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TROPICALIZING THE GRAPH PROFILE OF SOME
ALMOST-STARS⇤

MARIA DASCĂLU†
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Abstract. Many important problems in extremal combinatorics can be stated as certifying
polynomial inequalities in graph homomorphism numbers, and in particular, many ask to certify
pure binomial inequalities. For a fixed collection of graphs U , the tropicalization of the graph profile

of U essentially records all valid pure binomial inequalities involving graph homomorphism numbers
for graphs in U . Building upon ideas and techniques described by Blekherman and Raymond in
2022, we compute the tropicalization of the graph profile for the graph containing a single vertex as
well as stars where one edge is subdivided. This allows pure binomial inequalities in homomorphism
numbers (or densities) for these graphs to be verified through an explicit linear program where the
number of variables is equal to the number of edges in the biggest graph involved.
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1. Introduction. The number of homomorphisms from a graph H to a graph
G, denoted by hom(H;G), is the number of maps from V (H) to V (G) that yield
a graph homomorphism, i.e., that map every edge of H to an edge of G. Many
important problems and results in extremal graph theory can be framed as certifying
the validity of polynomial inequalities in the number of graph homomorphisms which
are valid on all graphs. In particular, in many cases, those polynomials are pure
binomial inequalities. For example, the Sidorenko conjecture [Sid93] can be stated as
hom(P0;G)2|E(H)|�|V (H)| · hom(H;G)� hom(P1;G)|E(H)| for any bipartite graph H,
where Pi denotes the path with i edges. The Erdős–Simonovits conjecture [ES82],
which was proven in [Sağ18] and then generalized in [BR22], states that hom(P2u;G)2 ·
hom(P2v+1;G)2v�1�2u � hom(P2v�1;G)2v+1�2u for u< v (the original conjecture was
for u = 0). Another example is the Kruskal–Katona theorem [Kru63, Kat68], which
states that hom(Kp;G)q � hom(Kq;G)p for 2  p < q, where Km is the complete
graph on m vertices.

Graph profiles essentially record all valid polynomial inequalities in homomor-
phism numbers of some given graphs. In [BRST22, BR22], it was shown that the trop-
icalization of graph profiles is a way of capturing all true pure binomial inequalities.
Graph profiles are complicated objects—for instance, they need not be semialgebraic.
Very few two-dimensional density profiles are known (see, e.g., [Raz08, Nik11, Rei16]),
and none are known in higher dimensions. Though it still retains interesting infor-
mation, the tropicalization of a graph profile is a much simpler object: it is always
a closed convex cone, and it has been computed for some arbitrarily large families of
graphs [BRST22, BR22]. Moreover, all tropicalizations computed thus far have been
rational polyhedral cones.
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1352 MARIA DASCĂLU AND ANNIE RAYMOND

Fig. 1. The S2,13 tree.

In this paper, for m 2 N, we explicitly compute the rational polyhedral cone
forming the tropicalization of the graph profile for the collection of graphs U =
{S0, S2,10 , S2,11 , . . . , S2,1m�1}, where S0 is a single vertex and S2,1k is the tree where
V (S2,1k) = {1,2, . . . , k+3} and E(S2,1k) = {{1, j} | j 2 {2,3, . . . , k+2}}[ {{k+2, k+
3}}, i.e., a (k+1)-star where one edge is subdivided. The notation comes from think-
ing of the branch lengths of this subdivision of a star as a partition of the number of
edges in the graph. (Note that S2,10 and S2,11 are respectively paths with two and
three edges.) The tree S2,13 is depicted in Figure 1. As a consequence, the validity of
any pure binomial inequality in the graphs of U can be checked in a finite way from
an explicit finite collection of binomial inequalities, and this can be done through a
linear program.

We believe that understanding the tropicalization for all trees would be highly
interesting but sadly out of reach at the moment. An ambitious intermediary goal
might be to study the tropicalization of all possible subdivisions of a star up to a cer-
tain size, i.e., in our notation, S� for any partition � of nN for some fixed N 2N.
Indeed, given that the tropicalization for stars is quite simple, whereas the tropical-
ization for paths is much more complicated [BR22], we expect this tropicalization to
be highly nontrivial and to teach us some important ingredients necessary towards
developing our understanding of the tropicalization of all trees. The family of graphs
in this paper was chosen as a first step towards understanding the tropicalization for
S�’s.

We now give a precise description of the aforementioned ideas.

1.1. Definitions, results, and proof strategies. The number graph profile of
a collection of connected graphs U = {H1, . . . ,Hs}, denoted as NU , is the set of all
vectors (hom(H1;G),hom(H2;G), . . . ,hom(Hs;G)) as G varies over all graphs. For
any U , the number graph profile NU is contained in Ns. Understanding all s-tuples
that can occur as homomorphism numbers in U is essentially equivalent to under-
standing all polynomial inequalities in homomorphism numbers which are valid on all
graphs. It is known that the problem of checking whether a polynomial expression in
homomorphism numbers is nonnegative on all graphs is undecidable [IR95].

A pure binomial inequality has the form x
↵1

1
· · ·x↵s

s
� x

�1

1
· · ·x�s

s
, where x :=

(x1, . . . , xs), ↵ := (↵1, . . . ,↵s), � := (�1, . . . ,�s) 2 Rs

�0
. As mentioned in the in-

troduction, pure binomial inequalities in homomorphism numbers are of interest in
extremal graph theory. To study such inequalities, let log : Rs

>0
! Rs be defined as

log(v) := (log(v1), . . . , log(vs)). For a set S ✓ Rs

�0
, we define log(S) := log(S \Rs

>0
).

The tropicalization of S, which is also called the logarithmic limit set of S, is defined
to be
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TROPICALIZATION OF SOME ALMOST-STARS 1353

trop(S) := lim
⌧!1

log
⌧
(S).

In [BRST22, Lemma 2.2], it was shown that trop(NU ) is a closed convex cone equal
to the closure of the conical hull of log(NU ), i.e., trop(NU ) = cl(cone(log(NU ))).
Each pure binomial inequality in numbers for NU corresponds to a linear inequality
in logarithms h↵, logxi � h�, logxi for trop(NU ). An important fact we will use is
that the extreme rays of the dual cone trop(NU )⇤ generate all of the pure binomial
inequalities valid on NU . Note that trop(NU ) ✓ Rs

�0
since NU \ Rs

>0
contains only

points where every coordinate is at least one. In [BR22, Proposition 2.4], it was
shown that no spurious binomial inequalities are added by removing points with zero
coordinates from NU .

Blekherman and Raymond conjectured that trop(NU ) is in fact a rational polyhe-
dral cone for any finite collection of graphs U [BR22, Conjecture 2.14]. They proved
that this is the case when U consists of complete graphs, even cycles, odd cycles, or
paths by fully characterizing trop(NU ) in those settings. They also showed that the
conjecture holds for the following collections of graphs.

Theorem 1.1 (see [BR22, Theorems 3.2 and 1.2]). Let U be a finite collection
of chordal series-parallel graphs. Then trop(NU ) is a rational polyhedral cone. Fur-
thermore, there exists a finite collection of binomial inequalities such that any pure
binomial inequality in the graphs of U can be deduced in a finite way from this finite
collection.

Note that this theorem already implies that trop(NU ) is a rational polyhedral
cone for the collection of graphs we are interested in, namely U = {S0, S2,10 , S2,11 , . . . ,

S2,1m�1}, since all of these graphs are chordal and series-parallel. The main contribu-
tion of this paper is finding an explicit description for trop(NU ).

Theorem 5.1. Let U = {S0, S2,10 , S2,11 , . . . , S2,1m�1}, and let

Q=

8
>>>>>>>>>><

>>>>>>>>>>:

y 2Rm+1

����������������

�y1 + y2 � 0
4y1 � 3y2 � 0
3y1 � 3y3 + y4 � 0
y1 + 2ym�1 � 2ym � 0
y0 + ym�1 � ym � 0
y0 � 2y1 + y3 � 0
yi�1 � 2yi + yi+1 � 0 82 im� 1
m · ym�1 � (m� 1) · ym � 0

9
>>>>>>>>>>=

>>>>>>>>>>;

.

Then trop(NU ) =Q.

Having such an explicit description of trop(NU ) allows one to check the validity
of any pure binomial inequality in the graphs of U through an explicit linear program.
It is more convenient to check the validity of a binomial inequality for NU by checking
the validity of the corresponding linear inequality for trop(NU ). There, we simply
need to show that this linear inequality can be written as a conical combination of
the defining inequalities for trop(NU ). If there is no such conical combination, then
the original pure binomial inequality is not valid for NU . Finding such a conical
combination can be done via a linear program. Indeed, suppose one wants to check
whether S↵0

0

Q
m�1

i=0
S
↵i+1

2,1i
� S

�0

0

Q
m�1

i=0
S
�i+1

2,1i
is a valid inequality for some ↵i,�i (some

of which can be 0). This is equivalent to checking that ↵0y0 +
P

m

i=1
↵iyi � �0y0 �P

m

i=1
�iyi � 0 on trop(NU ) (since y0 = log(hom(S0;G)) and yi = log(hom(S2,1i�1 ;G))

for 1  i m). Thus one can simply minimize ↵0y0 +
P

m

i=1
↵iyi � �0y0 �

P
m

i=1
�iyi
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1354 MARIA DASCĂLU AND ANNIE RAYMOND

over the cone Q of Theorem 5.1. If the optimal value is 0, then the inequality is
valid, and the dual solution gives the conical combination of inequalities of Q that
yields ↵0y0 +

P
m

i=1
↵iyi � �0y0 �

P
m

i=1
�iyi � 0, i.e., how one recovers this inequality

from the pure binomial inequalities associated to the inequalities in Q. Otherwise,
the inequality is not valid.

Note that these ideas carry on over to homomorphism densities. The homo-
morphism density from a graph H to a graph G, denoted as t(H;G), is the prob-
ability that a map from V (H) to V (G) is a graph homomorphism, i.e., t(H;G) =
hom(H;G)

|V (G)||V (H)| . The density graph profile DU of some finite collection of graphs U is
the closure of the points (t(H1;G), t(H2;G), . . . , t(Hs;G)) as G varies over all graphs.
It is more natural to write certain problems from extremal graph theory as certi-
fying the validity of a polynomial inequality in densities. In this setting again, it
is known that the problem of checking whether a polynomial expression in densi-
ties is nonnegative on all graphs is undecidable [HN11]. Note that any pure bino-
mial inequality in homomorphism densities, say t(H1;G) � t(H2;G) � 0 (where H1

and H2 need not be connected graphs), can be rewritten as a pure binomial in-
equality in homomorphism numbers. Indeed, t(H1;G) � t(H2;G) = hom(H1;G)

|V (G)||V (H1)| �
hom(H2;G)

|V (G)||V (H2)| , and since |V (G)| = hom(K1;G), the previous inequality can be rewrit-

ten as hom(K1;G)|V (H2)|�|V (H1)| hom(H1;G)� hom(H2;G)� 0 if |V (H2)|� |V (H1)|
or hom(H1;G) � hom(K1;G)|V (H1)|�|V (H2)| hom(H2;G) � 0 if |V (H1)| � |V (H2)|.
Therefore, checking the validity of t(H1;G)� t(H2;G)� 0 over DU where U contains
all connected components in H1 and H2 can be done by checking the corresponding
pure binomial inequality in homomorphism numbers over NU if U contains K1 or
over NU 0 where U 0 = U [ {K1} otherwise. In our setting, U contains K1 = S0, so by
Theorem 5.1, the validity of any pure binomial inequality in densities in U can also
be checked through the linear program described in the previous paragraph.

Our strategy to prove Theorem 5.1 is to first certify that all of the inequalities
of Q come from valid pure binomial inequalities on the profile NU , thus showing that
trop(NU )✓Q. Certification is done using some standard techniques as well as tools
presented in [KR11]. To show that Q✓ trop(NU ), we find all extreme rays of Q and
show that these rays are realizable. We say a ray r is realizable if there exists a sequence
of graphs Gn on n vertices such that ↵(log hom(H1;Gn), . . . , log hom(Hs;Gn)) ! r
as n ! 1 for some constant ↵ 2 R�0. These sequences of graphs often arise by
constructing blow-up graphs and taking tensor powers and disjoint unions of those
graphs.

The reader might notice that all inequalities in Q have a single negative term.
This is no coincidence: Corollary 2.9 of [BR22] proves that each extreme ray of the
dual cone trop(NU )⇤ for any finite collection of connected graphs U is spanned by a
vector with at most one negative coordinate.

Another nice property of trop(NU ) is that it is max-closed: if (x1, . . . , xs), (y1, . . . ,
ys) 2 trop(NU ), then (x1, . . . , xs) � (y1, . . . , ys) := (max{x1, y1}, . . . ,max{xs, ys}) 2
trop(NU ). Given a cone S ⇢ Rs

�0
, the double hull of S is the smallest closed and

max-closed convex cone containing S. A point p 2 S is said to be max-extreme if
whenever p= x�y with x,y 2 S, then p= x or p= y. Furthermore, p2 S is said to
span a doubly extreme ray of S if p spans an extreme ray of S and p is max-extreme.
Theorem 2.13 in [BR22] states that a closed and max-closed convex cone in Rs

�0
is

the double hull of its doubly extreme rays.
As a corollary of Theorem 5.1, we rewrite the tropicalization trop(NU ) as the

double hull of five doubly extreme rays.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TROPICALIZATION OF SOME ALMOST-STARS 1355

Corollary 5.2. The set trop(NU ) is the double hull of the following five doubly
extreme rays in Rm+1: d1,m := (1,0,0, . . . ,0), d2,m := ~1, d3,m := (1,2,2,3,4, . . . ,m),
d4,m := (1,3,4,5, . . . ,m+ 2), d5,m := (2,4,5,7, . . . ,2m+ 1).

1.2. Outline. In section 3, we show that the defining inequalities of Q in The-
orem 5.1 are valid for trop(NU ). In section 4, we show that the rays in Corollary 5.2
are present in trop(NU ), and we use those to construct a larger family of rays in
trop(NU ). This larger family will turn out to be the extreme rays of trop(NU ), as
will be shown in the proof of Theorem 5.1 in section 5. In section 2, we briefly recall
helpful properties of graph homomorphisms and of tropicalizations of graph profiles,
as well as some results of Kopparty and Rossman [KR11] which we use later on.

2. Background on tropicalizations, homomorphisms, and some results
of Kopparty and Rossman. We go over di↵erent concepts and results which are
used to prove Theorem 5.1 and Corollary 5.2 as well as the lemmas that precede them.

2.1. Useful results about tropicalizations. Recall from the introduction that
for vectors x,y 2Rs, we let x� y denote their tropical sum:

x� y= (max{x1, y1}, . . . ,max{xs, ys}).
A set S ✓Rs is said to be max-closed if for any x,y 2 S, we have x�y 2 S. Corollary
2.3 in [BR22] proves that trop(NU ) is a max-closed convex cone for any finite collection
of connected graphs U .

Recall also from the introduction that the double hull of a cone S ⇢Rs

�0
is defined

to be the smallest max-closed convex cone containing S and is denoted by dh(S).
From Theorem 2.13 in [BR22], we know that trop(NU ) is equal to the double hull of its
doubly extreme rays. Essential to the proof that trop(NU ) is a max-closed convex cone
(Lemma 2.2 of [BR22]) are the following two graph operations. It has long been known
that hom(H;G1)+hom(H;G2) = hom(H;G1G2), where G1G2 is the disjoint union of
G1 and G2, and that hom(H;G1) ·hom(H;G2) = hom(H;G1⇥G2), where G1⇥G2 is
the categorical product of G1 and G2. From Lemma 2.2 in [BRST22], to show that a
conical combination of two points log(v), log(w)2 log(NU ) is in trop(NU ), it su�ces to
show that a1 log(v)+a2 log(w)2 trop(NU ) for a1, a2 2N. Since a1 log(v)+a2 log(w) =
log(va1 ·wa2), we see that this is true by using our graph operations. Similarly, from
Lemma 2.2 in [BR22], to show that a tropical combination of these two points is in
trop(NU ), it su�ces to show that a1 log(v) � a2 log(w) 2 trop(NU ) for a1, a2 2 N.
It turns out that a1 log(v) � a2 log(w) = log(va1l

+wa2l
)

l
as l ! 1, and so we see

that the desired result holds since log(va1l
+wa2l

)

l
is in trop(NU ) because of our graph

operations. Therefore, taking the conical hull and the max-closure of any set of rays
can also be understood in a graph theoretical way. Indeed, this tells us how to realize
rays obtained by taking conical and tropical combinations of rays that are realizable.
We will make use of this fact in section 4.

2.2. Gluing algebra. In the introduction, we defined hom(H;G) when H is an
unlabeled graph to be the number of homomorphisms from H to G. We now extend
this definition for when H is a partially labeled graph. This will be useful to prove
inequalities in the next section. A graph is partially labeled if a subset of its vertices
are labeled with elements of N := {1,2,3, . . .} such that no vertex receives more than
one label. If no vertices of H are labeled, then H is unlabeled. For a partially labeled
graph H, hom(H;G) is the number of homomorphisms from H to G that send the
labeled vertices of H to the corresponding vertices in G (which one can think of as
fully labeled in some fixed way). For example,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1356 MARIA DASCĂLU AND ANNIE RAYMOND

hom

 
1

2
;

1

3

4 2

5

6

!
= 2

since vertices 1 and 2 in the first graph must go to vertices 1 and 2, respectively, in
the second graph, and the unlabeled vertex in the first graph can go to either vertices
3 or 4 in the second graph.

Furthermore, for two graphs (partially labeled or not), hom(H1;G)·hom(H2;G) =
hom(H1H2;G), where H1H2 is the graph obtained by gluing H1 and H2 along vertices
with the same labels and replacing any doubled edge with a single edge. This is best
illustrated by an example:

hom

✓
2

1 3
;G

◆
· hom

✓
1

2
;G

◆
= hom

✓
1 2

3
;G

◆
.

Note that multiplying two unlabeled graphs simply yields their disjoint union.
For a partially labeled graphH, [[·]] denotes the unlabeling ofH, i.e., [[hom(H;G)]] =

hom(H 0;G), where H 0 is the unlabeled version of H. Unlabeling corresponds to sum-
ming over di↵erent ways of labeling the labeled vertices of H. For example,

s
hom

✓
1

2 3
;G

◆{
= hom

�
;G

�
.

We will often use H as shorthand for hom(H;G), especially for the purposes
of writing inequalities. By H

k, we denote both hom(H;G)k and hom(k
disjoint copies of H;G), as they are equal. The previous example thus can be written

as
2

1 3
1

2
=

1 2

3
,
and unlabeling can be represented as

s
1

2 3

{
= .

2.3. Some useful results of Kopparty and Rossman. The concept of the
homomorphism domination exponent was introduced in [KR11], though the idea be-
hind it had been central to many problems in extremal graph theory for a long time.
Let the homomorphism domination exponent of a pair of graphs F1 and F2, denoted
by HDE(F1;F2), be the maximum value of c such that hom(F1;G)� hom(F2;G)c for
every graph G. Note that this yields a pure binomial inequality.

In [KR11], Kopparty and Rossman showed that HDE(F1;F2) can be found by
solving a linear program in 2|V (F2)| variables when F1 is chordal and F2 is series-
parallel. Since this is the case when F1 and F2 are unions of S2,1k ’s, this result was
very useful to help us figure out what trop(NU ) should be. We now recall one of their
results, which we will use to prove one of our binomial inequalities in the next section.

Let Hom(F1;F2) be the set of homomorphisms from F1 to F2, and let P(F2) be
the polytope consisting of normalized F2-polymatroidal functions:

P(F2) =
�
p2R2

|V (F2)|
|p(;) = 0

p(V (F2)) = 1

p(A) p(B) 8 A✓B ✓ V (F2)

p(A\B) + p(A[B) p(A) + p(B) 8 A,B ✓ V (F2)

p(A\B) + p(A[B) = p(A) + p(B) 8 A,B ✓ V (F2) such that A\B

separates A\B and B\A
 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TROPICALIZATION OF SOME ALMOST-STARS 1357

In the definition above, A\B is said to separate A\B and B\A if there is no path in
F2 going from a vertex in A\B to a vertex in B\A.

Theorem 2.1 (Kopparty and Rossman, 2011). Let F1 be a chordal graph, and
let F2 be a series-parallel graph. Then

HDE(F1;F2) = min
p2P(F2)

max
'2Hom(F1;F2)

X

S✓MaxCliques(F1)

�(�1)|S|
p('(\S)),

where MaxCliques(F1) is the set of maximal cliques of F1 and \S is the intersection
of the maximal cliques in S.

3. Valid binomial inequalities for S2,1k-trees. Recall that our goal is to
show that trop(NU ) is equal to the cone Q defined in the introduction in Theorem 5.1.
To show that trop(NU )✓Q, we need to show that all of the inequalities ofQ come from
valid pure binomial inequalities on the profileNU . In this section, using some standard
techniques as well as the result of Kopparty and Rossman presented in section 2, we
derive some valid pure binomial inequalities for NU that yield the inequalities defining
Q in Theorem 5.1 after taking the log, thus showing that these are valid inequalities
for trop(NU ). Recall that V (S2,1k) = {1,2, . . . , k + 3} and E(S2,1k) = {{1, j} | j 2
{2,3, . . . , k + 2}} [ {{k + 2, k + 3}}. Finally, for ease for reading, in this section, we
will use H as shorthand for hom(H;G) whenever there is no confusion.

First note that S2,11 � S2,10 � 0 and S
4

2,10
� S

3

2,11
� 0 are inequalities involving

only paths with two and three edges and that these inequalities are already known
(see [KR11], for example). The following inequality is also trivially true.

Lemma 3.1. We have that S0S2,1m�2 � S2,1m�1 is a valid inequality for all
graphs G.

Proof. The inequality holds since there is a surjective homomorphism ' from
S0S2,1m�2 to S1,2m�1 . Indeed, labeling the vertex S0 as 0, let '(i) = i for 1 im�1,
'(0) =m, '(m) =m+ 1, '(m+ 1) =m+ 2.

Recall the following consequence of the AM-GM inequality (see, for instance,
Theorem 2.1 of [Sid94]). Let v = (H1, . . . ,Hs), where Hi’s are partially labelled
graphs, and let a1, . . . ,ak 2 Ns, ↵1, . . . ,↵k 2 R>0, and b =

P
k

i=1
↵iai such that

b2Ns. Then

[[va1 ]]↵1 · · · [[vak ]]↵k � [[vb]]

is a valid inequality where vai =H
ai1

1
· · ·Hais

s
. We now prove a few inequalities using

this observation.

Lemma 3.2. We have that S3

2,10
S2,13 � S

3

2,12
.

Proof. Applying AM-GM, we have that

s
2

1 4

{ t✓
1 2

3

◆3
| 1

3

�
s

2
1 4

1 2

3

{

is a valid inequality, which proves the inequality above.

Lemma 3.3. We have that S2,10S
2

2,1m�2 � S
2

2,1m�1 .
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1358 MARIA DASCĂLU AND ANNIE RAYMOND

Proof. Applying AM-GM, we have that

t✓
1
◆2

| 1
2

u
wv 1

2
3
...

m� 1

m m + 1

}
�~ �

u
wv 1 1

2
3
...

m� 1

m m + 1

}
�~

is a valid inequality, which proves the inequality above.

Lemma 3.4. We have that S2,1i�2S2,1i � S
2

2,1i�1 for i� 2.

Proof. Applying AM-GM, we have that

0

B@ 1

2

3

i� 1

i i + 1
...

1

CA

2
1

2 0

@ 1

2
3
...

i� 1

i i + 1

1

A
2

1

2

� 1

2

3

i� 1

i i + 1
...

1

2
3
...

i� 1

i i + 1

is a valid inequality, which proves the inequality above.

Note that the inequality in Lemma 3.4 could also have been seen as an applica-
tion of Hölder’s inequality to a sequence of products of certain powers of degrees of
endpoints of edges.

Lemma 3.5. We have that Sm

2,1m�2 � S
m�1

2,1m�1 for m� 2.

Proof. When m = 2, this is an inequality only involving paths and it is known
to be true from previous work. For completeness, here is a short proof: applying
AM-GM, we have that

s
2

1 3

{ s
3

2 4

{
�

s
2

1 3
3

2 4

{

is a valid inequality, which yields
�

as desired.
When m� 3, applying AM-GM, we have that

u
wv

0

B@ 123...
m

4
5

m + 1

1

CA

m�1}
�~

1
m�1 u

wv 123...
m

4
5

m + 2

}
�~ �

u
wv 123...

m

4
5

m + 1

123...
m

4
5

m + 2

}
�~

is a valid inequality which is equivalent to

u
wv 123...

m

4
5

m + 1

}
�~

u
wv 123...

m

4
5

m + 2

}
�~

m�1

�

u
wv 123

m

4
5

m + 2
m + 1

...

}
�~

m�1

which proves the inequality above.

We now use Theorem 2.1 to prove the validity of one other important binomial
inequality for NU .

Lemma 3.6. We have that HDE(S0S2,12 ;S2,10) = 2 and thus that S0S2,12 � S
2

2,10
.
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TROPICALIZATION OF SOME ALMOST-STARS 1359

Fig. 2. Illustration of ' described in the proof of Lemma 3.6.

Proof. We first show that HDE(S0S2,12 ;S2,10)  2. For every ; 6= S ✓ V (S2,10),
let p(S) = 1, and let p(;) = 0. One can check that p2P(S2,10).

For any homomorphism ' from S0S2,12 to S2,10 (including the optimal one), since
the maximal cliques in S0S2,12 are the vertex in S0 and the edges in S2,12 , we have
that

X

S✓MaxCliques(S0S2,12
)

�(�1)|S|
p('(\S)) = 1+ 4� 3 = 2.

Indeed, the vertex S0 contributes 1, the four edges of S2,12 each contribute 1, the
vertex of degree two in S2,12 contributes �1, as it is the intersection of two maximal
cliques (edges), and the vertex of degree three in S2,12 contributes �2 since it can
be written in three di↵erent ways as the intersection of two maximal cliques and in
one way as the intersection of three maximal cliques. As we are minimizing over all
p2P(S2,10), this yields that HDE(S0S2,12 ;S2,10) 2 as desired.

We next show that HDE(S0S2,12 ;S2,10)� 2. Consider the homomorphism ' from
S0S2,12 to S2,10 such that '(0) = '(4) = 3, '(1) = '(5) = 2, and '(2) = '(3) = 1 (see
Figure 2).

Every edge of S2,10 is covered by the image of an edge of S2,12 (each of which is
a maximal clique, thus contributing a weight of 1) twice. The inner vertex of S2,10

is covered by the image of the center vertex of S2,12 , which yields a multiplier �2
(because it can be written as the intersection of three maximal cliques and as three
di↵erent intersections of two maximal cliques). One end vertex of S2,10 is not covered
by the image of any inner vertices, and leaves of S2,12 contribute weights of 0 given
that they cannot be written as intersections of maximal cliques. The other end vertex
of S2,10 is covered by S0 (which contributes a weight of 1 since it is a maximal clique)
and the inner vertex of the two-edge branch of S2,10 (which contributes a weight of
�1 since it is the intersection of two maximal cliques), yielding a multiplier of 0. Thus
we have

X

S✓MaxCliques(S0S2,12
)

� (�1)|S|
p('(\S))

= 2p({1,2}) + 2p({2,3})� 2p({2})
= 2p({1,2,3})
= 2,

where the penultimate line follows from the last constraint of polymatroidal functions
(letting A= {1,2} and B = {2,3}, we have p({2})+ p({1,2,3}) = p({1,2})+ p({2,3})
since {2} separates {1} and {3}), and the last line follows from the fact that we are
considering normalized polymatroidal functions, meaning that p(V (F2)) = 1.
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1360 MARIA DASCĂLU AND ANNIE RAYMOND

Therefore, for every p 2 P(S0S2,12), there exists a homomorphism that yields 2,
and since we are maximizing over all homomorphisms, we have HDE(S0, S2,12 ;S2,10)
� 2. This proves that HDE(S0S2,12 ;S2,10) = 2.

4. Rays of trop(NU). Recall again that our goal is to show that trop(NU )
is equal to the cone Q defined in the introduction in Theorem 5.1. To show that
Q ✓ trop(NU ), we need to find all extreme rays of Q and show that these rays are
realizable. In this section, we show that di↵erent rays are in trop(NU ). In the next
section, we will see that the rays dj,m are doubly extreme rays and the rays sj,m and
rj,m,i are the remaining extreme rays of trop(NU ).

Definition 4.1. Fix m2N, and let
• d1,m := (1,0,0, . . . ,0),
• d2,m :=~1 = (1, . . . ,1),
• d3,m := (1,2,2,3,4, . . . ,m),
• d4,m := (1,3,4,5, . . . ,m+ 2), and
• d5,m := (2,4,5,7, . . . ,2m+ 1)

be vectors in Rm+1.

Lemma 4.2. The rays dj,m are in trop(NU ) for each 1 j  5.

Proof. We show how to realize each ray as ↵(log hom(S0;G), log hom(S2,10 ;G), . . . ,
log hom(S2,1m�1 ;G)) for some graphG or as ↵(log hom(S0;Gn), log hom(S2,10 ;Gn), . . . ,
log hom(S2,1m�1 ;Gn)) for some sequence of graphs Gn on n vertices as n!1 for some
constant ↵2R�0.

(1) Consider the graph Gn consisting of n � 2 isolated vertices and one edge.
Then hom(S0;Gn) = n and hom(S2,1k ;Gn) = 2 for 0 km� 1. As n!1,

we have log(hom(S0;Gn))

log(n)
= 1 and

log(hom(S
2,1k

;Gn))

log(n)
! 0 for 0 km� 1, thus

showing that d1,m 2 trop(NU ).
(2) To realize d2,m = ~1, consider the graph G consisting of a single edge. Note

that hom(S0;G) = hom(S2,1k ;G) = 2 for 0 km�1. Thus log(hom(S0;G))

log(2)
=

log(hom(S
2,1k

;G))

log(2)
= 1 for 0 km� 1, and so d2,m 2 trop(NU ) as desired.

(3) To realize d3,m = (1,2,2,3,4, . . . ,m), consider Sn, the star with n branches.
Then hom(S0;Sn) = n+ 1 and hom(S2,1k ;Sn) = n

k+1 + n
2 for 0 k m� 1

(where the first term comes from sending the center of S2,1k to the center
of Sn, and the second term comes from sending it to one of the n leaves

of Sn). As n ! 1, we have log(hom(S0;Sn))

log(n)
! 1,

log(hom(S
2,10

;Sn))

log(n)
! 2, and

log(hom(S
2,1k

;Sn))

log(n)
! k+1 for 1 km�1, thus showing that d3,m 2 trop(NU ).

(4) To realize d4,m = (1,3,4,5, . . . ,m+2), consider the complete bipartite graph
Kn,n. Then we have hom(S0;Kn,n) = 2n and hom(S2,1k ;Kn,n) = 2n · nk+1 ·
n for 0  k  m � 1. As n ! 1, we have log(hom(S0;Kn,n))

log(n)
! 1 and

log(hom(S
2,1k

;Kn,n))

log(n)
! k + 3 for 0  k  m � 1, thus showing that d4,m 2

trop(NU ).
(5) To realize d5,m = (2,4,5,7, . . . ,2m + 1), let G2n2+1 be the tripartite graph

with parts of size 1, n2, and n
2 and where there are n

2 edges between the
first and second parts, n

3 edges between the second and third parts, and
no edges between the first and third parts; i.e., this is the blow-up graph
of a path of length two. Furthermore, the degree of every vertex in the
second part is n + 1 and the degree of every vertex in the third part is n.
Then we have that hom(S0;G2n2+1) = 2n2 +1, hom(S2,10 ;G2n2+1) = (n2)2 +
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TROPICALIZATION OF SOME ALMOST-STARS 1361

Fig. 3. Some possible ways of sending S2,12 to G2n2+1 for case (5) of Lemma 4.2.

n
2 · (n + 1)2 + n

2 · n2, and hom(S2,1k ;G2n2+1) = (n2)k+1(n + 1) + n
2(n +

1)k+1(n2 + n) + n
2
n
k+1(n + 1) for 1 km� 1, where the di↵erent terms

come from sending the center of S2,1k to the di↵erent parts of G2n2+1 (see

Figure 3 for some examples). As n ! 1, we have
log(hom(S0;G2n2+1

))

log(n)
! 2,

log(hom(S
2,10

;G
2n2+1

))

log(n)
! 4, and

log(hom(S
2,1k

;G
2n2+1

))

log(n)
! 2k+3 for 1 km�1,

thus showing that d5,m 2 trop(NU ).

We now define additional families of rays. In Theorem 5.1, we will prove that
these consist of the remaining extreme rays of trop(NU ).

Definition 4.3. Fix m2N, and let
• s1,m := (3,6,8,10,12,15, . . . ,3(m� 1),3m),
• s2,m := (6,12,16,21,27,33, . . . ,6m� 3,6m+ 3),
• s3,m := (2,4,5,6,8,10, . . . ,2m),
• s4,m := (3,6,8,10,13,16, . . . ,3m+ 1),
• r1,m,i := (6i�15,12i�30,16i�40,21i�54,27i�72,33i�90, . . . ,6i2�15i,6i2�

9i� 15,6i2 � 3i� 30, . . . , (6i� 15)m) for 5 im� 1,
• r2,m,i := (i+2,3i,4i,5i, . . . , i(i+2), (i+1)(i+2), . . . , (m� 1)(i+2),m(i+2))

for 5 im� 1,
• r3,m,i := (3i � 9,6i � 18,8i � 24,10i � 30,13i � 40,16i � 50, . . . ,3i2 � 12i +

10,3i2 � 9i,3i2 � 6i� 9, . . . , (3i� 9)m) for 5 im� 1,
• r4,m,i := (2i� 5,4i� 10,5i� 12,7i� 18,9i� 24, . . . ,2i2 � 7i+6,2i2 � 5i,2i2 �

3i� 5, . . . ,m(2i� 5)) for 5 im� 1,
• r5,m,i := (i, i, . . . , i, i+ 1, i+ 2, . . . ,m) for 3 im� 1, and
• r6,m,i := (i+1,3i�1,4i�2,5i�3, . . . , i2+1, i2+ i, i

2+2i+1, . . . , (m�1)(i+
1),m(i+ 1)) for 4 im� 1.

For now, we only show that all of these rays are also in trop(NU ).

Lemma 4.4. The rays sj,m and rl,m,i are in trop(NU ) for 1 j  4 and 1 l 6.

Proof. Instead of finding explicit graphs to realize these rays as in the previous
proof, we write them by taking tropical sums (i.e., by taking the maximum com-
ponentwise) of conical combinations of the rays dj,m for 1  j  5. Since we have
already shown that dj,m 2 trop(NU ) for 1 j  5 in Lemma 4.2 and since trop(NU )
is a max-closed closed convex cone, this shows that these rays are also in trop(NU ).
Note that section 2.1 explains how one could use this to come up with explicit graphs
to realize these rays.

• s1,m = (3,6,8,10,12,15, . . . ,3(m� 1),3m) = 3d3,m � 2d4,m.
• s2,m = (6,12,16,21,27,33, . . . ,6m� 3,6m+ 3) = 3d5,m � 4d4,m.
• s3,m = (2,4,5,6,8,10, . . . ,2m) = 2d3,m � d5,m.
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1362 MARIA DASCĂLU AND ANNIE RAYMOND

• s4,m = (3,6,8,10,13,16, . . . ,3m+ 1) = (d3,m + d5,m)� 2d4,m.
• r1,m,i = (6i�15,12i�30,16i�40,21i�54,27i�72,33i�90, . . . ,6i2�15i,6i2�

9i�15,6i2�3i�30, . . . , (6i�15)m) = (4i�10)d4,m�(6d4,m+3(i�4)d5,m)�
(6i� 15)d3,m for 5 im� 1.

• r2,m,i = (i+2,3i,4i,5i, . . . , i(i+2), (i+1)(i+2), . . . , (m�1)(i+2),m(i+2)) =
id4,m � (i+ 2)d3,m for 5 im� 1.

• r3,m,i = (3i � 9,6i � 18,8i � 24,10i � 30,13i � 40,16i � 50, . . . ,3i2 � 12i +
10,3i2 � 9i,3i2 � 6i � 9, . . . , (3i � 9)m) = (d2,m + (i � 5)d3,m + d4,m + (i �
3)d5,m)� 2(i� 3)d4,m � (3i� 9)d3,m for 5 im� 1.

• r4,m,i = (2i� 5,4i� 10,5i� 12,7i� 18,9i� 24, . . . ,2i2 � 7i+6,2i2 � 5i,2i2 �
3i� 5, . . . ,m(2i� 5)) = (2d4,m+(i� 4)d5,m)� (2i� 5)d3,m for 5 im� 1.

• r5,m,i = (i, i, . . . , i, i+ 1, i+ 2, . . . ,m) = id2,m � d3,m for 3 im� 1.
• r6,m,i = (i+1,3i� 1,4i� 2,5i� 3, . . . , i2+1, i2+ i, i

2+2i+1, . . . , (m� 1)(i+
1),m(i+ 1)) = (2d2,m + (i� 1)d4,m)� (i+ 1)d3,m for 4 im� 1.

5. Main results. In this section, we prove our main results. In Theorem 5.1,
we show that trop(NU ) is equal to the cone Q. We use the inequalities proven in
section 3 to show that trop(NU )✓Q and the rays realized in section 4 to show that
Q ✓ trop(NU ). Most of the proof consists of showing that the rays we realized are
actually the extreme rays of Q. This requires some work, as the (m+1)-dimensional
cone Q is defined by m+ 5 inequalities. In Corollary 5.2, we restate the theorem in
terms of doubly extreme rays.

Theorem 5.1. Let U = {S0, S2,10 , S2,11 , . . . , S2,1m�1}, and let

Q=

8
>>>>>>>>>><

>>>>>>>>>>:

y 2Rm+1

����������������

�y1 + y2 � 0
4y1 � 3y2 � 0
3y1 � 3y3 + y4 � 0
y1 + 2ym�1 � 2ym � 0
y0 + ym�1 � ym � 0
y0 � 2y1 + y3 � 0
yi�1 � 2yi + yi+1 � 0 82 im� 1
m · ym�1 � (m� 1) · ym � 0

9
>>>>>>>>>>=

>>>>>>>>>>;

.

Then trop(NU ) =Q.

Proof. By taking the log of the inequalities proven to be valid for NU in section 3,
we know that trop(NU )✓Q.

To show that Q ✓ trop(NU ), we compute the extreme rays of Q and show that
they are all present in trop(NU ). Any extreme ray must be tight with m linearly
independent inequalities and respect all other inequalities. Note that there are m� 2
inequalities of type yi�1 � 2yi + yi+1 � 0 (which we call gap inequalities) for 2 
i m� 1. In particular, observe that we will never discuss the gap between y0 and
y1. Moreover, there are seven other inequalities (which we call non-gap inequalities)
for a total of m+ 5 inequalities. So there could potentially be

�
m+5

m

�
extreme rays.

However, many of these intersections are not feasible. To better understand which of
these

�
m+5

m

�
intersections we need to consider, it is useful to first look at the projection

of trop(NU ) onto coordinates y0, y1, y2, y3, y4, ym�1, ym (i.e., the coordinates in the
seven non-gap inequalities) which we call C. Computing C is nontrivial for a general
m, so we end up giving a larger set C

0 that contains C (as the defining inequalities
of C 0 are all valid for C) and which su�ciently restricts our search of extreme rays.

We first prove a few valid inequalities for C which we use to define C
0. Observe

that yi  (i + 2)y0 for all i 2 [m] since S2,1i�1 has i + 2 vertices. Moreover, from
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TROPICALIZATION OF SOME ALMOST-STARS 1363

the gap inequalities, we know the gap yi+1 � yi is greater than or equal to the gap
yi � yi�1 for 2  i  m � 1, i.e., gaps are nondecreasing, and so this implies that
ym�1 � y3+(m�4)(y4�y3), ym � y3+(m�3)(y4�y3), and y3�y4�ym�1+ym � 0.
Also, the conical combination of gap inequalities

P
m�1

i=5
(i� 4)(yi�1 � 2yi + yi+1 � 0)

yields the inequality y4�(m�4)ym�1+(m�5)ym � 0. Finally, the conical combination
(�y1+y2 � 0)+

P
j

i=2
(yi�1�2yi+yi+1 � 0) yields �yj +yj+1 � 0, which implies that

y1 through ym are nondecreasing. Therefore, we let

C
0 :=

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

y 2R7

����������������������������������������������

�y1 + y2 � 0
4y1 � 3y2 � 0
3y1 � 3y3 + y4 � 0
y1 + 2ym�1 � 2ym � 0
y0 + ym�1 � ym � 0
y0 � 2y1 + y3 � 0
m · ym�1 � (m� 1) · ym � 0
y1 � 2y2 + y3 � 0
y2 � 2y3 + y4 � 0
3y0 � y1 � 0
4y0 � y2 � 0
5y0 � y3 � 0
6y0 � y4 � 0
(m+ 1)y0 � ym�1 � 0
(m+ 2)y0 � ym � 0
(m� 5)y3 � (m� 4)y4 + ym�1 � 0
(m� 4)y3 � (m� 3)y4 + ym � 0
y3 � y4 � ym�1 + ym � 0
y4 � (m� 4)ym�1 + (m� 5)ym � 0
�y2 + y3 � 0
�y3 + y4 � 0
�y4 + ym�1 � 0
�ym�1 + ym � 0

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

◆C.

We can compute all the faces of C 0 (for example, in Sage or Polymake) to see which
of the non-gap inequalities can be tight simultaneously. If the intersection of the
hyperplanes corresponding to some of the non-gap inequalities with C

0 yields 0, then
we know their intersection with C will also yield 0. Moreover, even if a particular set
of k of the first seven inequalities (our original non-gap inequalities) does not yield 0 in
C

0, we know that extreme rays in C will requirem�k of the gap inequalities to be tight.
In particular, if k = 4 (respectively, k = 3 and k = 2), then only two (respectively,
one and zero) gap inequalities aren’t tight, and so at least one (respectively, two and
three) of y1 � 2y2 + y3 � 0, y2 � 2y3 + y4 � 0, and (m� 5)y3 � (m� 4)y4 + ym�1 � 0
must be tight in order for there to potentially be an extreme ray in C where these
non-gap inequalities are tight. Taking all of this into consideration, Table 1 gives the
set of non-gap inequalities that can potentially be tight with extreme rays of C. For
each set, we find which extreme rays can be recovered.

S1: From the tight inequalities in this set, we have that y1 = y2 = 0 and ym�1 =
ym. Since gaps are nondecreasing, this means that all gaps are 0, and so this yields
the extreme ray d1,m = (1,0, . . . ,0) which is tight with all m� 2 gap inequalities.

S2: From the tight inequalities in this set, we have that y0 = a, y1 = y2 = 2a,
y3 = 3a, ym�1 = (m� 1)a, ym = ma for some a � 0. Since the gap between y2 and
y3 is the same as the gap as between ym�1 and ym and gaps are nondecreasing, this
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1364 MARIA DASCĂLU AND ANNIE RAYMOND

Table 1

Cases of non-gap inequalities that can be tight simultaneously.

�y1 + y2 � 0 4y1 � 3y2 � 0 3y1 � 3y3 +
y4 � 0

y1+2ym�1�
2ym � 0

y0 + ym�1 �
ym � 0

y0 � 2y1 +
y3 � 0

m · ym�1 �
(m� 1) · ym � 0

S1 * * * * *
S2 * * * * *
S3 * * * * *
S4 * * * *
S5 * * * *
S6 * * * *
S7 * * * *
S8 * * * *
S9 * * * *
S10 * * *
S11 * * *
S12 * * *
S13 * * *
S14 * *

yields the extreme ray d3,m = (1,2,2,3,4,5, . . . ,m� 1,m) which is tight with m� 3
of the gap inequalities.

S3: From the tight inequalities in this set, we have that y0 = 3a, y1 = 6a, y2 = 8a,
ym�1 = 3(m� 1)a, ym = 3ma for some a � 0. We know there are at most three gap
inequalities that are not additionally tight. Two cases arise: either y1 � 2y2 + y3 � 0
is tight or it is not.

In the first case, we then have y3 = 10a, which in turn implies that y4 = 12a
since 3y1 � 3y3 + y4 = 0. Note that the average gap between y4 and ym has size
3ma�12a

m�4
= 3a. Since the gap from ym�1 to ym is 3a and gaps are nondecreasing,

all gaps between y4 and ym must have size 3a. This yields the extreme ray s1,m =
(3,6,8,10,12,15, . . . ,3(m� 1),3m) which is tight with m� 3 of the gap inequalities.

In the second case when y1 � 2y2 + y3 > 0, let y3 = 10a+ b for some b > 0. Then,
since 3y1 � 3y3 + y4 = 0, y4 = 12a+ 3b, then y2 � 2y3 + y4 > 0 as well. We know that
gaps are nondecreasing, so the gap between y3 and y4 is at most the gap between
ym�1 and ym, which means that 2b a. Note that we cannot have 2b= a since then
every gap from y3 to ym would be 3a, and so ym = 10a + b + (m � 3) · 3a 6= 3ma.
So 2b < a and y4 � y3 < 3a, and since the gap between ym�1 and ym is 3a, there is
one last gap inequality that isn’t tight, say yi�1 � 2yi + yi+1 > 0 for some 4  i 
m� 1. So yi = 10a+ b+ (i� 3)(2a+ 2b) and yi+1 = 10a+ b+ (i� 3)(2a+ 2b) + 3a,
and we also know since all gaps thereafter are 3a and ym = 3ma, yi+1 = (i + 1)3a.
Thus, b = (i�4)a

2i�5
. This yields the family of rays r1,m,i = (6i � 15,12i � 30,16i �

40,21i� 54,27i� 72,33i� 90, . . . ,6i2 � 15i,6i2 � 9i� 15,6i2 � 3i� 30, . . . , (6i� 15)m)
which are tight with m � 5 of the gap inequalities. For example, for m = 7, we
have r1,7,5 = (15,30,40,51,63,75,90,105) and r1,7,6 = (21,42,56,72,90,108,126,147).
Finally, observe that we do not include i = 4 in this family, as this would make the
inequality y1 � 2y2 + y3 = 0 and bring us back to s1,m.

S4: From the tight inequalities in this set, we have that y0 = 6a, y1 = 12a,
y2 = 16a, y3 = c, y4 = 3c � 36a, ym�1 = 2b, and ym = 6a + 2b for some a, b � 0.
Furthermore, we know that at most two gap inequalities aren’t tight. Again, two
cases arise: either y1 � 2y2 + y3 � 0 is tight or it is not.

In the first case, we get that c = 20a, which implies that y4 = 24a. The average
gap between y4 and ym must thus be 6a+2b�24a

m�4
= 2b�18a

m�4
. However, we know that
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TROPICALIZATION OF SOME ALMOST-STARS 1365

mym�1 � (m� 1)ym > 0, which is equivalent to b > 3a(m� 1). Thus, the average gap
is bigger than 6a, which is a contradiction since the largest gap is 6a.

In the second case when y1 � 2y2 + y3 > 0, let y3 = c = 20a+ d for some d > 0.
Then y4 = 24a+3d. Further, note that y2�y1 = 4a, y3�y2 = 4a+d, y4�y3 = 4a+2d
(which are all distinct), and ym � ym�1 = 6a and since at most two gap inequalities
aren’t tight, we must have that 4a+2d= 6a and thus that d= a. We thus get the ray
s2,m = (6,12,16,21,27,33, . . . ,6m� 3,6m+ 3) which is tight with m� 4 of the gap
inequalities.

S5: From the tight inequalities in this set, we have that y0 = b, y1 = 3a, y2 = 4a,
y3 = 6a� b, y4 = 9a� 3b, ym�1 = c, and ym = b+ c for some a, b, c� 0. Since gaps are
nondecreasing, we have that a  2a� b  3a� 2b  b, which implies that a = b and
that all gaps are a. This thus yields the ray d4,m := (1,3,4,5,6, . . . ,m+ 2) which is
tight with all gap inequalities.

S6: From the tight inequalities in this set, we have that y0 = b, y1 = 3a, y2 = 4a,
y3 = c, y4 = 3c� 9a, ym�1 = (m� 1)b, ym = mb for some a, b, c � 0. Since gaps are
nondecreasing, we have that a c� 4a 2c� 9a b, but we know that at most two
gap inequalities aren’t tight, so not all of these can be distinct.

If a= c� 4a, then c= 5a and c� 4a= 2c� 9a as well. Suppose there are two gap
inequalities that aren’t tight, say yi�1� 2yi+ yi+1 > 0 and yj�1� 2yj + yj+1 > 0 with
4 i < j m�1 (since we have assumed the inequalities for i2 {2,3} are tight); then
the m� i+ 1 variables y0, yi+1, yi+2, . . . , ym would be involved in m� i� 2 tight gap
inequalities and the tight inequality y0 + ym�1 � ym = 0, and therefore this cannot
result in a ray. So we know that in this case, we can assume that there is at most
one gap inequality that isn’t tight, say yi�1 � 2yi + yi+1 > 0 for some 4 im� 1.
Then yi = (i + 2)a = ib, which implies that b = i+2

i
a. This yields the family of

rays r2,m,i = (i + 2,3i,4i,5i, . . . , i(i + 2), (i + 1)(i + 2), . . . , (m � 1)(i + 2),m(i + 2))
which are tight with m � 3 of the gap inequalities. For example, for m = 7, we
have r2,7,5 = (7,15,20,25,30,35,42,49), r2,7,6 = (8,18,24,30,36,42,48,56). Finally,
observe that we do not include i= 4 in this family, as this would make the inequality
y1 + 2ym�1 � 2ym � 0 tight.

Now let’s consider the case when a< c� 4a, say c= 5a+ d, which in turn implies
that c�4a< 2c�9a, and since at most two gap inequalities aren’t tight, we must have
that 2c�9a= b= a+2d. We thus have that ym =m(a+2d) = y3+(m�3)(a+2d) =
5a+ d+ (m� 3)(a+ 2d), and so a= 5d

2
. In turn, this gives that y1 =

15d

2
, ym =m

9d

2
,

and ym�1 = (m� 1) 9d
2
, and therefore y1 + 2ym�1 � 2ym < 0, a contradiction.

S7: From the tight inequalities in this set, we have that y0 = 3a, y1 = 6a, y2 = 8a,
y3 = b, y4 = c, ym�1 = 3(m� 1)a, and ym = 3ma for some a, b, c � 0. Suppose that
y1 � 2y2 +2y3 = 0. In that case, b= 10a, and since 3y1 � 3y3 + y4 > 0, let c= 12a+ d

for some d> 0. We know there are at most two gap inequalities that aren’t tight, and
the three gaps present are 2a  2a + d  3a, which are all distinct since d > 0 and
since if 2a+ d= 3a, then ym would be equal to 10a+ (m� 3)3a 6= 3ma. We already
know that y2 � 2y3 + y4 > 0.

Suppose yi�1 � 2yi + yi+1 > 0 as well for some 5  i  m � 1. Then yi =
3ia= 10a+ (i� 3)(2a+ d), which implies that d= i�4

i�3
a. This thus yields the family

of rays r3,m,i = (3i � 9,6i � 18,8i � 24,10i � 30,13i � 40,16i � 50, . . . ,3i2 � 12i +
10,3i2�9i,3i2�6i�9, . . . , (3i�9)m) which are tight with m�4 gap inequalities. For
example, r3,7,5 = (6,12,16,20,25,30,36,42) and r3,7,6 = (9,18,24,30,38,46,54,63).
Finally, observe that we do not include i = 4 in this family, as this would make the
inequality 3y1 � 3y3 + y4 � 0 tight.
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1366 MARIA DASCĂLU AND ANNIE RAYMOND

Now suppose that y1�2y2+2y3 > 0 and let y3 = b= 10a+d. Since 3y1�3y3+y4

> 0, let y4 = c = 12a + 3d + f for some f > 0. There are thus four gaps present,
namely 2a < 2a+ d < 2a+ 2d+ f  3a, and since at most two gap inequalities are
not tight, we must have 2a + 2d + f = 3a, which implies that y4 = ym � (m� 4)3a=
12a 6= 12a + 3d + f , a contradiction.

S8: From the tight inequalities in this set, we have that y0 = a, y1 = 2a, y2 = c,
y3 = b, y4 = 3b� 6a, ym�1 = (m� 1)a, ym =ma for some a, b, c� 0.

Suppose that y1�2y2+y3 = 0, and let y2�y1 = d for some d> 0 (since y2�y1 > 0),
which implies that y2 = 2a+ d, y3 = 2a+ 2d, y4 = 6d. Since 4y1 � 3y2 > 0, we have
that d< 2a

3
. Moreover, since gaps are nondecreasing, we know that y4�y3 � d, which

implies that d� 2a

3
, a contradiction.

Now suppose that y1 � 2y2 + y3 > 0, and let y2 = 2a + d and y3 = 2a + 2d + f

for some d, f > 0, which implies that y4 = 6d+ 3f . There are thus four gaps present,
namely d < d+ f  4d+ 2f � 2a a, and since at most two gap inequalities are not
tight, we need to have either that 4d+ 2f � 2a= a or d+ f = 4d+ 2f � 2a.

If 4d+ 2f � 2a= a, then ym =ma= 2a+ 2d+ f + a(m� 3), which implies that
6a= 12d+ 6f , contradicting 4d+ 2f � 2a= a.

If d + f = 4d + 2f � 2a and the change from gaps of size d + f = 4d + 2f � 2a
to gaps of size a happens at position 4  i  m � 1, i.e., yi�1 � 2yi + yi+1 > 0,
then yi = (i + 2)d + (i � 1)f = i

3d+f

2
, which implies that f = i�4

i�2
d. This thus

yields the family of rays r4,m,i = (2i� 5,4i� 10,5i� 12,7i� 18,9i� 24, . . . ,2i2 � 7i+
6,2i2� 5i,2i2� 3i� 5, . . . ,m(2i� 5)) which are tight with m� 4 gap inequalities. For
example, r4,7,5 = (5,10,13,17,21,25,30,35) and r4,7,6 = (7,14,18,24,30,36,42,49).
Finally, observe that we do not include i = 4 in this family, as this would make the
inequality 4y1 � 3y2 � 0 tight.

S9: From the tight inequalities in this set, we have that y0 = a, y1 = 2a, y2 = b,
y3 = 3a, y4 = 4a, ym�1 = (m� 1)a, ym = ma for some a, b � 0. Since we know that
gaps are nondecreasing, we know that yi = ia for 3 im.

If y1 � 2y2 + y3 = 0, then y2 = b = 5

2
a, and so the only gap inequality that isn’t

tight is y2 � 2y3 + y4 � 0. This yields the ray s3,m = (2,4,5,6,8,10, . . . ,2m).
If y2 � 2y3 + y4 = 0, then y2 = b= 2a, but then �y1 + y2 = 0, a contradiction.
Finally, note that we can’t have an extreme ray for which both y1 � 2y2 + y3 > 0

and y2 � 2y3 + y4 > 0 since then no tight inequality would involve y2.
S10: From the tight inequalities in this set, we have that y0 = b, y1 = a, y2 = a,

y3 = 2a � b, ym�1 = (m � 1)c, ym = mc for some a, b, c � 0. Note that there is at
most one gap inequality that isn’t tight, and there are three gaps already present:
0 a� b c, so at least two of those must be equal.

If a � b = 0 and the gap switches from 0 to c at position 2  i  m � 1, i.e.,
yi�1�2yi+yi+1 > 0, this yields the family of rays r5,m,i = (i, i, . . . , i, i+1, i+2, . . . ,m).
Finally, observe that we do not include i = 2 in this family, as this would make the
inequality y1 + 2ym�1 � 2ym � 0 tight.

If a� b= c, then y2 = a= 2c since each gap after y2 is c, but then y1 + 2ym�1 �
2ym = 0, a contradiction.

S11: From the tight inequalities in this set, we have that y0 =
3a

2
, y1 = 3a, y2 = 4a,

y3 = c, ym�1 = b� 3a

2
, ym = b for some a, b � 0. We know that there is at most one

gap inequality that isn’t tight, say yi�1 � 2yi + yi+1 > 0.
If i � 4, then y3 = 5a and y4 = 6a, which means that 3y1 � 3y3 + y4 = 0, a

contradiction.
If i= 3, this yields the ray s4,m = (3,6,8,10,13,16, . . . ,3m+ 1).
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TROPICALIZATION OF SOME ALMOST-STARS 1367

If i= 2, this implies that y3 =
11a

2
and y4 = 7a, which implies that 3y1 � 3y3 + y4

< 0, a contradiction.
S12: From the tight inequalities in this set, we have that y0 = a, y1 = 2a, y3 = c,

y4 = 3c � 6a, ym�1 = b � a, ym = b for some a, b, c � 0. We know that there is at
most one gap inequality that isn’t tight, so the gap between y3 and y4, 2c� 6a must
be either equal to the gap between ym�1 and ym, namely a, or to the gap between y2

and y3.
If y4 � y3 = a, then y4 = c+ a = 3c� 6a, which implies that a = 2c

7
. Moreover,

either y1�2y2+y3 = 0 or y2�2y3+y4 = 0. In the first case, this implies that y2 =
11c

14
,

but then 4y1 � 3y2 < 0, a contradiction. In the second case, this implies that y2 =
5c

7

and yields the extreme ray d5,m = (2,4,5,7, . . . ,2m� 1,2m+ 1).
If y4 � y3 = y3 � y2 but y4 � y3 < a, then we must have that y2 � y1 = y3 � y2

as well since there is at most one gap inequality that isn’t tight. So y0 = a, y1 = 2a,
y2 = 2a+ d, y3 = 2a+ 2d, y4 = 2a+ 3d for some d � 0. Since 3y1 � 3y3 + y4 = 0, we
have that 2a= 3d, but then 4y1 � 3y2 = 0, a contradiction.

S13: From the tight inequalities in this set, we have that y0 = a, y1 = b, y3 = 2b�a,
ym�1 = (m � 1)a, and ym = ma for some a, b � 0. We know that at most one gap
inequality isn’t tight with any extreme ray in this setting, so y1 � 2y2 + y3 = 0 or
y2 � 2y3 + y4 = 0.

If y1 � 2y2 + y3 = 0, then y2 =
3b�a

2
. We already have two gaps present: b�a

2
< a

(note that they cannot be equal since 4y1 � 3y2 > 0). Suppose that the switch from
one gap to the other happens at position i, i.e., yi�1 � 2yi + yi+1 > 0 for some
3  i  m� 1. Since yi = 2ia = (i+ 1)b� (i� 1)a, we have that b = (3i�1)a

i+1
, which

yields the family of rays r6,m,i = (i+ 1,3i� 1,4i� 2,5i� 3, . . . , i2 + 1, i2 + i, i
2 + 2i+

1, . . . , (m�1)(i+1),m(i+1)). For example, we have r6,7,6 = (7,17,22,27,32,37,42,49),
r6,7,5 = (6,14,18,22,26,30,36,42), and r6,7,4 = (5,11,14,17,20,25,30,35). Note that
we exclude i= 3 since in that case y1 + 2ym�1 � 2ym = 0, a contradiction.

If y1�2y2+y3 > 0, then y2�2y3+y4 = 0 and the gap between y2 and y3 must be
equal to the gap between ym�1 and ym, namely a, which implies that we have yi = ia

for 2 im. Moreover, we also have y2 = 2b� 2a and y4 = 2b. So b= 2a, but then
�y1 + y2 = 0, a contradiction.

S14: From the tight inequalities in this set, we have that y1 = a and y2 = a for
some a� 0. Moreover, we know that all gap inequalities must be tight, so yi = a for
1  i m. Finally, since y0 � 2y1 + y3 = 0, we have that y0 = a. This yields the ray
d2,m = (1,1, . . . ,1).

Since all the extreme rays produced for Q were shown to be in trop(NU ) by
Lemmas 4.2 and 4.4, we have that Q✓ trop(NU ) as desired.

Corollary 5.2. The set trop(NU ) is the double hull of the following five doubly
extreme rays in Rm+1: d1,m := (1,0,0, . . . ,0), d2,m := ~1, d3,m := (1,2,2,3,4, . . . ,m),
d4,m := (1,3,4,5, . . . ,m+ 2), d5,m := (2,4,5,7, . . . ,2m+ 1).

Proof. This follows from Lemma 4.4 and Theorem 5.1 and the fact that one can
check that none of the doubly extreme rays is in the double hull of the others.

6. Final remarks. We first note that although we did not extensively use the
results of Kopparty and Rossman [KR11] in how we presented our results, they were
immensely useful in coming up with the tropicalization. Indeed, we used their linear
program to compute valid inequalities and to check whether the doubly extreme rays
of the cones generated by those inequalities were realizable. This computational work
allowed us to guess what the tropicalization could potentially be before attempting to
prove it. Furthermore, we could have written the proofs of the necessary inequalities
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1368 MARIA DASCĂLU AND ANNIE RAYMOND

and realizations for the rays using the tools of Kopparty and Rossman; however, we
elected to present more concise proofs instead. We also remark that our results show
similarities to the tropicalization of stars described in [BR22, Theorem 2.17].

Theorem 6.1. Let U = {S0, S1, . . . , Sm}, where Si is the star graph with i

branches. Then

trop(NU ) =

8
>><

>>:

y 2Rm+1| �y1 + y2 � 0
y0 + ym�1 � ym � 0
yi�1 � 2yi + yi+1 � 0 81 im� 1
m · ym�1 � (m� 1) · ym � 0

9
>>=

>>;
.

The set trop(NU ) is the double hull of the following doubly extreme rays: (1,0,
0, . . . ,0), (1,1, . . . ,1), (1,1,2,3, . . . ,m), and (1,2,3,4, . . . ,m+ 1).

Furthermore, in this paper, we proved Theorem 5.1 by considering all extreme
rays. However, it is possible to prove this theorem using only the doubly extreme rays
(without finding all extreme rays) by doing some additional casework. This proof will
be included in the thesis of the first-named author.

Finally, as mentioned in the introduction, computing the tropicalization for all
trees would be highly interesting though probably out of reach at the moment. One
family of trees of particular interest is a generalization of S2,1k ’s that includes all
subdivisions of a star, i.e., S� in our notation. Note that the tropicalization of paths
in [BR22] is much more complicated than the tropicalization of stars. Therefore, given
that S� can contain longer paths in general, computing their tropicalization might be
highly nontrivial. Restricting ourselves to partitions of shape (2,1k) was a first step
in that direction.
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