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Abstract
Kernel task scheduling is important for application perfor-
mance, adaptability to new hardware, and complex user re-
quirements. However, developing, testing, and debugging
new scheduling algorithms in Linux, the most widely used
cloud operating system, is slow and difficult. We developed
Enoki, a framework for high velocity development of Linux
kernel schedulers. Enoki schedulers are written in safe Rust,
and the system supports live upgrade of new scheduling poli-
cies into the kernel, userspace debugging, and bidirectional
communication with applications. A scheduler implemented
with Enoki achieved near identical performance (within 1%
on average) to the default Linux scheduler CFS on a wide
range of benchmarks. Enoki is also able to support a range
of research schedulers, specifically the Shinjuku scheduler, a
locality aware scheduler, and the Arachne core arbiter, with
good performance.

CCS Concepts: • Software and its engineering→ Sched-
uling;Agile software development.
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1 Introduction
Kernel scheduler behavior is central to application perfor-
mance, adaptability to new hardware, and complex user re-
quirements. Many applications have short, latency sensitive
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tasks and bursty workloads, where suboptimal kernel deci-
sions can lead to high tail latency and poor overall job per-
formance [23, 34, 58]. Heterogeneous hardware, such as non-
uniform and tiered memory or accelerators, increases the
complexity of scheduling decisions [8, 56]. Energy use is also
increasingly important; neither underloading nor fully load-
ing a server provides peak server energy efficiency [9, 36].
Additionally, applicationsmayhave information that canhelp
improve scheduling decisions, such as workload characteris-
ticsorhardwarepreferences, but inmostkernels the scheduler
is oblivious to user preferences beyond simple priorities and
hand coded placement [55, 63].

Efficientlysupporting thesechangeswill requirenewsched-
uler designs or new features in existing schedulers. Although
kernel schedulers could theoretically be adapted to handle
these newdemands, developing and testing newkernel sched-
ulers can be difficult and time consuming. Kernel code is dif-
ficult to write correctly and debug and slow to deploy. There
are only three mainline schedulers implemented in the Linux
kernel, the most widely used cloud operating system.

To address this, some researchers have used kernel bypass
to implementnewschedulers [23, 34, 58, 64]. This approach in-
creases development velocity by removing the need to recom-
pile the kernel and providing access to userspace debugging
tools. However, it interferes with resource sharing between
the scheduler and the rest of the system and complicates de-
ployment and maintenance, limiting the potential reach of
the research [68].
GhOSt [32] aims to provide a general purpose deployable

solution for userspace schedulers in Linux. GhOSt uses an up-
call approachwhere schedulingpolicydecisions aremadebya
userspace scheduler while the mechanism remains in the ker-
nel. GhOSt schedulers can be implemented in small amounts
of userspace code and redeployed easily, but each scheduling
decision requires scheduling the userspace scheduler, adding
significant overhead to scheduling decisions. To mitigate
some of the latency overhead, ghOSt uses an asynchronous
model where the kernel can continue to take interrupts and
make scheduling decisions while the userspace scheduler
runs. This means the scheduling decisions may be out of date.

Other kernel subsystems, particularly networking, can use
eBPF [26] for high velocity kernel development, and ghOSt
implemented support for scheduler eBPF hooks. Using eBPF,
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users can load programs to customize kernel scheduler code,
provided that the structure of the scheduler does not change.
It is difficult to implement large or complicated code, such
as an entire scheduler, using eBPF. For example, the default
Linux scheduler, the Completely Fair Scheduler, is over 6,000
lines of code. Additionally, the eBPF trust model is not a good
match for scheduling. eBPF considers loaded programs poten-
tially malicious and verifies that they will not disrupt kernel
execution. It is not clear how to implement this for scheduling
since bad scheduling policy decisions, particularly choosing
to run a task on a CPUwhere it is not queued, can cause the
kernel to crash, violating eBPF’s safety requirements.
Previously, our prior work Bento [49] has shown that we

can have high development velocity and high performance
for Linux kernel file systems by writing file systems in safe
Rust and supporting live upgrade and userspace debugging.
In our prior work, we found that Linux kernel development
velocity is affected by the prevalence of bugs, the difficulty
of debugging, and the disruption caused by redeployment.
New code means new bugs. Bugs in the kernel can have cata-
strophic consequences on the kernel’s functionality, making
developers cautious to introduce new code. Once code has
been introduced, it is difficult to debug. Kernel code is difficult
to debug due to the lack of debugging tools, further increasing
the cost of kernel development. And even after kernel code is
stable, deploying it typically involves rebooting the machine
or killing processes. Public cloud providers limit the rate of
rebooting to meet reliability SLAs. Bento enables file systems
written entirely in safeRust, eliminatingwhole classes of bugs
at compile time, particularly those that aremost likely to crash
the kernel. Bento file systems can be run in both the kernel
and userspace using a synchronous kernel to userspace tram-
polinemethod, allowing developers to debug their code using
userspace tools. Bento also enables live redeployment of file
systems with only a short 15ms pause in service availability.
A file system written with Bento performed competitively to
ext4, the default Linux file system.
However, file systems and schedulers have different envi-

ronments and performance tolerances, and the techniques
from Bento cannot be applied directly to schedulers. Bento
sits behind the file page cache, reducing the cost of interpo-
sition. It is not clear if Bento’s design is low enough latency
for scheduling. Schedulers cannot be run in userspace using
the same type of synchronous trampoline as Bento because
the scheduler code cannot block waiting for a response from
userspace. While a 15ms pause during redeployment is short
for file systems, it would be too long to pause scheduling. It is
also not obvious if Bento supports code that is general enough
to meet the demands of scheduler designs. Schedulers are
more performance critical than file systems, and may need to
rely on specific data structure or algorithm designs to ensure
performance. Additionally, Bento does not address logical
correctness errors. In the file system, non-memory safety
correctness errors will generally affect only the applications

using thefile system,while correctness errors in the scheduler
code can crash the kernel.

Inspired by Bento, we built a framework called Enoki. The
goal of Enoki is to enable high velocity development and de-
ployment of high performance schedulers in the Linux kernel.
We envision that Enoki schedulers will be used for both re-
searchprototypingandproductiondeployments.Enoki sched-
ulers are fast towrite and debug and easy to testwith seamless
resource sharing with the rest of the kernel. Enoki supports
schedulers running in the Linux kernel forwide deployability,
but our approach is not restricted to the Linux kernel. A new
Enoki scheduler is written in safe Rust against a clean inter-
face, making it less likely to introduce bugs. Enoki enables
dynamic update of scheduling code in a live kernel without
rebooting,with apauseof only 10𝜇s.Using a record and replay
system, scheduling policies can be debugged using userspace
tools. Since Enoki schedulers are implemented in the kernel,
they can coordinate easily with other kernel schedulers, such
as passing cores between schedulers or applications.
We used Enoki to implement several different scheduling

algorithms to demonstrate its flexibility in supporting a va-
riety of scheduler designs and to understand the overhead
and performance of Enoki compared to native implementa-
tions of the same schedulers.We implemented aweighted fair
queuing scheduler and evaluated it against Linux’s default
scheduler CFS. Despite our scheduler being much simpler
than CFS, and including the Enoki framework overhead, it
achieves an average of only 0.74% slowdown across 36 ap-
plication benchmarks, with a maximum slowdown of 8.57%.
We also implemented the Shinjuku [34] scheduler, a locality
aware scheduler that co-locates tasksof the sameuser-defined
class, and the core arbiter from the Arachne[64] multilevel
thread scheduler.TheEnokiShinjukuandArachneschedulers
performed competitively with native implementations, and
the locality aware scheduler showed the potential to provide
significant performance benefit. Two of the schedulers were
implemented by undergraduates with no prior Linux kernel
programming experience. The code is publicly available at
https://github.com/smiller123/enoki.
2 Motivation and Approach
Linux includes three schedulers: a real time scheduler, an earli-
est deadlinefirst scheduler, and theCompletely Fair Scheduler
(CFS). CFS is the default and implements a versionofweighted
fair queuing. These schedulers are all quite large and complex;
CFS is over 6000 lines of code, and even the simpler real time
and deadline schedulers are over 1500 lines of code. This com-
plexity has led to a number of bugs, particularly performance
bugs due to a complicated load balancing mechanism [43].
Although CFS’s weighted fair queuing algorithm works

well for many of the tasks run on desktop or server machines.
Other schedulers can have advantages in some cases. With
more application knowledge, more optimal decisions are pos-
sible. For example, for workloads composed of many very

https://github.com/smiller123/enoki
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small tasks, shorter time slices can lower average job com-
pletion time [34]. Multilevel scheduling can give better per-
formance isolation and flexibility by allowing applications
to define their own policies based on their workloads [64].
Nest [36] improves energy efficiency for jobswith fewer tasks
than cores by reusingwarm cores rather than spreading tasks
acrossmany cold cores. Because these schedulers do not need
to work well in all circumstances, they can potentially be
much smaller and simpler than CFS. Nevertheless, uptake
into Linux has been slow.

We propose Enoki, a framework for high velocity develop-
ment of Linux kernel schedulers. Enoki’s trustmodel assumes
that scheduler developers are trusted but clumsy; they are
not trying to break the kernel but may accidentally introduce
bugs. Our overall goal is to allow non-expert programmers to
be able to successfully design, implement, debug, and deploy
new schedulers.

Thereare several challenges toachievinghighdevelopment
velocity for Linux kernel schedulers:

• Buggy code: The Linux kernel is a monolith of com-
plicated C code, causing bugs to be common. The lack
of modularity in the Linux kernel and the potentially
large consequences of kernel bugs force developers to
code slowly and carefully. In Enoki, we rely on safe lan-
guage features. By enabling schedulers implemented
entirely in safe Rust and by introducing a novel ap-
plication of the type system to check for scheduling
correctness errors, we eliminate whole classes of bugs,
such as memory errors and race conditions, without in-
troducing significant performance overhead or overly
limiting scheduler designs [50].

• Limited interaction: Some scheduler designs, such as
two level schedulers that require coordinationwithuser
threads, are difficult to implement in Linux because
they require interaction with the userspace tasks that
Linux does not support. By allowing generic, scheduler-
defined interactionsbetweenthescheduleranduserspace
tasks, Enoki can support scheduler designs that cannot
be implemented in Linux today, such as those that re-
quire application specific hints or two level schedulers.

• Disruptive upgrade: Current Linux schedulers are com-
piled into the kernel source, so deploying a new sched-
uler requires recompiling the kernel and rebooting the
machine, decreasing the availability of running applica-
tions. Enoki schedulers can be upgraded quickly, with-
out rebooting themachine andwith only a short period
of service downtime.

• Slow debugging: The kernel does not have access to
debuggingtools, suchas thosecommonlyused inuserspace.
We support record and replay debugging in Enoki. To
diagnose bugs not caught by the Enoki framework, de-
velopers can record the calls between the kernel and
the scheduler and replay later entirely at userspace.

• Resource sharing: Schedulers should be able to share
resourceswith the rest of the system. In Linux, different
applications can use different schedulers, sharing cores
and cycles between the schedulers. Enoki schedulers
are implemented in the kernel to enable fine grained
core sharing across applications and schedulers.

3 Enoki
The high level overview of Enoki is shown in Figure 1. Enoki
is composed of twomajor components, Enoki-C and libEnoki.
Part of Enoki, Enoki-C is implemented in C and compiled

into theLinuxkernel. It interfaces directlywith the core sched-
uling code and the kernel scheduling data structures. Enoki-C
handles registering, deregistering, and upgrading schedulers
and sets up and manages infrastructure for communication
channels between userspace and the kernel scheduler and the
record and replay system. It handles the unsafe work that is
required for scheduling on behalf of Enoki schedulers, such as
performing state updates to kernel task_struct data struc-
ture,managing interactionswith the kernel run-queueswhen
adding or moving tasks, and manipulating raw pointers to
readandpassdata to the schedulermodule.Enoki-Calso trans-
lates the calls from the core scheduling code into calls that
the scheduler can implement safely by ensuring that all data
passed to the scheduler can be safely accessed. Enoki sched-
ulers do not directly manipulate kernel state or run-queues.
The other component, libEnoki, is a Rust library that is

compiled with the scheduler code into a module that is dy-
namically loaded into the kernel. This library provides safe
interfaces so the scheduler code can access the kernel and
implements functions for loading and managing the sched-
uler. It contains some unsafe Rust because it must handle
interactions with the C code in Enoki-C, which is inherently
unsafe. Each scheduler is written entirely in safe Rust and
only needs to provide the logic for the scheduling algorithm.
The scheduler module is not sandboxed further; once it is
loaded into the kernel, it runs like any other kernel code.

When the scheduler module is loaded, libEnoki calls Enoki-
C to register the newly available scheduler. This registers the
ID of the scheduler being loaded and a processing function in
libEnoki for parsing calls fromEnoki. User tasks can switch to
using thenewschedulerusing its defined IDvalue.During reg-
ular operation, Enoki-C processes calls from the core sched-
uler code for these tasks, forwarding the calls to the process-
ing function in libEnoki andmanaging updates to kernel data
structures, such as the CPU’s run queue. When the module is
unloaded, libEnoki similarly unregisters the scheduler with
Enoki-C, and no new tasks can be attached to the scheduler.
3.1 Safe Interfaces
Enoki provides schedulers with safe interfaces, both the in-
terface that schedulers are required to implement and the
interfaces for schedulers to access kernel functionality, such
as locks and timers. With safe interfaces, Enoki schedulers
can be implemented entirely in safe Rust, preventing whole
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Figure 1.A high level diagram Enoki. Enoki-C is written in C and compiled into the kernel. It interacts with libEnoki, a Rust
library that is compiled with the scheduler code into the dynamically loaded scheduler module. The black lines represent code
pathways during normal execution. Red lines represent module insertion and upgrade.

classes of bugs and reducing time spent debugging new sched-
ulers. Enoki-C and libEnoki work together to provide safe
interfaces for the scheduler code.
Enoki’s threat model assumes that the developer is well

meaning and knowledgeable but makes occasional mistakes.
Enoki aims to help this developer prevent these mistakes by
catching low-level errors that do not depend on the scheduler
behavior, such as NULL pointer dereferences and data races,
at compile time. Enoki does not aim to prevent all bugs, and
bugs that depend on the scheduler’s semantic behavior can
remain uncaught. For example, schedulers implemented with
Enoki can deadlock, lose tasks, and violatework conservation.
We attempt to catch as many of these bugs as we can at run-
time, but cannot guarantee that all instances are caught. We
will discuss ourmechanism for catching some of the semantic
bugs later when discussing the API.
Enoki-C takes the interface defined by the core scheduler

code and translates it into an interface based on message
passing. Like the core scheduler code, this is a synchronous
interface; it consists of function calls where the caller waits
for the the callee to return before progressing. It is not nec-
essary for safety that the interface be based on message pass-
ing, but it helps enforce certain safety properties, such as no
shared pointers, preventing memory bugs across the inter-
face. Enoki-C handles direct interactions with kernel data
structures, such as pulling information like the runtime of
the task or the current CPU of the task. This information is
placed into per-function type "message" data structures that
are passed to the registered processing function in libEnoki.
The processing function in libEnoki parses each "mes-

sage" to determinewhich scheduler function is being invoked
and handles the unsafety of interacting directly with C code

through the Rust FFI (Foreign Function Interface) layer. The
processing function pulls the fields from the "message" and
passes them to the scheduler function being called. If the func-
tion returns a value, libEnoki writes that value back into the
"message" data structure to return the value to Enoki-C.

To enforce that the scheduler code implements the required
behavior, libEnoki provides a Rust trait for scheduler types.
This trait defines the functions that a scheduler module must
implement to be loadable as an Enoki scheduler. A trait de-
fines a set of functionality that a typemust have to implement
the trait and can provide default implementations for shared
behavior on those types. Traits can be used as bounds on
function arguments, and any type that implements a trait can
be used where the trait is called for.
The EnokiScheduler trait (shown in Table 1) specifies the

functions that a scheduler should provide. Most of these func-
tions are very similar to the functions defined by the core
scheduling code to implement a Linux scheduler, with some
notable differences.

Thecore function forascheduler ispick_next_taskwhich
tells the core kernel scheduler code which task should be run
next. Other important functions are task_new, task_wakeup
andsimilar functions for trackingtaskstate,migrate_task_rq
for moving tasks between cores, balance for telling the core
scheduler tomove tasks to rebalance load, and error functions
to return error values from the kernel.

For example, consider a simple scheduler thatkeepsaqueue
of tasks assigned to each core and schedules these tasks first
come, first serve on each core. When a task is created on this
scheduler, the kernel calls select_task_rq. The scheduler
returns the core the task should be assigned to. The kernel
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API Function Description
get_policy(&self) −→ i32 Get the policy number.
pick_next_task(&self, ..., sched: Option⟨Schedulable⟩)

−→ Option⟨Schedulable⟩ Pick the next task for the CPU.

pnt_err(&self, ..., sched: Option⟨Schedulable⟩) Could not schedule chosen task.
task_dead(&self, pid) A task died.
task_blocked(&self, ...) A task blocked.
task_wakeup(&self, ..., sched: Schedulable) A task woke up.
task_new(&self, ..., sched: Schedulable) There is a new task.
task_preempt(&self, ..., sched: Schedulable) A task was preempted.
task_yield(&self, ..., sched: Schedulable) A task yielded.
task_departed(&self, ...) −→ Schedulable A task left the scheduler.
task_affinity_changed(&self,..) Change task’s allowed CPUs.
task_prio_changed(&self,..) Change task’s priority.
task_tick(&self, ...) A timer has triggered.
select_task_rq(&self, ...) −→ i32 Choose the CPU for a task.
migrate_task_rq(&self, ..., sched: Schedulable) −→ Schedulable A task is moving CPUs.
balance(&self, ...) −→ Option ⟨u64⟩ Rebalance tasks onto CPU.
balance_err(&self, ..., sched: Option⟨Schedulable⟩) Could not move the chosen task.
reregister_prepare(&mut self) −→ Option⟨TransferOut⟩ Prepare for an upgrade.
reregister_init(&mut self, Option⟨TransferIn⟩) Initialize during an upgrade.
register_queue(&self, RingBuffer⟨UserMessage⟩) -> i32 Register a user to kernel hint queue.
register_reverse_queue(&self, RingBuffer⟨RevMessage⟩) -> i32 Register a kernel to user queue.
enter_queue(&self, id: i32, ...) Check the user hint queue.
unregister_queue(&self, id: i32) −→ RingBuffer⟨UserMessage⟩) Unregister the user to kernel hint queue.
unregister_rev_queue(&self, id: i32) −→ RingBuffer⟨RevMessage⟩) Unregister the kernel to user queue.
parse_hint(&self, hint: UserMessage) Synchronously parse hint.

Table 1. The API of the EnokiScheduler Trait. This is the API that a scheduler module must implement to be loadable as an Enoki
scheduler. Most of the functions are used for managing the state of tasks in the scheduler. The reregister functions handle
live upgrade. The queue functions and parse_hint are for user-to-kernel communication, and the reverse queue functions
are for kernel-to-user communication.

attaches the task to the core and calls task_new. The sched-
uler places this task at the back of the queue for the specified
core, storing the Schedulable (discussed more later). When
a core becomes idle, the kernel calls pick_next_task for that
core. The scheduler pops the first task off the core’s queue and
returns the Schedulable for the task. The kernel switches
to the task and run it. If there is an error, the kernel calls
pnt_err. If the task blocks, the kernel calls task_blocked.
When the task wakes up, the kernel calls task_wakeup, and
the scheduler adds the task to the back of the wakeup core’s
queue. Periodically, the kernel calls the scheduler’s balance
function on each core so the scheduler can rebalance tasks
across cores.The scheduler returns the IDof any tasks itwants
moved to the balancing core. The kernel then tries to move
the task to the specified core. If it succeeds, the kernel calls
migrate_task_rq, and the scheduler moves the task to the
new core’s queue. If it fails, the kernel calls balance_err.
While these functions are modeled after the Linux sched-

uler interface they could be adapted to a different operating
system. An Enoki scheduler is only expected to manage its
own state in response to these calls; the kernel’s core sched-
uling code decides when to call each function and Enoki-C
manages kernel state.

In Linux, schedulers are expected to track their tasks’ run-
times using kernel timing functions. In our system, Enoki-C
tracks the runtime of tasks on behalf of the scheduler and
passes this to the scheduler when the task state changes, such
as blocking, waking, and yielding, and to pick_next_task.
Enoki records this information for deterministic replay.

The pick_next_task function in Linux expects the sched-
uler to choose a task on the CPU’s run-queue, and if this
expectation is violated, the kernel can crash.While this is a se-
mantic bug, we attempt to catch it to limit kernel crashes due
to buggy schedulers. To prevent this bug, we introduce a new
type called Schedulable that represents a task andwhat core
it can safely be scheduled on.When tasks are created, blocked
or unblocked, ormoved between run-queues, libEnoki creates
a Schedulable data structure to indicate which core’s run-
queue the task isonandpassesownershipof it to the scheduler
at the corresponding call. The scheduler returns thedata struc-
ture back to Enoki as the return value for pick_next_task
as proof that the task can be safely scheduled on the core. In
libEnoki, the core in the Schedulable is checked against the
core being assigned, and if the check fails, the data structure’s
ownership is returned to the scheduler using the pnt_err call.
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A Schedulable also cannot be copied or cloned, so the sched-
uler cannot hold onto an old Schedulable to act as validation
after it has returned it to Enoki when moving or running the
task. The schedulermust instead receive a new Schedulable,
such as through the task_wakeup call or as the current task
in pick_next_task.
Enoki cannot always prevent the scheduler from hold-

ing onto an invalid Schedulable. The migrate_task_rq
function, which moves tasks between cores, passes in a new
Schedulable for the new core and requires the scheduler to
return the old one so the scheduler will only have validation
to run the task on one core. We cannot check at compile time
that the scheduler returns the correct Schedulable for the
old core, so it is possible for a scheduler to keep the wrong
data structure. Additionally, we cannot require that the sched-
uler return a Schedulable in task_blocked or task_dead
because these functions are sometimes called when the task
is not schedulable and the scheduler has nothing to return.
In libEnoki, we also provide a safe interface for receiving

hints from userspace (subsection 3.3).
3.2 Live Upgrade
We support live upgrade of schedulers in Enoki. Live upgrade
allows an upgraded version of a scheduler to replace an older
version of the same scheduler without rebooting the machine
or killing any of the tasks using the scheduler. Because the
scheduling code is running throughout the upgrade, we must
ensure that any state maintained by the scheduler, such as
task runtimes and which task is runnable on which core, re-
mains consistent across the upgrade and is available to the
new scheduler after the upgrade.

We ensure consistency of the state by quiescing the sched-
uler module during the upgrade. Since the scheduler module
is only invoked from Enoki-C, we know that the state of the
schedulerwill remainconsistent as longasall calls fromEnoki-
C are completed before the upgrade begins and any new calls
wait until the upgrade is completed.We implement this using
a simple per-scheduler read-write lock. Non-upgrade calls
into the scheduler module acquire the lock in read mode, al-
lowing multiple concurrent calls into the scheduler module.
When an upgrade begins, the lock is acquired in write mode,
preventing any of the non-upgrade calls from entering the
scheduler module. When the upgrade is finished, the lock is
released, and thenon-upgrade calls can proceed, nowdirected
to the new version of the scheduler.

After the scheduler module is quiesced, Enoki-C calls into
reregister_prep, informing the scheduler that an upgrade
is occurring. The module then performs any necessary main-
tenance and returns a data structure with any state it wishes
to pass to the new version of the scheduler. Enoki-C then
calls reregister_init in the new version of the scheduler,
passing the data structure returned from the old scheduler.
The new scheduler can then initialize itself based on the pro-
vided state, claiming ownership of some or all of the state
if it wishes. Because Enoki-C acquired the read-write lock

described above in write mode, we know that no other calls
can enter either scheduler module during the upgrade, and
it is safe for the scheduler to manipulate its internal state.
After ensuring that state remains consistent across the

scheduler during an upgrade, the rest of the upgrade is fairly
straightforward. Enoki-C swaps pointers so that its internal
data structure nowpoints to the newmodule, and the upgrade
completes. Calls to the schedulerwill use the newpointer, and
so will call into the new scheduler module. The old scheduler
module can then be safely unloaded.
Limitations. Because we quiesce the scheduler during

an upgrade, there is a period when the scheduler is blocked
and cannot accept non-upgrade calls, leading to a short ser-
vice blackout. Enoki trusts the scheduler to have short, well-
defined code paths so the read locks will be given up quickly
and the upgrade can progress. We also trust the scheduler to
upgrade and release thewrite lockquickly.Another limitation
is that the state passing data structure that the new scheduler
expects must be the same as the state passing data structure
exported by the old scheduler because the memory is passed
directly. This data structure is otherwise completely custom,
and the new scheduler can export a different data structure to
the next scheduler upgrade. This does not mean the upgraded
scheduler must use the same state layout as the old scheduler.
Rather the new scheduler needs to initialize itself using the
state passing data structure exported from the old scheduler,
but can define a new state passing data structure for the next
version.
3.3 Custom Scheduler Hints
Correct scheduling decisions often depend on the behavior of
the workload being scheduled. Tasks that communicate with
each other or operate on the same data benefit from being
scheduled on the sameNUMAnode, or withmore recent split
last level cache architectures, on coreswith the same last level
cache [55]. On a heterogeneous CPU, some tasksmight prefer
to be scheduled on certain cores or devices or co-located with
other tasks [56].
In addition to sending scheduling hints from userspace

to the kernel, it can also be useful for information to flow
from the kernel to userspace. For example, in scheduler acti-
vations [4], the scheduler provides information about sched-
uling events to the user-level thread scheduler, such as when
cores become available or when user tasks block in the ker-
nel. Another example could be to utilize machine learning to
improve scheduling decisions [29].

Enoki supports custom scheduler-defined hints, both from
userspace to the kernel and vice versa. Each scheduler that
supports hints defines data structures indicating the type of
hints that it expects to receive and the type of hints itwill send
to the user. We enforce that these types can be read-shared
across the user/kernel boundary without violating memory
safety, but otherwise put no restrictions on them. For example,
for our locality aware scheduler, we pass locality hints in the
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formof the task ID and the hint value. For our two-level sched-
uler, we pass core requests in the form of the process ID and
the number of cores per priority level, and core reclamation
requests as a single boolean value. Other applications can
define the hint data structure as needed based on the use case.

Queues can be shared across a live upgrade as long as both
versions of the scheduler use the same hint data structures.
The scheduler passes the queues as part of the shared state
during the upgrade. If the next scheduler version will use
different hints, old queues must be closed before the upgrade,
and new ones can be created after.
3.4 Record and Replay
Kernel debugging is notoriously difficult. Many debugging
tools are difficult or even impossible to use on the kernel.
While Enoki prevents many bugs that would crash the kernel,
logic bugs can still exist in the schedulers.Wewant to provide
amechanism to simplify debugging by allowing the scheduler
code to be run and debugged at userspace.

To this end, Enoki implements a record and replay system
for schedulingevents.Whenrunning in recordmode, libEnoki
records each call and hint sent to the scheduler. The replay
system implements a replacement version of libEnoki to re-
play these records to the scheduler, now running in userspace.
The exact same scheduler code is run during both record and
replay. The replay is primarily aimed at understanding the
behavior of the recorded scheduler. The trace could be used as
input to a modified scheduler, but the policy changes may af-
fect the order of scheduler actions and the scheduler behavior.
Consulting a userspace scheduler synchronously on every
operation, like Bento’s approach to file system debugging,
is infeasible because the scheduler subsystem cannot block
waiting for a response from a userspace program that itself
needs to be scheduled to run. Likewise, consulting a userspace
scheduler asynchronously, as in ghOSt, can result in different
behavior between the kernel and user versions.
Record. LibEnoki must record the sequence of informa-

tion provided to the scheduler, both procedure calls into the
scheduler and hints from the queue, so they can be replayed
exactly as they were originally played in the kernel. We also
record responses returned by the scheduler sowe can alert the
user if the scheduler returns a different result during replay.
We do not record or attempt to replay the exact timing of the
messages. Where timing is relevant to scheduler decisions,
such as the runtime of a task, that information is provided
in the message from the kernel and so will be recorded. We
assume that the scheduler does not attempt to validate this
information or track its own timing and that the scheduler
does not contain other sources of nondeterminism.

Enoki’s record and replay systemmust also handle concur-
rency.TheLinuxkernel ismulti-threaded, andmultiple kernel
threads can call into an Enoki scheduler at once, e.g. on differ-
ent cores. Due to Rust’s properties and Enoki’s structure, we
knowthatpotential raceconditionsareprotectedby locks, and
we can identify and record the order of lock acquisitions. As

long as locks are acquired in the same order during record and
replay and the behavior of the scheduler is deterministic, the
results should be the same [30]. In libEnoki,we include record-
ing functionality in the shimwrappers around the kernel lock
functions to record lock creation, acquisition and release,
along with the address of the lock and the ID of the accessing
kernel thread. All other message records are also tagged by
the thread ID of the kernel thread calling into the scheduler.
Recording messages in the scheduler stack is non-trivial.

In many cases, Enoki is called while the kernel has interrupts
disabled. Writing to a file has the potential to sleep, so we
cannot write the messages to a log file while in the scheduler
context. Even printing to the kernel log must be delayed until
out of the scheduler context.
Similarly to userspace hints, we use a ring buffer to solve

this.We runa separateuserspace task that creates a ringbuffer
queue shared with Enoki-C.When libEnoki wants to record a
message, it sends it to Enoki-C, which adds themessage to the
queue. The userspace task consumes messages on the queue
and writes them to a file. If the buffer overruns, events may
be dropped.

In order to recordmessages, the userspace record taskmust
be running and the scheduler must have been compiled in
record mode. By default, libEnoki does not record messages.
Replay. Replay consumes the file created during record-

ing. The replay utility sends the recorded messages directly
to the scheduler code in the same order they were called and
validates the responses against the recorded ones.

To handle concurrent replay, we ensure that all locks are ac-
quired in the same order in replay as they were during record.
First, the replay system analyzes the log and parses out the
lists of operations on each lock, using the lock’s memory ad-
dress to differentiate the locks. The locks are then created,
passing in the list of acquisitions for each lock. We assume
that locks are created in the same order during replay as they
were during record and are not deallocated.

To allow for concurrent operations, the replay systemstarts
a thread per recorded message in the record log as it replays
the log.When each replay thread is created, the replay system
names it with the ID of the associated kernel thread. When
the replay thread attempts to acquire a lock, the lock checks
whether it is the next to acquire the lock. If not, the thread is
blocked until its turn.
Enoki does not support upgrading the scheduler during

the record and replay process.
4 Implementation
4.1 Enoki
The lines of code for Enoki are shown in Table 2. Enoki is
implemented in Linux 5.11 and is based on the kernel com-
ponent from ghOSt [32]. The scheduler libEnoki includes the
EnokiScheduler trait, hint queues, and support for record and
live upgrade. Other libEnoki provides safe access to kernel
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Component Lang. LOC Unsafe LOC
Enoki-C C 2411 N/A
Scheduler libEnoki Rust 962 94
Other libEnoki Rust 5870 2858
Userspace Record Rust 95 10
Replay Rust 646 0

Table 2. Lines of code for the Enoki components. The
scheduler libEnoki includes the EnokiScheduler trait, hint
queues, and support for record and live upgrade. Other
libEnoki provides safe access to kernel data structures and
functions. Part of Other libEnoki is sharedwith the analogous
library from Bento (libBentoKS).

data structures and functions andgeneral support forRust ker-
nel programming and is shared with libBentoKS from Bento.
Enoki could be ported to newer versions of the kernel with
relative ease, particularly because the scheduler interface ap-
pears to be quite stable. Note that the ideas behind Enoki
are not unique to Linux; however their application to other
operating systems is left for future work.
4.2 Schedulers
To demonstrate Enoki’s flexibility, we implemented a selec-
tion of schedulers: a weighted fair queuing scheduler based
on Linux CFS, a specialized research scheduler based on Shin-
juku, and schedulers that utilize the userspace hinting and
bidirectional communication features of Enoki for locality
aware scheduling and two level scheduling. As baselines, we
use the default Linux CFS and the ghOSt [32]
4.2.1 CFSandWeightedFairQueuing. CFSusesper-core
run-queues, meaning it first assigns tasks to cores, and then
chooses the next task for the core from among the assigned
tasks.Oneach core,CFS implements aversionofweighted fair
queuing, dividing CPU time proportionally between groups
of tasks, and then within each group, while respecting pri-
ority. It uses a calculation called vruntime to track which
group/task to choose next, choosing the group/task with the
lowest weighted accumulated runtime. The vruntime is cal-
culated based on the task’s runtime, modified by its priority;
tasks with higher priority accrue vruntime slower. To prevent
sleeping tasks from accruing a large vruntime debt and there-
fore running for too long after they wake, newly woken tasks
receive the maximum of their old vruntime and the vruntime
of the task with the lowest vruntime in the run-queue minus
a several millisecond threshold. If a newly woken task has a
smaller vruntime than the current task, it preempts the cur-
rent task when a system timer ticks. Otherwise, task switches
occur only after a task has run for its allocated time slice. In
order to prevent starvation, CFS attempts to run every task
at least once per time period, where the period depends on
the number of tasks, with a minimum of 6ms. When tasks are
created or woken, the length of the period adjusts to include
the new task. New tasks are run at the end of the period, but
recently woken tasks can be run earlier.

CFS places running tasks onto cores and moves tasks be-
tween cores to achieve better performance. By default, CFS
will attempt to even out the amount of work per core, based
on information such as the amount of time the core is idle or
overloaded, the priority of the tasks on the core, the capacity
of the cores on the machine, and the preferences of the tasks.
In certain cases, CFS will co-locate tasks on specific cores,
such as if it is required to by the user. CFS attempts to place
tasks so that newly woken tasks can be scheduled promptly.
When a task is woken or a core becomes idle, CFS will move
tasks so the newly idle cores are used. CFS rebalances task
placement every 1-10ms, depending on the configuration, or
when cores become newly idle. CFS first tries tomove tasks to
coreswithin the sameNUMAnode, andwill not balance tasks
across NUMA nodes unless there are more than a threshold
more tasks running on the busier NUMA node.

EnokiWeighted FairQueuing. To evaluate the overhead of
Enoki, we implemented our own scheduler based onCFS. Our
version does not provide the full complexity of the algorithm;
instead, we are interested in showing the overhead of our ap-
proach on benchmarks relative to CFS.We compute vruntime
for per-core time slices but use a much simpler method for de-
termining task placement. If a core is about to become idle and
another core had a waiting task, our scheduler steals waiting
work from the corewith the longest queueof tasks.Otherwise,
our scheduler does not rebalance tasks. We found this com-
promise allowed our scheduler to achieve good performance
on a wide array of benchmarks with much less complexity -
646 lines of code versus 6247 for CFS.
4.2.2 GhOSt and the Shinjuku Scheduler. GhOSt [32]
is a research framework for userspace schedulers. GhOSt
implements a trampoline approach; calls from the core sched-
uler code are forwarded to the userspace scheduler, which
sends its scheduling decisions to the kernel. GhOSt uses an
asynchronous message passing model, i.e. the core scheduler
code does not wait for the userspace scheduler to respond
before choosing what to run. We evaluate microbenchmarks
against two ghOSt schedulers, the per-CPU FIFO scheduler,
which runs per-core schedulers that manage tasks assigned
to that core, and the SOL scheduler, a latency-optimized FIFO
scheduler that manages all cores, running the scheduler on
a separate core. We also implement a version of the Shin-
juku [34] scheduler and evaluate it against ghOSt’s version
of the same scheduler.

The Shinjuku scheduler [34] achieves low latency forwork-
loads with short, high priority tasks and longer, low priority
tasks with an efficient version of shortest task first. Shinjuku
uses centralized first-come-first-serve scheduling. After each
task has run for 5 to 15𝜇s Shinjuku preempts it, placing it at
the back of the queue. However, Shinjuku does not run in
Linux, instead depending on the Dune [12] operating system.
Unlike Linux, Dune applies a single scheduling algorithm for
all tasks on the machine.



Enoki: High Velocity Linux Kernel Scheduler Development EuroSys ’24, April 22–25, 2024, Athens, Greece

To evaluate Enoki’s ability to support a specialized sched-
uler for Shinjuku-style workloads, we implemented a sched-
uler based on the Shinjuku scheduler using Enoki. Our sched-
uler implements an approximation of a first-come-first-serve
queue of tasks with fast preemption across the multiple ker-
nel run-queues. Our preemption slice is 10𝜇s instead of 5𝜇s
to prevent overloading the scheduler. This scheduler was
implemented in 285 lines of code.
4.2.3 Locality Aware Scheduler. We also implemented
a locality aware scheduler using Enoki that co-locates tasks
that communicate heavily with each other or benefit from
cache sharing. This scheduler uses Enoki’s userspace hinting
mechanism to inform the scheduler about which tasks to co-
locate. The application sends the ID of each newly created
thread and a locality value to indicate which tasks should
be co-located. Unlike Linux’s taskset cgroup, these hints do
not need to specify the core for each task, only its colocation,
which the scheduler can ignore if non-optimal, such as when
there are too many tasks on a given core. This scheduler was
implemented in 203 lines.
4.2.4 Two-level Scheduler. The Arachne user-level sched-
uler provides two-level thread management: applications re-
quest cores and manage user-level threads on the assigned
cores [4, 64].
In Arachne, both the core arbiter and the runtime are im-

plemented in userspace. The core arbiter relies on Linux’s
cpusetmechanism tomanage core assignments. The runtime
sends messages to the core arbiter over a socket, and the core
arbiter either responds on the socket or uses a sharedmemory
page. This socket allows the runtime to manually block if a
core is not available.
We reimplemented the Arachne core arbiter as a kernel

scheduler using Enoki. This scheduler uses Enoki’s bidirec-
tional userspace hints. We use the user-to-kernel queue to
send core requests to the Enoki core arbiter; we use the kernel-
to-userspace queue for core reclamation requests. The Enoki
core arbiter executes the same decisions as the Arachne core
arbiter, but uses standard kernel scheduling mechanisms for
assigning, moving, and blocking user scheduler activations
rather than relying on cpuset and sockets. The Enoki version
of the core arbiter is implemented in 579 lines of code.Wecom-
pare this scheduleragainstbothCFSandunmodifiedArachne.
5 Evaluation
In our evaluation, we test Enoki’s ability to meet our goal
of high velocity development for a wide variety of high per-
formance schedulers with minimal runtime overhead. In sec-
tion 6, we discuss the development experience of Enoki. In
this section, we evaluate the performance of the baseline and
Enoki schedulers. We evaluate whether these schedulers can
achieve equivalent performance to native implementations
onmicrobenchmarks and applicationworkloads. For research
schedulers, we evaluate the scheduler against using bench-
marks from the original paper.

5.1 Setting
Benchmarks were performed on either an 8 core, one-socket
machinewith an Intel i7-9700 CPU running at 3.00GHz or (for
scalability tests) an 80 core, two-socket machine with Intel
Xeon Gold 6138 CPUs running at 2.00GHz.
5.2 Microbenchmarks
We used microbenchmarks to evaluate the latency and scal-
ability imposed by the Enoki framework. We ran the same
microbenchmarks on all the schedulers we implemented.
Latency. Table 3 shows the results of the perf bench

sched pipe benchmark, averaged over three runs of the
benchmark. This benchmark starts two tasks that send 1 mil-
lionmessages back and forth using the pipe system call. After
each message, the sending task sleeps until the other task re-
sponds.Bydefault, all schedulersput the twotasksondifferent
cores. We also ran the benchmarks forcing both tasks to be
on the same core.

The CFS and Enoki WFQ schedulers implement similar be-
havior. The ghOSt SOL and FIFO schedulers implement differ-
ent algorithms. The ghOSt SOL algorithm attempts to sched-
ule tasks as quickly as possible, and so should have minimum
scheduling latency. The Arachne scheduler uses userspace
threads while the others use processes because the Arachne
userspace scheduler is built to manage userspace threads.
Compared to CFS, our Enoki WFQ scheduler adds 0.4 𝜇s

(0.6𝜇s) of latency per message, for the two (one) core case.
This represents a 12% to 20% overhead on this benchmark.
We found that this overhead was due to 100-150 ns of over-
head per invocation of the Enoki scheduler. The scheduler is
invoked four times per schedule operation: once due to the
current task blocking, once due to the next task waking, once
to allow the scheduler to rebalance tasks, and once for the
scheduler to choose the next task. Together this results in
400-600 ns, or 0.4-0.6 𝜇s, of overhead per schedule operation.
This overhead could possibly be reduced with further opti-
mization. Our version of the Shinjuku scheduler has slightly
higher overhead because it starts a reschedule timer on ev-
ery operation, while CFS and ourWFQ scheduler only start
a reschedule timer when multiple tasks are present. The lo-
cality aware scheduler is slightly faster because it is simpler.
The Enoki version of Arachne is much faster than the others
because it uses userspace threads instead of processes for
blocking and waking threads.
The GhOSt schedulers perform significantly worse than

both CFS and Enoki. The per-CPU FIFO scheduler performs
worse when both tasks are placed on the same core because
they are sharing the core with the ghOSt userspace sched-
uler. On every schedule operation, the scheduler first must
be scheduled and run on the core.

The more often an application triggers scheduling actions,
themorescheduling latencywill impact theapplication.Work-
loads with many small tasks or many sleeps and wakes, and
therefore many invocations of the scheduler, will be most
affected by this overhead.
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Message Latency (𝜇s) CFS GhOSt SOL GhOSt FIFO WFQ Shinjuku Locality Arachne
One Core 3.0 6.0 9.1 3.6 4.0 3.5 0.1
Two Cores 3.6 5.8 7.0 4.0 4.4 3.9 0.2

Table 3. Scheduler latency for the perf bench sched pipe benchmark in 𝜇s per wakeup. Enoki adds around 0.6𝜇s of latency
over CFS in the worst case and outperforms the ghOSt schedulers due to the synchronous nature of the benchmark.

Worker Threads CFS GhOSt SOL GhOSt FIFO WFQ Shinjuku Locality Arachne
2 Tasks (𝜇s) 50th 74 66 101 78 79 80 1

99th 101 132 170 104 109 105 1
40 Tasks (𝜇s) 50th 139 192 152 170 168 175 1

99th 320 1354 1806 323 307 324 1
Table 4. Schbench benchmark with two message threads and 2 and 40 worker threads per message thread. Thread wakeup
latencies are measured in 𝜇s.
Scalability. Tomeasure the scalability of Enoki, we eval-

uate the tail latency of task schedules when there are a large
number of tasks using the schbench benchmark. This bench-
mark starts a number of message threads and worker threads.
Each message thread and its worker threads send messages
back and forth. Schbench reports the median and 99% tail
latency of task schedules throughout the benchmark. The
testedconfigurationsuse2message threadsand2or40worker
threads, resulting in a maximum of 80 worker threads, the
same as the number of cores on the machine. When the num-
ber of worker threads is larger than the number of cores, the
scheduling latency is influenced by waiting time more than
scheduler performance.Weuse a 5swarmup time for each run.

The results are shown in Table 4. CFS and the EnokiWFQ
scheduler showed similar results except for the median with
40 threads. The Enoki version of Arachne has lower latency
than the other schedulers because of its userspace mecha-
nisms for blocking and waking threads.
5.3 WFQ Scheduler Applications
To evaluate whether ourWFQ scheduler performs compet-
itively with CFS, we ran multithreaded application bench-
marks using benchmark suites that covered a wide range of
use case patterns. We ran benchmarks from the NAS Paral-
lel Benchmark suite [7] and the Phoronix Multi-core Test
Suite [61]. The NAS Parallel Benchmark suite fromNASA is a
set of benchmarks to evaluate parallel performance on super-
computers. We ran nine of the ten NAS Benchmarks, exclud-
ing the DC benchmark that targets computational grids. We
used the "C" benchmark size, the largest standard benchmark
size. The PhoronixMulti-Core Test Suite contains a very large
collection of multithreaded application benchmarks. There
are over 90 applications, and many have multiple workloads.
We report the same collection of 27 benchmarks as reported in
Nest [36]. Phoronix runs each benchmark three times unless
the standard deviation is greater than 5%, in which case it
will rerun the benchmark until the standard deviation is low
enough, up to a maximum of 15 times. The results for both
benchmark suites are in Table 5.
The NAS benchmarks show very little performance dif-

ference between the CFS and Enoki WFQ schedulers, with

a maximum of 2.16% difference on the LU benchmark. The
NAS benchmarks all start one task per core, so this is ex-
pected behavior. Performance on the Phoronix benchmarks is
also quite similar for both schedulers across the benchmarks.
The largest slowdowns were 8.22% and 8.57% on the Cassan-
dra Writes benchmark, which issued writes to an Apache
Cassandra database, and the Zstandard compression bench-
mark using compression level 3, longmode, respectively. This
was likely due to the WFQ scheduler’s simpler mechanism
for rebalacing tasks making less optimal decisions for these
benchmarks. We found that the balancing mechanismmost
affected theArrayfire,Cassandra, andZstandard compression
benchmarks. Interestingly, we also saw speedup for Enoki on
some benchmarks. The largest speedupwas on the Zstandard
compression benchmark using level 8, long mode. This was
likely due to the simplified balancingmechanism.Overall, the
geometric mean of the performance differences between the
schedulers across the benchmarks was 0.74%.

We also ran these benchmarks on ghOSt. The SOLminimal
FIFO scheduler described in the ghOSt paper is much slower
anddoesnot run someof thebenchmarks.AnewghOSt-based
weighted fair queueing scheduler is in progress, and runs cor-
rectly on all but one benchmark. It is slower on most bench-
marks than Enoki. However, since it is not finished, a quan-
titative comparison would not be fair to ghOSt at this time.
5.4 Shinjuku Scheduler
To evaluate our version of the Shinjuku scheduler, we ran the
RocksDB benchmarks used in the Shinjuku and ghOSt papers.
These benchmarks send queries to an in-memory RocksDB
database, with 99.5% GET requests and 0.5% range queries.
Replicating how this benchmark was run in ghOSt, each GET
is assigned to take 4 𝜇s and each range query to take 10ms. If
RocksDB responds too quickly, the benchmark spins until the
assigned time has elapsed. Three cores were reserved, one for
background tasks, one for the load generator, and one for the
scheduler if required. The load generator passes tasks to a to-
tal of 50 workers running on the other five cores.We evaluate
against the ghOSt version of the Shinjuku scheduler.We could
not compare against the original Shinjuku scheduler because
it requires a specific NIC that we do not have. Both the ghOSt
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Figure 2.Comparison of the Enoki Shinjuku (𝜇s scale preemption) scheduler compared to CFS and the ghOSt Shinjuku scheduler
using RocksDB with and without a batch application. Latency graphs are in log scale.

Shinjuku and Enoki Shinjuku schedulers use a preemption
timer of 10 𝜇s. The results are shown in Figure 2.

In thefirstbenchmark, showninFigure2a,only theRocksDB
application is run. Note that the y-axis is in log scale. Both the
Enoki and ghOSt Shinjuku schedulers achieve low tail latency
at high loads due to the short preemption timer; long running
range query tasks are preempted quickly, allowing the short
GET queries to run. On CFS, tasks run for much longer before
being preempted, by default 750 𝜇s, so the GET queries spent
more time waiting to be run.

In thesecondbenchmark,abatchapplicationwasco-located
with RocksDB. For the CFS and Enoki tests, the batch appli-
cation was run using CFS. RocksDB is given a priority of -20
while the batch application is 19 (lower is higher priority).
The batch application is run on ghOSt using a lower priority
than RocksDB. Figure 2b shows the tail latency of RocksDB,
and Figure 2c shows the CPU share of the batch application.
Both the Enoki and ghOSt Shinjuku schedulers achieve

similar tail latency as with no background task because they
give priority to the RocksDB workers, with a small time slice.
The tail latency on CFS worsens with addition of the batch
task. In the first experiment with no batch application, the
Enoki scheduler achieved 30% lower latency than the ghOSt
scheduler at high load (above 65K req/s). High load results in
the most stress on the scheduler because it must repeatedly
preempt long running tasks to schedule the short tasks.
The batch application receives a similar share of the CPU

on CFS and the Enoki Shinjuku scheduler. CFS itself shares
cycles between the RocksDBworkers and the batch applica-
tion according to their niceness values. When there are no
RocksDB requests the Enoki scheduler seamlessly cedes cy-
cles to CFS to run the batch application. The ghOSt Shinjuku
scheduler provides substantially less CPU time to the batch
application because it must pay the overhead of the userspace
scheduler. In Enoki and CFS, the scheduler is run on the same
core as the application as part of regular kernel calls. All of

the schedulers give the batch task a much higher CPU share
than the original Shinjuku scheduler would [32].
5.5 Locality Aware Scheduler
To evaluate the effectiveness of using hints in our locality
aware scheduler, we used a modified version of the schbench
benchmark. This benchmark starts a specified number ofmes-
sage threads and worker threads. Each message thread and
its worker threads send messages back and forth. The bench-
mark records the wakeup latency of the worker threads to
evaluate scheduler overhead. When a message thread and
its worker threads are on the same core, wakeup latency can
be very low. However, the benchmark uses a futex to wait
which does not set theWF_SYNCflagwhenwaking thework-
ers, so Linux can not detect this pattern [55]. In our modified
version of the benchmark, we send hints to an Enoki local-
ity aware scheduler to co-locate the message thread with its
workers, but place each set of message and worker threads
on a different core. We compare this approach to CFS and
to the locality aware scheduler with random placement (no
hints) as baselines. We also compare to CFS using cgroups to
test if the flexibility provided by the hints is necessary for a
performance benefit. Cgroups enable specifying a set of cores
that a process should run on, but do not support different sets
of cores for different threads within the same process. We use
cgroups to place all the threads on one core.
The results are shown in Table 6. We use two message

threads and two worker threads per message thread. CFS and
the locality aware scheduler with random placement perform
similarly because both spread tasks across cores. The locality
aware scheduler with hints achieves significantly lower 99%
latency. Using cgroups to put all threads on one core improves
median latency at a cost of much worse tail latency due to the
added competition between threads.
5.6 Arachne Scheduler
We evaluate the Enoki version of the Arachne scheduling
using a version of the Realistic memcached workload from
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Benchmark CFS WFQ
NAS Benchmarks
BT (total Mops/s) 26669.1 26682.3 −0.05 %
CG (total Mops/s) 4535.8 4475.7 1.32 %
EP (total Mops/s) 487.9 491.9 −0.83 %
FT (total Mops/s) 14886.8 14716.5 1.14 %
IS (total Mops/s) 1297.4 1284.9 0.96 %
LU (total Mops/s) 30469.4 29811.4 2.16 %
MG (total Mops/s) 8601.4 8535.9 0.76 %
SP (total Mops/s) 11797.0 11705.6 0.78 %
UA (total Mops/s) 73.8 73.1 0.87 %
PhoronixMulticore
Arrayfire, 1 (GFLOPS) 812.98 820.29 −0.90 %
Arrayfire, 2 (ms) 26.72 26.71 −0.04 %
Cassandra, 1 (Op/s) 55100 50573 8.22 %
ASKAP, 4 (Iter/s) 161.46 161.12 0.22 %
Cpuminer, 2 (kH/s) 51363 51390 −0.05 %
Cpuminer, 3 (kH/s) 35667 35390 0.78 %
Cpuminer, 4 (kH/s) 9499.87 9494.90 0.05 %
Cpuminer, 6 (kH/s) 258100 261667 −1.38 %
Cpuminer, 11 (kH/s) 29400 29323 0.26 %
Ffmpeg, 1, 1 (s) 23.98 24.73 3.13 %
Graphics-Magick, 4

(Iter/m) 781 779 0.26 %

OIDN, 1 (Images/s) 0.31 0.30 3.23 %
OIDN, 2 (Images/s) 0.31 0.30 3.23 %
OIDN, 3 (Images/s) 0.15 0.15 0 %
Rodina, 3 (s) 159.32 160.00 0.43 %
Zstd, 2 (MB/s) 856.1 782.7 8.57 %
Zstd, 4 (MB/s) 153.1 165.4 −8.03 %
AVIFEnc, 4 (s) 14.94 15.33 2.62 %
Libgav1, 1 (FPS) 262.95 261.21 0.66 %
Libgav1, 2 (FPS) 67.28 66.58 1.04 %
Libgav1, 3 (FPS) 222.70 216.51 2.78 %
Libgav1, 4 (FPS) 64.10 63.54 0.87 %
OneDNN, 4, 1 (ms) 4.26 4.18 −1.85 %
OneDNN, 5, 1 (ms) 9.71 9.10 −6.31 %
OneDNN, 7, 1 (ms) 4166.31 4164.74 −0.04 %
OneDNN, 7, 2 (ms) 4166.40 4161.15 −0.13 %
OneDNN, 7, 3 (ms) 4164.25 4163.34 −0.02 %

Table 5. Performance comparison of Linux CFS and Enoki
WFQ on the NAS Parallel Benchmarks and a selection of the
Phoronix Multicore benchmarks (version 10.8). Full names
are provided in the appendix. The maximum slowdown is
8.57%. The geometric mean over all benchmarks is 0.74%.

the Arachne paper [64]. We use the Mutilate benchmark util-
ity [51] to generate load for the memcached server, using
the key size and distribution, value size and distribution, and
inter-arrival distribution of the Facebook ETCworkload [6], 1
million records, and 3%updates. Four clients are used to gener-
ate load, enough to make the benchmark server-bound in our
tests. Each client creates 16 threads and four connections per

Latency CFS CFS One Core Random Hints
50th (𝜇s) 33 17 46 2
99th (𝜇s) 50 32032 49 4

Table 6.Wakeup latency for the schbench benchmark with
two message threads and two worker threads per message
thread. Thread wakeup latencies were in microseconds. All
runs used a 5s warmup time and ran the benchmark for 30s.
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Figure 3. Tail latency of requests to a Memcached server
using Mutilate comparing baseline Memcached using CFS
to a version using Arachne and a version using Arachne
modified to use an Enoki core arbiter.

thread.Anextra client is used to evaluate latency.Wecompare
the Enoki version of Arachne against the original Arachne
code and a baseline version of memcached running on CFS.
Both of the Arachne versions automatically scale between
two and seven cores, reserving one for background tasks. The
baseline version uses all eight cores on the machine.
The Enoki version of Arachne achieves similar perfor-

mance to the original Arachne scheduler, better than CFS
at high load.
5.7 Live Upgrade
We evaluate the performance impact of live upgrade using
the schbench benchmark and timing instrumentation in the
kernel. We track the tail latency of schedule operations be-
fore, during, and after the upgrade. The upgrade interruption
was too short to affect the tail latency of the schbench opera-
tions, sowe repeated the evaluationwith timing calls inserted
in the kernel. We evaluate this benchmark on both the one
socket machine using 2 message threads and 2 workers per
message thread and the two socket machine with 2 message
threads and both 2 and 40 workers per message thread. On
the one socket machine, the upgrade takes 1.5𝜇s. On the two
socket machine, the upgrade takes 9.9𝜇s and 10.1𝜇s for 2 and
40 workers, respectively. All were averaged over three runs.
5.8 Record and Replay
We evaluate the performance of record and replay using the
perf bench sched pipe benchmark on theWFQ scheduler.
This benchmark completes in around 4 seconds during reg-
ular operation. During record, the benchmark completes in
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around 30 seconds, and the replay takes around 3 minutes.
Record is slower than regular operation because all relevant
operations must be sent to the record program, which writes
a file asynchronously on a different core.

During replay, the first 30 seconds are spent reading the file
and parsing lock operations. The rest is due to themechanism
for ensuring concurrent operations occur in the same order
as the live execution. This benchmark has many calls to the
scheduler. In the kernel, these operations are very fast. During
replay, if threads arrives in a different order than what was
recorded, we need to block the thread and wake it up later to
try again. These constant sleeps and wakes add latency and
account for most of the execution time during replay.
6 Discussion
In this section, we report on our experience using Enoki to de-
velop kernel schedulers. Enoki’s designmade scheduler devel-
opmentmuchmore straightforward than itwould be in Linux.
In fact, twoof the schedulers (theShinjukuandLocalityAware
schedulers) were written by undergraduates with no prior ex-
perience in Linux kernel development. Theywere able to start
coding with relatively little ramp up and were able to build,
test, and debug their code on their own. They primarily ben-
efited frommodularity, because they were using Enoki when
record and replay and live upgrade hadnot been implemented.

Being able to use the Schedulable data structure as proof
that a task is schedulable on a core allowed us to ensure that
we were picking runnable tasks. This helped us identify and
address bugs faster becausewewould see a compile time error
from pick_next_task returning an incorrect Schedulable
thread rather than putting the kernel into a bad state by trying
to run a task on the wrong core.
We ran into relatively few runtime bugs, and those bugs

were fairly easy to address. Most have been deadlocks, which
are painful to encounter because they force a reboot, but
proved surprisingly easy to debug, in linewith prior OS devel-
opment experience [16]. Often, relatively few lock operations
were touched in between two runs of the code, so finding the
relevant changes to lock operationswas easy.Withmore com-
plicated deadlocks, it was easy to look through the scheduler
code and check the order of lock acquires because the largest
scheduler (WFQ) was only around 600 lines of code. Of the
non-deadlock bugs, most were conceptual, such as a bench-
mark having tasks yield when we had not yet implemented
task_yield or miscalculating the fair time slice to assign
tasks in WFQ. While fixing these bugs sometimes required
rebooting the machine, we never had to recompile the kernel
to fix them, so our iteration times were quite short.
The general design of an interposable, message-passing

based interface that usesmemory sharing under the hood had
a number of benefits.We gainedmany of the benefits ofmodu-
larity fordevelopmentvelocitybecauseof clean interfaces and
isolation from the rest of the kernel, allowing the developer to
focus their energy on the algorithm being implemented. In its

implementation, Enoki uses function calls and memory shar-
ing, limiting theoverhead that cancomewithmodulardesigns.
Because Enoki schedulers run in the kernel, the core schedul-
ing code can quickly and easilymake synchronous calls to the
scheduler, allowing it to quickly respond to changes in state.
Enoki’s design also made it easy to implement additional

features. Because all the functionality was contained in the
module and Enoki-C contacts the scheduler through a single
function pointer, live upgrade is as simple as quiescing the
state and replacing the functionpointer.Due toRust’s support
for generic data types and traits, custom hint data structures
could be defined as type parameters on the scheduler and
any requirements on the data types can be expressed as trait
bounds. Enoki’s design supported record and replay debug-
ging very smoothly. The interposable, message passing based
interface and made it simple to record relevant state that was
passed into thescheduleror returned fromcalls into thekernel.
Recording nondeterministic behavior is one of the main chal-
lenges for record and replayonparallel systems, butusing safe
Rustmade thismuch simpler. Due to Rust’s safety guarantees,
we knew that the scheduler could not contain race conditions
or any other undefined behavior, so the only sources of non-
determinismwere timing and the order of lock acquisitions.
All timing statewas handled by the kernel and passed into the
scheduler, and sowas automatically handled by recording the
messages. To correctly handle concurrency, we only needed
to record and replay the order in which locks were acquired.
7 RelatedWork
Scheduler Frameworks. GhOSt [32] is the closest analog
to Enoki. It allows the user to replace the kernel scheduler
with a userspace scheduler. Calls to the kernel scheduler are
forwarded to the userspace scheduler agent, which responds
with decisions that are then applied in the kernel. The kernel
does not wait for decisions from the userspace scheduler to
schedule a task, instead applying decisions asynchronously
at a later call into the kernel scheduler. GhOSt provides good
development velocity but can add significant overhead and
scheduling latency, and the asynchronous model makes it dif-
ficult to precisely mirror kernel scheduler decisions. Mvondo
et.al. [52] also proposed a framework for implementing new
schedulers in Linux, inspired by howeBPF enables developers
to implement new networking functionality for the kernel.
As far as we can tell, this system has not been built yet. AMD
engineers have proposed a method for providing userspace
hints to a kernel scheduler [55], but only a small number of
predefined types of hints are supported.

Thereareotherscheduler frameworksanddesignparadigms
that are orthogonal to thiswork. Scheduler activations [4] pro-
poses a mechanism for two-level scheduling that assumes the
kernel allocates processors to applications, and applications
schedule their own threads. Arachne implements a similar
mechanism. As shown by our implementation of Arachne,
Enoki can be used to implement the kernel component of a
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two-level scheduling system. Ipanema [38] is a framework for
formal verification of scheduler properties, focusing partic-
ularly on work conservation. Both Ipanema and Enoki build
Linux kernel schedulers as modules and target bug preven-
tion, but the goals and mechanisms are different. Ipanema is
able to capture high level safety properties like work conser-
vation, but limits schedulers by requring them to be written
in the Ipanema DSL.

SafeLanguages inOSDevelopment. It is common for re-
search operating systems to be written entirely in a type-safe
high-level language. Examples include Pilot [65], SPIN [14],
Singularity [33], Biscuit [22], Redox [66], Tock [39], The-
seus [17], and RedLeaf [53]. None of these target improving
development velocity for awidely used commercial operating
system. These approaches show that benefits can be gained
by using safe languages, but all involve rewriting the entire
operating system.We are also not the first to integrate Rust
into the Linux kernel [40, 42, 49], but these projects do not
provide safe interfaces for schedulers. Most similar to our
work is Bento [49]. Bento takes a similar approach to Enoki
but applied to file systems. Because it targets file systems and
sits behind the kernel page cache, Bento can tolerate much
higher latency than Enoki.
The Berkeley Packet Filter (eBPF) [48] enables safe exten-

sibility in Linux using a restricted, type safe language and
programming environment. eBPF programs can only be in-
serted at specific points in the kernel and are verified by the
kernel before being run. GhOSt [32] extends eBPF to enable
implementing part of the scheduler using eBPF. eBPF pro-
grams can be updated at runtime, but the locations where
code is inserted cannot be. To ensure safety of user code run-
ning in the kernel, eBPF is quite restrictive. Programs are
limited to only running at pre-defined points in the kernel,
only callingwhitelisted functions, and not having unbounded
loops. For example, it would be difficult to express a red-black
tree or B-tree in eBPF, as used in CFS andWFQ.
Live Upgrade. Live upgrade in Enoki is most similar to

the techniques used in Bento [49], but applied to schedulers.
Plugsched [44] does live upgrade of the entire scheduler sub-
system of the Linux kernel without modifying any kernel
code using code analysis to detect boundaries of the sched-
uler subsystem and stack analysis tomaintain consistent state
across the upgrade. Other tools for live upgrade of Linux sys-
tems include ksplice [5, 57], kpatch [62], or kGraft [60]. These
replace individual functions with new implementations, and
are primarily used for security patches that do notmodify ker-
nel data structures. Other research systems, such as K42 [11],
PROTEOS [28], LUCOS [21], and DynAMOS [45], support
upgrading complex, modular components in either new oper-
ating systems (K42 and PROTEOS) or in Linux using shadow
data structures or virtualization (LUCOS and DynAMOS).
Our work enables live upgrade of large modules in a com-
modity operating systemwith state transfer by introducing
a framework layer that handles quiescing state.

Running in Userspace. Running operating system ser-
vices in userspace can also increase development velocity
of operating system components [1, 41], though this can
sacrifice performance. Most similar to Enoki is GhOSt [32].
Another approach is to run the component in userspace on
dedicated cores with communication through shared mem-
ory queues [10, 13, 35, 46]. This approach has been used for
implementing new network stacks [35, 46] and scheduler al-
gorithms [34, 64].With direct access to hardware devices, per-
formance can often be competitive with an equivalent kernel
implementation.However, interactionwith the rest of the ker-
nel can be restricted using this approach, possibly limiting the
ability for any part of the system tomake global decisions [68].

Record andReplay. Record and replay systems enable de-
bugging code by first recording a trace of operations and then
later replaying those operations against the target code, en-
abling debugging of the recorded trace. These systems require
instrumentation around the target code in order to record the
necessary data. There are a variety of approaches to record
and replay, from recording the whole system [25, 70] to using
kernel instrumentation to record user programs [24, 47, 67]
to running both the target code and the instrumentation in
userspace [15, 27, 59, 69] to instrumenting language and appli-
cation runtimes [2, 19]. One project [20] specifically records
and replays kernel modules using mechanisms for whole
binary analysis and instrumentation of kernel module inter-
faces. As far as we know, we are the first project to selectively
record a kernel module, as opposed to the whole kernel, and
to replay the behavior at userspace on the same code as ran
in the kernel. There is a long history of work on deterministic
record and replay on multicore systems to ensure that data
accesses are performed in the same order during record and
replay [3, 18, 30, 31, 37, 54, 67]. We combine content-based
message passing recording, where the content of all messages
across a message passing interface are recorded, with a soft-
ware only shared memory recording scheme, where synchro-
nization and access to shared state are recorded. Unlike other
shared memory recording schemes, we do not have to detect
and record race conditions due to Rust’s safety guarantees,
so we record only synchronization accesses.
8 Conclusion
This paper presents Enoki, a framework for rapid develop-
ment of high performance Linux kernel schedulers. Enoki
enables safe, high performance kernel schedulers with seam-
less live upgrade, bidirectional user communication channels,
and record and replay debugging. A scheduler implemented
with Enoki is able to achieve similar performance to CFS,
the default Linux scheduler, on a wide range of benchmarks.
Other Enoki schedulersmimic recent research schedulers, but
integrated with Linux. Enoki’s schedulers can be upgraded
with only 10.1𝑢s of service interruption, and the record and
replay debugging allows for slow but functional userspace
debugging of the kernel scheduler code.
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A Appendix

Arrayfire, 1 Arrayfire, BLAS CPU
Arrayfire, 2 Arrayfire, Conjugate Gradient CPU
Cassandra, 1 Cassandra, Writes
ASKAP, 4 ASKAP, Hogbom Clean OpenMP
Cpuminer, 2 Cpuminer, Triple SH-256 Onecoin
Cpuminer, 3 Cpuminer, Quad SHA-256 Pyrite
Cpuminer, 4 Cpuminer, Myriad-Groestl
Cpuminer, 6 Cpuminer, Blake-2 S
Cpuminer, 11 Cpuminer, Skeincoin
Ffmpeg, 1, 1 Ffmpeg, libx264, Live
Graphics-Magick, 4 Graphics-Magick, Resizing
OIDN, 1 OIDN, RT.hdr_alb_nrm.3840x2160
OIDN, 2 OIDN, RT.ldr_alb_nrm.3840x2160
OIDN, 3 OIDN, RTLightmap.hdr.4096x4096
Rodina, 3 Rodina, OpenMP Leukocyte
Zstd, 2 Zstd, 3 LongMode Compression
Zstd, 4 Zstd, 8 LongMode Compression
AVIFEnc, 4 AVIFEnc, 6 Lossless
Libgav1, 1 Libgav1, Summer Nature 1080p
Libgav1, 2 Libgav1, Summer Nature 4k
Libgav1, 3 Libgav1, Chimera 1080p
Libgav1, 4 Libgav1, Chimera 1080p 10-bit
OneDNN, 4, 1 OneDNN, IP Shapes 1D, f32
OneDNN, 5, 1 OneDNN, IP Shapes 3D, f32
OneDNN, 7, 1 OneDNN, RNN Training, f32
OneDNN, 7, 2 OneDNN, RNN Training, u8s8f32
OneDNN, 7, 3 OneDNN, RNN Training, bf16bf16bf16

Table 7. Full names of the Phoronix Multicore benchmarks
presented in the paper.

A.1 WFQ Functional Equivalence
We run several benchmarks to evaluate whether our Enoki
WFQ scheduler correctly implements the expected behavior
of aWFQ scheduler. We compare the EnokiWFQ scheduler
to CFS, also a WFQ scheduler, to ensure that our scheduler
implements equivalent behavior.
One benchmark evaluates whether the scheduler fairly

shares CPU time among ready tasks. This benchmark started
five tasks that each perform CPU-intensive work, specifi-
cally repeatedly adding to a value. By default these tasks are
placed on different cores. We expect these tasks to complete
in roughly the same amount of time due to the lack of compe-
tition.We then force the schedulers to place all of the tasks on
the same core. We saw the expected behavior. On both sched-
ulers, the tasks took around 4.6 seconds to complete when
the tasks are not co-located. When the tasks were co-located,
the tasks took around 22.2 seconds.

We also evaluate how the schedulers handle weighting by
reducing one of the five tasks to minimum priority.Wewould
expect the lowestpriority task tocomplete slower than theoth-
ers; theother tasksshouldshare timefairlyandcomplete in the

same amount of time.Again,we saw the expected behavior on
both schedulers.When one taskwas reduced to theminimum
priority, all four other tasks complete in around 17.6 seconds
and the lowest priority task completes in 4.4 seconds later.
A third benchmark tests task placements. We start one

task per core with each task performing CPU-intensive work,
specifically repeatedly adding to a value. We expect both
schedulers to default to placing each task on a separate core.
We then force one task to change cores. With no movement,
each task completes in around 9 seconds on both schedulers
and there is very low variation in task runtime. When a task
is moved, all tasks still complete in around 9 seconds on both
schedulers. CFS shows roughly the same variation in task run-
time evenwhen a task wasmoved. The EnokiWFQ scheduler
shows higher standard deviation in task runtimeswhen a task
ismoved, from0.001s to0.018s, because it takes longer tomove
a task due to its less sophisticated methods of rebalancing
tasks.
B Artifact Appendix
B.1 Abstract
Our artifact consists of a custom kernel and framework for
safe, modular schedulers. We document how to run our pri-
mary scheduler on the main set of benchmarks.
B.2 Description &Requirements
We have a main repository at https://github.com/smiller123/
enoki. It points to the three repositories that make up the
project. The documented scheduler and benchmark are in-
cluded in one of these repositories. More information is pro-
vided in theREADMEfiles.Wetested this codeonaQEMUVM
imagewith6 cores anda90GiB image. If youwould like access
to ourVM image, send an email to sm237@cs.washington.edu.
B.2.1 How to access
The code can be accessed at https://github.com/smiller123/
enoki. It points to three subrepositories located at https://
gitlab.cs.washington.edu/sm237/enoki-kernel, https://gitlab.
cs.washington.edu/sm237/enoki-schedulers, https://github.
com/smiller123/bento/tree/enoki-support. All repositories
are public.
B.2.2 Software dependencies
Instructions for installing all software dependencies are pro-
vided in the repository. First install the kernel. Instructions
are found in the enoki-kernel repository. You will also need
to install Rust. Instructions to install the correct version are
in enoki-schedulers.
B.2.3 Benchmarks
We document the perf pipe scheduling latency benchmark
and the Phoronix application benchmarks. The perf pipe
benchmark is a simple benchmark that starts two processes
that repeatedly sleep and wake each other up. It was previ-
ously known as Hackbench. The Phoronix benchmark suite
includes a variety of applicationworkloads. Some of the other
benchmarks are included in the repository, but are not doc-
umented or automated yet.
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B.3 Set-up
Detailed instructions are included in the repositories. At a
high level, first build and install the customkernel. Then build
the scheduler and load it into the kernel. Run the benchmarks.
Then unload the scheduler.
B.4 Evaluation workflow
I will only discuss the claims relevant to the benchmarks we
have documented at this point.
B.4.1 Experiments
Experiment (E1): [perf pipe] [A few minutes to compile,
a few seconds to run the benchmark]: A simple scheduling
latency benchmark. It creates two processes that sleep and
wake each other up.
[How to]
[Preparation] Compile and load the scheduler in the enoki-
schedulers subrepository. Compile and install perf from the
custom kernel source (instructions provided in the enoki-
schedulers subrepository README). Then build the bench-
markfile enoki_pipe_test.c, described in the enoki-schedulers
subrepository and found in the perf_test directory.
[Execution] Execute sudo ./enoki_test. For the baseline,
execute ./cfs_test. Do not use the machine while the tests
are running.
[Results] The benchmark will output the time per operation
in 𝜇s/op.
Experiment (E2): [Phoronix] [A few minutes to compile,
1.5-2 hours to run the benchmark for each configuration]: A
set of application benchmarks.

[How to]
[Preparation] Compile and load the scheduler in the enoki-
schedulers subrepository. Then build the enoki_test.c bench-
mark file, also described in the enoki-schedulers subreposi-
tory and found in the phoronix_test directory.
[Execution] Execute ./enoki_test. For the baseline, exe-
cute ./cfs_test. Do not use the machine while the tests are
running.
[Results] This will run the set of Phoronix benchmarks de-
scribed in the paper three times each. The results can be
compared using
../phoronix-test-suite/phoronix-test-suite
compare-results-to-baseline cfseval enokieval.
B.5 Notes on Reusability
Other schedulers can be implemented using Enoki by writing
schedulers that follow the same pattern of the schedulers in
the enoki-schedulers directory. Specifically, the scheduler’s
main code should be included in the src/sched.rsfile. Some
other files should be copied, just replacing the scheduler
name and/or data structure: Makefile, kernel/Cargo.tomp,
kernel/Kbuild, kernel/src/lib.rs,
kernel-record/Cargo.toml, kernel-record/Kbuild,
kernel-record/src/lib.rs, replay/Cargo.toml,
replay/src/main.rs, andsrc/module.c.Theuserspacepart
of the record can be copied unchanged: record/Cargo.toml,
record/src/main.rs
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