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Abstract. We derive exact reconstruction methods for cracks consisting of unions of Lipschitz
hypersurfaces in the context of Calderón’s inverse conductivity problem. Our first method
obtains upper bounds for the unknown cracks, bounds that can be shrunk to obtain the exact
crack locations upon verifying certain operator inequalities for di↵erences of the local Neumann-
to-Dirichlet maps. This method can simultaneously handle perfectly insulating and perfectly
conducting cracks, and it appears to be the first rigorous reconstruction method capable of this.
Our second method assumes that only perfectly insulating cracks or only perfectly conducting
cracks are present. Once more using operator inequalities, this method generates approximate
cracks that are guaranteed to be subsets of the unknown cracks that are being reconstructed.
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1. Introduction

For an integer d � 2, let ⌦ be a bounded Lipschitz domain in Rd with connected complement,
and let � ✓ @⌦ be a non-empty relatively open subset. In the presence of a collection of cracks,
D, and an imposed boundary current, f on �, the steady state voltage potential, u, satisfies

�r · (�0ru) = 0 in ⌦ \D,

�0
@u

@⌫
=

(
f on �,

0 on @⌦ \ �,

�0
@u

@n
= 0 on D0, (1.1)

u is locally constant on D1,
Z

Di

h
�0
@u

@n

i
dS = 0 for each component Di of D1.

We “ground” u by requiring that
R
� u dS = 0. The condition on D0 must be satisfied on both sides

of D0. D0 are those cracks in the collection D that are perfectly insulating, and D1 are those
that are perfectly conducting, D = D0 [ D1. Note that the constants on di↵erent connected
components of D1 will generally be di↵erent (and determined by the integral conditions). ⌫

denotes the outer unit normal on @⌦ and n denotes a unit normal on D. We use [ v ] to denote
the jump of a function v across D, relative to the normal vector n, with the convention that
[ v ] = v��v+, where v� is the trace (on D) taken from that part of ⌦, which n points away from,
and v+ is the trace (on D) taken from that part of ⌦, which n points into. The imposed boundary
current satisfies

f 2 L
2
⇧
(�) = {g 2 L

2(�) | h1, gi = 0}, (1.2)

where h · , · i is the usual L2(�) inner product. �0 is a known background conductivity coe�cient,
which is defined in all of ⌦.

For the major part of our analysis it su�ces that �0 2 L
1(⌦) with ess inf(�0) > 0. However,

at certain points we crucially assume that the conductivity equation r · (�0rv) = 0 has a weak
unique continuation property (UCP) on connected open subsets of ⌦ and also from Cauchy data
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on �, see e.g. [6, Definition 3.3]. For d = 2 the UCP follows directly [1], while in higher dimensions
this requires some regularity of �0 such as �0 being Lipschitz continuous or piecewise analytic
[24, 25, 28]. At one particular point (Lemma 5.3) we require additional C2 regularity, namely to
ensure that the given cracks cannot be invisible to all possible boundary measurements. However,
if it turns out that the visibility can be shown for a lower regularity (still satisfying the UCP) then
the proofs of our main results adapt to this.

Formally the problem introduced in (1.1) can be considered a problem related to the conduc-
tivity profile given by 8

><

>:

�0 in ⌦ \D,

0 in D0,

1 in D1,

which also explains our use of the notation D0 and D1. The problem of determining an internal
conductivity profile from boundary data is often referred to as Calderón’s inverse conductivity
problem [5, 30], and our emphasis here is therefore on a special case of this, namely: to reconstruct
the unknown cracks in ⌦ (the set D) based on boundary measurements on � ✓ @⌦.

In order to state the main results of this paper, it is necessary to be precise about the collection
of cracks we reconstruct.

Definition 1.1. A collection of cracks � lies in the class X if for some N 2 N0

� =
N[

i=1

�i,

where the �i ⇢ ⌦ are (d� 1) dimensional connected orientable Lipschitz surfaces with non-empty
Lipschitz boundary @�i, and with

dist(�i,�j) > 0 for i 6= j and dist(�i, @⌦) > 0 for all i.

Notice that dist(�, @⌦) > 0 and ⌦ \� is connected. In particular, we do not allow open subsets
of ⌦ to be completely encapsulated by a crack. We refer to D 2 X as “a (D0, D1) collection
of cracks” if D = D0 [ D1 for D0, D1 2 X , dist(D0, D1) > 0, each crack in D0 is perfectly
insulating, and each crack in D1 is perfectly conducting. Note that D0 or D1 may possibly be
empty.

Our first result is an exact monotonicity-based reconstruction method via shape approximations
from above, based on shrinking test inclusions C containing D. Whether C contains D or not is
checked via operator inequalities related to the boundary electric power. The set of admissible
test inclusions are

A = {C b ⌦ | C is the closure of an open set, has connected

complement, and has Lipschitz boundary @C}.

For C 2 A we define ⇤;

C to be the Neumann-to-Dirichlet map (the ND map) for the conductivity
coe�cient which equals 0 in C and �0 elsewhere. We define ⇤C

;
to be the ND map for the

conductivity coe�cient which equals 1 in C and �0 elsewhere. Similarly we define ⇤D1
D0

to be
the ND map associated with the (D0, D1) collection of cracks. For the precise definitions see
section 2 or e.g. [6]. We shall actually only be concerned with a local version of these maps from
L
2
⇧
(�) to L

2
⇧
(�). For self-adjoint operators A,B 2 L (L2

⇧
(�)) we use the notation A � B if and

only if A�B is positive semi-definite, that is

h(A�B)f, fi � 0, 8f 2 L
2
⇧
(�).

Based on knowledge of the local ND map ⇤D1
D0

: f 7! u|�, and in particular its relation to ⇤;

C and

⇤C
;
, we can now reconstruct the cracks D as follows.

Theorem 1.2. Let D be a (D0, D1) collection of cracks. Given any C 2 A, then

D ⇢ C if and only if ⇤;

C � ⇤D1
D0

� ⇤C
;
.
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Proof. The direction “)” is proved in Proposition 3.1 in section 3 with ⌃0 = D0 and ⌃1 = D1.
The other direction “(” is proved in Proposition 6.1 in section 6. ⇤

Our second result provides an exact monotonicity-based reconstruction method based on gen-
erating approximate cracks � inside D. By checking operator inequalities we can determine if �
is contained in D or not. This result assumes that we either only have perfectly insulating cracks
or only have perfectly conducting cracks.

Theorem 1.3. Let D 2 X .

(i) Given any � 2 X , then

� ✓ D if and only if ⇤;

D � ⇤;

�.

(ii) Given any � 2 X , then

� ✓ D if and only if ⇤�
;
� ⇤D

;
.

Proof. The direction “)” of (i) is proved in Proposition 3.2(i) in section 3 with ⌃0 = D and
⌃1 = ;, and the same direction for (ii) is proved in Proposition 3.2(ii) with ⌃0 = ; and ⌃1 = D.
The other direction “(” for both (i) and (ii) is proved in Proposition 6.2 in section 6. ⇤

Remark 1.4.

(i) Theorem 1.2 implies that

D = \{C 2 A | ⇤;

C � ⇤D1
D0

� ⇤C
;
}.

Moreover, as seen in the proof of Proposition 6.1, if D0 = ; we only need to consider
⇤D1
;

� ⇤C
;

and, likewise, if instead we have D1 = ; we only need to consider ⇤;

C � ⇤;

D0
.

(ii) Theorem 1.3 implies that, in the perfectly insulating case

D = [{� 2 X | ⇤;

D � ⇤;

�},

and in the perfectly conducting case

D = [{� 2 X | ⇤�
;
� ⇤D

;
}.

1.1. Some related results. For large classes of cracks there are optimal (non-constructive)
unique identifiability results using merely two boundary measurements [2, 4, 9]. However, the
reconstruction of general cracks from finitely many measurements appears to be an open problem.
For spatial dimension d = 2 there is a factorisation method [3] to reconstruct either perfectly
insulating cracks or perfectly conducting cracks from an ND map. The results of [3] resemble the
two-dimensional version of Theorem 1.3, in the sense that one determines if an artificial crack is
a subset of the unknown crack. For perfectly insulating cracks, probe and enclosure methods are
discussed in [22, 23]. These methods determine the location of “boundary singularities” associated
with the cracks or the convex hull of the cracks, respectively. It should also be mentioned that
these reconstruction methods assume that �0 ⌘ 1.

Our results Theorem 1.2 and Theorem 1.3 are applicable in spatial dimension d � 2 for very
general cracks and also for non-homogeneous background conductivities. It appears that Theo-
rem 1.2 is the only proven method capable of reconstructing cracks with both perfectly insulating
and perfectly conducting parts. Moreover, the test operators ⇤;

C and ⇤C
;

are precisely the same
test operators that are used in [6, 12] for reconstructing general inclusions of positive volume (the
support of conductivity perturbations on open sets). So numerical implementations of this method
directly applies to cracks without requiring any modifications. Arguably Theorem 1.3 becomes
demanding to implement numerically for d > 2 and is likely only suitable for computations in
d = 2, while the numerical implementation of Theorem 1.2 very naturally generalises to higher
dimensions using a peeling approach as in [14].

For inclusions of positive volume, the monotonicity of ND mappings with respect to the conduc-
tivity coe�cient was used in [29] to give bounds on the inclusions. In [19, 20] this approach was
proven to give an exact reconstruction method for finite perturbations to the background conduc-
tivity, also in cases with both positive and negative perturbations if lower and upper bounds are
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known for the perturbed conductivity. This was generalised in [6], where the perturbed conductiv-
ity could now simultaneously have parts with finite positive and negative perturbations as well as
extreme parts that are perfectly insulating and perfectly conducting. Moreover, the need for lower
and upper bounds was removed. Finally, in [12] the method was shown to also handle degenerate
and singular perturbations based on A2-Muckenhoupt weights, allowing for continuous decay to
zero and growth to infinity. This is currently the most general method for reconstructing inclusions
of positive volume in Calderón’s problem based on a local ND map. Rigorous connections have
also been made to practically relevant electrode models [13, 14, 17, 21].

The same monotonicity-based methodology has also been used to design a reconstruction
method for the partial data Calderón problem, for the case of layered piecewise constant con-
ductivities [10, 11]; note that this is not a finite-dimensional setting, as the piecewise constant
partitioning is also reconstructed. In finite-dimensional settings this methodology has led to Lips-
chitz stability results in Calderón’s problem with finitely many measurements [17] and to reformu-
lating the finite-dimensional Calderón problem as a convex semidefinite optimisation problem [18].
The methods are based on the unique continuation principle and its connection to the localised
potentials from [15]. For applications to other inverse problems, we refer to the list of references
in [17].

The proofs of Theorems 1.2 and 1.3 also rely on localised potentials. However, the approach here
is quite di↵erent since the known localisation results apply to open sets, and there is no open set
inside the cracks to localise in. Moreover, the monotonicity inequalities in [6, Appendix A] become
trivial in the limit of approximating cracks by open sets. Additionally, it should be noted that using
approximations of cracks with open sets and applying the results from [6] will not result in proofs
of our main results. The key ingredient for our proofs turns out to be the localisation on open sets
containing parts of the cracks, to give simultaneous blow-up of potentials for conductivity profiles
both with and without the cracks, and crucially also to have blow-up for their di↵erence. The latter
is the most technically di�cult to obtain, and here the constructive version of localised potentials
[15, Lemma 2.8] turns out to be invaluable, since the existence results for localised potentials
would not necessarily give blow-up for the di↵erence of two localised sequences of potentials.

1.2. Outline of the paper. In section 2 we introduce the relevant forward problems and associ-
ated function spaces. In section 3 we prove the direction “)” of Theorems 1.2 and 1.3 (the easy
direction). Sections 4 and 5 are dedicated to results about localised potentials, that are needed in
section 6, where we prove the direction “(” of Theorems 1.2 and 1.3 (the di�cult direction).

2. Forward problems

Let ⌃ be a (⌃0,⌃1) collection of cracks. Let

H
⌃1
⌃0

= {v 2 H
1
⇧
(⌦ \ ⌃0) | v is locally constant on ⌃1},

where the ⇧-symbol refers to a mean-free condition for the Dirichlet trace on �, as in (1.2). A
Poincaré inequality holds on ⌦ \ ⌃0, see for instance [26]. As ⌃0 has d-Lebesgue measure zero,
the gradient of v 2 H

⌃1
⌃0

(defined in ⌦ \ ⌃0) is equivalent to a function in L
2(⌦)d on the entire

domain ⌦. Hence a norm on H
⌃1
⌃0

, equivalent to the H
1-norm, is

kvk⇤ =
⇣Z

⌦
�0|rv|

2 dx
⌘1/2

,

with associated inner product1

hw, vi⇤ =

Z

⌦
�0rw ·rv dx.

1Throughout this paper we assume, without loss of generality, that all our solutions and function spaces are
real-valued.
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By the Lax–Milgram lemma, the interior electric potential u in (1.1), withD0 = ⌃0 andD1 = ⌃1,
is the unique solution in H

⌃1
⌃0

of the weak problem

hu, vi⇤ = hf, v|�i, 8v 2 H
⌃1
⌃0

. (2.1)

We will sometimes use the notation u = u
⌃1
⌃0,f

to clarify which cracks (possibly empty) are present,

and which current density, f , is used. Define the functional J : H⌃1
⌃0

! R by

J(v) = kvk
2
⇤
� 2hf, v|�i, v 2 H

⌃1
⌃0

.

With this definition, u is also the unique minimiser of J (cf. [16, Remark 12.23] and [7, Theo-
rem 1.1.2]). The corresponding local ND map ⇤⌃1

⌃0
: f 7! u|� satisfies

h⇤⌃1
⌃0

f, fi = hu|�, fi = hf, u|�i = kuk
2
⇤
,

and is a compact self-adjoint operator on L
2
⇧
(�).

For C 2 A and f 2 L
2
⇧
(�), let u;

C,f be the potential coming from a conductivity with perfectly

insulating inclusions in C and �0 elsewhere. Then u0 = u
;

C,f is the unique solution in

H
;

C = H
1
⇧
(⌦ \ C)

of the variational problem
Z

⌦\C
�0ru0 ·rv dx = hf, v|�i, 8v 2 H

;

C .

Likewise, let uC
;,f be the potential coming from a conductivity with perfectly conducting inclusions

in C and �0 elsewhere. Then u1 = u
C
;,f is the unique solution in

H
C
;
= {w 2 H

1
⇧
(⌦) | w is locally constant in C}

of the variational problem
Z

⌦\C
�0ru1 ·rv dx = hf, v|�i, 8v 2 H

C
;
.

In terms of the functional

eJ(v) =
Z

⌦\C
�0|rv|

2 dx� 2hf, v|�i,

u0 is the unique minimizer of eJ |
H

;
C
and u1 is the unique minimizer of eJ |HC

;
. The corresponding

ND maps are compact self-adjoint operators on L
2
⇧
(�) and satisfy

h⇤;

Cf, fi = hu0|�, fi = hf, u0|�i =

Z

⌦\C
�0|ru0|

2 dx,

h⇤C
;
f, fi = hu1|�, fi = hf, u1|�i =

Z

⌦\C
�0|ru1|

2 dx.

3. The direction “)” in Theorems 1.2 & 1.3

Below we prove the “easy direction” of the if and only if statements of Theorems 1.2 and 1.3.

Proposition 3.1. Let ⌃ be a (⌃0,⌃1) collection of cracks. Given any C 2 A, then

⌃ ⇢ C implies ⇤;

C � ⇤⌃1
⌃0

� ⇤C
;
.

Proof. For f 2 L
2
⇧
(�) denote u0 = u

;

C,f , u1 = u
C
;,f , and u = u

⌃1
⌃0,f

. Since ⌃ ⇢ C we have

u|⌦\C 2 H
;

C and u1|⌦\⌃0
2 H

⌃1
⌃0

. We now compare the ND maps, while taking the related
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minimization properties from section 2 into account

�h⇤⌃1
⌃0

f, fi =

Z

⌦
�0|ru|

2 dx� 2hf, u|�i

�

Z

⌦\C
�0|ru|

2 dx� 2hf, u|�i

�

Z

⌦\C
�0|ru0|

2 dx� 2hf, u0|�i

= �h⇤;

Cf, fi,

and

�h⇤C
;
f, fi =

Z

⌦\C
�0|ru1|

2 dx� 2hf, u1|�i

=

Z

⌦
�0|ru1|

2 dx� 2hf, u1|�i

�

Z

⌦
�0|ru|

2 dx� 2hf, u|�i

= �h⇤⌃1
⌃0

f, fi.

Here we used that ru1 ⌘ 0 in the interior of C. ⇤

Proposition 3.2. Let ⌃ be a (⌃0,⌃1) collection of cracks.

(i) Given any � 2 X , then

� ✓ ⌃0 implies ⇤⌃1
⌃0

� ⇤⌃1
� .

(ii) Given any � 2 X , then

� ✓ ⌃1 implies ⇤�
⌃0

� ⇤⌃1
⌃0

.

Proof. For f 2 L
2
⇧
(�) denote u = u

⌃1
⌃0,f

.

Proof of (i): We denote u1 = u
⌃1
�,f . Since � ✓ ⌃0 we have u1|⌦\⌃0

2 H
⌃1
⌃0

. Using the related
minimization problems for u and u1, we have

�h⇤⌃1
� f, fi = ku1k

2
⇤
� 2hf, u1|�i � kuk

2
⇤
� 2hf, u|�i = �h⇤⌃1

⌃0
f, fi.

Proof of (ii): We denote u2 = u
�
⌃0,f

. Since � ✓ ⌃1 we have u 2 H
�
⌃0

. Using the related
minimization problems for u and u2, we have

�h⇤⌃1
⌃0

f, fi = kuk
2
⇤
� 2hf, u|�i � ku2k

2
⇤
� 2hf, u2|�i = �h⇤�

⌃0
f, fi. ⇤

4. Some lemmas in preparation for localised potentials

If ⌃ is a (⌃0,⌃1) collection of cracks then we have

H
⌃1
;

✓ H
⌃1
⌃0

✓ H
;

⌃0
,

in the sense that v 2 H
⌃1
;

satisfies v|⌦\⌃0
2 H

⌃1
⌃0

. Moreover, these are all Hilbert spaces with

the same inner product h · , · i⇤.
Let P and P

? be the orthogonal projections of H⌃1
⌃0

onto H
⌃1
;

and (H⌃1
;

)?, respectively, in

the h · , · i⇤ inner product. Likewise we let Q and Q
? denote the orthogonal projections of H;

⌃0

onto H
⌃1
⌃0

and (H⌃1
⌃0

)?, respectively, in the h · , · i⇤ inner product.

Lemma 4.1. Let ⌃ be a (⌃0,⌃1) collection of cracks and let the projections P , P
?
, Q, and Q

?

be given as above. For f 2 L
2
⇧
(�) we denote u0 = u

;

⌃0,f
, u1 = u

⌃1
;,f , and u = u

⌃1
⌃0,f

.

(i) We have u1 = Pu and

h(⇤⌃1
⌃0

� ⇤⌃1
;

)f, fi = kP
?
uk

2
⇤
.
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(ii) We have u = Qu0 and

h(⇤;

⌃0
� ⇤⌃1

⌃0
)f, fi = kQ

?
u0k

2
⇤
.

Proof. Proof of (i): From the weak formulation for u and for all v 2 H
⌃1
;

✓ H
⌃1
⌃0

, we have

hf, v|�i = hu, vi⇤ = hPu, vi⇤.

However, by the weak formulation for u1 and its unique solvability in H
⌃1
;

, we have u1 = Pu.

Thus u� u1 = P
?
u. Using the weak formulation for u again, we have

h(⇤⌃1
⌃0

� ⇤⌃1
;

)f, fi = hf, (P?
u)|�i = hu, P

?
ui⇤ = kP

?
uk

2
⇤
.

Proof of (ii): From the weak formulation u0 and for all v 2 H
⌃1
⌃0

✓ H
;

⌃0
, we have

hf, v|�i = hu0, vi⇤ = hQu0, vi⇤.

However, by the weak formulation for u and its unique solvability in H
⌃1
⌃0

, we have u = Qu0.

Thus u0 � u = Q
?
u0. Using the weak formulation for u0 again, we have

h(⇤;

⌃0
� ⇤⌃1

⌃0
)f, fi = hf, (Q?

u0)|�i = hu0, Q
?
u0i⇤ = kQ

?
u0k

2
⇤
. ⇤

Remark 4.2. While we do not use this fact, we note that, for su�ciently regular �0 one can write
the di↵erences of the ND maps in Lemma 4.1 as integrals on ⌃0 and ⌃1 via integration by parts:

h(⇤⌃1
⌃0

� ⇤⌃1
;

)f, fi = �

Z

⌃0

⇣
�0
@u1

@n

⌘
[u] dS,

h(⇤;

⌃0
� ⇤⌃1

⌃0
)f, fi = �

Z

⌃1

h
�0
@u

@n

i
u0 dS.

The integrals should be understood in the appropriate weak sense.

Next we state two general lemmas in functional analysis that are proven in [15]. The first is a
lemma relating the ranges of operators to bounds on their adjoints.

Lemma 4.3 (Lemma 2.5 in [15]). Let H, K1, and K2 be Hilbert spaces and let Aj 2 L (Kj , H)
for j = 1, 2. Then

R(A1) ✓ R(A2) if and only if 9C > 0, 8x 2 H : kA⇤

1xkK1  CkA
⇤

2xkK2 .

The second lemma is the constructive version for the localised potentials from [15].

Lemma 4.4 (Lemma 2.8 in [15]). Let H, K1, and K2 be Hilbert spaces, let Aj 2 L (Kj , H)
for j = 1, 2, and assume that A

⇤

2 is injective. Assume that there exists y0 2 R(A1) such that

y0 62 R(A2). For n 2 N we define

⇠n =
�
A2A

⇤

2 +
1
nI

��1
y0

and

xn =
⇠n

kA
⇤

2⇠nk
3/2
K2

.

Then

lim
n!1

kA
⇤

1xnkK1 = 1 and lim
n!1

kA
⇤

2xnkK2 = 0.

5. Localised potentials with cracks

Let V 2 A and let ⌃ be a (⌃0,⌃1) collection of cracks. For F 2 L
2(V )d we define w = w

⌃1
⌃0,F

2

H
⌃1
⌃0

as the unique solution of the following variational problem:
Z

⌦
�0rw ·rv dx =

Z

V
F ·rv dx, 8v 2 H

⌃1
⌃0

. (5.1)

The dependence on V is not explicitly given in the notation of w⌃1
⌃0,F

, but is indirectly given via

F . We now define an operator L⌃1
⌃0

(V ) : L2(V )d ! L
2
⇧
(�) as

L
⌃1
⌃0

(V )F = w
⌃1
⌃0,F

|�.
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Let u = u
⌃1
⌃0,f

, then from the variational problems of u and w we have

hf, L
⌃1
⌃0

(V )F i = hf, w|�i = hu,wi⇤ = hru|V , F iL2(V )d .

Hence we have

(L⌃1
⌃0

(V ))⇤f = ru
⌃1
⌃0,f

|V , f 2 L
2
⇧
(�). (5.2)

Next we will prove results for the ranges of these variational operators, that will be essential for
the localised potentials in Proposition 5.4.

Proposition 5.1. Let V 2 A and let ⌃ be a (⌃0,⌃1) collection of cracks.

(i) If ⌃0 b V then R(L⌃1
;

(V )) = R(L⌃1
⌃0

(V )).

(ii) If ⌃1 b V then R(L;

⌃0
(V )) = R(L⌃1

⌃0
(V )).

Proof. We give a proof of (i), and note that the proof of (ii) is almost the same with obvious
modifications.

Proof of “✓”: Let f 2 R(L⌃1
;

(V )), then there exists F1 2 L
2(V )d such that f = w|� with

w = w
⌃1
;,F1

. We have
Z

⌦
�0rw ·rv

0 dx =

Z

V
F1 ·rv

0 dx, 8v
0
2 H

⌃1
;

. (5.3)

Let W1,W2 2 A such that ⌃0 b W1 b W2 ✓ V and with dist(W2,⌃1) > 0. Using the C
1-

Urysohn lemma [8, Lemma 8.18], we may construct ' 2 C
1

c (W2) with 0  '  1 and ' ⌘ 1 in
W1. In the following we will let v 2 H

⌃1
⌃0

be arbitrary but fixed, and let c be the constant such
that

v0 = v � c

has vanishing mean on @V . Moreover, we also define

v
0 = (1� ')v0.

We note that v
0 (extended by zero to ⌃0) lies in H

⌃1
;

. Therefore (5.3) is applicable for v
0, and

using the fact that v0|⌦\V = v0|⌦\V we now get
Z

⌦
�0rw ·rv dx =

Z

V
�0rw ·rv0 dx+

Z

⌦\V
�0rw ·rv

0 dx

=

Z

V
�0rw ·rv0 dx+

Z

⌦
�0rw ·rv

0 dx�

Z

V
�0rw ·rv

0 dx

=

Z

V
�0rw ·rv0 dx+

Z

V
(F1 � �0rw) ·rv

0 dx. (5.4)

Define F2 = F1 � �0rw|V . Using the definitions of v0 and ', and that ⌃0 b W1 where 1 � '

vanishes, we have
Z

V
F2 ·rv

0 dx =

Z

V
(1� ')F2 ·rv0 dx+

Z

V
(F2 ·r(1� '))v0 dx. (5.5)

Define F3 = �0rw|V + (1� ')F2 and g = F2 ·r(1� '), then (5.4) and (5.5) collectively give
Z

⌦
�0rw ·rv dx =

Z

V
F3 ·rv0 dx+

Z

V
gv0 dx. (5.6)

We now consider an auxiliary problem. Let V � be the interior of V and let

HV =
n
bv 2 H

1(V �
\ ⌃0) |

Z

@V
bv|@V dS = 0

o
,

then HV is a Hilbert space with inner product (whose norm is equivalent to the usual H1-norm)

hbv1, bv2iHV =

Z

V
rbv1 ·rbv2 dx.
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Using the Lax–Milgram lemma, we now define bw to be the unique solution in HV of the variational
problem Z

V
r bw ·rbv dx =

Z

V
gbv dx, 8bv 2 HV . (5.7)

Since v0 has vanishing mean on @V the restriction of v0 to V belongs to HV . Let F = F3 +r bw,
then (5.6) and (5.7) lead to

Z

⌦
�0rw ·rv dx =

Z

V
F ·rv0 dx =

Z

V
F ·rv dx.

As v 2 H
⌃1
⌃0

was arbitrary (and w 2 H
⌃1
;

✓ H
⌃1
⌃0

), we have proven

f = w|� = L
⌃1
⌃0

(V )F,

and therefore R(L⌃1
;

(V )) ✓ R(L⌃1
⌃0

(V )).

Proof of “◆”: Suppose now that f 2 R(L⌃1
⌃0

(V )), hence there exists F1 2 L
2(V )d such that

f = w|� with w = w
⌃1
⌃0,F1

. Thus we have
Z

⌦
�0rw ·rv dx =

Z

V
F1 ·rv dx, 8v 2 H

⌃1
⌃0

. (5.8)

Let ' be defined as before, and define ew 2 H
⌃1
;

via the formula ew = (1 � ')w and extended

by zero on ⌃0. Recall that H
⌃1
;

✓ H
⌃1
⌃0

and let v 2 H
⌃1
;

be arbitrary, then (5.8) implies
Z

⌦
�0r ew ·rv dx =

Z

⌦
�0rw ·rv dx�

Z

V
�0r('w) ·rv dx

=

Z

V
(F1 � �0r('w)) ·rv dx.

Hence, with F = F1 � �0r('w)|V

f = w|� = ew|� = L
⌃1
;

(V )F,

and we have verified that R(L⌃1
;

(V )) ◆ R(L⌃1
⌃0

(V )). ⇤

Remark 5.2. If ⌃ b V in Proposition 5.1, then one can combine (i) and (ii) to obtain:

R(L;

;
(V )) = R(L;

⌃0
(V )) = R(L⌃1

;
(V )) = R(L⌃1

⌃0
(V )).

Indeed, after using (i) and (ii) as they are stated, we can use (i) again for a (⌃0

0,⌃
0

1
) collection of

cracks with ⌃0

0 = ⌃0 and ⌃0

1
= ;.

The following result will be needed in the proof of Proposition 5.4. For reasons of clarity we
state it as a separate lemma with its own proof. The proof makes essential use of single and double
layer potentials; for an in depth analysis of these in the context of Lipschitz surfaces we refer to
[31, 27].2

Lemma 5.3. Let ⌃ be a (⌃0,⌃1) collection of cracks. Assume that �0 2 C
2(⌦) and is positive.

(i) If ⌃0 6= ; then there exists f 2 L
2
⇧
(�) such that u

⌃1
;,f 6= u

⌃1
⌃0,f

.

(ii) If ⌃1 6= ; then there exists f 2 L
2
⇧
(�) such that u

;

⌃0,f
6= u

⌃1
⌃0,f

.

Proof. Proof of (i): It su�ces to prove that there exists an f 2 L
2
⇧
(�) such that

@

@n
u
⌃1
;,f does not vanish identically on ⌃0.

2The additional regularity required of �0 in this lemma guarantees the validity of the “appropriately rescaled”
jump relations for the (single and double) layer potentials, typically stated in terms of the fundamental solution
for the Laplacian.
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Let �(x, y) denote the (fundamental) solution to the problem

�r · (�0r�( · , y)) = �y in ⌦ \ ⌃1,

�0
@

@⌫
�( · , y) = �

1

|@⌦|
on @⌦,

�( · , y) is locally constant on ⌃1,
Z

⌃i

h
�0

@

@n
�( · , y)

i
dS = 0 for each component ⌃i of ⌃1.

In terms of this � we have the representation formula

u
⌃1
;,f (y) =

Z

�
�(x, y)f(x) dSx,

and so
@

@n
u
⌃1
;,f (y) =

Z

�

@

@ny
�(x, y)f(x) dSx on ⌃0.

Now suppose that @
@nu

⌃1
;,f vanishes identically on ⌃0 for all f 2 L

2
⇧
(�). Let  be a non-zero

continuous function on ⌃0, supported away from @⌃0, then it would follow that

0 =

Z

⌃0

 (y)

Z

�

@

@ny
�(x, y)f(x) dSx dSy =

Z

�
f(x)

Z

⌃0

@

@ny
�(x, y) (y) dSy dSx

for all f 2 L
2
⇧
(�). In other words, there is a constant C such that

Z

⌃0

@

@ny
�(x, y) (y) dSy ⌘ C on �.

We also have that

�0(x)
@

@⌫

Z

⌃0

@

@ny
�(x, y) (y) dSy =

Z

⌃0

@

@ny

⇣
�0(x)

@

@⌫x
�(x, y)

⌘
 (y) dSy ⌘ 0 on �.

By unique continuation of the operator r · (�0r( · )) it follows that
Z

⌃0

@

@ny
�(x, y) (y) dSy ⌘ C in ⌦ \ ⌃0.

The jump relation for double layer potentials (see [31, 27]) now asserts that

�0(x)
�1
 (x) =

Z

⌃0

@

@ny
�(x, y) (y) dSy

�
= 0 on ⌃0 .

This is contrary to the initial assumption that  is non-zero.3

Proof of (ii): It su�ces to prove that there exists an f 2 L
2
⇧
(�) such that

u
;

⌃0,f
is not locally constant on ⌃1.

Let  (x, y) denote the (fundamental) solution to the problem

�r · (�0r ( · , y)) = �y in ⌦ \ ⌃0,

�0
@

@⌫
 ( · , y) = �

1

|@⌦|
on @⌦,

�0
@

@n
 ( · , y) = 0 on ⌃0.

We have the representation formula

u
;

⌃0,f
(y) =

Z

�
 (x, y)f(x) dSx.

3The C2 regularity of �0 is su�cient to guarantee that the fundamental solution �(x, y) has the form
�(x, y) = �0(y)�1��(x, y) + R(x, y) = �0(x)�1��(x, y) + R̃(x, y), where �� is the standard Green’s function
for the Laplacian, and the “regular terms” R and R̃ do not contribute to the jump relations.
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Now suppose that u;

⌃0,f
is locally constant on ⌃1 for all f 2 L

2
⇧
(�). Let ' be a non-zero continuous

function on ⌃1, supported away from @⌃1, and with vanishing mean on each component of ⌃1

(i.e. orthogonal to u
;

⌃0,f
on ⌃1 in the L

2 inner product), then it would follow that

0 =

Z

⌃1

'(y)

Z

�
 (x, y)f(x) dSx dSy =

Z

�
f(x)

Z

⌃1

 (x, y)'(y) dSy dSx

for all f 2 L
2
⇧
(�). Thus, there is a constant C such that

Z

⌃1

 (x, y)'(y) dSy ⌘ C on �.

Since ' has vanishing mean on ⌃1, we also have that

�0(x)
@

@⌫

Z

⌃1

 (x, y)'(y) dSy =

Z

⌃1

⇣
�0(x)

@

@⌫x
 (x, y)

⌘
'(y) dSy ⌘ 0 on �.

By unique continuation, it follows that
Z

⌃1

 (x, y)'(y) dSy ⌘ C in ⌦ \ ⌃.

The jump relation for the normal derivative of single layer potentials (see [31, 27]) now asserts
that

��0(x)
�1
'(x) =


@

@nx

Z

⌃1

 (x, y)'(y) dSy

�
= 0 on ⌃1.

The fact that ' must identically vanish on ⌃1 represents a contradiction. ⇤

Proposition 5.4. Let ⌃ be a (⌃0,⌃1) collection of cracks. Assume that ⌃0 b V and ⌃1 b W

for V,W 2 A with dist(V,W ) > 0.

(i) If ⌃0 6= ; then there exists a sequence (fn) in L
2
⇧
(�) such that

lim
n!1

h(⇤;

W � ⇤;

;
)fn, fni = 0,

lim
n!1

h(⇤;

;
� ⇤W

;
)fn, fni = 0,

lim
n!1

h(⇤⌃1
⌃0

� ⇤⌃1
;

)fn, fni = 1.

(ii) If ⌃1 6= ; then there exists a sequence (gn) in L
2
⇧
(�) such that

lim
n!1

h(⇤;

V � ⇤;

;
)gn, gni = 0,

lim
n!1

h(⇤;

;
� ⇤V

;
)gn, gni = 0,

lim
n!1

h(⇤;

⌃0
� ⇤⌃1

⌃0
)gn, gni = 1.

Proof. We give a proof of (i), and note that the proof of (ii) is almost the same with obvious
modifications.

The first part of this proof, up to (5.9), is a slight modification of [20, Proof of Theorem 3.6], and
the arguments are essentially the same, however, our setup includes perfectly conducting cracks.
Due to the notational di↵erences we give the full details.

Let Y 2 A such that W b Y and dist(V, Y ) > 0. We will construct a localisation for certain
electric potentials, such that their energy tends to zero on the slightly larger set Y instead of just
on W . We make use of this fact to establish (5.20) towards the end of the proof.

Let U = ⌦ \ (V [ Y ) then U is connected, U is relatively open in ⌦, and @⌦ ⇢ U . For any

h 2 R(L⌃1
;

(V )) \R(L⌃1
;

(Y ))

there exist FV 2 L
2(V )d and FY 2 L

2(Y )d such that h = L
⌃1
;

(V )FV = L
⌃1
;

(Y )FY . Let

uV = w
⌃1
;,FV

and uY = w
⌃1
;,FY

. Thus uV , uY 2 H
⌃1
;

and from the variational formulations we
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obtain the equations

�r · (�0ruV ) = 0 in ⌦ \ (V [ ⌃1),

�r · (�0ruY ) = 0 in ⌦ \ Y,

uV = uY = h on �,

�0
@uV

@⌫
= �0

@uY

@⌫
= 0 on @⌦.

The variational formulation also gives that
Z

⌃i

h
�0
@uV

@n

i
dS = 0 for each component ⌃i of ⌃1.

Due to the unique continuation property (UCP) we get that uV |U = uY |U . By gluing uV and uY

together, we obtain the function

u =

(
uV in ⌦ \ V,

uY in V,

which, due to the boundary value problem it solves, must equal u⌃1
;,0 = 0. Consequently h = u|� =

0, and so we have proven

R(L⌃1
;

(V )) \R(L⌃1
;

(Y )) = {0}. (5.9)

Since ⌃0 b V , we get from Proposition 5.1(i) that

R(L⌃1
;

(V )) = R(L⌃1
⌃0

(V )). (5.10)

Define

A = L
⌃1
⌃0

(V )� L
⌃1
;

(V ).

Due to (5.2) we have

A
⇤
f = (L⌃1

⌃0
(V ))⇤f � (L⌃1

;
(V ))⇤f = r(u⌃1

⌃0,f
� u

⌃1
;,f )|V . (5.11)

Using unique continuation and the mean-free conditions on � for u⌃1
⌃0,f

and u
⌃1
;,f , we now conclude

that

A
⇤
f = 0 if and only if u

⌃1
⌃0,f

= u
⌃1
;,f .

Since ⌃0 6= ;, lemma 5.3(i) implies A
⇤
6= 0 and therefore A 6= 0. As a consequence there exists

g 2 R(A)\{0}, and because of (5.9) and (5.10) this g satisfies g 2 R(L⌃1
;

(V )) and g 62 R(L⌃1
;

(Y )).

Moreover, (L⌃1
;

(Y ))⇤ is injective by (5.2) and unique continuation. We then apply the constructive
result on localised potentials in Lemma 4.4, and for n 2 N define

⇠n =
�
L
⌃1
;

(Y )(L⌃1
;

(Y ))⇤ + 1
nI

��1
g

and

fn =
⇠n

k(L⌃1
;

(Y ))⇤⇠nk
3/2
L2(Y )d

.

Lemma 4.4 implies that

lim
n!1

k(L⌃1
;

(Y ))⇤fnkL2(Y )d = 0, (5.12)

lim
n!1

k(L⌃1
;

(V ))⇤fnkL2(V )d = 1, (5.13)

and lim
n!1

kA
⇤
fnkL2(V )d = 1, (5.14)

simultaneously. Since ⌃1 b Y , Proposition 5.1(ii) gives that R(L⌃1
;

(Y )) = R(L;

;
(Y )). This

range equality, together with (5.12) and Lemma 4.3, implies

lim
n!1

k(L;

;
(Y ))⇤fnkL2(Y )d = 0. (5.15)
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From Proposition 5.1(ii) we have R(L⌃1
;

(V [Y )) = R(L;

;
(V [Y )). So from (5.2) and Lemma 4.3

there exists a c > 0 such that

k(L;

;
(V ))⇤fnk

2
L2(V )d + k(L;

;
(Y ))⇤fnk

2
L2(Y )d

= k(L;

;
(V [ Y ))⇤fnk

2
L2(V [Y )d

� ck(L⌃1
;

(V [ Y ))⇤fnk
2
L2(V [Y )d

� ck(L⌃1
;

(V ))⇤fnk
2
L2(V )d . (5.16)

A combination of (5.13), (5.15), and (5.16) gives

lim
n!1

k(L;

;
(V ))⇤fnkL2(V )d = 1. (5.17)

We are now ready to associate the di↵erent operators to di↵erences of ND mappings. Let
bun = u

;

;,fn
. Then (5.2), (5.15), and (5.17) translate into

lim
n!1

Z

V
|rbun|

2 dx = 1 and lim
n!1

Z

Y
|rbun|

2 dx = 0. (5.18)

Using [6, Lemma A.1(ii)], we obtain the existence of a constant K > 0, independent of fn, such
that

0  h(⇤;

;
� ⇤W

;
)fn, fni  K

Z

W
|rbun|

2 dx. (5.19)

Let ŭn equal u;

W,fn
in ⌦ \W and satisfy the following Dirichlet problem in W :

�r · (�0rŭn) = 0 in the interior of W,

ŭn = u
;

W,fn
on @W.

The result in [6, Lemma 5.3] ensures that if an extreme inclusion (either perfectly insulating or
perfectly conducting) is introduced, compactly contained in Y where the energy of bun tends to
zero, then the corresponding electric potentials with this new conductivity profile will have the
same localisation as in (5.18). For a perfectly insulating inclusion, W b Y , the localisation applies
to ŭn, using precisely the extension in W defined above. We thus have

lim
n!1

Z

Y
|rŭn|

2 dx = 0. (5.20)

Use of [6, Lemma A.1(iii)] yields

0  h(⇤;

W � ⇤;

;
)fn, fni  ess sup(�0)

Z

W
|rŭn|

2 dx. (5.21)

From (5.18)–(5.21) we now conclude

lim
n!1

h(⇤;

W � ⇤;

;
)fn, fni = lim

n!1

h(⇤;

;
� ⇤W

;
)fn, fni = 0.

It remains to prove that h(⇤⌃1
⌃0

�⇤⌃1
;

)fn, fni ! 1 for n ! 1. Let un = u
⌃1
⌃0,fn

and eun = u
⌃1
;,fn

,
then from Lemma 4.1(i) we have

h(⇤⌃1
⌃0

� ⇤⌃1
;

)fn, fni = kun � eunk
2
⇤
� ess inf(�0)

Z

V
|r(un � eun)|

2 dx.

At the same time from (5.11)

A
⇤
fn = r(un � eun)|V ,

so use of (5.14) concludes the proof. ⇤
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6. The direction “(” in Theorems 1.2 & 1.3

Finally we show the “di�cult direction” of the if and only if statements of Theorems 1.2 and
1.3, although the majority of the work has already been done in Proposition 5.4.

Proposition 6.1. Let D be a (D0, D1) collection of cracks. Given any C 2 A, then

⇤;

C � ⇤D1
D0

� ⇤C
;

implies D ⇢ C.

Proof. We will prove the contrapositive statement, i.e. assume D 6⇢ C. As C is closed there is
a relatively open part of D that belongs to ⌦ \ C. Now we will show that either ⇤;

C 6� ⇤D1
D0

or

⇤D1
D0

6� ⇤C
;
.

Since C has connected complement we have either of two cases, which will dictate which operator
inequality that will fail to hold:

(a) There are V,W 2 A with dist(V,W ) > 0 and non-empty � 2 X , such that

� ✓ D0, � b V, C ✓ W, and D1 b W.

(b) There are V,W 2 A with dist(V,W ) > 0 and non-empty � 2 X , such that

� ✓ D1, � b W, C ✓ V, and D0 b V.

Case (a): Since C [ D1 ✓ W then [6, Theorem 3.7] and (the second inequality of) Proposi-
tion 3.1 give

⇤;

C  ⇤;

W and ⇤D1
;

� ⇤W
;
.

As � ✓ D0 then Proposition 3.2(i) gives

⇤D1
D0

� ⇤D1
� .

Hence we have

⇤;

C � ⇤D1
D0

= (⇤;

C � ⇤;

;
) + (⇤;

;
� ⇤D1

;
) + (⇤D1

;
� ⇤D1

D0
)

 (⇤;

W � ⇤;

;
) + (⇤;

;
� ⇤W

;
) + (⇤D1

;
� ⇤D1

� ).

Now, since ; 6= � b V and D1 b W , Proposition 5.4(i) gives the existence of a sequence (fn) in
L
2
⇧
(�) such that

lim
n!1

h(⇤;

C � ⇤D1
D0

)fn, fni = �1,

and in particular we conclude that ⇤;

C 6� ⇤D1
D0

.
Case (b): Since C [D0 ✓ V then [6, Theorem 3.7] and (the first inequality of) Proposition 3.1

gives

⇤C
;
� ⇤V

;
and ⇤;

D0
 ⇤;

V .

As � ✓ D1 then Proposition 3.2(ii) gives

⇤D1
D0

 ⇤�
D0

.

Hence we have

⇤D1
D0

� ⇤C
;
= (⇤D1

D0
� ⇤;

D0
) + (⇤;

D0
� ⇤;

;
) + (⇤;

;
� ⇤C

;
)

 (⇤�
D0

� ⇤;

D0
) + (⇤;

V � ⇤;

;
) + (⇤;

;
� ⇤V

;
).

Now, since ; 6= � b W and D0 b V , Proposition 5.4(ii) gives the existence of a sequence (gn) in
L
2
⇧
(�) such that

lim
n!1

h(⇤D1
D0

� ⇤C
;
)gn, gni = �1,

and in particular we conclude that ⇤D1
D0

6� ⇤C
;
. ⇤

Proposition 6.2. Let D 2 X .

(i) Given any � 2 X , then

⇤;

D � ⇤;

� implies � ✓ D.
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(ii) Given any � 2 X , then

⇤�
;
� ⇤D

;
implies � ✓ D.

Proof. We will prove the contrapositive statements, i.e., assume � 6✓ D.
Proof of (i): We need to show that ⇤;

D 6� ⇤;

�. There exist V,W 2 A with dist(V,W ) > 0 and
a non-empty �0

2 X , such that

�
0
✓ �, �

0 b V, and D ⇢ W.

Using Propositions 3.1 and 3.2(i) we have

⇤;

D  ⇤;

W and ⇤;

� � ⇤;

�0 .

Hence
⇤;

D � ⇤;

� = (⇤;

D � ⇤;

;
) + (⇤;

;
� ⇤;

�)  (⇤;

W � ⇤;

;
) + (⇤;

;
� ⇤;

�0).

Now, since ; 6= �
0 b V , Proposition 5.4(i) gives the existence of a sequence (fn) in L

2
⇧
(�) such

that
lim
n!1

h(⇤;

D � ⇤;

�)fn, fni = �1,

and in particular we conclude that ⇤;

D 6� ⇤;

�.
Proof of (ii): We need to show that ⇤�

;
6� ⇤D

;
. There exist V,W 2 A with dist(V,W ) > 0 and

a non-empty �0
2 X , such that

�
0
✓ �, �

0 b W, and D ⇢ V.

Using Propositions 3.1 and 3.2(ii) we have

⇤D
;

� ⇤V
;

and ⇤�
;
 ⇤�0

;
.

Hence
⇤�
;
� ⇤D

;
= (⇤�

;
� ⇤;

;
) + (⇤;

;
� ⇤D

;
)  (⇤�0

;
� ⇤;

;
) + (⇤;

;
� ⇤V

;
).

Now, since ; 6= �
0 b W , Proposition 5.4(ii) gives the existence of a sequence (gn) in L

2
⇧
(�) such

that
lim

n!1

h(⇤�
;
� ⇤D

;
)gn, gni = �1,

and in particular we conclude that ⇤�
;
6� ⇤D

;
. ⇤
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