IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 1

CLUE: Systems Support for Knowledge Transfer
in Collaborative Learning with Neural Nets

Harshit Daga, Yiwen Chen, Aastha Agrawal, and Ada Gavrilovska

Abstract—For highly distributed environments such as edge computing, collaborative learning approaches eschew the dependence on a
global, shared model, in favor of models tailored for each location. Creating tailored models for individual learning contexts reduces the
amount of data transfer, while collaboration among peers provides acceptable model performance. Collaboration assumes, however, the
availability of knowledge transfer mechanisms, which are not trivial for deep learning models where knowledge isn’t easily attributed to
precise model slices. We present CLUE — a framework that facilitates knowledge transfer for neural networks. CLUE provides new
system support for dynamically extracting significant parameters from a helper node’s neural network, and uses this with a multi-model
boosting-based approach to improve the predictive performance of the target node. The evaluation of CLUE with different PyTorch and
TensorFlow neural network models demonstrates that its knowledge transfer mechanism improves by up to 3.5x how quickly a model
adapts to changes, compared to learning in isolation, while affording up to several magnitudes reduction in data movement costs

compared to federated learning.

Index Terms—Deep learning, Edge Computing, Edge inference, Intelligent edge

1 INTRODUCTION

O manage, process and analyze the increasing amount of

data generated at the edges of the network, companies
have started relying on machine learning techniques to
provide automation and to improve customer experience
and service delivery. With data being generated in a highly
distributed manner, companies build machine learning (ML)
models using systems for distributed learning such as
Federated Learning (FL) [1]. FL creates a global and generic
model through periodic communication among distributed
locations using a push based approach to transfer raw data or
model updates.However, highly distributed environments,
particularly such as those observed across nodes in mobile
edge computing (MEC) [2], have been shown to benefit
from models tailored to the context of specific locations [3],
[4], [5]. In addition, distinct locations may not exhibit any
change in their localized inputs, thus not benefiting from
model updates due to churn in data trends observed at
other locations. Abandoning any cross-node coordination
in learning in favor of learning in isolation, eliminates
data transfer costs. However, if data trends shift across
locations (i.e., due to concept or data drift), models learned
in isolation suffer from loss of accuracy and need time to
adapt to changes, compared to when relying on a global
model. In response, distributed machine learning models for
collaborative learning across edge nodes have been proposed,
as a way to create robust tailored models.

Collaborative learning (CL) allows distributed nodes to
adapt quickly to input shifts and to retain model accuracy,
with low data transfer costs [6], [7]. A key assumption in
realizing collaborative learning is the ability to transfer
knowledge from one peer who has previously learned a

o The authors are with the College of Computing, Georgia Institute of
Technology, Atlanta, GA, 30332.

given input class — a helper node — to another peer exhibiting
a change in its inputs — a target node. This approach is par-
ticularly suitable for geographically distributed enterprises
and services, where different edge sites operate on behalf of
a single organization and trust each other to collaboratively
exchange model information with one another.

For certain types of machine learning models, such as
the online random forest (ORF) and online support vector
machines (OSVM) used in [6], realizing knowledge transfer
is straightforward, as the association of input classes to
model parameters is easily identifiable: to transfer knowledge
about a given class from a helper to a target model, the
corresponding subtrees in ORF or matrix rows in OSVM
models need to be copied over across models. In practice,
however, services are increasingly turning to deep learning
techniques, where knowledge about a particular input class
cannot be trivially attributed to a slice of the model. This
raises the question, how to enable knowledge transfer across nodes
that use neural network (NN) models? Without the support to
extract features from a helper node’s model relevant for the
knowledge needed at the target, and to then integrate them
with the target node’s model, collaborative learning will
not be feasible for deep learning techniques. This will limit
the opportunity for the benefits of collaborative distributed
learning to be afforded to important application classes
relying on deep learning.

In response, we present CLUE - a framework that
provides systems support for collaborative deep learning by
facilitating selective knowledge transfer across neural net-
work models. CLUE combines system support for dynamic
creation of helper models from an existing NN model, with a
multi-model boosting-based approach to use this knowledge
and update a target model. The knowledge transfer in
CLUE is made possible through the use of mechanisms
for (1) on-demand gleaning of significant parameters of a
model, (2) use of boosted helper models, and (3) support for

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 2

managing a pool of helper models. The effectiveness of these
mechanisms is evaluated for several NN models based on
PyTorch and TensorFlow, and the results shows opportunities
for significant improvements in model performance and
data transfer costs. The evaluation also demonstrates that
CLUE exposes new opportunities to exploit tradeoffs among
model accuracy, the ability to quickly adapt to changes in
a model’s predictive performance, data transfer costs and
learning overheads. Future policy engines can exploit such
tradeoffs to further tailor the behavior of the distributed
learning process.

In summary, the contributions of this paper include:

e New mechanisms to facilitate knowledge transfer for
deep learning models (§5);

o The design and implementation of CLUE, the first frame-
work that integrates these mechanisms to provide support
for collaborative deep learning with neural nets (§6);

e Evaluation with several models, ML frameworks, and
workloads, which demonstrates that CLUE enables col-
laborative deep learning across distributed nodes in a
manner that allows models to adapt to change 3.5x faster
than isolated learning while giving a similar predictive
performance compared to federated learning, but with
orders of magnitude lower overall data transfer costs (§7).

2 BACKGROUND AND MOTIVATION

Multi-access Edge Computing. MEC provides compute
capabilities at the edge of the network, in close proximity to
client devices, such as on wireless gateways, cellular base sta-
tions, enterprise on-prem edge server infrastructure, etc. [8].
It offers infrastructure for execution of applications requiring
low latency (e.g., AR/VR, automation), reduction in backhaul
data demand (e.g., IoT analytics, content delivery), and geo-
localized data handling (e.g., for GDPR). These base stations
are commonly equipped with servers that typically possess
multi-core processors, ample memory capacity, and rapid
storage subsystems [9], [10]. To further enhance their perfor-
mance, they may also be outfitted with hardware accelerators
such as GPUs and Edge TPUs [11], as well as FPGAs (Field-
Programmable Gate Arrays) that facilitate custom hardware
acceleration. One challenge MEC exposes is that of creating
an extremely dispersed distributed infrastructure, which
differs from datacenter-based distributed environments in its
scale and in the fine-grained geo-localization of the inputs
observed at each node [3]. In such settings, COLLA [7],
a collaborative system to predict user behavior patterns,
highlights that a shared global model might not achieve
the desired performance for all the users and trains smaller
more tailored models. Cellscope [4] also demonstrated the
ineffectiveness of using a shared global model for managing
the base stations in mobile network; similar observations are
confirmed in other research [12], [5].

Collaborative Distributed Learning. Figure 1 illustrates a
typical workflow in a collaborative distributed learning sys-
tem, similar to what is enabled by our prior work Cartel [6].
Edge nodes use their resident model to perform inference,
following which the model is re-trained locally. Upon shift
in the data distribution, the model performance at the edge
node deteriorates. In such a scenario, the node relies on a
pull based (on-demand) approach of collaborative learning

to find a helper node, and to leverage the helper’s model
(knowledge) to boost its own model. This is in contrast to FL
approaches where a centralized primary/master coordinator
periodically aggregates updates and pushes those updates to
all other distributed trainer nodes. In CL, in order to find a
helper node in a timely manner, a common metadata service
(MdS) aggregates information from each node in the system.
Each edge node uses drift detection algorithms [13], [14] on
the local metadata information to decide when a model at
the target edge node needs to be updated, and to query the
MdS for candidates for a possible helper. The MdS uses the
aggregated metadata to determine helper node candidates
using similarity detection algorithms.

Note that, the workload characteristics shared with MdS
is a histogram or trend of the characteristics observed by the
nodes, which is then used to determine logical neighbor(s)
which have seen similar workload patterns. This makes
it possible for collaborative learning to proceed without
exchange of raw data among edge nodes. We assume that
collaboration is done across distributed nodes part of the
same service, where the primary goal is reducing data
transfer costs, and sharing information regarding data trends
at specific locations is not a major concern.For instance, it
would allow edge nodes such as those present at Starbucks
locations or at the PoPs of online game engines to share
information within the system and one another.

To update the target node’s model and improve its pre-
dictive performance, a collaborative system uses knowledge
transfer [6] or distillation [7]. Knowledge distillation [15],
[16] uses a (larger) teacher model to train a (smaller) student
model. Knowledge transfer (KT) is a mechanism to transfer
the knowledge regarding several (typically not all) classes
from one machine learning model to another. In this paper,
we use knowledge transfer mechanism to collaborate among
edge nodes. We chose KT over distillation because in
distillation the teacher model is assumed to be a complete
model, whereas, we already point out, a complete global
model may not be needed for MEC, and it may be too costly
to maintain it at large scale in a highly distributed settings.

Federated Learning. While centralized learning produces a
global model trained on diverse data, it suffers from resource
inefficiency, requiring data movement to a centralized loca-
tion and compromising data privacy. In contrast, federated
learning (FL) has emerged as the state-of-the-art technique
for distributed machine training. FL offers improved training
performance, data privacy, and reduced communication
and data transfer costs compared to other distributed ML
approaches like centralized learning. It enables training of
models on decentralized data sources without the need
for data aggregation in a central server. The models are
trained locally on individual devices or edge nodes, and
only aggregated updates are shared. Collaborative learning
shares similarities with FL as it also trains models locally
without sharing raw data and aims to reduce data transfer
costs. However, CL exploits edge locality to further minimize
data movement, offering comparable model performance
to FL. Both FL and CL are well-suited for scenarios where
data cannot be easily centralized or shared due to privacy or
network constraints.

Neural Networks for MEC. A growing number of com-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 3

> 0 0 £ O

Cloud ~

.:-fb\

Metadata Service
/ Subset of helpful
\ T / helper nodes \
\
2= | | [
Tnitial Model Request for /
/ | similar nodes /
/
o

Request Batch ()) Drift ((()))
(EA;)) \:[o = 5—'% J\/\/_ =é£
Edge Node ',d?\ g < §3§

1 Significant
i Parameters

o
gHelper Node
~

4 S
N
i XI} !
- N
/ Significant \ | | ¥
/ Parameters () i Helper Model
i

S\ ek T
| /| ! Target Model | §%

Drift Metadata /

\ /
N ((c))) ¥ £\)
% 3% é\hrget Node : 3\

/ﬂl\\\

Fig. 1: Collaborative learning in distributed edge computing.

panies have started to deploy deep learning services at
the edge of the network for various use cases such as
predictive workload analysis, intelligent caching, network
security, intrusion detection and data classification [17],
[18], [19]. When working with NN, even small amounts
of raw data can result in large amounts of information being
communicated to the aggregating node [20]. This makes
support for collaborative learning for NN an important
distributed learning strategy, which in turn, requires support
for knowledge transfer.

Knowledge Transfer in Neural Networks. Knowledge trans-
fer for NN is a hard problem that is receiving a lot of attention
from the ML community [21], [22], [23]. In such a model
information required to classify a class is spread across
each layer, requiring specialized algorithms to extract it. If
the data observed at target node is very similar to the one
observed by the helper, fine-tuning [24] is one methodology
that can be used. However, as the workload characteristics
can vary across nodes, using this technique can be slow and
can involve data movement across nodes. Techniques such
as [25], [26] assume the helper model to be an expert teacher
model, which in our case might not be always feasible. A
different approach is to apply techniques that extract the
portion of the model that most contribute to its performance
for a given input. [21] suggests removing one neuron at a
time to determine if it has impact on the model performance.
[27] analyzes the activation, gradients and visualization
patterns to determine a critical path. However, as the models
are continuously (re)trained on the incoming data stream at
each edge node, knowledge transfer needs to be performed
dynamically, and over fresh models, requiring time and
resource-efficient techniques.

3 GOAL AND CHALLENGES

Goal. The goal of CLUE is to provide system support
for collaborative distributed deep learning by enabling fast
knowledge transfer across the NN models of the peer nodes.

System model. In a collaborative system each edge node
creates a customized model and requests for help when
there is drift in the model performance. The concept of
providing help is the ability to perform knowledge transfer
from a helper node to a target node. In such a system
there are few challenges that needs to be addressed which
can be divided into two categories — system level and
ML techniques dependent. System level challenges include
determining when to initiate collaboration among the node(s)

and dynamically discovering appropriate helper nodes that
have observed similar workload as the target node, while
performing KT across collaborative nodes depends on the
ML technique. By focusing on the missing support for KT
for NNs, CLUE provides an extension to our prior work on
collaborative learning [6] to enable its use, and its benefits,
for distributed learning with neural nets.

Challenges. The fundamental issue in performing KT across
collaborative peer nodes lies in the fact that the helper node’s
knowledge is neither all necessary at the target node, nor is
it strictly a superset of the target node’s knowledge. Simply
using the helper node’s model introduces either unnecessary
data movement (for portion of the knowledge not relevant
for the inputs at the target), or worse, degrades the target
node’s knowledge (by displacing localized knowledge that
was already acquired). This introduces the following main
challenges:

C1: How to extract a relevant portion of a neural network
model? A neural network model consists of multiple hidden
layers. It takes an input, passes it through multiple layers of
hidden neurons and outputs a prediction representing the
combined input of all the neurons. Thus, various parameters
spread across different layers help the model in providing a
good predictive performance. The challenge is to select the
relevant parameters from all the layers, and to do so with low
overheads and with low resulting data transfer demands.

C2: How to utilize the knowledge at the target node? We
assume the same model architecture for all the nodes in the
distributed system, similar to other systems such as [28],
[29], [30]. The challenge is to incorporate the acquired
knowledge from the helper model into or alongside the target
node’s model quickly and effectively, without degrading its
performance on previously known classes.

4 OVERVIEW OF CLUE

Approach. To address these challenges, CLUE adopts an
approach that combines support to dynamically extract sig-
nificant model parameters (§5.2.1), with use of multi-model
boosting (65.2.2). It relies on helper nodes, but only extracts
the portion of their knowledge relevant for the target node.
It then uses boosting to create custom helper models at the
target node and combine them with the target’s existing
knowledge.

The multi-model approach allows CLUE to decouple
the updates that need to be performed to improve a target
model’s prediction accuracy, from the specific parameters
extracted from the helper node’s original model. By using a

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 4

simple boosting technique to create the helper models, CLUE
makes it possible to create a helper model that benefits from
the helper for recognizing new classes, while retaining its
knowledge quality for pre-existing, familiar classes.

Mechanisms. Underpinning CLUE are three key mecha-
nisms designed for selecting significant parameters from
the helper node’s model, creating a boosted helper model
and managing model pooling on the target node. To solve
the challenge C1 of selectively picking the parameters from
each layer of the DNN, the framework uses a mechanism
for significant parameter selection, (4) in Figure 1. The task
of selecting significant parameters of a DNN model can
be rephrased as follows: given a DNN f and input image
x, what is the part of f(x) that made the DNN reach the
particular decision of classifying the input as class y. In
other words, which coefficients at each layer in the model
contributed towards the classification of = to an output y?

On the target node, CLUE creates helper models using
the significant parameters from the original model (5) .
A helper model with poor performance for some classes
can degrade the overall model performance, effectively
displacing knowledge that already existed as part of the
target model. To prevent this, helper model should be created
by using the knowledge obtained from the helper node with
the existing knowledge on the target node. The resulting
helper model is then used in conjunction with target model.

A target node may exhibit multiple instance of input drift
over time. This will require new knowledge transfers, and
can lead to a pool of helper models. To prevent a resource
bloat on the target, they are ephemeral, and are discarded
when no longer needed. The target node continues to learn
during the boosting period, so as to make it possible to
remove its dependence on the helper model. Once all helper
models are discarded, the target continues to operate only
with its, now updated, target model @ . The use of a boosted
helper model and the techniques for managing pools of
helper models, solve the challenge C2.

Workflow. Large-scale companies learn from their user
behavior by collecting and analyzing the geo-distributed
trends. Such an environment allows for collaboration and
knowing specific trends at various nodes in the system.
Our work considers an edge as nodes close to clients and
devices, potentially deployed at cellular towers and base
stations [31], as edge servers at branch locations, etc. At each
edge node, the resident model makes predictions on batches
of requests that are received over a period of time. Figure 1
presents a workflow in this context, where MdS provides
the target node with the list of helper nodes (3) which have
observed similar workload as target node. Since within a
single company collaboration across distributed sites is not
a concern, target node then reaches out to these nodes to
obtain the relevant knowledge (4) -(6) . The KT is performed
using the mechanisms described in (§5), which allow the
target node model to more efficiently adapt its predictive
performance to the changes in the workload characteristics.

CLUE incorporates the same approach for drift detec-
tion (2) and helper node selection (3) as Cartel. In both
systems, these tasks require that a node only shares metadata
that could potentially distinguish it from other nodes and
does not share the raw data received by node. Note that

the KT mechanisms are also useful in context when direct
communication among edge nodes may not be possible, due
to lack of efficient edge-to-edge communication paths, or for
regulatory, trust or privacy related reasons. In such settings,
knowledge transfer can still be performed by leveraging a
trusted and centralized broker (similar to an aggregator node
in FL). The broker will gather the relevant knowledge from
the helper node(s) and will share it with the target node.
The tradeoff here is an addition hop in the transfer process,
however since the data size of KT is small (few MBs §7), the
general observations we make about CLUE will persist.

5 DESIGN oF CLUE

The design for collaborative learning system consists of —
metadata operations and knowledge transfer support. We
first provide a brief overview of the system level support that
helps in drift detection and finding the helper node. Next, we
describe in greater detail the design of the three mechanisms
CLUE uses to realize knowledge transfer from a helper to a
target node for neural network models.

5.1

CLUE builds upon our previous work [6], which introduces
collaborative support mechanisms. These mechanisms are
based on the use of system-level support for working
with metadata which refers to any information about a
node that has the potential to differentiate it from other
nodes. This information may include estimates of class
priors (used in our implementations), enabled features, user
distribution, geographic information, software configuration,
and distribution of active users by segments, among others.
The metadata information is regularly shared by all the edge
nodes in the system with a centralized Metadata service
(MdS).

Drift Detection. A shift in workload characteristics can
significantly impact the performance of the model at a given
node. To effectively monitor and detect drift in model per-
formance, CLUE employs a threshold-based drift detection
mechanism. The proposed system records the performance
metrics of the model, such as accuracy or loss, for each batch
during the training or inference phase. It calculates the rolling
average error rate of the model over the previous W batches,
if the current rolling average of error rate exceeds a certain
threshold, it indicates the presence of drift in the model’s
performance. Here W is user-defined window length parameter.
Drift detection is a well-explored research area, offering a
range of algorithms that provide different trade-offs in terms
of detection speed, sensitivity to drift, and adaptability to
varying data patterns. Other sophisticated algorithms such
as [13], [14], [32], [33] can also be used to detect negative
model drift (i.e., an increase in the model’s error rate over
time).

Helper Node Selection. When drift is detected, a call for
help is sent to the MdS, which uses a helper node selection
mechanism that relies on metadata collected from each
edge node. In CLUE, where class priors may experience
shifts, the comparison of empirical distributions between
the target node and other nodes helps identify logical
neighbors. The MdS determines the helper nodes by applying

Metadata Operations

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 5

a similarity measure that quantifies the resemblance between
nodes based on their metadata attributes. CLUE uses cosine
similarity, alternative approaches such as [34], [35], [36], [37]
can also be employed. Once a list of highly similar logical
neighbors is identified, the top-k neighbors are selected and
transferred to the target node. The target node then selects
the helper node and reaches out for knowledge transfer.

The impact of timely detection of drift and helper node
selection on the model performance at the target node is
demonstrated in (§7.4.1).

5.2 Knowledge Transfer Mechanisms
5.2.1 Significant Parameters Selection

During the learning process each neuron takes a group
of weighted inputs, applies an activation function and
returns the output. These inputs can be features from the
dataset or output of a previous layer’s neuron. The weights
are adjusted using backpropagation (“backprop”), and the
process is repeated until the network error drops below
a threshold. Thus, for a given input, a combination of
coefficients across multiple layers plays a role in determining
the outcome. Our goal is to select from each layer of a
model the significant parameters that are relevant to the
requested classes. A trivial design choice could be to send
the entire model from a helper to a target node and avoid any
overhead of selecting a relevant portion of the helper model.
However, NN models are large, and can include millions
of parameters. Furthermore, when considering collaborative
learning, only certain parameters relevant for the missing
classes are required by the target node. Thus, we can reduce
the data transfer cost by pre-processing the helper’s node
model to identify and send only the significant parameters
for the relevant classes.

Intuition. To address the challenge CI, CLUE provides
support for extracting the significant parameters of a helper
node’s model. The fundamentals behind this lie in the
gradient descent algorithm. To optimize the loss functions
after every step, the changes are applied to the model, while
in our case, instead of applying the changes back to the
model, we use this information to determine the portion of
the parameters that are relevant to a given class.

Parameter Sensitivity. We use the backprop technique to
determine the sensitivity by finding the impact that a small
change in an input neuron (i) has on an output neuron (o).
If drastic change occurs, i is considered to be significant for
producing the current activation value of o. Let f(W,z) = p
denote the neural network model where W, z and p are set of
all the model parameters, inputs and prediction, respectively.
For a multi-class classification task, the output of the neural
network is an array of size C where each element represents
the confidence of the input being class C;. We determine the
sensitivity value of a parameter WW; towards the class output
value C; as

0C;

L 0C L GiW AW - Ci(W))
3W] AW;—0

AW,

sen(W;, C;)
1)
sen(W;, C;) > 0 means increasing the value of parameter

W;, increases the output value for class C; which implies
the model is more confident that the input belongs to class

C;. On the contrary, sen(W;,C;) < 0 means increasing W;
makes the model more confident about an input not being
class C;. Thus, |sen(W;, C;)| is defined as the measure of
sensitivity of the parameter. The larger magnitude indicates
higher significance of the parameter, as a small change in the
parameter value could change the output.

Determining Sensitivity for a Changing Model. Over time
the model at the edge node changes. As a result significant
values cannot be calculated in the initial phase and used at a
later time when a request from the target node is received.
As the model is continuously retrained there are few ways
to evaluate these values [21], [38], [39].

The first method is based on a continuous update of a
sensitivity map for all model parameters and classes after
every batch. We constantly make an observation of the
parameters that are sensitive and keep track of them. Since
the gradient is linear, we combine the neural net output of all
data points in a batch to compute the parameters sensitivity
value for all classes. For subsequent batches the values are
recalculated and are added with the previously stored values.
After every batch, this calculation of parameters adds a
compute overhead of up to 0.7x the time taken to process a
batch. Additionally, since the sensitivity value of a parameter
is different from its actual value in the model, this requires
an addition memory of O(CW) at each edge node. With
large NN model sizes and resource constrained edge nodes,
this method might not be a viable option. However, the
pre-calculated values help to quickly respond by simply
performing a lookup in the sensitivity map when a request
for a portion of the model is made.

The second approach involves identifying the sensitivity
of parameters on-demand when a request is received at the
helper node.To keep overhead of the on-demand selection
process low we decided to use data reservoir methodology
over techniques such as testing each neuron [21] or adding
Gaussian noise at different layers [40]. We keep a smaller lo-
cal database of last B request batches. On request, sensitivity
of the parameters is calculated against the stored batches in
a similar way as before. The effectiveness and overheads of
this method depend on B. In general, the choice depends
on the workload dynamics and model. For our datasets and
models we experimentally found that B=1 works well as
each request batch consists of sufficient data points.

These two approaches showcase a tradeoff between the
memory required to calculate the sensitivity parameters
and response time. §7.3 discusses the overhead involved in
each of them. CLUE provides a pluggable parameter selection
component which enables the use of any technique.

Significant Parameters. Once the helper node determines
the sensitivity of the parameters for the requested classes, the
system selects the top Z percent of the sensitive parameter
(both positive and negative). For a multi-class request
we average the sensitivity value for all the classes before
selecting the top Z parameters. After selecting the top
parameters, CLUE selects the corresponding weights of
these parameters from the model. Since these parameters
are the most relevant for classifying a class, we refer to
them as significant parameters. The significant parameters are
compressed, which reduces the data size by up to 3-5x, and
are sent to the target node. The exact setting of Z depends on

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 6

—— CLUE
== AVERAGE
=+ REPLACE

Model Error
N w S w
o o o o

=
o

20 40 60 80 100
Batch ID

(a) Non overlapping workload

Model Error
[N w »
o o o o

Batch ID

(b) Overlapping workload

Fig. 2: Multi-model approach compared with averaging or
replacing the existing model parameters: CLUE performed
well and was consistent in both the scenarios; replacing the
parameters worked well with overlapping classes and average
performed better when the classes at the two nodes were non-
overlapping.

the model as well as the tradeoff between the data transfer
versus knowledge transfer to improve the target node model.
For our dataset and models we experimentally found that Z
can vary in the range 20% to 50%. §7.4 illustrates the impact
of different values of Z and we leave the automatic tuning
of Z as a topic for future investigation.

5.2.2 Helper Model

After receiving the significant parameters from the helper
node(s), the target node needs a mechanism to apply these
updates to improve the predictive performance of the node.
A simple approach would be to apply the received knowl-
edge directly on the existing target model. Different from
replacing the significant parameters is to update the model
by averaging the weights of target model with the received
significant parameters, similarly to federated averaging [41].
The outcome of replacing or averaging the existing
parameters is dependent on the workload distribution. The
workload distribution observed at different nodes in the
system can vary. It can be overlapping where the workload
observed at the target is a subset of the workload observed
at another node, or non-overlapping where the other classes
observed at the nodes are not the same. When the target
node workload distribution is a subset of the workload
observed at the helper node (overlapping), replacing the
parameters would provide more benefits. However, when the
workloads differ (non-overlapping), averaging the parameters
would help more when compared to parameter replacement.
Our evaluations, done for 100 request batches on the EM-
NIST dataset using MobileNet convolution neural nets for
image classification (more details §7.1), showed that for a
non-overlapping workload replacing the parameters further
increases the model error rate since it replaces parameters
for classes already learned by the model, as shown in
Figure 2(a). When the target and helper model observe a
similar workload, replacing the parameters helps, whereas
averaging the parameters would result in the target model
taking more time to adapt to the new changes, Figure 2(b).

Multi-model Approach. To decouple the dependence on the
workload distribution across the target and helper node(s)
in the system, we use the significant parameters to create a
helper model. The intuition behind this approach is based on
the ensemble learning technique where multiple models are
strategically generated and combined to improve the overall
performance of a model. We create a helper model which
acts as a discriminator network to responds to a particular
class, in our case the newly introduced class(es), without
discriminating the existing classes.

As neither the target model nor the significant parameters
can solely make accurate prediction, we use multi-model
approach where a helper model is created using boosting
technique [42]. The original target model is used for main-
taining the accuracy for the existing classes while the helper
model provides a boost in accuracy for new classes which
were already known at the helper node. The final output is a
resultant of combining the output from both models.

Helper model creation. As the target node receives only
a subset of the parameters from the helper node(s), we
consider two ways to create a helper model. In the first
method, helper model is created by using the significant
parameters, and the remaining parameters of the model
are set to 0. By having some weights in the layer as 0
effectively reduces the magnitude of the output of that layer,
eventually impacting the overall output. In the worst case,
if the parameters in one of the layers are all set to 0, all
intermediate values and final class output scores would be
the same for any input. In such a case, no useful information
could be derived from the helper model output. Therefore,
we consider a second method, which creates a helper model
by combining the significant parameters from the helper
node with the existing parameters from the target node.
The resulting boosted helper model is represented as shown
in Equation 2. Figure 3 showcases a helper model created
using the target model, compared to the one created using no
prior information: BOOST experiences a lower spike in the
model error rate when a previously known class is observed
at the target, and it more quickly adapts and converges to its
original accuracy.

Wh wse if W is significant)
! Wi, if W is not significant

where W' and W* represents the target node and significant
parameters, respectively.

Boosted Model Output. After creating the helper model
the prediction function is updated to take into account the
classification outputs from the helper model. At this stage
we have a target model, good for the existing classes, and
a helper model, good for the new ones. We use average of
both the models to compute the final output, though other
function can also be used.

Managing Pool of Helper Models. The use of helper models
improves the overall performance of the model. However,
it creates the problem of repeatedly generating new helper
models, on-demand, whenever a concept drift is detected.
Maintaining an ever lasting pool of helper models would
exhaust resources at the edge node. To alleviate this we take
two steps. First, since the goal of the helper model is to
provide assistance to the target model, we freeze the helper
model by not retraining it, while we continue to (re)train

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 7

—— CLUE (BOOST)
== CLUE (ZERO)

60 A

Model Error
S
o

N
=)

20 40 60 80 100
Batch ID

Fig. 3: Boosted model error rate for two types of helper models.
Helper model created with boosting from target model performs
better than the one created only using the significant parameters.

the target model. Second, we discard the helper model(s) as
the performance of the model stabilizes for the class(es) for
which the helper model was created.

A straightforward way would be to discard the model
after a user-defined number of batches. Discarding a helper
model prematurely could result in a second smaller drift,
while discarding it too late would result in unnecessary com-
putation and resource usage. To avoid this uncertainty CLUE
uses a dynamic approach where after every request batch the
performance of the target model is tracked separately and
is compared to the pre-drift performance. When it reaches
the earlier performance level helper model is discarded. In
presence of multiple helper models forming a pool, CLUE
provides an additional check which compares the predictive
performance of the new classes for the past L batches to
determine which model to discard. The precise value of L
depends on the number of samples observed, models and
dataset. For our experiments the value was experimentally
determined and we leave the online tuning of L as a topic
for future work. The system allows the precise discard policy
to be configurable by the developer.

6 CLUE RUNTIME

Components. The CLUE runtime is divided into three main
blocks - ML Model Interface (ML), Knowledge Transfer (KT),
and Collaborative Component (CC), shown in Figure 4.

The CC component controls how a node collaborates
with other nodes in the system. It encapsulates the function-
ality needed to discover a helper node and to determine
when to reach out for help. Synchronizer is responsible for
exchange of metadata that supports helper node discovery.
Drift detector determines when interactions with a helper
node get triggered, i.e., when the local model degrades in
performance, based on a drift detection algorithm., as in [6].
In [7], synchronization is performed periodically, and is
always coupled with a receiving help via model distillation.

The ML component provides the interface to the ML
framework (e.g., PyTorch or TensorFlow). It uses the predict
interface to perform the prediction on the incoming request
data batch. The output of the prediction is passed to an
operator component. During normal operation, the prediction
result is used directly. In the presence of helper model(s),
during periods of knowledge transfer, the operator averages
the outcome of all the model(s). The cycle is completed with
training the resident target model with the new batch of data
using the (re)train interface.

The KT component facilitates the knowledge transfer
mechanisms. At each node, parameter picker supports the
parameter selection mechanism, and is invoked when a

Cartel
Predict ML

Operator (Re)Train

Discard Checker KT

(5) EDGE NODE
Booster Parameter Picker == = = = = = e - - |
,,,,,,,,,,,,,,,,,,,,,,,, 1
} ML Model Inference (ML) }] !
cc ! " | -
Predict “
Synchronizer Drift Detector } I b } o Data
! I
\e Operator (Re)Train D
HELPER NODE (S e ,,,,,,,,,,,,,,,, 1 \
N Knowledge Transfer (kT) | | !
!
| Discard Checker | :
I | H
} Parameter Picker Booster + =!
METADATA SERVER (MdS) | |
! I
[il I
r o> Neighbor Finder) R ¢) |
' | Collaborative Component (CC) 1 .
1 | |
1 Collector === == — - -1 Synchronizer Drift Detector @
e - A A 19
1
U

Fig. 4: CLUE System Components.

node receives a request for help for a specific class(es).
The process is performed by either the continuous or the
on-demand mechanism. The resulting parameters are sent to
the target node where booster creates a new helper model.
When helper model(s) are created, the operator function is
adjusted to perform averaging, and a discard checker monitors
the convergence process to determine when helpers are to be
discarded, dynamically or statically after predefined number
of batches, based on a configurable policy.

CLUE exposes APIs to configure the system parameters
controlling the knowledge transfer process in terms of the
percentage of significant parameters transferred from the
helper, the number of request batches to be locally stored
for on-demand parameter selection, the discard policy, etc. In
this manner, CLUE exposes new tuning knobs that control the
knowledge transfer process in terms of its effectiveness in
improving the target model and the overheads it introduces,
which can be used for new types of resource orchestrators
for distributed learning.

Implementation. We implemented a prototype of CLUE for
the PyTorch and TensorFlow (TF) ML frameworks, using
Flask to support the communication among different nodes.
The use of the different frameworks exposes the follow-
ing implementation requirement. The significant parameter
selection can be done in different ways, however using
the dynamic selection approach would require the ML
framework to provide APIs for calculating the gradients on
the model. The framework should also provide the capability
to dynamically create, use and discard helper model(s), in
conjunction with the existing model. Given the available APIs
in PyTorch, our implementation of CLUE supports all the
mechanisms described in §5. TF creates a static computation
graph before a model is run and any interaction with the
model is tightly integrated with the session interfaces and
state placeholders. Due to these limitations, the current
TF implementation of CLUE cannot support on-demand
significant parameter selection, and only uses the continuous
significant parameter mechanism. Since TF does not permit
models to be dynamically created, we use a pool of helper
models from the initial state of the experiment. The resulting
TF implementation of CLUE introduces runtime memory
overheads which may be prohibitive for practical settings.
We note that the limitations of the current TF APIs may

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 8

be addressed in future versions of the system, and we still
compare the two implementations to illustrate the generality
of CLUE for realizing knowledge transfer across models
developed with different ML frameworks (§7.5).

7 EVALUATION

The goal of the evaluation is to experimentally validate the
effectiveness of the mechanisms introduced, in terms of their
ability to perform knowledge transfer among neural network
models. Our previous work [6] addresses the efficiency and
cost associated with the drift detection and helper node
selection mechanisms. In this work, we explore the following
questions:

1. How effective is the knowledge transfer mechanism
enabled by CLUE in allowing neural network models
to adapt to change, and what impact does it have on
improving the overall model performance and curtailing
data transfer costs? (§7.2)

2. What are the overheads introduced by the parameter
selection in CLUE on the helper nodes, and by multi-
model learning on the target node? (§7.3)

3. What is the impact of the different system-level parame-
ters and the effectiveness of the collaborative mechanisms
for drift detection and helper node selection on the overall
benefits CLUE provides? (§7.4)

We used multiple workloads, models, and frameworks, as
described below, to ensure the generality of the observations.

71

Experimental Setup. As mentioned earlier, edge servers
are potentially deployed at cellular towers and base stations.
These nodes can be equipped with GPUs and Edge TPUs
accelerator [11]. We evaluate CLUE on a cluster of 5 Intel
Xeon nodes on the Chameleon Cloud, each with 125GiB
RAM with 48 cores running 2 threads per core at 2.30GHz.
The experiments are performed with two versions of CLUE,
integrated with two existing machine learning frameworks:
PyTorch v1.7.1 and TensorFlow v2.3.1 (§7.5).

Applications, Datasets, Workloads. We use two application
use cases in the evaluation: image classification and intrusion
detection (§7.6). For the image classification use case the
results are obtained with the EMNIST dataset, consisting of
280k data samples. We made similar observations with the
smaller MNIST dataset. For the intrusion detection use case,
we used the NSL-KDD dataset which consists of benign
network requests mixed with various malicious attacks
consisting of 126k records.

During the experiments, each edge node processes re-
quest batches over time, with each batch consisting of a
varied number of data points corresponding to different
classes in the dataset. To create a change in class priors
that triggers the need for collaboration and KT, we generate
workloads with several synthetic request patterns, corre-
sponding to introduction of new class(es) at an edge node,
fluctuation, where new class(es) appears and disappears, with
overlapping and non-overlapping classes, as described in
§5.2.2. The use of synthetic workload patterns is due to the
limited availability of real infrastructure and data with both
temporal and spatial metadata on the request distribution.

Experimental Methodology

The concrete patterns we use are based on information about
distributions used in other research [3], [6], [12].

Models. For the image classification use case, the presented
results are based on PyTorch and the MobileNet (3.54M),
DenseNet (8.064M) and ResNet (11.694M) CNN models.
The models are fine tuned using 2k data points from the
EMNIST dataset using Adam optimizer and learning rate
0.00005, and trained for 20 epochs with batch size of 30.
We also used the MobileNet, DenseNet and InceptionNet
models with TensorFlow v2.3.1, to confirm the effectiveness
of CLUE across different machine learning frameworks (§7.5).
The intrusion detection use case uses a four-layer DNN
model with 209k parameters [43]. For model initialization we
used the SGD optimization algorithm with a learning rate is
0.000005 and 25k data points, and also trained for 20 epochs
with batch size of 30.

Baseline. Collaborative learning shares similarities with FL
(§2), making it as an obvious choice for baseline. In our
evaluation, we consider FL with FedAvg [41] as one baseline,
and a second baseline is isolated learning at each edge
node, avoiding wide area data transfers but with slower
adaptation to change. The goal is to showcase how the
mechanisms in CLUE enable customized edge models with
acceptable accuracy similar to a global model while reducing
data transfer costs. Additionally, our previous work [6]
highlighted the advantages of collaborative learning over
centralized learning.

Metrics. When using local, tailored models, change in the
workload pattern at a node due to previously unseen classes,
results in a temporary drop in the predictive performance
of the model, observed as an increase in its error rate.
The time taken for the model to reach back the acceptable
performance levels is defined as the model’s adaptability to
change. We evaluate CLUE by measuring the improvements
in adaptability to change compared to isolated learning.
Given the synthetic workloads, we measure time in terms
of the number of batches that need to be processed for the
model performance to reach the same error rate as what is
possible with FL. We also measure the improvements system
provides in terms of per-node and aggregate data transfer
costs (in bytes). Finally, we measure the runtime overheads of
CLUE in terms of additional compute and memory resources.

7.2 Benefits of CLUE
7.2.1 Adaptability

Figures 5 and 6 illustrate the adaptability enabled by CLUE
for the introduction and fluctuation workload where the
system uses 50%, 20% and 30% of the significant parameters
for MobileNet, DenseNet and ResNet, respectively. The
parameter Z that controls the percentage of knowledge
transferred for each of the three models is experimentally
chosen to that it minimizes data transfer while keeping
the model adaptability within 10% of the best case. For
the testbed configurations in these experiments, the helper
model is created within 4 request batches after the drift
detection. We observe that with CLUE, the models converge
to the performance level equivalent to using a global model
up to 2 to 3.5x faster as compared to an isolated system.
Also, in Figure 6(a) we observe a second spike in the model

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

40 30
30
20

10

FEDERATED FEDERATED FEDERATED

20
10

SVAMIAANA e AN A A AA A A A

_ 40 . 30 _ 40
s ISOLATED s ISOLATED s ISOLATED
£ 30 £ £ 30
i & 20 i
o 20 T o 20
° T 10 3
s S 210
A~A—A N A ~ AR~ P = o o~

w
=}

40
30
20
10

CLUE CLUE

N
=]

-
o

5
A/

80 90

10 20 30 40

-
70

A%
40

e Y
80 50 60 80 90 100

Batch ID

50 60
Batch ID

50 60 20 30 70

Batch ID

(a) MobileNet

100 10

(b) DenseNet (c) ResNet

Fig. 5: Performance comparison for introduction workload distribution (lower error rate is better) showcasing overall model error
change. Misclassification of introductory class degrades the model performance. CLUE is able to quickly adapt to the change
in distribution (given by the horizontal arrow). The horizontal dotted line (in black) defines the lower bound obtained through

averaging the federated learning error rate.

FEDERATED 10

FEDERATED FEDERATED

T SAMC A AN A

ISOLATED

Model Error

ISOLATED

ISOLATED

CLUE

CLUE

CLUE

50 60 70 90 100 10 20 30 40
Batch ID

(a) MobileNet

80

(b) DenseNet

50 60 70 80 90 100
Batch ID

(c) ResNet

50 60 80 90 100

Batch ID

70

Fig. 6: Performance comparison for fluctuation workload. CLUE is able to adapt to the changes in the distribution and behaves

close to a federated learning system.

TABLE 1: Average data transfer cost (MB) associated with an
Out and In operations for target node in CLUE and participating
member node in Federated learning.

highlights the cost for each operation based on the model. At
the fundamental level CL uses pull (on-demand) approach
where In cost occurs only when there is a change observed at
a target node. While FL uses push approach where both Out

Model | Operation | FL | CL | Gains (x)
) Out 638 0.00058 | 11000
MobileNet | 1 7.36 457 1.61
DenseNet | Ot 1618 | 0.00058 | 27896
In 1835 | 8.80 2.08
ResNet Out 1219 | 0.00058 | 21017
In 1375 | 855 1.60

performance as the class reappears in the later part. This
is because the other two models are larger and are able to
retain more information even when the class was not present
for few request batches.

7.2.2 Reduction in data transfer costs.

CLUE exposes a tradeoff in spending cycles to adapt to the
change in workload versus the data transfer cost associated
in creating and updating a global model, as done in FL.

Cost Associated with Operation. To capture the network
usage we divide the operations associated with these systems
into Out and In categories. For FL the delta in the local model
since the last batch captures the model update M U,,; as the
Out cost and the received aggregated model update MUj,
is the In cost. For CLUE, the metadata sent to the MdS
server MdS,,; is considered as Out cost and when data
drift is detected on a node, that node incurs the knowledge
transfer cost KT;, which is captured as In cost. Table 1

and In cost occurs regularly, which when taken into account
for the entire experimental duration results in overall larger
data transfer when compared to CL.

Data Transfer Breakdown Analysis. Using the above oper-
ations the total data transfer cost for the experiment can be
represented as follows:

’

DTFL = (Z MUout + MU’LTL * ’I’L) * fupdate (3&)

i=1

d
DTcp = MdSeut + th * KT,
=0

(3b)

where for FL n is the total edge nodes in the system, n’
is subset of nodes participating in each round and fypdate
is aggregation frequency. For CL MdS,,; is the metadata
send to the MdS service while d represents the total number
of drifts observed and h; the number of the helper node(s)
needed for each drift.

Effect of Aggregation Frequency. The aggregation fre-
quency used for FL can impact the model accuracy and
the total backhaul data transfer. While sending the model
updates less frequently will impact the overall data transfer
cost, it however will not impact the operation cost highlighted

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 10

1200

40

= Aggregator
i — FL(]) Member
L e FL (5)
l - FL(10)
& Isolated
! CLUE

5
8
S

Model Error
N w
o o

-
o

Data Transfer Normalized

0 20 40 60 80 100

Batch ID

(a) Predictive Performance (b) Data Transfer

Fig. 7: Comparison of federated learning (FL) predictive perfor-
mance for introduction workload as aggregation frequency is
changed from sending the model update after every batch to
5 and 10 batches (left). Total data transfer (in and out) gains
in CLUE for a single node when compared against different
FL settings. We change the aggregation frequency (f) and the
number of member nodes selected for each round (n’) (right).

in the Table 1. Figure 7(b) compares the backhaul usage
savings from the perspective of the aggregator and member
nodes, and illustrates the change in the data transfer gains
for a single node as the aggregation frequency for FL
changes while keeping the nodes that participate in each
round equal to all. We observe that CLUE helps in reducing
data movement cost by 270 to 30x for each participating
member node, or 1070 to 120x for the aggregator node.
Importantly, as illustrated in Figure 7(a), such a change could
impact the model’s predictive performance of FL, because
of absence/stale knowledge about the new changes in the
workload at the member (target) node.

Effect of Member Node Selection. A large scale FL de-
ployment to perform model update in each round selects
only a portion of the member nodes (n’). This selection
can be performed randomly or based on some eligibility
criteria [28], [44] which would impact the data transfer
cost and model convergency rate in FL system. In our
experiment we randomly selected three out of the five nodes
and observed that CL still saves data transfer cost by 270 to
25x for each participating member node, or 1070 to 90x for
the aggregator node, as illustrated in Figure 7(b).

Overall Experimental Savings. FL is data movement inten-
sive, given that even small amounts of raw data can result
in large amounts of information being communicated over
the network [20]. Different methodologies such as tuning the
aggregation frequency, number of member node selection
or using sophisticated training algorithms could help in
communication costs reduction.

At the system level, involving large number of nodes, to
help create a global model FL system requires model updates
to be regularly shared by different nodes. This adds to the
communication cost in FL when compared to a CL system
where data (KT) is only transferred between few nodes only
when there is a need. In our evaluation setup, a participating
member node observes on average 1240 to 106M B of data
transfer. The total data transfer for all the nodes ranges
from 4920 to 415M B for various FL configuration while
only 4.85M B was transferred in CLUE for same workload
distribution, a reduction of up to 103 x in the overall data
transfer costs for all the entire system. Thus, when data
transfer cost are combined across the nodes in the system,
the total combined data savings for CLUE would be much

higher than a federated learning system.

7.3 Cost of CLUE Mechanisms

Extracting significant parameters. The continuous method
for parameter selection stores the sensitivity value of all
parameters for all of the classes, and its overheads depend on
the model. For our dataset and given models, this introduces
additional memory overhead of 140 - 470M B, depending on
the model. The on-demand approach creates a local datastore
which is only used when a request from a target node is
received. For our dataset, storing only the most recent request
batch was sufficient and required an addition of 6.8M B of
memory. We performed the same experiments for different
batch sizes, and, across workloads, observed similar gains.
In terms of the compute overhead, the on demand ap-
proach adds to the response time 0.9 to 1.35x time required
to process a request batch. The continuous approach, by pre-
calculating these values, avoids such delays in the critical
path of response, however, to maintain the sensitivity map it
adds an overhead of up to 0.7x time required to process a
request batch, for every request, as shown in Table 2.

TABLE 2: Overhead in performing mechanisms described in
Section 5 normalized with the time required to process a request
batch.

Model Continuous | On-Demand Helper

‘ (x) per batch ‘ (x) per request ‘ Model (x)
MobileNet| 0.70 0.98 0.08
DenseNet | 0.65 1.35 0.11
ResNet 0.70 0.95 0.14

Helper Model Creation. The time taken to create the model
depends on the size of the portion of model transferred from
the helper node (KTj;,), as shown in Table 1, and the time
taken to create a model at the target node. Upon receiving
the significant parameters creating a helper model takes only
up to 0.14x the time required to process a request batch.

Management of Helper Models. A helper model in CLUE
uses similar memory as the resident node model however
since the model is frozen, no additional resources are
required after its creation. Using multiple helper models in a
pool adds to the memory overheads. Thus, if the knowledge
about the introductory classes at the target node is dispersed
among multiple nodes, in such a case CLUE exposes a
tradeoff of using more memory for a short duration of time
by deploying a pool of helper models vs. spending more time
in adapting to the changes. Figure 8 shows the collaborative
performance of using help from only one of the nodes at a
time (no pooling) compared to creating a pool of models from
multiple nodes and averaging across all at the same time.
The ability to combine multiple knowledge sources provides
the lower bound on adaptability to the new changes in the
system.

Effect of Number of New Classes. The change in the system
in the above experiments is caused by the introduction of
two new classes at the edge node. The overhead on the
collaborative process depends on the number of helper nodes
involved. To provide better understanding we can divide
this into two scenarios where knowledge relevant to the new
class(es) is: (i) available at one helper node, (ii) spread across
multiple helper nodes. The significant parameters extracted

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 11

\ — - ISOLATED
A —— CLUE
== CLUE (NOPOOLING)

Model Error

2‘0 4‘0 G‘O 8‘0 160
Batch ID

Fig. 8: Pooling multiple helper models improves the predictive

performance and helps the system adapt to the new changes

faster.

from a single model depend only on the user defined value
Z and is independent on the number of requested classes,
because for a multi-class request the sensitivity value for all
the classes is averaged before selecting the top Z parameters.
Thus, capping the total number of parameters sent from the
helper node to Z parameters. However, if the new classes
introduced at the target node are spread across different
helper nodes, in such a scenario the total KT}, data transfer
cost would be the aggregation of knowledge from all the
helper nodes, as shown in equation 3b.

7.4 Sensitivity Analysis
7.4.1 Dirift Detection Timeliness

In CLUE, it is important to detect concept drift quickly,
because a delay in detection can lead to a decrease in the
model’s predictive performance. To show the impact of slow
concept drift detection, we modified the drift policy to delay
the request to the MdS for logical neighbors by a variable
number of batches. The results in Figure 9(a) show the impact
of drift detection delay on the overall model’s performance
and the misclassification rate of the introduced class for the
MobileNet model. If the delay is too large (e.g., 15 batches in
the figure), model transfer does not provide any collaboration
benefits, because online retraining would have eventually
improved the model.

7.4.2 Impact of quantity of knowledge transferred

CLUE controls the portions of the significant parameters that
are transferred via the parameter Z. Figure 9(b) shows the
impact of different values of Z on the adaptability and data
transfer costs for introductory workload for MobileNet; the
results with the remaining models had a lower sensitivity
to Z than for MobileNet. The results illustrate first that an
effective helper model can be created using only a portion
of the relevant parameters. Second, CLUE introduces new
ability to control a tradeoff among learning performance
and data transfer costs, by using the amount of knowledge
that should be transferred across nodes as a configuration
knob. This can be leveraged by future learning management
policies. For instance, the higher value of Z (90) may provide
improvements in error rate, when compared to Z (10),
specifically for this setup 25% reduction in average model
error rate while using the helper model. However, it would
result in 5.53x more data transfer.

7.4.3 Helper Node Selection

In a distributed environment with a large number of edge
nodes, various methodologies exist for selecting a helper
node. This selection process can be random or based on

40 — cuwe 40
++++ Delayed = 10
35 ~= Delayed = 15 35

— CLUE (90)
— = CLUE (50)
—- CLUE (10)

NN

Model Error

20 40 60 80 100 20 40 60 80 100
Batch ID

(a) Delayed Drift Detection (b) Significant parameter selection

Fig. 9: Impact of various drift detection policies on the overall
model and introductory class error rates where “Delayed by
X” refers to drift detection being postponed by X batches (left).
Comparison of impact of percent of significant parameter Z
(right)

similarity measures. The core concept of collaboration is
to leverage the existing knowledge pertaining to specific
class(es). To emphasize the significance of this aspect, we
introduced modifications to the selection algorithm. Specifi-
cally, for the initial request, the algorithm randomly selects
the least similar node, whereas for subsequent requests,
it chooses the most similar node. Figure 10(a) illustrates
the impact of these modifications on the overall model
performance. In this scenario, the first helper node lacks
the knowledge associated with the newly observed classes
at the target node. As a result, the Knowledge Transfer
(KT) process does not contribute to an improvement in
the overall error rate; instead, it exacerbates the situation.
Given the persistently high model error rate, the system
initiates another request for help. This time, KT is performed
from the most similar node, which leads to an enhancement
in the model’s performance compared to isolated learning.
Multiple collaborations also impacts the overall data transfer
by increasing it by 2x.

Impact of Quality of Helper Node. While selecting similar
nodes is crucial, it is equally important to consider the
quality of the workload observed by each node. This factor
can significantly influence the adaptability of the model
performance at the target node during collaboration. To
understand this, in Figure 10(b), we compare the execution
of CLUE and Z(50) with MobileNet and the same helper
node as used in the previous experiment, to that of two other
scenarios where the helper nodes have observed only 50%
(L50) and 10% (L10) of the data observed in the baseline.
We observe that the quality of the helper node does impact
the realized benefits from CLUE, however, using even a
weaker helper node (L10) can still be useful, compared to
just learning in isolation. Note that, simply increasing Z for a
weak helper node would not be helpful, as the quality of the
model parameters is not good for the required knowledge.

7.5 Extensibility to Different ML Frameworks

To demonstrate the generality of the CLUE, we implement
it for PyTorch and TensorFlow (TF). Using the same exper-
iments as for PyTorch, and the MobileNet, DenseNet and
InceptionNet CNNs, we measure that TF CLUE adapts to
change up to 3x faster than isolated learning, while using
only 30-60% of the model. This results in overall data transfer
reduction of 700 to 1200x compared to FL.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 12

20 : —- ISOLATED

3 — clE

35 1 == CLUE (L50)
1 +++ CLUE (L10)

Model Error
NN
Model Error
NN

20 40 80 100 20 40 60 80 100

60
Batch ID Batch ID

(a) Incorrect Helper Node (b) Helper node quality

Fig. 10: Comparison of consequences of incorrect helper node
selection, with the correct helper node being identified 10 batches
later (left) and impact of quality of helper node model (right).

7.6 Use Case
7.6.1 Smaller Model

The standard models mentioned earlier may be too large for
the EMNIST dataset, which raises concerns. To solve this
problem, we used a smaller neural network model with only
four layers, containing 470k parameters and Z(50). Using the
same introductory workload, Figure 11(a) demonstrates that
CLUE is able to adapt to the changes 2.5 faster than isolates
system, while achieving a similar model performance as FL
with an overall 860 less data transferred.

7.6.2 Intrusion Detection

The IDS use case is based on the NSL-KDD dataset [45]
which consists of four types of attacks. The testbed consists
of 5 edge nodes, where initially the target node observes
only the Remote-to-Local (R2L) and Probe attacks, while the
other nodes experiences all of the attacks. After some time
the target node starts to experience the DoS attack. We use a
four layer DNN model as described in §7.1 with introduction
workload consisting of 100 request batches with 400 data
points in each batch and Z(40).

Results. Figure 11(b) illustrates the model performance for
FL, CLUE and isolated. FL allows the target node to classify
the attack immediately, since the attack was observed by
other nodes earlier, and is captured in the global model
updates. In isolated learning mode, the target node experi-
ences both a large spike in its model error rate, and takes
substantial time (=20 batches) to retrain its model to the
original performance (error rate). CLUE helps the target node
adapt to the new attack 1.75x faster than isolated system
and to provide similar average model error rate compared to
the FL system with overall 600x less data transferred.

8 DiIscuUsSION AND FUTURE WORK

CLUE enabled and demonstrated the potential of collabora-
tive learning with neural networks, while achieving similar
predictive performance compared to federated learning, but
with orders of magnitude lower overall data transfer cost.

Collaboration Tipping Point. The evaluation demonstrates
that the KT mechanisms in CLUE make it possible to perform
collaborative learning for NN models in a way that maintains
good accuracy while reducing data transfer by orders of
magnitude. The precise data transfer gains of CLUE over FL
depend not only on the evaluated configuration parameters
of FL, but also on the properties of the workload, particularly

A’ «+++ FEDERATED
—- ISOLATED

« ++++ FEDERATED
— Cle 40 .,.

—- ISOLATED

\ — ClE

Model Error
Model Error

10

80 100 20 40 60 80 100
Batch ID

(@) (b)

Fig. 11: Comparison of model performance using introductory
workload for (a) network attack dataset (b) smaller model on
EMNIST dataset.

the frequency and distribution of input drift occurrences.
More frequent drifts will reduce the observed benefits.
However, we show that at the level of a participating member
node, the gains are substantial, therefore the number of drifts
needs to increase in a major way for, the data transfer gains to
completely disappear. With CLUE we offer new mechanisms
that will allow ML operators to tune the configuration of
the ML application deployments, but we leave the support
for policy engines that will evaluate the tradeoffs and make
(dynamic) configuration recommendations to future work.

Privacy. CLUE does not share the raw data received at the
edge, however, it assumes the nodes can act in collaboration.
This means knowing specific trends at various nodes in the
system is not a concern. Figure 1 is one design that would
allow the trends to get shared among the nodes. To provide
better privacy guarantees, an alternative design point is to
use CLUE while avoiding sharing trends directly among
edge nodes. In such a case, to provide on-demand relevant
portion of the knowledge from the helper node, CLUE, could
use a trusted centralized broker as described in (§4). This
alternative design still retain the overall benefits of data
reduction due to on-demand nature of collaborative learning,
while obfuscating the helper node from other peers. The
significant parameter selection only sends the weights of
the model. These weights are similar to the summary of
the changes, also called model update, sent in federated
learning. Thus, any privacy concerns would be similar to
the one observed in approaches such as federated learning.
Additional techniques such as differential privacy, reputation-
based helper node selection, etc., could be integrated with
the mechanisms for helper node selection and helper model
pool management, however this is beyond the scope of this
paper.

Model Heterogeneity. CLUE assumes the same model struc-
ture at all the nodes in the system. The focus with this work
was to create a system support for collaborative learning for
NN. New support for “once-for-all” networks [46] create a
path to leverage a same model in heterogeneous settings,
and we plan to explore support for collaborative learning in
such settings in the future.

9 RELATED WORK

Distributed Machine Learning. Federated learning creates
a generic model that is used by all nodes in the distributed
system. Improvements have been made to its accuracy and
convergence rate [28], [1], [47], [48], [49]. To address data
transfer overheads in geo-distributed systems, Gaia [30]

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 13

distinguishes among communication over local vs. wide area
networks. It uses a threshold-based approach to determine
the importance of model update while CLUE is concerned
with identifying a portion of the model that most contributes
to the model quality with respect to a specific class. For
settings where a global model is not required, distributed
collaborative learning system are developed [50], [7], [6], [51].
CLUE contributes to such approaches by proposing a generic
system support for such system to use neural networks.

Knowledge Transfer Technique. CLUE uses significant
parameters of an ML model to perform knowledge transfer.
[52], [53], [21] are different approaches to determine sig-
nificant parameters from a model. CLUE uses similar but
simplified techniques to provide for fast calculations and
enable their online use. Unlike maintaining multiple models
and using ensemble techniques to improve the prediction [54]
CLUE uses ensemble approach on the dynamically created
helper models which are destroyed in the future. CLUE is
intended to be a general framework that can be used with
different techniques for significant parameter selection, with
a corresponding impact on the benefits or costs of learning.

10 CONCLUSION

We introduce CLUE, a system that enables collaborative
learning for neural networks. CLUE contributes new support
for knowledge transfer across neural networks, which makes
it possible to dynamically extract helpful knowledge from
one node — in the form of significant model parameters
— and to apply it to another — using dynamically created
helper models and multi-model boosting. The specific
methodologies used in the current prototype are one way
to perform this, however the APIs provided by the system
allow easy substitution with other algorithms in the future.
Furthermore, it provides new interfaces to exercise the
tradeoffs among accuracy and overheads in the learning
process that can be exploited in future resource management
policies. CLUE is prototyped and evaluated with several NN
models for the PyTorch and TensorFlow ML frameworks.
The experimental results demonstrate that CLUE can enable
knowledge transfer across NNs in a manner that improves
the model accuracy when a drift occurs, compared to learning
in isolation, while reducing data transfer costs by orders of
magnitude, compared to federated learning.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable feed-
back. This work was partially supported via industry grants
from Cisco and VMware Research, the National Science
Foundation via PP0S5-2217070 and CNS-1909769, and using
research infrastructure provided by the NSF Chameleon
Cloud.

REFERENCES

[1] J. Kone¢ny, B. McMahan, and D. Ramage, “Federated optimization:
Distributed optimization beyond the datacenter,” arXiv preprint
arXiv:1511.03575, 2015.

[2] “ETSI Mobile Edge Computing,” https://www.etsi.org/
technologies/multi-access-edge-computing.

[3] M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, and M. Zorzi,
“Machine learning at the edge: A data-driven architecture with
applications to 5g cellular networks,” CoRR, vol. abs/1808.07647,
2018. [Online]. Available: http://arxiv.org/abs/1808.07647

[4] A.Padmanabha Iyer, L. Erran Li, M. Chowdhury, and I. Stoica,
“Mitigating the latency-accuracy trade-off in mobile data analytics
systems,” in Proceedings of the 24th Annual International Conference
on Mobile Computing and Networking, 2018.

[5] X.Zhou, Z. Zhao, R. Li, Y. Zhou, and H. Zhang, “The predictability
of cellular networks traffic,” in 2012 International Symposium on
Communications and Information Technologies (ISCIT). IEEE, 2012.

[6] H.Daga, P. K. Nicholson, A. Gavrilovska, and D. Lugones, “Cartel:
A system for collaborative transfer learning at the edge,” in
Proceedings of the ACM Symposium on Cloud Computing, 2019.

[71 Y. Lu,Y.Shu, X. Tan, Y. Liu, M. Zhou, Q. Chen, and D. Pei, “Col-
laborative learning between cloud and end devices: an empirical
study on location prediction,” in Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, 2019.

[8] M. Satyanarayanan, W. Gao, and B. Lucia, “The computing
landscape of the 21st century,” in Proceedings of the 20th International
Workshop on Mobile Computing Systems and Applications, 2019, pp.
45-50.

[9] “Poweredge C servers. proven performance and
hyper-efficiency at scale.” [Online]. Available: https:
/ /i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_
Documents/ar/dz/ESG-PowerEdge-C-Portfolio-Brochure.pdf

[10] “State of the edge 2021: A market and ecosys-
tem report for edge computing.” [Online]. Avail-
able: https:/ /www.lfedge.org/wp-content/uploads/2021/08/

StateoftheEdgeReport_2021_r3.11.pdf

[11] G. Cloud, “Edge tpu,” https://cloud.google.com/edge-tpu.

[12] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das,
“Understanding traffic dynamics in cellular data networks,” in 2011
Proceedings IEEE INFOCOM. IEEE, 2011.

[13] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv., vol. 46,
no. 4, 2014. [Online]. Available: https:/ /doi.org/10.1145/2523813

[14] D. Kifer, S. Ben-David, and]J. Gehrke, “Detecting change in data
streams,” in Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30. VLDB Endowment, 2004.

[15] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” in NIPS Deep Learning and Representation
Learning Workshop, 2015. [Online]. Available: http:/ /arxiv.org/abs/
1503.02531

[16] C.Tan and J. Liu, “Online knowledge distillation with elastic peer,”
Information Sciences, vol. 583, pp. 1-13, 2022.

[17] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, T. Jiang, J. Crowcroft,
and P. Hui, “Edge intelligence: Architectures, challenges, and
applications,” arXiv preprint arXiv:2003.12172, 2020.

[18] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey
on machine learning for networking: evolution, applications and
research opportunities,” Journal of Internet Services and Applications,
vol. 9, no. 1, 2018.

[19] O. 1. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A.
Mohamed, and H. Arshad, “State-of-the-art in artificial neural
network applications: A survey,” Heliyon, vol. 4, no. 11, 2018.

[20] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Kone¢ny, S. Mazzocchi, H. B. McMahan
et al., “Towards federated learning at scale: System design,” arXiv
preprint arXiv:1902.01046, 2019.

[21] B. Zhou, Y. Sun, D. Bau, and A. Torralba, “Revisiting the im-
portance of individual units in cnns via ablation,” arXiv preprint
arXiv:1806.02891, 2018.

[22] A. Bau, Y. Belinkov, H. Sajjad, N. Durrani, F. Dalvi, and J. Glass,
“Identifying and controlling important neurons in neural machine
translation,” arXiv preprint arXiv:1811.01157, 2018.

[23]]J. Yosinski,]J. Clune, Y. Bengio, and H. Lipson, “How trans-
ferable are features in deep neural networks?” arXiv preprint
arXiv:1411.1792, 2014.

[24] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall,
M. B. Gotway, and J. Liang, “Convolutional neural networks
for medical image analysis: Full training or fine tuning?” IEEE
transactions on medical imaging, vol. 35, no. 5, 2016.

[25] E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Actor-mimic: Deep
multitask and transfer reinforcement learning,” arXiv preprint
arXiv:1511.06342, 2015.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 14

[26] Z. Xu, K. Wu, Z. Che,]. Tang, and J. Ye, “Knowledge transfer in
multi-task deep reinforcement learning for continuous control,”
2020.

F. Yu, Z. Qin, and X. Chen, “Distilling critical paths in convolutional
neural networks,” arXiv preprint arXiv:1811.02643, 2018.

F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury,
“Qort: Informed participant selection for scalable federated
learning,” CoRR, vol. abs/2010.06081, 2020. [Online]. Available:
https:/ /arxiv.org/abs/2010.06081

D. Li, T. Salonidis, N. V. Desai, and M. C. Chuah, “Deepcham:
Collaborative edge-mediated adaptive deep learning for mobile ob-
ject recognition,” in 2016 IEEE/ACM Symposium on Edge Computing
(SEC), 2016.

K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B.
Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching {LAN} speeds,” in 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017.

C. Bravo and H. Backstro, “Edge computing and deployment
strategies for communication service providers,” White Paper,
Ericsson, 2020.

A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” in Proceedings of the 2007 SIAM international
conference on data mining. SIAM, 2007.

J. Gama, L. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv., vol. 46,
no. 4, 2014. [Online]. Available: https:/ /doi.org/10.1145/2523813
J. M. Joyce, “Kullback-leibler divergence,” in International encyclope-
dia of statistical science. Springer, 2011.

J. N. Rao and A. J. Scott, “The analysis of categorical data from
complex sample surveys: chi-squared tests for goodness of fit and
independence in two-way tables,” Journal of the American statistical
association, vol. 76, no. 374, 1981.

[36]]. Lin, “Divergence measures based on the shannon entropy,” IEEE
Trans. Information Theory, vol. 37, no. 1, 1991. [Online]. Available:
https://doi.org/10.1109/18.61115

R. Beran et al., “Minimum hellinger distance estimates for paramet-
ric models,” The annals of Statistics, vol. 5, no. 3, 1977.

X. Zeng and D. S. Yeung, “Sensitivity analysis of multilayer
perceptron to input and weight perturbations,” IEEE Transactions
on neural networks, vol. 12, no. 6, 2001.

S.-I. Amari, “Natural gradient works efficiently in learning,” Neural
computation, vol. 10, no. 2, 1998.

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirk-
patrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive
neural networks,” arXiv preprint arXiv:1606.04671, 2016.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial Intelligence and Statistics. PMLR,
2017.

W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer
learning,” in Proceedings of the 24th international conference on Machine
learning, 2007.

M. Gao, L. Ma, H. Liu, Z. Zhang, Z. Ning, and J. Xu, “Malicious
network traffic detection based on deep neural networks and
association analysis,” Sensors, vol. 20, no. 5, 2020.

S. Caldas, J. Kone¢ny, H. B. McMahan, and A. Talwalkar, “Expand-
ing the reach of federated learning by reducing client resource
requirements,” arXiv preprint arXiv:1812.07210, 2018.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, 2009.
H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for All:
Train One Network and Specialize it for Efficient Deployment,” in
International Conference on Learning Representation (ICLR20), 2020.
A.Li,]. Sun, B. Wang, L. Duan, S. Li, Y. Chen, and H. Li, “Lotteryfl:
empower edge intelligence with personalized and communication-
efficient federated learning,” in 2021 IEEE/ACM Symposium on Edge
Computing (SEC). 1EEE, 2021, pp. 68-79.

S. Cai, Y. Zhao, Z. Liu, C. Qiu, X. Wang, and Q. Hu, “Multi-
granularity weighted federated learning in heterogeneous mobile
edge computing systems,” in 2022 IEEE 42nd International Conference
on Distributed Computing Systems (ICDCS). 1EEE, 2022, pp. 436-446.
A. M. Abdelmoniem, A. N. Sahu, M. Canini, and S. A.
Fahmy, “Resource-efficient federated learning,” arXiv preprint
arXiv:2111.01108, 2021.

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

(35]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

[48]

[49]

[50] R. Hong and A. Chandra, “Dlion: Decentralized distributed deep
learning in micro-clouds,” in 11th {USENIX} Workshop on Hot Topics
in Cloud Computing (HotCloud 19), 2019.

J. Yao, E. Wang, K. Jia, B. Han, J. Zhou, and H. Yang, “Device-
cloud collaborative learning for recommendation,” in Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, 2021, pp. 3865-3874.

L. Rafegas, M. Vanrell, L. A. Alexandre, and G. Arias, “Understand-
ing trained cnns by indexing neuron selectivity,” Pattern Recognition
Letters, vol. 136, 2020.

[53] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside con-
volutional networks: Visualising image classification models and
saliency maps,” arXiv preprint arXiv:1312.6034, 2013.

D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A low-latency online prediction serving
system,” in 14th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 17), 2017.

Harshit Data is a PhD candidate in the School of Computer
Science at Georgia Tech, specializing in systems support for
distributed machine learning at the edge-cloud continuum.
Yiwen Chen completed his MSCS degree at Georgia Tech
and joined Amazon.

Aastha Agrawal completed her MSCS degree at Georgia
Tech and joined Salesforce.

Ada Gavrilovska is associate professor at the School of
Computer Science at Georgia Tech. Her research is supported
by the National Science Foundation, the US Department of
Energy, the JUMP programs by the Semiconductor Research
Corporation and DARPA, and a number of industry grants.
In 2024 she will be program co-chair for the USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI'24).

[51]

[52]

[54]

	Introduction
	Background and Motivation
	Goal and Challenges
	Overview of CLUE
	Design of CLUE
	Metadata Operations
	Knowledge Transfer Mechanisms
	Significant Parameters Selection
	Helper Model

	CLUE Runtime
	Evaluation
	Experimental Methodology
	Benefits of CLUE
	Adaptability
	Reduction in data transfer costs.

	Cost of CLUE Mechanisms
	Sensitivity Analysis
	Drift Detection Timeliness
	Impact of quantity of knowledge transferred
	Helper Node Selection

	Extensibility to Different ML Frameworks
	Use Case
	Smaller Model
	Intrusion Detection

	Discussion and Future Work
	Related Work
	Conclusion
	References

