly extreme ray of S if p spans an extreme ray of S and p is max-extreme.
Theorem 2.13 in [BR22] states that a closed and max-closed convex cone in R is
the double hull of its doubly extreme rays. a

As a corollary of Theorem 5.1, we rewrite the tropicalization trop(Ny) as the
double hull of five doubly extreme rays.
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COROLLARY 5.2. The set trop(Ny) is the double hull of the following five doubly
extreme rays in R™: dy,, = (1,0,0,...,0), dom =1, d3m :=(1,2,2,3,4,...,m),
A= (1,3,4,5,...,m+2), dsm=(2,4,5,7,....2m+1).

1.2. Outline. In section 3, we show that the defining inequalities of @) in The-
orem 5.1 are valid for trop(Ny). In section 4, we show that the rays in Corollary 5.2
are present in trop(MNy), and we use those to construct a larger family of rays in
trop(Ny). This larger family will turn out to be the extreme rays of trop(Ny), as
will be shown in the proof of Theorem 5.1 in section 5. In section 2, we briefly recall
helpful properties of graph homomorphisms and of tropicalizations of graph profiles,
as well as some results of Kopparty and Rossman [KR11] which we use later on.

2. Background on tropicalizations, homomorphisms, and some results
of Kopparty and Rossman. We go over different concepts and results which are
used to prove Theorem 5.1 and Corollary 5.2 as well as the lemmas that precede them.

2.1. Useful results about tropicalizations. Recall from the introduction that
for vectors x,y € R®, we let x @y denote their tropical sum:

x @y = (max{x1,y1},...,max{xs, ys}).

A set § CR? is said to be maz-closed if for any x,y € S, we have xdy € S. Corollary
2.3 in [BR22] proves that trop(MNy) is a max-closed convex cone for any finite collection
of connected graphs U.

Recall also from the introduction that the double hull of a cone S C R is defined
to be the smallest max-closed convex cone containing S and is denoted by dh(S).
From Theorem 2.13 in [BR22], we know that trop(Ny) is equal to the double hull of its
doubly extreme rays. Essential to the proof that trop(N) is a max-closed convex cone
(Lemma 2.2 of [BR22]) are the following two graph operations. It has long been known
that hom(H; G1)+hom(H; G3) =hom(H;G1G3), where G1Gs is the disjoint union of
G4 and G3, and that hom(H;G1) -hom(H;Ge) = hom(H; Gy X Gs), where G X Gy is
the categorical product of G; and Ga. From Lemma 2.2 in [BRST22], to show that a
conical combination of two points log(v),log(w) € log(Ny) is in trop(Ny), it suffices to
show that a; log(v)+as log(w) € trop(Ny) for ay,a2 € N. Since a; log(v)+azlog(w) =
log(v® - w%), we see that this is true by using our graph operations. Similarly, from
Lemma 2.2 in [BR22], to show that a tropical combination of these two points is in
trop(Ny), it suffices to show that ajlog(v) @ aslog(w) € trop(Ny) for aj,as € N.

log(vall +wa2l)

It turns out that ajlog(v) & aglog(w) = as | — oo, and so we see

that the desired result holds since w is in trop(Ny) because of our graph
operations. Therefore, taking the conical hull and the max-closure of any set of rays
can also be understood in a graph theoretical way. Indeed, this tells us how to realize
rays obtained by taking conical and tropical combinations of rays that are realizable.
We will make use of this fact in section 4.

2.2. Gluing algebra. In the introduction, we defined hom(H;G) when H is an
unlabeled graph to be the number of homomorphisms from H to G. We now extend
this definition for when H is a partially labeled graph. This will be useful to prove
inequalities in the next section. A graph is partially labeled if a subset of its vertices
are labeled with elements of N:={1,2,3,...} such that no vertex receives more than
one label. If no vertices of H are labeled, then H is unlabeled. For a partially labeled
graph H, hom(H;G) is the number of homomorphisms from H to G that send the
labeled vertices of H to the corresponding vertices in G (which one can think of as
fully labeled in some fixed way). For example,
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1.3 o\ _
hom<2/\' 74>2<6>_2

since vertices 1 and 2 in the first graph must go to vertices 1 and 2, respectively, in
the second graph, and the unlabeled vertex in the first graph can go to either vertices
3 or 4 in the second graph.

Furthermore, for two graphs (partially labeled or not), hom(H;; G)-hom(Hs; G) =
hom(Hy Hs; G), where Hy Ho is the graph obtained by gluing H; and Hs along vertices
with the same labels and replacing any doubled edge with a single edge. This is best
illustrated by an example:

2 . 1 . _ 1 2,
hom(l/\g,G) -h0m<2/\ ,G> —hom( 1—13,6').
Note that multiplying two unlabeled graphs simply yields their disjoint union.
For a partially labeled graph H, [-] denotes the unlabeling of H, i.e., [hom(H;G)] =

hom(H’; G), where H’ is the unlabeled version of H. Unlabeling corresponds to sum-
ming over different ways of labeling the labeled vertices of H. For example,

|[hom(2/\1_3;G>ﬂ = hom (,N\;G) .

We will often use H as shorthand for hom(H;G), especially for the purposes
of writing inequalities. By H¥, we denote both hom(H;G)* and hom(k
disjoint copies of H; ), as they are equal. The previous example thus can be written

as 1/\23 2/\1 =115

* 3’ and unlabeling can be represented as

[. ] =

2.3. Some useful results of Kopparty and Rossman. The concept of the
homomorphism domination exponent was introduced in [KR11], though the idea be-
hind it had been central to many problems in extremal graph theory for a long time.
Let the homomorphism domination exponent of a pair of graphs F; and F5, denoted
by HDE(Fy; F2), be the maximum value of ¢ such that hom(F;; G) > hom(F»; G)° for
every graph G. Note that this yields a pure binomial inequality.

In [KR11], Kopparty and Rossman showed that HDE(F;; F3) can be found by
solving a linear program in 2/V'(#2) variables when F is chordal and Fj is series-
parallel. Since this is the case when Fy and F» are unions of Sy 1x’s, this result was
very useful to help us figure out what trop(Ny,) should be. We now recall one of their
results, which we will use to prove one of our binomial inequalities in the next section.

Let Hom(Fy; F») be the set of homomorphisms from Fy to Fy, and let P(F») be
the polytope consisting of normalized F»-polymatroidal functions:

P(F) = {per>""™ |p@)=0

p(V(F))=1

p(4) <p(B) vV ACBCV(F)

p(ANB) +p(AUB) < p(A) +p(B) ¥ A BCV(F)
p(ANB)+p(AUB)=p(A)+p(B) V A,BCV(F) such that ANB

separates A\B and B\A}.
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In the definition above, AN B is said to separate A\B and B\A if there is no path in
F, going from a vertex in A\ B to a vertex in B\A.

THEOREM 2.1 (Kopparty and Rossman, 2011). Let Fy be a chordal graph, and
let Fy be a series-parallel graph. Then

HDE(F;; F5) = min max —(=1)%lp(p(nS)),
(F1; F3) PEP(FWGH‘“(F“F”SCMax%uesm) (=1)"'p(e(NS))

where MaxCliques(F}) is the set of mazimal cliques of Fy and NS is the intersection
of the mazximal cliques in S.

3. Valid binomial inequalities for S, ;x-trees. Recall that our goal is to
show that trop(Ny) is equal to the cone @ defined in the introduction in Theorem 5.1.
To show that trop(Ny) C Q, we need to show that all of the inequalities of Q come from
valid pure binomial inequalities on the profile AV,. In this section, using some standard
techniques as well as the result of Kopparty and Rossman presented in section 2, we
derive some valid pure binomial inequalities for Ay, that yield the inequalities defining
@ in Theorem 5.1 after taking the log, thus showing that these are valid inequalities
for trop(Ny). Recall that V(Sy 1) = {1,2,...,k + 3} and E(Sy1x) = {{1,7} | j €
{2,3,...,k+2}}U{{k + 2,k + 3}}. Finally, for ease for reading, in this section, we
will use H as shorthand for hom(H; G) whenever there is no confusion.

First note that S5 11 — S5 10 > 0 and S;l’lo — Sg”ll > 0 are inequalities involving
only paths with two and three edges and that these inequalities are already known
(see [KR11], for example). The following inequality is also trivially true.

LEMMA 3.1. We have that SoSgim-2 > Syim-1 is a walid inequality for all
graphs G.

Proof. The inequality holds since there is a surjective homomorphism ¢ from
S0, 1m—2 to Sy gm-1. Indeed, labeling the vertex Sy as 0, let ¢(i) =4 for 1 <i <m—1,
@(0)=m, p(m)=m+1, p(m+1)=m+2. 0

Recall the following consequence of the AM-GM inequality (see, for instance,
Theorem 2.1 of [Sid94]). Let v = (Hi,...,H,), where H;’s are partially labelled
graphs, and let aj,...,a; € N° «ay,...,a;r € Ryg, and b = Zle a;a; such that
b € N°. Then

[V ] = V]

is a valid inequality where v® = H{"' ... H%=. We now prove a few inequalities using
this observation.

LEMMA 3.2. We have that 53,1052713 > 55’112.
Proof. Applying AM-GM, we have that

[~ H(lmz)gﬂézﬂlm ‘1)

is a valid inequality, which proves the inequality above. 0
LEMMA 3.3. We have that S 1053 |2 > 53 |uoi.
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Proof. Applying AM-GM, we have that

2

1 2
21 2 3 P4 5
Il(ll) ﬂ E %;1 mom+1|[ > Il ; %;1 m m+1
— 1 —1

m m

is a valid inequality, which proves the inequality above. 0
LEMMA 3.4. We have that Sy 1i-2S59 1: > S% 1im1 fori>2.
Proof. Applying AM-GM, we have that

27 3

o &
2 -
2 3 9
3 . . 3 3 . . 3
Lo gt NP it > L 4t N i it
i—1 E i—1
i izl

—1

is a valid inequality, which proves the inequality above. 0

Note that the inequality in Lemma 3.4 could also have been seen as an applica-
tion of Holder’s inequality to a sequence of products of certain powers of degrees of
endpoints of edges.

LEMMA 3.5. We have that S, > S;”l_ml_l form>2.

Proof. When m = 2, this is an inequality only involving paths and it is known

to be true from previous work. For completeness, here is a short proof: applying
AM-GM, we have that

2 3 2 3
[ 2] me] 2]
is a valid inequality, which yields N2 I—I as desired.

When m > 3, applying AM-GM, we have that

1
m—1q m—1

4
5 5 5 5

. 3 2 1 . 3 2 1 Z . 3 2 1 :

m m m-j mnj

m+1 m—+2 m+1 m+2

is a valid inequality which is equivalent to

m—1 m—1
4 4 4
5 5 5
: 3 2 1 : 3 2 1 > 3 2 1
: : - m
T’Ird TTIJj m + 1
m+1 m+2 m+2
which proves the inequality above. 0

We now use Theorem 2.1 to prove the validity of one other important binomial
inequality for Nj,.

LEMMA 3.6. We have that HDE(SyS3 12;52,10) =2 and thus that SpS 12 > 53,10'
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Fic. 2. lllustration of ¢ described in the proof of Lemma 3.6.

Proof. We first show that HDE(S(S2 12;S2 10) < 2. For every 0 # .S C V(Sg,10),
let p(S) =1, and let p(#) =0. One can check that p € P(S510).

For any homomorphism ¢ from SyS5 12 to S 10 (including the optimal one), since
the maximal cliques in SpS5 12 are the vertex in Sy and the edges in S 12, we have
that

> —(—)lp(p(nS)) =1 +4—3=2.
SCMaxCliques(So0S, ;2)

Indeed, the vertex Sy contributes 1, the four edges of S5 ;2 each contribute 1, the
vertex of degree two in Sy 12 contributes —1, as it is the intersection of two maximal
cliques (edges), and the vertex of degree three in Sy ;2 contributes —2 since it can
be written in three different ways as the intersection of two maximal cliques and in
one way as the intersection of three maximal cliques. As we are minimizing over all
p € P(Ss,10), this yields that HDE(SS5,12;55,10) < 2 as desired.

We next show that HDE(S(Ss 12;.52 10) > 2. Consider the homomorphism ¢ from
502,12 to S 10 such that ¢(0) =¢(4) =3, ¢(1) =¢(5) =2, and ¢(2) =¢(3) =1 (see
Figure 2).

Every edge of S5 10 is covered by the image of an edge of S5 12 (each of which is
a maximal clique, thus contributing a weight of 1) twice. The inner vertex of S; 10
is covered by the image of the center vertex of S3 2, which yields a multiplier —2
(because it can be written as the intersection of three maximal cliques and as three
different intersections of two maximal cliques). One end vertex of S5 10 is not covered
by the image of any inner vertices, and leaves of S; ;> contribute weights of 0 given
that they cannot be written as intersections of maximal cliques. The other end vertex
of Sy 10 is covered by Sy (which contributes a weight of 1 since it is a maximal clique)
and the inner vertex of the two-edge branch of Sy 10 (which contributes a weight of
—1 since it is the intersection of two maximal cliques), yielding a multiplier of 0. Thus
we have

> — (=1)P¥lp(p(nS))
SCMaxCliques(SoS, ;2)
=2p({1,2}) +2p({2,3}) — 2p({2})
= 2]7({17 273})

)

where the penultimate line follows from the last constraint of polymatroidal functions
(letting A={1,2} and B ={2,3}, we have p({2}) +p({1,2,3}) =p({1,2}) +p({2,3})
since {2} separates {1} and {3}), and the last line follows from the fact that we are
considering normalized polymatroidal functions, meaning that p(V (Fz)) = 1.
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Therefore, for every p € P(SyS2 12), there exists a homomorphism that yields 2
and since we are maximizing over all homomorphisms, we have HDE(Sy, S 12;.52 10)
> 2. This proves that HDE(SpS5,12;55,10) = 2. 1]

4. Rays of trop(MNy). Recall again that our goal is to show that trop(Ny)
is equal to the cone @) defined in the introduction in Theorem 5.1. To show that
Q C trop(Ny), we need to find all extreme rays of @ and show that these rays are
realizable. In this section, we show that different rays are in trop(MNy). In the next
section, we will see that the rays d; ,, are doubly extreme rays and the rays s; ,, and
r'jm, are the remaining extreme rays of trop(Ny).

DEFINITION 4.1. Fix m €N, and let

o dy = (1 0,0,. )

° d2,m = 1 (L 1)}

L4 d3,m = (17272333 e m)

o dy,nn:=(1,3,4,5,.. m—|—2) and
° d5)m = (2,4, 57,....2m+ 1)

be vectors in R™+L,
LEMMA 4.2. The rays d; ., are in trop(Ny) for each 1 < j <5.

Proof. We show how to realize each ray as a(loghom(Sp; G),loghom(Ss 10;G), ...,
loghom(S3 1m-1;G)) for some graph G or as a(loghom(So; Gy, ), loghom(Ss 10;Gy), - . -,
loghom(S3 1m-1;G},)) for some sequence of graphs G, on n vertices as n — oo for some
constant o € R>g.

(1) Consider the graph G,, consisting of n — 2 isolated vertices and one edge.

Then hom(Sy; G,) =n and hom(Ss 1#;Gp) =2 for 0 <k <m—1. As n — oo,

we have Wzl and W—)Oforogkgm—l, thus
showing that dy ,, € trop(Ny).

(2) To realize dg ,m = T, consider the graph G consisting of a single edge. Note
that hom(Sp; G) =hom(Sy 1x;G) =2 for 0 <k <m —1. Thus log(hom(5:G)) _

log(2)
W =1for 0 <k <m—1, and so da, € trop(Ny) as desired.

(3) To realize ds ,,, = (1,2,2,3,4,...,m), consider Sy, the star with n branches.
Then hom(Sp; S,) =n+1 and hom(Sy 1x;5,) =n* +n? for 0<k<m-—1
(where the first term comes from sending the center of S, 1+ to the center
of S,, and the second term comes from sending it to one of the n leaves

of Sp). As n — oo, we have log(hom(50i5n)) _, ¢ log(hom(S,10i5n)) _, 2, and

log(n) log(n)
W — k+1 for 1 <k <m-—1, thus showing that ds ,,, € trop(Nu).

(4) To realize d4,,, =(1,3,4,5,...,m+2), consider the complete bipartite graph
K, . Then we have hom(Sp; K, ) = 2n and hom(Ss 1x; Ky ) = 20 - nktl.

log(hom(So Kpnon)) 1 and
log(n)

— k+3 for 0 < k < m — 1, thus showing that da,, €

nfor 0 <k <m-—1 As n — oo, we have

log(hom(S2 163K n n))
Tog(n)

trop(Ay).

(5) To realize ds ,,, = (2,4,5,7,...,2m + 1), let Gao,241 be the tripartite graph
with parts of size 1, n?, and n? and where there are n? edges between the
first and second parts, n® edges between the second and third parts, and
no edges between the first and third parts; i.e., this is the blow-up graph
of a path of length two. Furthermore, the degree of every vertex in the
second part is n + 1 and the degree of every vertex in the third part is n.

Then we have that hom(Sy; Gan241) =20 + 1, hom(S2 105 Gapz 1) = (n?)* +
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.
QR Q9P doE

(0+0+0)

FIG. 3. Some possible ways of sending Sy 12 to Gyp,24q for case (5) of Lemma 4.2.

We

n? - (n+1)2 +n?-n?, and hom(Sy 1r;Gopz41) = (n?)* 1 (n + 1) + n?(n +
D*+1(n2 + n) + n2nFt1(n + 1) for 1 <k <m — 1, where the different terms

come from sending the center of Sy 1+ to the different parts of Ggy241 (see
IOg(hom(SO§G2n2+1))

Figure 3 for some examples). As n — oo, we have Tog (1) — 2,
log(hom(ng)EZ;)Gzn2+l)) 4 and log(hom(%ézfl;czn2+1)) —2%k4+3for1<k< m—1,
thus showing that ds ., € trop(Ny). O

now define additional families of rays. In Theorem 5.1, we will prove that

these consist of the remaining extreme rays of trop(Ny).

DEFINITION 4.3. Fiz m €N, and let

S1.m = (3,6,8,10,12,15,...,3(m — 1),3m),

So.m = (6,12,16,21,27,33,...,6m — 3,6m + 3),

S3.m = (2,4,5,6,8,10,...,2m),

Sam = (3,6,8,10,13,16,...,3m + 1),

Ty i o= (6i—15,12i—30,16i—40, 21i —54,27i— 72, 33i— 90, . .., 6i% — 15i, 6i2 —

9i — 15,6i2 — 3i — 30,...,(6i — 15)m) for 5<i<m —1,

Yo m.i = (i +2,3,44,50,...,i(i+2), (i +1) (i +2),...,(m—1)(i +2),m(i+2))
for5<i<m-—1,

rsm = (3i —9,6¢ — 18,8; — 24,107 — 30,13; — 40,167 — 50, ... ,3i% — 124 +
10,302 — 94,3i2 — 6i — 9,...,(3i — 9)m) for 5<i<m —1,

Yymii= (20 —5,4i —10,5i — 12,7i — 18,9 — 24,..., 2> — Ti + 6, 2i*> — 5i, 2i> —
3i—5,...,m(2i = 5)) for5<i<m—1,

® 5= (4,4,...,5,9+1,i4+2,...,m) for3<i<m—1, and
® r6i=(+1,3i—1,4i—2,5i—3,...,%+1,i> +4,2+2i+1,...,(m—1)(i +

1),m(i+1)) fora<i<m—1.

For now, we only show that all of these rays are also in trop(Ny).

LEMMA 4.4. The rays S, and vy, ; are in trop(Ny) for 1 <j<4 and 1 <1<6.

Proof. Instead of finding explicit graphs to realize these rays as in the previous
proof, we write them by taking tropical sums (i.e., by taking the maximum com-
ponentwise) of conical combinations of the rays d; ., for 1 < j < 5. Since we have
already shown that d; ,, € trop(Ny) for 1 < j <5 in Lemma 4.2 and since trop(Nyy)
is a max-closed closed convex cone, this shows that these rays are also in trop(/Ny).
Note that section 2.1 explains how one could use this to come up with explicit graphs
to realize these rays.

S1,m = (3,6,8,10,12,15,...,3(m — 1),3m) = 3d3 1, ® 2d4 -
so.m = (6,12,16,21,27,33,...,6m — 3,6m + 3) = 3d5 ,,, ® 4dg m.
Sg7m = (2,4, 5,6,8, 10, ey 2m) = 2d3,m ) d5,m-
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® sy =1(3,6,810,13,16,...,3m + 1) = (d3,m + d5.mm) D 2d4.m-

o 1y ;= (6i—15,12i—30,16i—40,21i — 54, 27i —72,33i —90, .. ., 6i> — 15, 6i> —
9i —15,6i% —3i—30, ..., (6i — 15)m) = (4i — 10)d4;m B (6d4m +3(i —4)ds5 ) B
(6¢ —15)d3,m for 5<i<m—1.

® 1o, =(i+2,3i,44,50,...,i(i+2),(i+1)(i+2),...,(m—1)(i+2),m(i+2)) =
id4,m D (l + 2)d37m for5<i<m—1.

® r3,,; = (3i — 9,60 — 18,8 — 24,107 — 30,13i — 40,160 — 50,...,3i? — 12 +
10,302 — 9i,3i% — 6i — 9,...,(3i — 9)m) = (dom + (i — 5)dzm + dapm + (i —
3)ds,m) ®2(t — 3)dy,m & (30 —9)ds m, for 5<i<m —1.

® vy, =(2i—5,4i—10,5i — 12,7i — 18,9i — 24, ...,2i® — 7i + 6,2i? — 5i,2i? —
3i—5,...,m(2i—5)) = (2dgm + (i —4)d5 ) & (20 — 5)d3 n, for 5<i<m—1.

o r5.i=(i,4,...,0,i+1,i+2,...,m)=1ido,, ®ds,, for 3<i<m— 1.

® ro;mi=(i+1,3i—1,4i—2,5i—3,...,i° + 1,i* +4,i%+2i+1,...,(m—1)(i +
1),m(i+1))=(2dam + (i — 1)dam) ® (i + 1)dgp for 4 <i<m —1. O

5. Main results. In this section, we prove our main results. In Theorem 5.1,
we show that trop(MNy) is equal to the cone . We use the inequalities proven in
section 3 to show that trop(Ny) C @ and the rays realized in section 4 to show that
Q@ C trop(Ny). Most of the proof consists of showing that the rays we realized are
actually the extreme rays of @). This requires some work, as the (m -+ 1)-dimensional
cone @ is defined by m + 5 inequalities. In Corollary 5.2, we restate the theorem in
terms of doubly extreme rays.

THEOREM 5.1. Let U = {Sy, S2,10,52.11,...,59 1m-1}, and let

—y1+y22>0

4y —3y2 >0

3y1 —3ys+ya =0
y1+2ym71_2ym20
y0+ym71_ym20

Yo—2y1 +y3>0

Yie1 = 2Yi +Yir1 20 V2<i<m-—1

Q={yeRm™!

Then trop(Ny) = Q.

Proof. By taking the log of the inequalities proven to be valid for Ay, in section 3,
we know that trop(Ny) C Q.

To show that @ C trop(Ny), we compute the extreme rays of @@ and show that
they are all present in trop(Ay). Any extreme ray must be tight with m linearly
independent inequalities and respect all other inequalities. Note that there are m — 2
inequalities of type y;—1 — 2y; + y;+1 > 0 (which we call gap inequalities) for 2 <
1 <m — 1. In particular, observe that we will never discuss the gap between yo and
y1. Moreover, there are seven other inequalities (which we call non-gap inequalities)
for a total of m + 5 inequalities. So there could potentially be (’”Js) extreme rays.
However, many of these intersections are not feasible. To better understand which of
these (mrf’) intersections we need to consider, it is useful to first look at the projection
of trop(Ny) onto coordinates yo,¥1, Y2, Y3, Y4, Ym—1,Ym (i-e., the coordinates in the
seven non-gap inequalities) which we call C. Computing C' is nontrivial for a general
m, so we end up giving a larger set C’ that contains C' (as the defining inequalities
of C’ are all valid for C) and which sufficiently restricts our search of extreme rays.

We first prove a few valid inequalities for C which we use to define C’. Observe
that y; < (i 4+ 2)yo for all i € [m] since S ji-1 has i 4+ 2 vertices. Moreover, from
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the gap inequalities, we know the gap y;11 — y; is greater than or equal to the gap
yi — yi—1 for 2 < ¢ < m — 1, i.e., gaps are nondecreasing, and so this implies that
Ym—1=> Y3+ (m—4)(ya —y3), Ym > ys+(m—3)(ya—y3), and y3 —ya — Ym—1+ym > 0.
Also, the conical combination of gap inequalities Z:’gl(z —4)(Yim1 — 2y; + Yiy1 > 0)
yields the inequality 44— (m—4)ym—1+(m—>5)ym > 0. Finally, the conical combination
(—y1+y2>0)+>7_o(yi—1 —2y; +yiy1 > 0) yields —y; +y,41 > 0, which implies that
y1 through y,, are nondecreasing. Therefore, we let

—y1+y220

dy1 —3y2 >0

3y1 —3y3 + 91 >0
y1+29m—1—221m20
yO"'ym—l_ymZO

Yo —2y1 +y3 >0
m'qu—(m—l)'ymzo
Yy1—2y2+y3 =0

Y2 —2ys +y4 =0

3yo—y1 >0
dyo —y2 >0

C"={yeR"| 5yg—y3>0 oC.
6yo —ys >0

(m + 1)y0 —Ym—1 Z 0

(m+2)y0 —Ym ZO

(m —=5)ys — (m—=4)ys +Ym-1=>0
(m —4)ys — (m = 3)ys+ ym >0
Y3 = Y4 = Ym-1+Ym =0

Ya — (m - 4)ym71 + (m - 5)ym >0
—Y2+y3=>0

—y3+ys =0

—Ya+ Ym—1 ZO

—Ym—1 + Ym > 0

We can compute all the faces of C’ (for example, in Sage or Polymake) to see which
of the non-gap inequalities can be tight simultaneously. If the intersection of the
hyperplanes corresponding to some of the non-gap inequalities with C’ yields 0, then
we know their intersection with C will also yield 0. Moreover, even if a particular set
of k of the first seven inequalities (our original non-gap inequalities) does not yield 0 in
C’, we know that extreme rays in C' will require m—k of the gap inequalities to be tight.
In particular, if k = 4 (respectively, k = 3 and k = 2), then only two (respectively,
one and zero) gap inequalities aren’t tight, and so at least one (respectively, two and
three) of y1 — 2y +y3 >0, y2 — 2ys +y4 >0, and (m — 5)ys — (M — 4)ys + Ym—1 >0
must be tight in order for there to potentially be an extreme ray in C' where these
non-gap inequalities are tight. Taking all of this into consideration, Table 1 gives the
set of non-gap inequalities that can potentially be tight with extreme rays of C. For
each set, we find which extreme rays can be recovered.

S1: From the tight inequalities in this set, we have that y; =y, =0 and y,,,—1 =
Ym- Since gaps are nondecreasing, this means that all gaps are 0, and so this yields
the extreme ray di ,»,, = (1,0,...,0) which is tight with all m — 2 gap inequalities.

Sa: From the tight inequalities in this set, we have that yo = a, y1 = y2 = 2a,
Y3 = 3a, Ym—1 = (m — 1)a, y,, = ma for some a > 0. Since the gap between y» and
y3 is the same as the gap as between y,,—1 and y,, and gaps are nondecreasing, this
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TABLE 1
Cases of non-gap inequalities that can be tight simultaneously.

—y1+y2>04y1 —3y2>03y1 —3ys + Y1 +2Ym—-1—Y0 +Ym—-1— Yo — 291+ M- -Ym-1—

ya >0 2ym >0 Ym >0 y320 (m—1) -ym >0
Sl * * * * *
82 E3 * * * *
83 * * * * *
Sa * * * *
85 * * * *
Se * * * *
87 * * * *
58 * * * *
89 * * * *
SIO * * *
Sll * * *
S12 * *
S13 * *
S1a * *

yields the extreme ray ds., = (1,2,2,3,4,5,...,m — 1,m) which is tight with m — 3
of the gap inequalities.

S3: From the tight inequalities in this set, we have that yo = 3a, y1 = 6a, y2 = 8a,
Ym—1 = 3(m — 1)a, ym = 3ma for some a > 0. We know there are at most three gap
inequalities that are not additionally tight. Two cases arise: either y; — 2ys +y3 >0
is tight or it is not.

In the first case, we then have y3 = 10a, which in turn implies that y4, = 12a
since 3y1 — 3ys + y4 = 0. Note that the average gap between y4 and vy, has size
% = 3a. Since the gap from y,,_1 to ¥, is 3a and gaps are nondecreasing,
all gaps between y, and y,, must have size 3a. This yields the extreme ray s, =
(3,6,8,10,12,15,...,3(m — 1),3m) which is tight with m — 3 of the gap inequalities.

In the second case when y; — 2ys + y3 > 0, let y3 = 10a + b for some b > 0. Then,
since 3y; — 3ys +y4 =0, yg = 12a + 3b, then yo — 2y3 + y4 > 0 as well. We know that
gaps are nondecreasing, so the gap between ys and y, is at most the gap between
Ym—1 and ¥,,, which means that 2b < a. Note that we cannot have 2b = a since then
every gap from ys to y,, would be 3a, and so y,, = 10a + b+ (m — 3) - 3a # 3ma.
So 2b < a and y4 — y3 < 3a, and since the gap between y,,_1 and y,, is 3a, there is
one last gap inequality that isn’t tight, say y;—1 — 2y; + y;+1 > 0 for some 4 < i <
m—1. So y; =10a + b+ (i — 3)(2a + 2b) and y;+1 = 10a + b+ (i — 3)(2a + 2b) + 3a,
and we also know since all gaps thereafter are 3a and y,, = 3ma, yi11 = (i + 1)3a.
Thus, b = &4)% This yields the family of rays ri,,,; = (6i — 15,12i — 30,16 —
40,217 — 54,27i — 72,331 — 90, ..., 612 — 157,612 — 97 — 15,642 — 3i — 30,. .., (6 — 15)m)
which are tight with m — 5 of the gap inequalities. For example, for m = 7, we
have r; 75 = (15,30,40,51,63,75,90,105) and r; 76 = (21,42,56,72,90, 108,126, 147).
Finally, observe that we do not include ¢ = 4 in this family, as this would make the
inequality 11 — 2y2 4+ y3 =0 and bring us back to s .

S4: From the tight inequalities in this set, we have that yo = 6a, y1 = 12a,
yo = 16a, y3 = ¢, y4 = 3¢ — 36a, Yym—1 = 2b, and y,, = 6a + 2b for some a,b > 0.
Furthermore, we know that at most two gap inequalities aren’t tight. Again, two
cases arise: either y; — 2ys 4+ y3 > 0 is tight or it is not.

In the first case, we get that ¢ = 20a, which implies that y, = 24a. The average

6a+2b—24a __ 2b—18a

gap between y4 and y,,, must thus be >#T="==2¢ = =274 However, we know that
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MYm—1 — (M — 1)y, >0, which is equivalent to b > 3a(m —1). Thus, the average gap
is bigger than 6a, which is a contradiction since the largest gap is 6a.

In the second case when y; — 2y, + y3 > 0, let y3 = ¢ = 20a + d for some d > 0.
Then y4 = 24a+ 3d. Further, note that yo —y1 =4a, y3 —y2 =4a+d, ys —ys =4a+2d
(which are all distinct), and ¥, — Ym—1 = 6a and since at most two gap inequalities
aren’t tight, we must have that 4a +2d = 6a and thus that d = a. We thus get the ray
So.m = (6,12,16,21,27,33,...,6m — 3,6m + 3) which is tight with m — 4 of the gap
inequalities.

S5: From the tight inequalities in this set, we have that yo = b, y1 = 3a, y2 = 4a,
ys =6a —b, y4 =9a — 3b, Yym—1 = ¢, and y,,, = b+ ¢ for some a,b,c > 0. Since gaps are
nondecreasing, we have that a < 2a — b < 3a — 2b < b, which implies that a = b and
that all gaps are a. This thus yields the ray da ., = (1,3,4,5,6,...,m + 2) which is
tight with all gap inequalities.

Ss: From the tight inequalities in this set, we have that yo = b, y1 = 3a, y2 = 4a,
ys = ¢, Y4 = 3¢ — 9a, Yym—1 = (m — 1)b, y,,, = mb for some a,b,c > 0. Since gaps are
nondecreasing, we have that a < ¢ —4a <2c¢ — 9a < b, but we know that at most two
gap inequalities aren’t tight, so not all of these can be distinct.

If a =c—4a, then ¢=5a and ¢ — 4a = 2¢ — 9a as well. Suppose there are two gap
inequalities that aren’t tight, say ;1 —2y; +¥s+1 > 0 and y;_1 — 2y; +y;41 > 0 with
4<i<j<m-—1 (since we have assumed the inequalities for i € {2,3} are tight); then
the m — ¢+ 1 variables yo,¥i+1, Yit2, - - ., Ym would be involved in m — i — 2 tight gap
inequalities and the tight inequality yo + ¥m-1 — ¥m = 0, and therefore this cannot
result in a ray. So we know that in this case, we can assume that there is at most
one gap inequality that isn’t tight, say y;—1 — 2y; + ¥i+1 > 0 for some 4 <¢ <m — 1.
Then y; = (i + 2)a = ib, which implies that b = #a. This yields the family of
rays rom, = (i +2,30,44,5¢,...,i(0 + 2),(i + 1)(0 + 2),...,(m — 1)(i + 2),m(i + 2))
which are tight with m — 3 of the gap inequalities. For example, for m = 7, we
have rq 75 = (7,15,20,25,30,35,42,49), ra76 = (8,18,24,30,36,42,48,56). Finally,
observe that we do not include ¢ =4 in this family, as this would make the inequality
Y1+ 2ym—1 - 2ym > 0 tlght

Now let’s consider the case when a < ¢ —4a, say ¢ =5a+ d, which in turn implies
that c—4a < 2c—9a, and since at most two gap inequalities aren’t tight, we must have
that 2¢ —9a =b=a+ 2d. We thus have that y,, =m(a+2d) =ys5+ (m—3)(a+2d) =
5a+d+ (m —3)(a+2d), and so a=3¢. In turn, this gives that y; = 5%, y,,, =m,
and Y,—1 = (m — 1)%d, and therefore y1 + 2y;m—1 — 2ym < 0, a contradiction.

S7: From the tight inequalities in this set, we have that yo = 3a, y1 = 6a, y» = 8a,
ys =b, ys = ¢, Yym—1 = 3(m — 1)a, and y,, = 3ma for some a,b,c > 0. Suppose that
y1 — 2y2 + 2y3 = 0. In that case, b =10a, and since 3y; — 3ys +y4 >0, let c=12a +d
for some d > 0. We know there are at most two gap inequalities that aren’t tight, and
the three gaps present are 2a < 2a + d < 3a, which are all distinct since d > 0 and
since if 2a + d = 3a, then y,, would be equal to 10a + (m — 3)3a # 3ma. We already
know that yo — 2ys + y4 > 0.

Suppose y;—1 — 2y; + yi+1 > 0 as well for some 5 < i < m — 1. Then y; =
3ia =10a + (i — 3)(2a + d), which implies that d = *=3a. This thus yields the family
of rays r3m,; = (3i —9,6i — 18,8 — 24,10i — 30,13i — 40,160 — 50,...,3i% — 12i +
10,3i% —9i,3i% —6i —9,. .., (3i —9)m) which are tight with m —4 gap inequalities. For
example, r3 75 = (6,12,16,20,25,30,36,42) and r3 76 = (9,18,24,30,38,46,54,63).
Finally, observe that we do not include ¢ = 4 in this family, as this would make the
inequality 3y; — 3ys + y4 > 0 tight.
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Now suppose that y; —2ys +2y3 > 0 and let y3 =b=10a+d. Since 3y; —3ys +y4
>0, let y4 = c=12a+ 3d + f for some f > 0. There are thus four gaps present,
namely 2a < 2a +d < 2a + 2d 4+ f < 3a, and since at most two gap inequalities are
not tight, we must have 2a + 2d + f = 3a, which implies that y4 =y, — (m —4)3a =
12a # 12a + 3d + f, a contradiction.

Sg: From the tight inequalities in this set, we have that yo = a, y1 = 2a, y2 = ¢,
y3 =b, ys = 3b— 6a, ym—1 = (m — 1)a, ym = ma for some a,b,c > 0.

Suppose that y; —2ys+y3 =0, and let yo —y; = d for some d > 0 (since yo—y1 > 0),
which implies that yo = 2a + d, y3 = 2a + 2d, y4 = 6d. Since 4y; — 3y2 > 0, we have
that d < %“ Moreover, since gaps are nondecreasing, we know that y4 —ys > d, which
implies that d > %a, a contradiction.

Now suppose that y; — 2ys +y3 > 0, and let yo = 2a + d and y3 = 2a + 2d + f
for some d, f > 0, which implies that y, = 6d + 3f. There are thus four gaps present,
namely d < d+ f <4d+ 2f — 2a < a, and since at most two gap inequalities are not
tight, we need to have either that 4d+2f —2a=a or d+ f=4d+ 2f — 2a.

If 4d +2f — 2a = a, then y,, = ma =2a + 2d + f + a(m — 3), which implies that
6a=12d + 6 f, contradicting 4d + 2f — 2a = a.

If d+ f =4d + 2f — 2a and the change from gaps of size d + f =4d + 2f — 2a
to gaps of size a happens at position 4 < i < m — 1, ie., y;—1 — 2y; + yir1 > 0,
then y; = (1 +2)d+ (i — 1)f = i?’d;'f, which implies that f = %d. This thus
yields the family of rays ry . ; = (2i —5,4i — 10,5i — 12, 7i — 18,9i — 24,...,2i%> — Ti +
6,2i% — 5i,2i%2 —3i —5,...,m(2i — 5)) which are tight with m — 4 gap inequalities. For
example, r475 = (5,10,13,17,21,25,30,35) and rqs76 = (7,14,18,24, 30, 36,42,49).
Finally, observe that we do not include ¢« = 4 in this family, as this would make the
inequality 4y; — 3y2 > 0 tight.

Sy: From the tight inequalities in this set, we have that yo = a, y1 = 2a, y2 =,
ys = 3a, y4 = 4a, Yym-1 = (m — 1)a, y, = ma for some a,b > 0. Since we know that
gaps are nondecreasing, we know that y; =ia for 3 <i<m.

If y1 —2ys +y3 =0, then yo =b= ga, and so the only gap inequality that isn’t
tight is y2 — 2y3 +y4 > 0. This yields the ray sz, =(2,4,5,6,8,10,...,2m).

If yo — 2y3 + y4 =0, then yo =b=2a, but then —y; + yo =0, a contradiction.

Finally, note that we can’t have an extreme ray for which both y; — 2ys +y3 >0
and yo — 2y3 + y4 > 0 since then no tight inequality would involve ys.

S10: From the tight inequalities in this set, we have that yo = b, y1 = a, y2 = a,
ys = 2a — b, Yym—1 = (m — 1)¢, Y, = mec for some a,b,c > 0. Note that there is at
most one gap inequality that isn’t tight, and there are three gaps already present:
0<a-—0b<c, so at least two of those must be equal.

If a — b =0 and the gap switches from 0 to ¢ at position 2 < i < m — 1, i.e.,
Yi—1—2y; +yi+1 > 0, this yields the family of rays rs ,,, ; = (4,4,...,4,i+1,i+2,...,m).
Finally, observe that we do not include ¢ = 2 in this family, as this would make the
inequality y1 + 2ym—1 — 2ym > 0 tight.

If a — b=c, then ys = a = 2c since each gap after y, is ¢, but then y; + 2y, 1 —
2ym =0, a contradiction.

S11: From the tight inequalities in this set, we have that yo = 37“, y1 = 3a, y2 =4a,
Ys =C, Ym—1 =0 — 37“, Ym = b for some a,b > 0. We know that there is at most one
gap inequality that isn’t tight, say y;—1 — 2y; + yi+1 > 0.

If 4+ > 4, then y3 = ba and y4 = 6a, which means that 3y; —3ys +y4 =0, a
contradiction.

If ¢ = 3, this yields the ray s4,, =(3,6,8,10,13,16,...,3m + 1).
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If 4 =2, this implies that y3 = 117‘1 and y4 = 7a, which implies that 3y; — 3ys + y4
<0, a contradiction.

Si12: From the tight inequalities in this set, we have that yo = a, y1 = 2a, y3 =,
ys = 3¢ — 6a, Yym_1 = b — a, y, = b for some a,b,c > 0. We know that there is at
most one gap inequality that isn’t tight, so the gap between y3 and y4, 2c — 6a must
be either equal to the gap between y,,_1 and ¥y,,, namely a, or to the gap between y»
and ys.

If y4 — y3 = a, then y4 = ¢+ a = 3¢ — 6a, which implies that a = 2—76 Moreover,

either y; —2y>+y3 =0 or y3 —2y3 +y4 = 0. In the first case, this implies that y, = Lle

)
but then 4y; — 3ys < 0, a contradiction. In the second case, this implies that ys :1%
and yields the extreme ray ds ., = (2,4,5,7,...,2m —1,2m +1).

If y4 — y3 = y3 — y2 but y4 — y3 < a, then we must have that yo —y; = y3 — y»
as well since there is at most one gap inequality that isn’t tight. So yg = a, y1 = 2a,
Yo = 2a + d, y3 = 2a + 2d, y4 = 2a + 3d for some d > 0. Since 3y; — 3ys + y4 = 0, we
have that 2a = 3d, but then 4y; — 3y2 =0, a contradiction.

S13: From the tight inequalities in this set, we have that yo = a, y1 = b, y3 = 2b—a,
Ym—1 = (m — 1)a, and y,, = ma for some a,b > 0. We know that at most one gap
inequality isn’t tight with any extreme ray in this setting, so y; — 2ys +y3 = 0 or
Y2 — 2ys +ya =0.

If y1 — 2ys + y3 =0, then yo = 3b2_“. We already have two gaps present: I’_T“ <a
(note that they cannot be equal since 4y; — 3ys > 0). Suppose that the switch from
one gap to the other happens at position i, i.e., y;—1 — 2y; + y;+1 > 0 for some
3<i<m—1. Since y; = 2ia = (i + 1)b — (i — 1)a, we have that b= (33;1)‘1, which
yields the family of rays re m ;= (i +1,3i — 1,4i — 2,5i — 3,...,i% + 1,4% +14,i> + 2i +
1,...,(m=1)(i+1),m(i+1)). For example, we have rg 7 ¢ = (7,17,22,27,32,37,42,49),
re,75 = (6,14,18,22,26,30,36,42), and rg 74 = (5,11,14,17,20,25,30, 35). Note that
we exclude ¢ = 3 since in that case y1 + 2ym—1 — 2y, =0, a contradiction.

If y1 — 2ys +y3 > 0, then y» — 2ys +y4 = 0 and the gap between y, and y3 must be
equal to the gap between y,,_1 and y,,,, namely a, which implies that we have y; =ia
for 2 <i <m. Moreover, we also have ys = 2b — 2a and y4, = 2b. So b= 2a, but then
—y1 + y2 =0, a contradiction.

S14: From the tight inequalities in this set, we have that y; = a and yo = a for
some a > 0. Moreover, we know that all gap inequalities must be tight, so y; = a for
1 <4 <m. Finally, since yy — 2y; + y3 = 0, we have that yp = a. This yields the ray
dam=(1,1,...,1).

Since all the extreme rays produced for @) were shown to be in trop(Ny) by
Lemmas 4.2 and 4.4, we have that Q C trop(Ny) as desired. O

COROLLARY 5.2. The set trop(Ny) is the double hull of the following five doubly
extreme rays in R™: dy,, == (1,0,0,...,0), don =1, d3 s :=(1,2,2,3,4,...,m),
dym=(1,3,4,5,...,m+2), ds = (2,4,5,7,...,2m + 1).

Proof. This follows from Lemma 4.4 and Theorem 5.1 and the fact that one can
check that none of the doubly extreme rays is in the double hull of the others. 0

6. Final remarks. We first note that although we did not extensively use the
results of Kopparty and Rossman [KR11] in how we presented our results, they were
immensely useful in coming up with the tropicalization. Indeed, we used their linear
program to compute valid inequalities and to check whether the doubly extreme rays
of the cones generated by those inequalities were realizable. This computational work
allowed us to guess what the tropicalization could potentially be before attempting to
prove it. Furthermore, we could have written the proofs of the necessary inequalities
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and realizations for the rays using the tools of Kopparty and Rossman; however, we
elected to present more concise proofs instead. We also remark that our results show
similarities to the tropicalization of stars described in [BR22, Theorem 2.17].

THEOREM 6.1. Let U = {So,51,...,5m}, where S; is the star graph with i
branches. Then

yER™|  —y1+42>0

_ Yo+ Ym-1—Ym =0
trop(Nyy) = Yi—1 —2yi + Yit1 >0 Vi<i<m-—1

The set trop(Ny) is the double hull of the following doubly extreme rays: (1,0,
0,...,0), (1,1,...,1), (1,1,2,3,...,m), and (1,2,3,4,...,m+1).

Furthermore, in this paper, we proved Theorem 5.1 by considering all extreme
rays. However, it is possible to prove this theorem using only the doubly extreme rays
(without finding all extreme rays) by doing some additional casework. This proof will
be included in the thesis of the first-named author.

Finally, as mentioned in the introduction, computing the tropicalization for all
trees would be highly interesting though probably out of reach at the moment. One
family of trees of particular interest is a generalization of Sy ;»’s that includes all
subdivisions of a star, i.e., S in our notation. Note that the tropicalization of paths
in [BR22] is much more complicated than the tropicalization of stars. Therefore, given
that Sy can contain longer paths in general, computing their tropicalization might be
highly nontrivial. Restricting ourselves to partitions of shape (2,1%) was a first step
in that direction.
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