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ABSTRACT. We derive exact reconstruction methods for cracks consisting of unions of Lipschitz
hypersurfaces in the context of Calderén’s inverse conductivity problem. Our first method
obtains upper bounds for the unknown cracks, bounds that can be shrunk to obtain the exact
crack locations upon verifying certain operator inequalities for differences of the local Neumann-
to-Dirichlet maps. This method can simultaneously handle perfectly insulating and perfectly
conducting cracks, and it appears to be the first rigorous reconstruction method capable of this.
Our second method assumes that only perfectly insulating cracks or only perfectly conducting
cracks are present. Once more using operator inequalities, this method generates approximate
cracks that are guaranteed to be subsets of the unknown cracks that are being reconstructed.
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1. INTRODUCTION

For an integer d > 2, let Q be a bounded Lipschitz domain in R? with connected complement,
and let I' C 09 be a non-empty relatively open subset. In the presence of a collection of cracks,
D, and an imposed boundary current, f on I', the steady state voltage potential, u, satisfies

~V - (yVu)=0 inQ\ D,

8“ f on Fa

Yo5- = =
ov 0 ondQ\T,
0

%8% =0 on Dy, (1.1)

u is locally constant on D,
0
/ [’yo—u} dS =0 for each component D; of D,.
D; on

We “ground” u by requiring that fF udS = 0. The condition on Dy must be satisfied on both sides
of Dy. Dy are those cracks in the collection D that are perfectly insulating, and D, are those
that are perfectly conducting, D = Dy U D.,. Note that the constants on different connected
components of D, will generally be different (and determined by the integral conditions). v
denotes the outer unit normal on 9Q and n denotes a unit normal on D. We use [v] to denote
the jump of a function v across D, relative to the normal vector n, with the convention that
[v] =v_ —vy, where v_ is the trace (on D) taken from that part of Q, which n points away from,
and vy is the trace (on D) taken from that part of 2, which n points into. The imposed boundary
current satisfies

feLi(r)={geL*I)|(l,g) =0}, (1.2)
where (-, -) is the usual L?(T") inner product. v, is a known background conductivity coefficient,
which is defined in all of Q.

For the major part of our analysis it suffices that vy € L () with essinf(yy) > 0. However,
at certain points we crucially assume that the conductivity equation V - (7oVv) = 0 has a weak
unique continuation property (UCP) on connected open subsets of Q and also from Cauchy data
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on T, see e.g. [6, Definition 3.3]. For d = 2 the UCP follows directly [1], while in higher dimensions
this requires some regularity of 7y such as 7y being Lipschitz continuous or piecewise analytic
[24, 25, 28]. At one particular point (Lemma 5.3) we require additional C? regularity, namely to
ensure that the given cracks cannot be invisible to all possible boundary measurements. However,
if it turns out that the visibility can be shown for a lower regularity (still satisfying the UCP) then
the proofs of our main results adapt to this.
Formally the problem introduced in (1.1) can be considered a problem related to the conduc-

tivity profile given by

Yo inQ\D,

0 in Do7

oo in Dy,

which also explains our use of the notation Dy and D.,. The problem of determining an internal
conductivity profile from boundary data is often referred to as Calderén’s inverse conductivity
problem [5, 30], and our emphasis here is therefore on a special case of this, namely: to reconstruct
the unknown cracks in © (the set D) based on boundary measurements on I' C 9.

In order to state the main results of this paper, it is necessary to be precise about the collection
of cracks we reconstruct.

Definition 1.1. A collection of cracks y lies in the class X if for some N € Ny

N
X = U Oi,
i=1

where the o; C Q are (d — 1) dimensional connected orientable Lipschitz surfaces with non-empty
Lipschitz boundary do;, and with

dist(o;,0;) > 0 for i # j and dist(o;, 9Q) > 0 for all 4.

Notice that dist(x,92) > 0 and Q\ X is connected. In particular, we do not allow open subsets
of © to be completely encapsulated by a crack. We refer to D € X as “a (Dy, D) collection
of cracks” if D = Dy U Dy, for Do, Do, € X, dist(Dy, Do) > 0, each crack in Dy is perfectly
insulating, and each crack in D, is perfectly conducting. Note that Dy or D,, may possibly be
empty.

Our first result is an exact monotonicity-based reconstruction method via shape approximations
from above, based on shrinking test inclusions C' containing D. Whether C contains D or not is
checked via operator inequalities related to the boundary electric power. The set of admissible
test inclusions are

A={C € Q| C is the closure of an open set, has connected

complement, and has Lipschitz boundary 0C'}.
For C € A we define A@C to be the Neumann-to-Dirichlet map (the ND map) for the conductivity
coefficient which equals 0 in C' and 7y elsewhere. We define Ag to be the ND map for the
conductivity coefficient which equals co in C' and 7 elsewhere. Similarly we define AB;" to be
the ND map associated with the (D, Do) collection of cracks. For the precise definitions see
section 2 or e.g. [6]. We shall actually only be concerned with a local version of these maps from

L2(T) to L(T). For self-adjoint operators A, B € £ (L2(T')) we use the notation A > B if and
only if A — B is positive semi-definite, that is

(A=B)f,fy >0,  VfeL).

Based on knowledge of the local ND map Ag;‘f : f — ulr, and in particular its relation to A% and
AQ)C, we can now reconstruct the cracks D as follows.

Theorem 1.2. Let D be a (Dy, Do) collection of cracks. Given any C € A, then
DccC if and only if A% > Aggc’ > Ag.



RECONSTRUCTION OF CRACKS IN CALDERON’S PROBLEM 3

Proof. The direction “=" is proved in Proposition 3.1 in section 3 with ¥y = Dy and ¥, = D.
The other direction “<«<" is proved in Proposition 6.1 in section 6. (]

Our second result provides an exact monotonicity-based reconstruction method based on gen-
erating approximate cracks y inside D. By checking operator inequalities we can determine if x
is contained in D or not. This result assumes that we either only have perfectly insulating cracks
or only have perfectly conducting cracks.

Theorem 1.3. Let D € &.
(i) Given any x € X, then

xCD if and only if A(DD > Ag.
(ii) Given any x € X, then
xCD if and only if Ay > AP

Proof. The direction “=" of (i) is proved in Proposition 3.2(i) in section 3 with ¥y = D and
Yoo = 0, and the same direction for (ii) is proved in Proposition 3.2(ii) with ¥y = §§ and ¥, = D.
The other direction “«” for both (i) and (ii) is proved in Proposition 6.2 in section 6. O

Remark 1.4.
(i) Theorem 1.2 implies that

D=n{CeA|AL > A > AF}.

Moreover, as seen in the proof of Proposition 6.1, if Dy = () we only need to consider
AwD © > Agj and, likewise, if instead we have D., = () we only need to consider AQC > AQ)DO.
(ii) Theorem 1.3 implies that, in the perfectly insulating case

D=U{xeX|A) >A"},
and in the perfectly conducting case
D=U{x e X|A} > A7}

1.1. Some related results. For large classes of cracks there are optimal (non-constructive)
unique identifiability results using merely two boundary measurements [2, 4, 9]. However, the
reconstruction of general cracks from finitely many measurements appears to be an open problem.
For spatial dimension d = 2 there is a factorisation method [3] to reconstruct either perfectly
insulating cracks or perfectly conducting cracks from an ND map. The results of [3] resemble the
two-dimensional version of Theorem 1.3, in the sense that one determines if an artificial crack is
a subset of the unknown crack. For perfectly insulating cracks, probe and enclosure methods are
discussed in [22, 23]. These methods determine the location of “boundary singularities” associated
with the cracks or the convex hull of the cracks, respectively. It should also be mentioned that
these reconstruction methods assume that vy = 1.

Our results Theorem 1.2 and Theorem 1.3 are applicable in spatial dimension d > 2 for very
general cracks and also for non-homogeneous background conductivities. It appears that Theo-
rem 1.2 is the only proven method capable of reconstructing cracks with both perfectly insulating
and perfectly conducting parts. Moreover, the test operators AQ)C and Ag are precisely the same
test operators that are used in [6, 12] for reconstructing general inclusions of positive volume (the
support of conductivity perturbations on open sets). So numerical implementations of this method
directly applies to cracks without requiring any modifications. Arguably Theorem 1.3 becomes
demanding to implement numerically for d > 2 and is likely only suitable for computations in
d = 2, while the numerical implementation of Theorem 1.2 very naturally generalises to higher
dimensions using a peeling approach as in [14].

For inclusions of positive volume, the monotonicity of ND mappings with respect to the conduc-
tivity coefficient was used in [29] to give bounds on the inclusions. In [19, 20] this approach was
proven to give an exact reconstruction method for finite perturbations to the background conduc-
tivity, also in cases with both positive and negative perturbations if lower and upper bounds are
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known for the perturbed conductivity. This was generalised in [6], where the perturbed conductiv-
ity could now simultaneously have parts with finite positive and negative perturbations as well as
extreme parts that are perfectly insulating and perfectly conducting. Moreover, the need for lower
and upper bounds was removed. Finally, in [12] the method was shown to also handle degenerate
and singular perturbations based on As-Muckenhoupt weights, allowing for continuous decay to
zero and growth to infinity. This is currently the most general method for reconstructing inclusions
of positive volume in Calderén’s problem based on a local ND map. Rigorous connections have
also been made to practically relevant electrode models [13, 14, 17, 21].

The same monotonicity-based methodology has also been used to design a reconstruction
method for the partial data Calderén problem, for the case of layered piecewise constant con-
ductivities [10, 11]; note that this is not a finite-dimensional setting, as the piecewise constant
partitioning is also reconstructed. In finite-dimensional settings this methodology has led to Lips-
chitz stability results in Calderén’s problem with finitely many measurements [17] and to reformu-
lating the finite-dimensional Calderén problem as a convex semidefinite optimisation problem [18].
The methods are based on the unique continuation principle and its connection to the localised
potentials from [15]. For applications to other inverse problems, we refer to the list of references
in [17].

The proofs of Theorems 1.2 and 1.3 also rely on localised potentials. However, the approach here
is quite different since the known localisation results apply to open sets, and there is no open set
inside the cracks to localise in. Moreover, the monotonicity inequalities in [6, Appendix A] become
trivial in the limit of approximating cracks by open sets. Additionally, it should be noted that using
approximations of cracks with open sets and applying the results from [6] will not result in proofs
of our main results. The key ingredient for our proofs turns out to be the localisation on open sets
containing parts of the cracks, to give simultaneous blow-up of potentials for conductivity profiles
both with and without the cracks, and crucially also to have blow-up for their difference. The latter
is the most technically difficult to obtain, and here the constructive version of localised potentials
[15, Lemma 2.8] turns out to be invaluable, since the existence results for localised potentials
would not necessarily give blow-up for the difference of two localised sequences of potentials.

1.2. Outline of the paper. In section 2 we introduce the relevant forward problems and associ-
ated function spaces. In section 3 we prove the direction “=" of Theorems 1.2 and 1.3 (the easy
direction). Sections 4 and 5 are dedicated to results about localised potentials, that are needed in
section 6, where we prove the direction “<” of Theorems 1.2 and 1.3 (the difficult direction).

2. FORWARD PROBLEMS
Let X be a (3o, Yso) collection of cracks. Let
Hgg" ={ve H(Q\ X)) | v is locally constant on ¥},

where the o-symbol refers to a mean-free condition for the Dirichlet trace on I', as in (1.2). A
Poincaré inequality holds on Q \ X, see for instance [26]. As 3 has d-Lebesgue measure zero,
the gradient of v € Hg;c (defined in Q\ %) is equivalent to a function in L?(Q2)? on the entire

domain 2. Hence a norm on H%{j@, equivalent to the H'-norm, is

1/2
folle = ([ solvoP de) ",

with associated inner product!

(w,v)s = / YoVw - Vo dz.
Q

1Throughout this paper we assume, without loss of generality, that all our solutions and function spaces are
real-valued.
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By the Lax—Milgram lemma, the interior electric potential w in (1.1), with Dy = Xy and Dy = X,
is the unique solution in 7—[%? of the weak problem

(u, v)s = (f,v|r), NORS ’Hgg" (2.1)

We will sometimes use the notation u = ugff 7 to clarify which cracks (possibly empty) are present,
and which current density, f, is used. Define the functional J : H%g" — R by

) = )2 = 2(f0le),  ve K.

With this definition, w is also the unique minimiser of J (cf. [16, Remark 12.23] and [7, Theo-
rem 1.1.2]). The corresponding local ND map Agg" : f — ulr satisfies

(ASz o f) = (ule, £) = (foule) = Jlull,

and is a compact self-adjoint operator on LZ(T).
For C € A and f € L(T), let u% s be the potential coming from a conductivity with perfectly

insulating inclusions in C' and -y elsewhere. Then uy = u% ;s the unique solution in
He = Hy(2\ C)
of the variational problem

/ YoVug - Vodz = (f,v|r), Vo € HY.
Q\c

Likewise, let ug f be the potential coming from a conductivity with perfectly conducting inclusions
in C and 7 elsewhere. Then uy, = ug 78 the unique solution in

H = {w e HL(Q) | w is locally constant in C'}
of the variational problem

/ YoV - Vodz = (f,v|r), Yo € H .
Q\C

In terms of the functional

Jw) = /Q oIVl e = 27,0l

ug is the unique minimizer of J|,,» and us is the unique minimizer of .J ‘Hg' The corresponding
C

ND maps are compact self-adjoint operators on L2(T") and satisfy

(ALF,F) = {uolr, ) = (f, wolr) = / 70| V2 dz,
Q\c

(AS . 1) = (tocls ) = (F usolr) = / 0l el

3. THE DIRECTION “=" IN THEOREMS 1.2 & 1.3

Below we prove the “easy direction” of the if and only if statements of Theorems 1.2 and 1.3.
Proposition 3.1. Let ¥ be a (3¢, Xo) collection of cracks. Given any C € A, then
»cC implies A% > Ag(‘f > Ag.

Proof. For f € L2(T) denote ug = u%,f, Uso = ugf, and u = ugg"f Since ¥ C C we have
ulov¢ € ’H% and um|9\§0 € ’Hgg" We now compare the ND maps, while taking the related
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minimization properties from section 2 into account
EOC —
A5 1) = [ ol de — 2(.ule)
Q

> / Yo|Vul® dz — 2(f, u|r)
o\C

> / Yo Vuo|* dz — 2(f, uo|r)
a\c
= —(ALS, £),
and
AG10) = [ TP o = 2( el
Q\c
— [ 20lVusl? do = 2(, )
Q
> [ solVulds = 208, ul)
Q
= —(AS= S, f)-
Here we used that Vus, = 0 in the interior of C. O

Proposition 3.2. Let ¥ be a (X, Xw) collection of cracks.
(i) Given any x € X, then
x € X implies Agzo > A)E(‘X’.
(ii) Given any x € X, then
X C Yoo implies A, > Ags"
Proof. For f € L2(T') denote u = uggff.

Proof of (i): We denote u; = u§°]‘;’ Since x € Yo we have u1|g\5; € ’H,gg". Using the related
minimization problems for v and u;, we have

—(AT=f, £) = ]2 = 2(f, walr) > ull? = 2(f,ulr) = —(AZ=f, f).

Proof of (ii): We denote us = uéo Iz Since x C Y, we have u € Hgo. Using the related
minimization problems for v and us, we have

(A= £, ) = Nlull2 = 2(f,ulr) > [uall? = 2(f, uzlr) = —(AX, £, f). O

4. SOME LEMMAS IN PREPARATION FOR LOCALISED POTENTIALS
If ¥ is a (X0, Yeo) collection of cracks then we have
Yoo Yoo 0
Hy>~ CHs® CHyys

in the sense that v € 7—[%: > satisfies U|Q\§O € Hgg" Moreover, these are all Hilbert spaces with
the same inner product (-, - ).

Let P and P be the orthogonal projections of "Hg(‘f onto ’H% >~ and (H%“’)L, respectively, in
the (-, - ), inner product. Likewise we let Q and @+ denote the orthogonal projections of ’H%O

onto "Hgg" and (Hgf){ respectively, in the (-, - ). inner product.

Lemma 4.1. Let ¥ be a (3o, Xoo) collection of cracks and let the projections P, P+, Q, and Q*
be given as above. For f € L%(T') we denote ug = u%o o Uoo = u%?, and u = ugz‘)f
(i) We have uoo = Pu and

(A5 = AG=)f. f) = |1 Pull?.
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(ii) We have u = Qug and
(AS) = AS2) ) = 1@ o2
Proof. Proof of (i): From the weak formulation for u and for all v € H% = C Hg;", we have
(f,v|r) = (u,v)s = (Pu,v),.

However, by the weak formulation for us, and its unique solvability in ’H%"", we have uy, = Pu.
Thus u — us = P1u. Using the weak formulation for u again, we have

((ASy = AG=)]. ) = (F, (PTu)lr) = (u, Pru), = [Pl 3.
Proof of (ii): From the weak formulation uy and for all v € Hg(’j" c H%O, we have
<f7v|F> - <U0,’U>* - <QUO,’U>*.

However, by the weak formulation for u and its unique solvability in Hg“j, we have u = Quyg.
Thus ug — u = Q1ug. Using the weak formulation for ug again, we have

(AL, = A5V ) = (f (Q uo)lr) = (uo, @ uo)s = [|Q uol- U

Remark 4.2. While we do not use this fact, we note that, for sufficiently regular vy one can write
the differences of the ND maps in Lemma 4.1 as integrals on ¥y and X, via integration by parts:

(0Fr =850 = = [ (0% lulds,

ou

(%, ~AZ10) == [ [0ge]uads.
Yoo n
The integrals should be understood in the appropriate weak sense.

Next we state two general lemmas in functional analysis that are proven in [15]. The first is a
lemma relating the ranges of operators to bounds on their adjoints.

Lemma 4.3 (Lemma 2.5 in [15]). Let H, K1, and Ky be Hilbert spaces and let A; € £ (K;, H)
for 5 =1,2. Then

R(A1) C R(As) if and only if  3C > 0,Vz € H : | Ajz||k, < C| A5z K,-
The second lemma is the constructive version for the localised potentials from [15].

Lemma 4.4 (Lemma 2.8 in [15]). Let H, K, and Ky be Hilbert spaces, let A; € L (K;, H)
for j = 1,2, and assume that A% is injective. Assume that there exists yo € R(A1) such that
yo € R(As). Forn € N we define

&0 = (AsA3 + L1y,

and
e
=
143613
Then
lim ||AT 2, |k, = 00 and lim || A5z, |k, = 0.
n—oo n— oo

5. LOCALISED POTENTIALS WITH CRACKS
Let V € Aand let ¥ be a (g, Yo ) collection of cracks. For F' € L?(V)? we define w = w%ng €
Hg(‘j" as the unique solution of the following variational problem:
/ YoVw - Vodz = / F - Vuvdz, Yv € H%S" (5.1)
Q 1%
The dependence on V' is not explicitly given in the notation of wg[ch, but is indirectly given via
F. We now define an operator ng’f(V) :L2(V)4 — L2(T) as

LEy (V)F = wgplr.
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Let u = ugf iz then from the variational problems of u and w we have

(f, Lz (V)F) = (f,wlr) = (u,w). = (Vuly, F) L2(vya-
Hence we have
(L= (V) f = Vuge,lv,  feLi(D). (5.2)
Next we will prove results for the ranges of these variational operators, that will be essential for
the localised potentials in Proposition 5.4.

Proposition 5.1. Let V € A and let ¥ be a (X9, L) collection of cracks.
(i) If S0 € V then R(Ly>=(V)) = R(Ls=(V)).
(ii) If Soo € V then R(LY, (V) = R(LE= (V).

Proof. We give a proof of (i), and note that the proof of (ii) is almost the same with obvious

modifications.
Proof of “C”: Let f € R(L%”(V))7 then there exists Fy € L?(V)? such that f = w|r with

w = w%;‘:l. We have
/Q%vm V' dz = /V F-V'de, W e Hy. (5.3)

Let Wy, W5 € A such that Xg € W, @ Wy C V and with dist(Ws,X,) > 0. Using the C*°-
Urysohn lemma [8, Lemma 8.18], we may construct ¢ € C°(Ws) with 0 < ¢ <1 and ¢ =1 in
Wi. In the following we will let v € 'Hg(‘f be arbitrary but fixed, and let ¢ be the constant such
that

Vg =V —¢C

has vanishing mean on dV. Moreover, we also define
v = (1 - ¢)vg.

We note that v’ (extended by zero to 3) lies in ’H%"". Therefore (5.3) is applicable for v/, and
using the fact that v'|o\1 = vo|o\1 We now get

/ YoVw - Vodr = / YoVw - Vg dz + / yoVw - Vv' dz
Q v Q\v
= / YoVw - Vg dx + / YoVw - Vo' dz — / YoVw - Vv' dz
1% Q 1%

= / YoVw - Vug dz + / (Fy — v Vw) - V' dz. (5.4)
% %

Define F = F; — voVw|y. Using the definitions of v' and ¢, and that Xy € W; where 1 — ¢
vanishes, we have

/ F - Vo' dz = / (1 - @)Fy - Vugdz + / (Fy - V(1 —¢))vo de. (5.5)
v v v
Define F5 = yoVwl|y + (1 — ¢)Fy and g = F» - V(1 — ), then (5.4) and (5.5) collectively give

/ YyoVw - Vodz = / F3 - Vg dx + / gug dz. (5.6)
Q \% 1%
We now consider an auxiliary problem. Let V° be the interior of V' and let
Hy = {0 H'(V°\S) | / lov ds =0},
ov
then Hy is a Hilbert space with inner product (whose norm is equivalent to the usual H!'-norm)

(U1, V2) 1y, =/ V1 - Vg da.
v
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Using the Lax—Milgram lemma, we now define w to be the unique solution in Hy of the variational
problem

/m.vadx:/gadm, ¥ € Hy. (5.7)
\% 1%

Since vg has vanishing mean on 9V the restriction of vy to V belongs to Hy . Let F' = F3 + V1w,
then (5.6) and (5.7) lead to

/VOVw-Vvdm:/F~Vvodx:/F-Vvda:.
Q 1% %4

Aswv e ’Hg(‘f was arbitrary (and w € "H%“ - Hgg"), we have proven
f=wlr = L5 (V)F,
and therefore R(LwEoo (V) C R(L%g" ).

Proof of “2”: Suppose now that f € R(ng‘)(V)), hence there exists F; € L?(V)9 such that
f=w|r with w = w%;‘jﬂ. Thus we have

/ YVw - Vodr = / Fy - Voude, Yo € ”Hgg" (5.8)
Q %

Let ¢ be defined as before, and define w € ’H%W via the formula w = (1 — ¢)w and extended
by zero on ¥y. Recall that 7—[%‘” C ’Hg? and let v € H%m be arbitrary, then (5.8) implies

/ vVw - Vodx = / YoVw - Voda — / YoV (pw) - Vo da
Q Q v

= [ (=¥ (pu)) - Vud.
Hence, with F' = Fy — vV (pw)|v
f=wlp =w|r = Ly=(V)F,
and we have verified that R(Ly>(V)) 2 R(Ly>(V)). O

Remark 5.2. If ¥ € V in Proposition 5.1, then one can combine (i) and (ii) to obtain:
R(L(V)) = R(L, (V) = R(Lg™ (V) = R(Lg; (V).

Indeed, after using (i) and (ii) as they are stated, we can use (i) again for a (X, X) collection of
cracks with X = ¥ and X/ = 0.

The following result will be needed in the proof of Proposition 5.4. For reasons of clarity we
state it as a separate lemma with its own proof. The proof makes essential use of single and double
layer potentials; for an in depth analysis of these in the context of Lipschitz surfaces we refer to
[31, 27).2

Lemma 5.3. Let ¥ be a (Xg,Xoo) collection of cracks. Assume that o € C%(Q) and is positive.
(i) If Xo # 0 then there exists f € L2(T") such that u%}" # ugz“f
(ii) If Yoo # 0 then there exists f € L2(T) such that ugmf # uggf’f

Proof. Proof of (i): It suffices to prove that there exists an f € L2(T') such that

0
—u%‘” does not vanish identically on 3.
an 7f

2The additional regularity required of 7o in this lemma guarantees the validity of the “appropriately rescaled”
jump relations for the (single and double) layer potentials, typically stated in terms of the fundamental solution
for the Laplacian.
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Let ®(z,y) denote the (fundamental) solution to the problem
—V - (Ve(-,y) =45, inN\Z,
0 1
— (-, y)=——= oN
7081/ ( 7y) |3Q| o1 )
®(-,y) is locally constant on X,
0
/ ['yo—fb( . y)] dS =0 for each component ¥; of ¥,
R on

In terms of this ® we have the representation formula

w50 = [ 2wn)f@)as,
and so

>=A£f@wmwﬁ(mm
>

Now suppose that %uw? vanishes identically on ¢ for all f € LZ(T'). Let % be a non-zero
continuous function on Yy, supported away from 9%, then it would follow that

0—/201/}(11)/ aiy@(x y)f(z)dS; dSy:/Ff("” /2 aiy

for all f € L2(T). In other words, there is a constant C' such that

—tbxy y)dS, =C onl.

(2, y)¥(y) dS, dS,

We also have that
v L gt as,= [ 5 () et ) vw)as, =0 o
70 3 3ny y = . Yo(® R z,y Yy y = onl.

0 any

By unique continuation of the operator V - (yoV(-)) it follows that
—®(z,y)Y(y)dS, =C in 2\ .
/EO any ) Yy

The jump relation for double layer potentials (see [31, 27]) now asserts that

Yo(x {anny ()dS}zO on Y .

This is contrary to the initial assumption that ¢ is non-zero.?

Proof of (ii): It suffices to prove that there exists an f € L2(T) such that
u%m  is not locally constant on Yo
Let U(x,y) denote the (fundamental) solution to the problem
—V - (%VY¥(-,y)) =46, inQ\X,
0 1
—U(,y) = ——5=— oN
Yo v ( ) y) |GQ\ on ’
3\I/( )=0 onX
7o on Y) = 0-

We have the representation formula

uaﬂwzﬁwmmﬂmﬁa

3The C? regularity of ~o is sufficient to guarantee that the fundamental solution ®(z,y) has the form
d(x,y) = W) '®a(z,y) + R(z,y) = y0(z) ' ®a(z,y) + R(z,y), where ®A is the standard Green’s function
for the Laplacian, and the “regular terms” R and R do not contribute to the jump relations.
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Now suppose that u%o pis locally constant on ¥, for all f € L2(I"). Let ¢ be a non-zero continuous
function on X, supported away from 0%, and with vanishing mean on each component of ¥,
(i.e. orthogonal to UQX)JO 5 on X in the L? inner product), then it would follow that

0= [ et [ vens@as,as, = [ f@ [ W )plr) S, dS.

oo

for all f € L2(T'). Thus, there is a constant C such that

/ U(z,y)p(y)dS, =C onT.
Yoo

Since ¢ has vanishing mean on Y., we also have that

0

o Js_

e W y)ew)dS, = [ (r0le) - 0(w0)) ()48, =0 on .

oo

By unique continuation, it follows that
/ U(z,y)p(y)dS, =C inQ\ .
Yoo

The jump relation for the normal derivative of single layer potentials (see [31, 27]) now asserts
that

_ 0
—0(z) to(x) = / U(z,y)e(y)dSy| =0 on Y.
ong Js_
The fact that ¢ must identically vanish on X, represents a contradiction. O

Proposition 5.4. Let 3 be a (3¢, Xs) collection of cracks. Assume that g € V and Lo € W
for ViW € A with dist(V, W) > 0.

(i) If Xo # 0 then there exists a sequence (f,) in L2(T') such that
, Y _
: 0 AW _
nh_{go«AQ) A(Z) )fnafn) 07
: Soo e _
nh_?;o«AZo — Ay>=) fn, fn) = 00

(ii) If Lo # 0 then there exists a sequence (g,) in L2(T') such that
: 0 AD
nh_{%o«Av A(D)gna In

)
nILH;O<(Ag - A(‘{)gnagn> =0
)

Tlim (AL, — A )9 gn

Q.

Proof. We give a proof of (i), and note that the proof of (ii) is almost the same with obvious
modifications.

The first part of this proof, up to (5.9), is a slight modification of [20, Proof of Theorem 3.6], and
the arguments are essentially the same, however, our setup includes perfectly conducting cracks.
Due to the notational differences we give the full details.

Let Y € A such that W € Y and dist(V,Y) > 0. We will construct a localisation for certain
electric potentials, such that their energy tends to zero on the slightly larger set Y instead of just
on W. We make use of this fact to establish (5.20) towards the end of the proof.

Let U =Q\ (VUY) then U is connected, U is relatively open in 2, and 9Q C U. For any

h e R(Ly>=(V)) N R(Ly=(Y))

there exist Fy € L2(V)? and Fy € L*(Y)? such that h = Ly=(V)Fy = Ly=(Y)Fy. Let
uy = w@Z‘;V and uy = w%;‘iy. Thus uy,uy € 'H% > and from the variational formulations we
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obtain the equations
~V-(1Vuy)=0 inQ\(VUIL),
-V -(wVuy)=0 inQ\Y,

uy =uy =h onl,

Buv 8UY
— =v%—F5—=0 o09.
"oy o v on
The variational formulation also gives that
0
/ {70 %}dS =0 for each component ¥; of ..
3, n

Due to the unique continuation property (UCP) we get that uy |y = uy|y. By gluing uy and uy
together, we obtain the function

u{uv in Q\V,

uy inV7

which, due to the boundary value problem it solves, must equal ug‘a" = 0. Consequently h = u|r =
0, and so we have proven

R(Ly>=(V)) N R(Ly=(Y)) = {0}. (5.9)
Since Y9 € V, we get from Proposition 5.1(i) that
R(Ly>=(V)) = R(Lg= (V). (5.10)

Define
A=L3=(V) - Ly=(V).
Due to (5.2) we have

A f = (LE= (V) f = (Ly= (V)" f = V(uZzy —upF)lv- (5.11)

. . . . -, b )
Using unique continuation and the mean-free conditions on I' for ug> f and uy ¥ » we now conclude
; ;

that
by b

A*f=0 if and only if Uy = Uy T
Since Xy # ), lemma 5.3(i) implies A* # 0 and therefore A # 0. As a consequence there exists
g € R(A)\{0}, and because of (5.9) and (5.10) this g satisfies g € R(L%“’ (V))and g & R(Lgx (Y)).
Moreover, (L%“’ (Y))* is injective by (5.2) and unique continuation. We then apply the constructive
result on localised potentials in Lemma 4.4, and for n € N define

£ = (LE=(YV)(LF=(YV)" + 1)y

and

;. & |
ILF= ))&l 32

Lemma 4.4 implies that

Tim | (E3 (V)" Fullzagyys = 0, (512)
Tim |3 (V)" Full2qvye = o0, (513)
and li_}rn IA* fullL2(vya = oo, (5.14)

simultaneously. Since ¥o, € Y, Proposition 5.1(ii) gives that R(L%‘X’(Y)) = R(LS(Y)). This
range equality, together with (5.12) and Lemma 4.3, implies

i () ol arys = 0. (5.15)
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From Proposition 5.1(ii) we have R(L%“’ (VuY)) = R(Lg(V UY)). So from (5.2) and Lemma 4.3
there exists a ¢ > 0 such that

GV Fallz2qrys + NG )" FallFeqrys

LGV UY))* fallF2(viyya

L5=(V UY)) fal32viyye

L5 (V) full 22 (v ye- (5.16)

IV

|

P

|

> ¢
A combination of (5.13), (5.15), and (5.16) gives

Tim (V)" ol oy = oc. (5.17)

We are now ready to associate the different operators to differences of ND mappings. Let
U, = uf . Then (5.2), (5.15), and (5.17) translate into

lim /|Vﬂn\2dx =00 and lim /\Vﬂn|2dx =0. (5.18)
1% Y

n—oQ n—oo

Using [6, Lemma A.1(ii)], we obtain the existence of a constant K > 0, independent of f,,, such
that

0< (D — AW)fu ) < K /W|van|2dx. (5.19)

Let i, equal u%v g, 0 Q \ W and satisfy the following Dirichlet problem in W:

-V - (70Viy,) =0 in the interior of W,

Uy, = U(Ia/V,fn on OW.

The result in [6, Lemma 5.3] ensures that if an extreme inclusion (either perfectly insulating or
perfectly conducting) is introduced, compactly contained in Y where the energy of 4, tends to
zero, then the corresponding electric potentials with this new conductivity profile will have the
same localisation as in (5.18). For a perfectly insulating inclusion, W € Y, the localisation applies
to ., using precisely the extension in W defined above. We thus have

lim /|Vﬁn|2dx =0. (5.20)
n—oo Y
Use of [6, Lemma A.1(iii)] yields
0< (A~ AD . o) < esssup() [ [V, d, (5.21)
w

From (5.18)—(5.21) we now conclude

lim ((Afy = AQ)fo, fo) = lim (A = AY) fu. fu) = 0.

n—oo

It remains to prove that ((Agg" —Agf"’)fn, fn) = coforn — co. Let u,, = ugffn and u, = u%j? ,
then from Lemma 4.1(i) we have

(A = Ay™) fns f) = lltn — W[ > ess inf(vo)/ IV (up — ) [* da.
\4

At the same time from (5.11)
A*fn = V(un - an)‘Vv
so use of (5.14) concludes the proof. O
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6. THE DIRECTION “<” IN THEOREMS 1.2 & 1.3

Finally we show the “difficult direction” of the if and only if statements of Theorems 1.2 and
1.3, although the majority of the work has already been done in Proposition 5.4.

Proposition 6.1. Let D be a (Dy, Do) collection of cracks. Given any C € A, then
A% > Ag;" > Ag implies DccC.

Proof. We will prove the contrapositive statement, i.e. assume D ¢ C. As C is closed there is
a relatively open part of D that belongs to 2\ C. Now we will show that either Aaé Z Agff or
A= #AG.

Since C has connected complement we have either of two cases, which will dictate which operator
inequality that will fail to hold:

(a) There are V,W € A with dist(V, W) > 0 and non-empty x € X, such that
X € Dy, X €V, cCw, and Do €W
(b) There are V,W € A with dist(V, W) > 0 and non-empty x € X, such that
X € Dqo, x €W, CcCV, and Dy eV.
Case (a): Since C'U Do, € W then [6, Theorem 3.7] and (the second inequality of) Proposi-
tion 3.1 give
AL <AY and  AJ> =AY
As x C Dy then Proposition 3.2(i) gives
Ape= > AD>.
Hence we have
AL = AD= = (AL — AD) + (A] — AP=) + (A= — AD)
< (Al = AD) A+ (Af = AY) + (A= — AD=).
Now, since § # x € V and D, € W, Proposition 5.4(i) gives the existence of a sequence (f,) in
L2(T) such that
lim ((AZ = Aps) fus ) = —00,

n— oo

and in particular we conclude that A% # Agg".
Case (b): Since C'U Dy C V then [6, Theorem 3.7] and (the first inequality of) Proposition 3.1

gives

A§>Ay  and  A) < AY.
As x C D then Proposition 3.2(ii) gives

Do
Apz <A,
Hence we have
AD= = A§ = (Ap= —AD )+ (AD, — AD) + (A) — A)
< (Ap, — AL+ (AL = AD) + (A) — AY).

Now, since § # x € W and Dy € V, Proposition 5.4(ii) gives the existence of a sequence (g,) in
L2(T) such that

. Do c _
HILH;O«ADO - AQ) )gn7gn> = =00,
and in particular we conclude that Ag? 7 Ag. O

Proposition 6.2. Let D € X.
(i) Given any x € X, then

A% > A?( implies x C D.
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(ii) Given any x € X, then
Ag > Aé) implies x C D.

Proof. We will prove the contrapositive statements, i.e., assume y € D.
Proof of (i): We need to show that A% # A?(. There exist V,W € A with dist(V, W) > 0 and
a non-empty x’' € X, such that

X Cx, X eV, and DCW.
Using Propositions 3.1 and 3.2(i) we have
A <A), and A >AY.
Hence
Ap — A% = (AD — A + (A] — AD) < (A% — AD) + (AF — AT).
Now, since () # x’ € V, Proposition 5.4(i) gives the existence of a sequence (f,,) in L2(T') such
that

and in particular we conclude that A% 7z A?('
Proof of (ii): We need to show that Ay # AP. There exist V,W € A with dist(V, W) > 0 and
a non-empty x’' € X, such that

X Cx, X €W, and DcCV.

Using Propositions 3.1 and 3.2(ii) we have

AP >AY  and  AY <AY.
Hence ,

AY = AP = (MY — AD) + (M) — AF) < (AF — AD) + (A§ — AY).
Now, since () # X’ € W, Proposition 5.4(ii) gives the existence of a sequence (g,,) in L2(T') such
that
lim ((Aaf — Aq?)gn,gn> = —00,

n—oo

and in particular we conclude that A%( 7 A{DD . O
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