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Abstract—Synthetic traffic generation can produce sufficient
data for model training of various traffic analysis tasks for
IoT networks with few costs and ethical concerns. However,
with the increasing functionalities of the latest smart devices,
existing approaches can neither customize the traffic generation
of various device functions nor generate traffic that preserves the
sequentiality among packets as the real traffic. To address these
limitations, this paper proposes IoTGemini, a novel framework
for high-quality IoT traffic generation, which consists of a Device
Modeling Module and a Traffic Generation Module. In the
Device Modeling Module, we propose a method to obtain the
profiles of the device functions and network behaviors, enabling
IoTGemini to customize the traffic generation like using a real
IoT device. In the Traffic Generation Module, we design a Packet
Sequence Generative Adversarial Network (PS-GAN), which can
generate synthetic traffic with high fidelity of both per-packet
fields and sequential relationships. We set up a real-world IoT
testbed to evaluate IoTGemini. The experiment result shows that
IoTGemini can achieve great effectiveness in device modeling,
high fidelity of synthetic traffic generation, and remarkable
usability to downstream tasks on different traffic datasets and
downstream traffic analysis tasks.

Index Terms—Internet of Things, synthetic data generation,
traffic analysis, generative adversarial networks

I. INTRODUCTION

Nowadays, the world is entering an era of the Internet
of Things (IoT). To promote the manageability and security
of IoT connections, many machine learning (ML) and deep
learning (DL) based traffic analysis systems have been pro-
posed, such as monitoring [1], intrusion detection [2]–[4],
anomaly detection [5]–[7], and device fingerprinting [8]–[10].
The ML/DL-based methods typically require adequate and
diverse training data for high accuracy. However, access to
real-world IoT traffic data can be challenging due to com-
mercial restrictions and privacy concerns raised by IoT device
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owners, especially given that today’s IoT devices collect much
sensitive data (e.g., personally identifiable information). While
federated learning might mitigate privacy issues (e.g., [11]), it
can be challenging to use in many cases due to system het-
erogeneity and high computational complexity. Workarounds
like collecting data from self-built testbeds [12], [13], though
practical, can be costly, laborious and hard to scale.

The synthetic traffic generation is an alternative solution
to the lack of real data in networking community. There
have been many simulation tools (e.g., NS-3 [14]) and sta-
tistical models (e.g., Swing [15]) that can generate synthetic
traffic. However, these tools usually need manual determina-
tion of flow attributes and statistics, which relies on expert
knowledge and human efforts. In recent years, the state-of-
the-art approaches are turning to machine learning models
(e.g., STAN [16]) and deep generative models (e.g., Pack-
etCGAN [17]). These approaches can automatically learn the
traffic patterns from a batch of real-world traffic, and produce
the specified amounts of synthetic traffic with high fidelity.
In addition, synthetic traffic also markedly reduces privacy
concerns as they do not contain real user information.

Though prior work can achieve good fidelity, we observe
two limitations that existing approaches fail to address, which
hamper their practical use in the context of IoT traffic:

First, the traffic generation cannot be customized based
on certain devices and device functions. With the growing
diversity of functions in today’s IoT devices, traffic may vary
significantly among different devices and even across different
functions on the same device. For example, an IP camera
mostly generates continuous traffic to a video streaming server
for real-time monitoring but produces short burst traffic to
an AI cloud for face recognition. Using existing approaches
(e.g., [15]–[20]) under this circumstance can inherently gener-
ate traffic for dominant functions and ignore traffic for rarely
included functions in training data, while some of this traffic
can be very useful for certain tasks (e.g., fingerprinting [1]).

Second, existing approaches struggle to generate traffic that
combines high fidelity and high usability for downstream
tasks. Many approaches can only generate traffic in flow-
level records (e.g., [15], [16], [18]–[20]), which cannot be
used by a large number of methods for downstream tasks that
require packet-level data (e.g., [1], [5], [6], [8], [21]). Though
some approaches can generate packet-level traffic (e.g., [17],
[22]), they typically generate packets as individuals while
cannot preserve sequential relationships. We notice that this
information is important for many of the downstream tasks,
such as [21] using packet sequences to identify IoT devices.
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To address these limitations, in this paper, we propose
IoTGemini, a novel IoT traffic generation framework that can
facilitate the training of downstream traffic analysis models.
IoTGemini primarily solves the above two problems through
the design of two modules. We first introduce the Device

Modeling Module that can model all functions and network be-
haviors of an IoT device purely based upon network traffic. It
includes a well-designed heuristic algorithm to profile distinct
network behaviors, and the construction of a bipartite graph to
depict the mapping relationships between functions and net-
work behaviors. This module enables us to know what traffic
the device will generate when a certain function is triggered,
laying the foundation for customized traffic generation. We
then present the Traffic Generation Module, which effectively
achieves traffic generation at the packet level. In particular,
we design a sequential Generative Adversarial Network called
PS-GAN as traffic generators that can generate traffic while
preserving the sequential relationships between packets. As
PS-GAN generates traffic in raw packet sequence format, it is
generic and can be easily transformed into other data formats
used by the downstream tasks. By combining the two modules
into a pipeline, IoTGemini can work as if we have a real IoT
device that a user can freely decide how to use, such as what
function is triggered and how long it will be used, and thus
the generated traffic can be fully customized.

Comprehensive experiments are conducted to evaluate our
framework. We use a real-world IoT testbed and three public
datasets, including the traffic of 105 diverse IoT devices. The
results show that IoTGemini outperforms existing approaches
in terms of multiple metrics for synthetic data generation
(e.g., similarity of distribution, sequentiality). Furthermore, we
reproduce several recent methods for each of the three typical
downstream tasks, including intrusion detection, anomaly de-
tection and device fingerprinting, to demonstrate the feasibility
of incorporating IoTGemini into the training of these sys-
tems. Our experiments exhibit that using the synthetic traffic
generated by IoTGemini can train the models to have a low
relative error compared to using the real traffic. In summary,
we demonstrate the high fidelity and high usability of the
synthetic traffic generated by IoTGemini.

In general, the contributions of this paper are as follows:
• We highlight two key factors of synthetic traffic gen-

eration in IoT scenarios, namely customized generation
based on distinct usages of device functions, and main-
taining packet-level fidelity and usability among traffic.

• We propose a new synthetic traffic generation framework
specifically designed for IoT, which consists of two
modules to tackle the limitations of existing approaches.

• We conduct a data-driven experiment, reproducing several
baseline approaches and multiple recent works for various
downstream tasks, showing the high fidelity and high
usability of the synthetic traffic generated by IoTGemini.

The rest of the paper is structured as follows. Section II
introduces the background and related work; Section III
presents the motivations and challenges; Section IV gives our
design goals and the overview of IoTGemini; Section V and
Section VI elaborate on the Device Modeling Module and the
Traffic Generation Module respectively; Section VII discusses

the deployment of the framework; Section VIII shows the
experiment results; Section IX discusses the limitations and
future work; Section X concludes the paper.

II. BACKGROUND AND RELATED WORK

A. ML/DL-based Traffic Analysis and IoT

Recent advance in machine learning and deep learning
has revolutionized network traffic analysis tasks, such as
intrusion detection [2]–[4], anomaly detection [5]–[7], device
fingerprinting [8]–[10], activity identification [21], [23], [24].
One strength of ML/DL-based traffic analysis methods is that,
by automatically extracting features from the traffic and using
ML/DL models to infer the features, they can greatly reduce
the system’s reliance on expert knowledge and human labor
while achieving high accuracy. A key factor in ensuring their
high accuracy is sufficient and diverse training data. For ex-
ample, in [25] the authors demonstrate that only training on a
large number of samples could ensure acceptable performance
for many existing works on network intrusion detection.

Besides, different methods may use different features, such
as packet-level features, flow-level features and sequence
features. For example, Trimananda et al. solely use packet
lengths to identify IoT device types and activities [21]. In [2],
the authors use flow-level features such as flow volumes and
flow duration to monitor IoT systems. Methods like [6], [8]
use sequences of multiple packet fields (e.g., sizes, inter-
arrival time, protocols) as input and apply deep models (e.g.,
1D-CNN, RNN) to perceive the spatial/temporal relationships
inside the sequences. Such differences pose challenges to
synthetic traffic as a supplement of training data, requiring
generated traffic to be as raw (e.g., packet-level fields) and
informative (e.g., preserving sequentiality) as possible so as
to adapt to different feature extractions.

B. Synthetic Data Generation for Networks

Synthetic data generation is a well-discussed topic in the
machine learning and data science community for generating
tabular data, images, text, audio, etc. This paper mainly
focuses on the synthetic data generation of network traffic. The
primitive approach is to use the network simulator tools (e.g.,
Ostinato [26], RUDE&CRUDE [27], Seagull [28]), which are
typically used for functional, load, stress and performance
tests by network engineers. There are also IoT simulators to
verify the connections between simulated devices and specific
cloud services (e.g., Azure [29]). However, these tools require
much manual effort to configure the traffic headers and only
support a fixed range of protocols, and thus are incapable of
automatically modeling real-world traffic patterns.

Based on the format of generated data, approaches for
synthetic traffic generation fall into three categories.

Flow-level Data Generation. Many existing works [15],
[16], [18]–[20] fall into this category because flow-level data
(e.g., 5-tuple, statistics of flow volumes/counts/duration) are
common features for many traffic analysis tasks and are more
stable to generate. Ring et al. propose a flow-based traffic gen-
eration approach by embedding the fields of NetFlow records
into a fixed-length vector [20]. Charlier et al. [19] propose to
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generate synthetic attack traffic based on the public flow-level
attack datasets. However, flow-level features are aggregated
from packet-level fields within the same flow, and there is
a considerable amount of information loss. Many packet-
level features cannot be reversely derived from the generated
flow-level data (e.g., length of each packet), reducing the
practicality and generality for various downstream tasks.

Packet-level Data Generation. This type of approach
generates packet-level representations where each data sample
contains the header fields of a packet (e.g., address, port,
protocol, size, timestamp, direction). For example, PacketC-
GAN [17] generates packet-level samples to balance the major
and minor encrypted applications in the traffic dataset. In [22],
the authors propose PAC-GAN as a packet generator of
network traffic using Generative Adversarial Networks. The
disadvantage of these approaches is that they generate packets
as individual and independent samples, and accordingly cannot
express correlations between consecutive packets.

Sequential Data Generation. To deal with the drawback of
individual packet data generation, some recent studies [30]–
[32] propose to generate sequences of packet-level data rep-
resentation. For example, in [30], the authors adopt Hidden
Markov Models (HMM) to construct an IP traffic generator.
Yin et al. use a time-series model to generate time-spaced
chunks of traffic for each 5-tuple flow [31]. Though possessing
better adaptability to different feature extractions and models
of different downstream tasks, this data format is typically
more difficult to generate and is an open research field.

From the perspective of methodology, synthetic traffic gen-
eration approaches are mainly either based on statistics of
distributional parameters (e.g., Harpoon [18], Swing [15])
or ML/DL-based methods (e.g., autoregressive [16], [32],
HMM [30]). Among the latter methods, the Generative Adver-
sarial Network (GAN) [33] is a promising approach in recent
years especially in the computer vision community. A GAN
learns a couple of competing models to improve the quality
of generated data in an iterative process.

There are also some works, albeit limited, specifically fo-
cused on IoT traffic generation. In [34], the authors propose an
IoT traffic generator, which simply outputs a stream of packets
of a fixed size, i.e., the average size of the observed packets.
Shahid et al. [35] combine an autoencoder with a GAN to
produce sequences of packet sizes. However, they do not
show the feasibility of their method to generate multivariate
packet fields other than packet sizes, and the evaluation is
only conducted on a single device. Hui et al. [36] adopt a
knowledge-enhanced GAN to generate aggregate statistics of
burst traffic data. However, such a coarse-grained format of
data cannot adapt to many downstream tasks that require raw
packet-level features. Overall, none of these works consider
the characteristics of current multifunctional IoT devices and
their impacts on traffic generation. Besides, they can only gen-
erate a limited number of packet fields or aggregate features,
limiting their usability to various downstream tasks.

III. MOTIVATIONS AND CHALLENGES

In this section, we discuss the limitations of prior art for
generating IoT traffic and why they are challenging to address.

Fig. 1. Traffic distribution of an IP camera communicating with different
domains/protocols (common subdomain “tplinkcloud.com” omitted); it main-
tains idle except between 11:50 and 11:57 that streams to a companion app.

A. Limitations of Prior Art

We highlight two much-desired features for IoT traffic
generation that existing work cannot achieve.

Customized Traffic Generation. With various technologies
applied to IoT (e.g., AI, edge computing, automation plat-
forms), many IoT devices have evolved from low-functional
sensors to integrated multi-functional systems, such as an IP
camera with video streaming, face recognition and voice as-
sistant all together. Accordingly, the network traffic to support
these functions can be highly different in patterns. Fig. 1
illustrates such an example, which is an IP camera in our
testbed. The camera remains idle except between 11:50 and
11:57 when it is awakened by a companion app in LAN for
real-time video streaming, which causes a remarkable change
in the traffic distribution. For most prior work that simply
learns the traffic distribution from a trace dataset, they are
inherently biased to generate the most frequent traffic in the
dataset, while cannot generate the traffic of arbitrary functions
as the customized use of a real IoT device.

Packet-level Usability. Most of the existing packet-level
traffic generation approaches can neither generate certain
important packet fields nor preserve packet sequential relation-
ships. This limitation hinders their effectiveness for numerous
downstream tasks that depend on specific traffic information.
For example, some methods for traffic analysis tasks (e.g.,
[9]) regard destination domains and ports as key information,
whereas few prior studies pay attention to the automated gen-
eration of these fields. Moreover, some works on identifying
IoT activities rely on pattern matching of consecutive packets
(e.g., [21], [24]), which require reliable sequentiality between
packets. In addition, many recent works on traffic analysis
(e.g., [6], [8]) are turning to deep learning models (e.g.,
CNN, RNN) that are expert in working with spatial/temporal
correlated data like images and sequences. To provide data for
these models, it is imperative to ensure the sequentiality of the
generated data for correct model training.

B. Challenges of Addressing the Limitations

Traffic Heterogeneity vs. Complexity. Prior approaches,
whether using statistical models [15], [18] or Conditional
GANs [37] that may be suitable for customized data genera-
tion, can hardly ensure the generation of traffic heterogeneity,
as the models are not generalized enough to produce data with
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diverse distributions. This issue can be exacerbated given the
huge differences in traffic generated by different functions of
an IoT device (as in Fig. 1). A recent approach [31] mitigates
this issue by building a generator for each of the 5-tuple
flows, which can learn a more concentrated traffic pattern.
However, the complexity of this solution can be extremely
high considering the large number of flows in some IoT
devices (e.g., 2868 flows for Samsung Smart Things in a public
dataset [13]).

Deterministic and Random Fields. For one thing, as the
communication of IoT devices is typically pre-set by firmware,
their destination domains and addresses can be deterministic
within a limited number [12], and even small changes in
these fields may lead to fundamentally different semantics. For
another, fields like port numbers are important to certain tasks
but can also change in a pseudorandom manner due to specific
port selection mechanisms (e.g., RFC 6056 [38]). For example,
the ports used by an IP camera in our testbed for streaming are
sequentially 37785, 49839, and 48096. Such random patterns
are meaningless and learning them even induces overfitting.
Most existing works based on generative models, however,
fail to discuss the generation of these packet fields.

Hard to Generate Sequentiality. One important reason for
the difficulty of generating sequences of packet-level data is
that, different from other data types like images where the
values of neighboring pixels typically change gradually, the
fields of consecutive packets in a flow can drastically change.
For example, a packet with a maximum payload has a packet
length of 1500, while the next ACK packet only has a packet
length of 40. Most of the models used by prior work, including
CNN-GAN [22], WGAN-GP [19], [20] and CGAN [17], may
not be suitable for generating such sequential data.

IV. DESIGN GOAL AND OVERVIEW

A. Design Goal, Scope and Assumption

Goals. This paper aims to propose a synthetic traffic gen-
eration framework for IoT that tackles the aforementioned
limitations and challenges. Specifically, it should achieve the
following design goals: 1) Customized traffic generation based
on IoT devices and device functions, which can not only gen-
erate diverse IoT traffic but also reduce the overall complexity;
2) High fidelity, i.e., synthetic traffic is expected to resemble
real traffic by various criteria, especially the sequentiality that
most of the existing works do not consider; 3) High usability,
i.e., synthetic traffic is generated as sequences of packet-level
data that adapt to various downstream traffic analysis systems
and achieve the training of high-accuracy models.

Problem Setting. Synthetic traffic generation can serve as
a valuable service capable of furnishing substantial traffic data
while eliminating privacy concerns of real data, as illustrated
in Fig. 2. A service provider is an entity that derives and
offers traffic generators based on real-world traffic (i.e., Data-
Generator-as-a-Service). It can be an IoT manufacturer or
a third-party service provider with the capacity to access
physical IoT devices and collect traffic data for the modeling
of traffic generators. We assume all IoT traffic collected by
the service provider is legitimate, which can be best realized
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Fig. 2. Workflow of Data-Generator-as-a-Service and target data format.

by locating the IoT devices in a closed environment, such
as a LAN with NAT and firewall enabled. A customer aims
to develop ML/DL models for specific traffic analysis tasks
but lacks necessary access to sufficient physical devices and
real traffic data. To augment data resources, customers can
request the traffic generators provided by the service provider
to generate synthetic data to facilitate model training. To
customize the data generation according to their requirements,
customers only need to specify parameters such as target
devices, utilization patterns, and duration of usage. They do
not have to gain an in-depth understanding of the workflows
of the traffic generators. Subsequently, customers may perform
further feature extraction on the packet-level data produced by
the traffic generators to form the ultimate feature set for their
tasks (e.g., flow-level features).

Generated Data Format. In alignment with prior packet-
level approaches [17], [22], the resultant generated traffic
is stored in tabular data (e.g., CSV files) where each row
represents an IP packet and each column represents a packet
field. The difference lies in our explicit expectation that our
generated packets in the same flow to preserve the sequential
relationships as the real traffic. As Fig. 2 illustrates, we
primarily focus on the generation of two types of packet
fields: 1) Ordinal fields, including packet timestamp, packet
length, payload length, and directional indicator. For ordinal
fields, closer proximity between their values implies a stronger
degree of similarity; 2) Nominal fields, which are essentially
the 5-tuples of a flow. For nominal fields, closer values do not
necessarily suggest a greater degree of similarity. Note that
the generation of some fields is not considered in this paper
because they are: 1) infrequently used by traffic analysis tasks
(e.g., ToS, SEQ number); 2) unavailable by passive sniffing
and, as a result, are less commonly utilized, given today’s
prevalent use of SSL/TLS encrypted traffic (e.g., payload).

B. Overview

The main idea of IoTGemini is that, to achieve customized
traffic generation based on device functions, we need to figure
out what traffic an IoT device will generate when a certain
function is triggered, and find a way to correlate the device
functions with a number of network behaviors (e.g., connect-
ing with a certain domain, using a certain protocol). With this
knowledge, we can build an individual traffic generator for
each network behavior to learn a more concentrated traffic
pattern, which can mitigate the challenge brought by traffic
heterogeneity within a limited level of complexity. To this

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3426600

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 03:19:32 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

IoT Devices
Downstream

Tasks

Synthetic
Traffic

FSM
Configaddr: bc/mc

src-port: dyn
dst-port: 443
proto: 6addr: local

src-port: dyn
dst-port: 443
proto: 6addr: 39.156.66.9

src-port: dyn
dst-port: 443
proto: 6

PS-GAN5

PS-GAN4

PS-GAN3

Func1

Func2

Func3

Idle

Tr
af

fic
 P

ar
se

r

Intrusion
Detection

Anomaly
Detection

Device
FingerprintReal

Traffic
PS-GAN2

PS-GAN1

addr: *.aws.com
src-port: dyn
dst-port: 443
proto: 6addr: *.tplink.com

src-port: reg/dyn
dst-port: 443
proto: 6

BP1

Function
Set

Behavior
Profiling

Split
Traffic

Tr
af

fic
 D

ep
ar

se
r

Device Modeling Module Traffic Generation Module

Others...

BP2

BP3

BP4

BP5

Ve
ct
or
iz
at
io
n

Se
pa

ra
tio
n

N
or
m
al
iz
at
io
n

Se
gm

en
ta
tio
n

Fa
br
ic
at
io
n

R
es
to
ra
tio
n

Fig. 3. Overview of IoTGemini.

end, IoTGemini consists of two modules to build an end-to-
end pipeline from the modeling of real-world IoT devices and
IoT traffic to the generation of synthetic traffic for downstream
traffic analysis systems, as illustrated in Fig. 3.

Device Modeling Module. This module is designed to
achieve the network-level modeling of IoT devices, specifi-
cally, decomposing the functions and network behaviors of
a device and determining their correlations. We propose a
network behavior profiling method, which combines expert
knowledge and traffic statistics to extract a set of Behavior
Profiles (BPs) for each network behavior. A BP is similar
to 5-tuples in form but different in fact: though a BP also
describes the attributes of a device’s network connections
(e.g., remote domain, port, protocol), it is essentially a coarse-
grained abstraction of the flows that are likely to serve the
same purpose, which typically has a much smaller quantity
than 5-tuples. Moreover, we propose an empirical method
to explore the relations between the device functions (e.g.,
video recording, remote control, movement detection) and
the extracted behaviors. Accordingly, the network-level device
modeling can be depicted by a bipartite graph that indicates
the trigger of a certain function generating traffic under certain
BPs, laying the foundation of customized traffic generation.

Traffic Generation Module. Different from existing works
that simply learn and generate the overall distribution of a trace
dataset, the Traffic Generation Module in IoTGemini builds a
generator per BP, which is only made possible by the split
traffic from the Device Profiling Module. It gives IoTGemini
two advantages: 1) each piece of the split traffic exhibits a
more convergent traffic pattern which can mitigate the issue
of traffic heterogeneity; 2) customized traffic generation can be
realized with a limited number of generators that constrain the
overall complexity. We propose a deep learning-based traffic
generator, called Packet Sequence GAN (PS-GAN), which is
a sequential GAN that can generate sequences of packet-level
fields. The generated traffic can keep the original sequential
relationships between consecutive packets, improving the fi-
delity of data distribution. Moreover, the generated traffic has
great compatibility with diverse features and models, which
enables high usability to downstream tasks.

It is worth noting that the IoTGemini framework introduced
above tackles the aforementioned challenges in Section III-B

through three key points of design. First, we find that IoT
device operations inherently entail transitions between diverse
states, each prompted by distinct functionalities. Accordingly,
we propose the incorporation of a Finite State Machine (FSM)
to encapsulate the customized usage of IoT traffic generators.
To the best of our knowledge, this is the first effort to achieve
customized IoT traffic generation based on device functions
and behaviors. Second, our introduction of Behavior Profiles
explicitly delineates whether the 5-tuple fields characterizing
network behaviors adhere to deterministic patterns or exhibit
randomness within defined ranges. This extra level of granu-
larity facilitates the generation of packet fields with elevated
precision. Third, our PS-GAN architecture is crafted to reflect
the intrinsic nature of realistic packet-by-packet forwarding
with a unidirectional LSTM as the generator, and expert traffic
analysis capability with a bidirectional LSTM as the discrim-
inator. This combined approach empowers the generation of
packet-level sequentiality with an elevated degree of fidelity.

We elaborate on the two modules in Section V and Sec-
tion VI respectively, and discuss the deployment of the two
modules into an end-to-end pipeline in Section VII.

V. DEVICE MODELING MODULE

In this section, we introduce the detailed workflow of the
Device Modeling Module, which includes function acquisition,
behavior profiling and device modeling.

A. Function Acquisition

The latest IoT devices are often integrated with various
functions such as remote access, automation platforms, and
AI-assisted functions. Since this paper focuses on network-
level modeling, we only consider the functions that rely on
network connections. We observe the functions of 19 IoT
devices in our testbed and categorize them into three types:

• Transient: This type of function is for transient purposes,
such as retrieving the temperature from a thermometer, or
turning on a light by remote control. At the network level,
the trigger of such a function will immediately generate
a burst of traffic which is typically short flows.

• Persistent: This type of function changes the state of a
device for a persistent purpose, such as recording videos
with a camera, or playing music with a sound box. At
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the network level, a long flow is typically used for data
transmission between the device and the cloud or the
companion app until the function is turned off.

• Idle: This is the default state of a device when no function
is used. At the network level, a device will still generate
certain traffic at the idle state, typically for keepalive
connections or default synchronization with the cloud
(e.g., a plug reporting the electricity usage).

To comprehensively investigate the network traffic in re-
sponse to various IoT functions, we consider two approaches
for a holistic understanding of different IoT operational charac-
teristics, including app interactions and physical interactions.

App Interactions. The majority of current IoT devices
rely heavily on companion apps. In our testbed consisting
of 19 devices, each device is accompanied by such an app.
Obtaining device functions that can be initiated through com-
panion apps is straightforward in the case of open-source
apps (e.g., openHAB [39]). However, the task becomes more
intricate when dealing with proprietary apps, such as Apple
Home [40]. In such instances, we lack explicit knowledge
regarding which specific interactions initiate network commu-
nications. To address this, we employ a fuzzing approach to
automate interactions with these apps. It involves the setup
of an Android emulator on a personal computer, on which
we install the respective IoT apps. Subsequently, we employ
an app testing tool, namely Monkey Application Exerciser
in conjunction with Android Debug Bridge (ADB) [41], to
systematically trigger interactions with all UI components.
Concretely, the empirical process includes the following steps:

1) Set up device connections and collect network traffic
during its idle state, which typically exhibits sparse activity;

2) Utilize the testing tool to systematically trigger interac-
tions with each UI component of the companion app;

3) For each interaction, we allow a 30-second interval for
traffic collection. Then, we terminate the app and iterate this
process across all UI components a total of 20 times;

4) Record an interaction as a function if there is a notable
surge in device traffic immediately after the interaction;

5) Determine the function type by whether the escalated
traffic is a burst or if it persists for the entire interval.

As discussed in prior research [12], identical IoT functions
initiated through companion apps can yield disparate network
traces, depending on whether the app resides in the same
network as the IoT device (i.e., LAN scenarios) or in a distinct
network (i.e., remote scenarios). Within our testbed, this phe-
nomenon is observed in 16 out of the 19 devices. Specifically,
in LAN scenarios, the companion apps can establish direct
communication with the devices utilizing local addresses.
Conversely, in remote scenarios, the communication channels
necessitate routing through cloud servers. To encapsulate a
more comprehensive spectrum of network behaviors, the app
interaction experiments on each device are conducted under
both scenarios. We regard the functions triggered by each of
the scenarios as distinct functions, such as “watch-LAN” and
“watch-remote”.

TABLE I
PHYSICAL INTERACTIONS WITH IOT DEVICES EQUIPPED WITH SENSORS.

Equipped Sensor Physical Interaction IoT Device

camera movement by humans webcam
microphone voice wake-up speaker, webcam
light sensor change light smart bulb

infrared sensor movement by humans motion detector (conn. to hub)
temperature sensor change temperature thermometer (conn. to hub)

door sensor open & close door smart lock (conn. to hub)

Physical Interactions. In addition to app interactions, cer-
tain IoT functions are activated through physical interactions
which also elicit certain network traffic. These physical in-
teractions mostly revolve around the utilization of specific
sensors that perceive changes in surrounding environments.
In our study, we primarily consider six commonly deployed
sensor types across IoT devices. We design and execute
corresponding physical interactions with these devices, as
described in Table I. Since these physical interactions cannot
be automated through software tools, we manually conduct
each interaction five times, with a 30-second interval between
iterations for traffic collection. Subsequently, we apply the
same logic employed in the app interaction process to discern
the functions as well as their respective function types.

B. Behavior Profiling

To further understand the device functions at the network
level, behavior profiling is the next step essentially to identify
the network flows for the same purpose. Due to the unavail-
ability of the firmware source codes of many IoT devices, even
the device owners do not obtain the explicit purpose of each
connection (i.e., no ground truth labels). Hence, we reduce the
behavior profiling to a traffic clustering problem. Some exist-
ing works solve such a problem using traffic statistics [42],
[43]. However, their outputs are usually black-box clustering
models, which fail to provide interpretable behavior profiles.
Besides, common clustering algorithms like k-means need a
prior setting of the cluster number, whereas we desire to reduce
the cluster number (i.e., behavior number) for a better tradeoff
between profiling granularity and complexity.

In IoTGemini, we propose a method that combines ex-
pert knowledge and traffic statistics for interpretable behavior
profiles. Formally, suppose the full function set of a device
generates a series of bidirectional flows ⌧1, ⌧2, ..., ⌧m, where
⌧i is identified by a 5-tuple (src, dest, sport, dport, proto),
our goal is to group the flows into a set of clusters, denoted
by B, and minimize the number of clusters:

min |B|
s.t. Ck(⌧i, ⌧j) = 1, Cs(⌧i, ⌧j) = 1, (1)
8⌧i, ⌧j 2 BP, 8BP 2 B,

where Ck(·) and Cs(·) are the knowledge-based constraint and
statistical constraint, respectively.

Condition of knowledge-based constraint. As described
in RFC 8520 [44], [45], IoT devices usually connect with
a limited set of endpoints using specific protocols for dif-
ferent behaviors. Hence, for two flows ⌧i and ⌧j , we define
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Ck(⌧i, ⌧j) = 1 when the following conditions are all satisfied
(otherwise Ck(⌧i, ⌧j) = 0).

• Domain: If the destinations of both flows are resolved
to domain names, they should have at least the common
secondary-level domain (e.g., tplink.com).

• Address: If at least one of the destinations is not resolved,
they should be in the same address range of “local”
(e.g., 192.168.1.0/24), “remote” (i.e., public IP address)
or “multicast” (224.0.0.0/4 or addresses ending with 255).

• Source port: The source ports of both flows should be
equal if they are system ports (i.e., 0 ⇠ 1023) or be in the
range of registered/dynamic ports (i.e., 1024 ⇠ 65535).

• Destination port: The destination ports of both flows
should be equal if they are system ports, or be in the
range of registered ports (i.e., 1024 ⇠ 32767), or be in
the range of dynamic ports (i.e., 32768 ⇠ 65535)1.

• L4 Protocol: The L4 protocols of both flows should be
equal (e.g., TCP, UDP).

Condition of statistical constraint. We consider two types
of statistics of the flows, i.e., the spatial correlation and
the temporal correlation. We define Cs(⌧i, ⌧j) = 1 when
the following two conditions are both satisfied (otherwise
Cs(⌧i, ⌧j) = 0).

• Spatial correlation (SC): The work in [21] has suggested
the packet lengths of IoT connections for one behavior
are stably predictable, i.e., flows for the same purpose are
spatially correlated with respect to packet lengths. We use
the Jaccard similarity coefficient between flows ⌧i and ⌧j

over a threshold d1 as the criterion, which is defined as

SC(⌧i, ⌧j) =
|P⌧i \ P⌧j |
|P⌧i [ P⌧j |

, (2)

where P⌧ is the packet length set of flow ⌧ and d1 is
empirically set to 0.5.

• Temporal correlation (TC): We use the packet inter-arrival
time as the temporal statistics [46]. The two flows should
be temporally correlated with respect to the normalized
difference of average packet inter-arrival time under a
threshold d2. Formally, the temporal correlation between
flow ⌧i and ⌧j is defined as:

TC(⌧i, ⌧j) =
|T⌧i � T⌧i |

max(T⌧i , T⌧j )
, (3)

where Tf is average packet inter-arrival time of the flow
⌧ and d2 is empirically set to 0.5.

We design a two-step heuristic algorithm to achieve the
behavior profiling, as summarized in Algorithm 1. The input
of the algorithm is the collected bidirectional 5-tuple set of
the device traffic, and the output is the behavior profile set of
this device. The first loop achieves the preliminary behavior
profiling subject to the knowledge-based constraint (line 3 ⇠
8). For each of the 5-tuple, we use an abstract function to
turn its flow fields to a 4-tuple abstraction of range identifiers
(line 4), which can be considered a coarse-grained version of
a 5-tuple. The output fields and their optional values include:

1The reason to treat destination port differently is that some registered ports
can also indicate explicit purposes/services of IoT, such as 1900 for SSDP.

Algorithm 1: Behavior Profiling Algorithm
Input: bidirectional 5-tuple flow set T
Output: behavior profile set B

1 // Knowledge-based constraint
2 Initialize an empty hash table H;
3 for ⌧ in T do
4 a abstract(⌧);
5 if a not in H then
6 H[a] list();
7 H[a].append(⌧);
8 end for
9 // Statistical constraint

10 Initialize an empty set B;
11 for a in H do
12 for ⌧i in H[a] do
13 BPi  ⌧i[1 :] ; // ignore src field
14 for ⌧j in H[a] do
15 if Cs(⌧i, ⌧j) = 1 then
16 BPj  ⌧j [1 :];
17 BPi  abstractDiff(BPi, BPj);
18 H[a].remove(⌧j);
19 end for
20 B.add(BPi);
21 end for
22 end for
23 return B;

• addr: Derived from dest field of the flow; value: {a
resolved domain name, “remote”, “local”, “multicast”}

• src-port: Derived from sport field of the flow; value:
{0⇠1023, “reg/dyn”}

• dst-port: Derived from dport field of the flow; value:
{0⇠1023, “reg”, “dyn”}

• proto: Equal to proto field of the flow; value: {“TCP”,
“UDP”}

Clearly, flows with identical abstraction will be placed together
in the same entry of the hash table H , where the key is the
4-tuple and the value is a list to store the 5-tuple flows.

The second loop traverses the hash table to obtain the final
behavior profiles subject to the statistical constraint (line 11
⇠ 22). We randomly select a flow as an initial template of
a BP (line 13), use a greedy strategy to merge other flows
under the statistical constraint (line 14 ⇠ 17) and eventually
find a BP that contains as many flows as possible (line 18
⇠ 20). The function abstractDiff in line 17 merges two
BPs by replacing their different fields with range identifiers
(e.g., sporti = 11125, sportj = 23266 ! BP.src-port =
“reg/dyn”). Particularly, the addresses resolved to domains
are merged using the longest common subdomain with a
wildcard, such as *.tplink.com. Accordingly, the final number
of the clusters (i.e., the number of BPs) can be reduced.

The last step of the Device Modeling Module is to complete
the device modeling by linking the device functions with
the network behaviors, as we observe that a function can
trigger the traffic of multiple behaviors simultaneously. For
example, the object detection of a drone not only relies on the
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connection to an edge server for high-precision AI inference
but also synchronizes the detection result with a cloud server.

Function-behavior correlation. The relationship between
functions and behaviors can be described by a bipartite graph
G = (F,B, E), where F is the set of functions and B is
the set of BPs. E denotes the edge between F and B, which
is a (0, 1) biadjacency matrix of size |F| ⇥ |B|. We use the
similar approach as in the function acquisition, i.e., we trigger
each function for 20 times by companion apps and collect
the corresponding traffic. With the obtained set of BPs, each
flow of the traffic can be mapped to a BP. For a function
Funci 2 F, a behavior BPj is considered correlated if it
occurs in all 20 times of triggers and is thus labeled in E, i.e.,
E[i, j] = 1.

Upon the completion of the device modeling, IoTGemini
can simulate the lifecycle of an IoT device’s network behaviors
and specify the custom use of functions as if operating a
physical device. It can be easily realized by a configuration file
consisting of the time to trigger a function and the duration,
simulating the custom user habit of a device. The triggered
functions will further awaken the network behaviors according
to the relations in the bipartite graph G.

VI. TRAFFIC GENERATION MODULE

This section discusses the Traffic Generation Module of
IoTGemini, which includes a traffic parser, generator models
(PS-GAN), and a traffic deparser. It targets the generation of
synthetic traffic that is on the packet level for the generality of
use and sequential in nature to keep the relationships between
consecutive packets. We use one piece of the split traffic (i.e.,
belonging to one BP), denoted by a dataset of raw IP packets
D, to elaborate the workflow.

A. Traffic Parser

The traffic parser transforms D to a set of sequential data
samples as the training input of the subsequent generator
model, which consists of the following steps:

• Separation: D is separated into a collection of packet
sequences by the bidirectional Netflow [47], which iden-
tifies bidirectional 5-tuples as flows. To properly handle
both short flows and long flows, we employ the mech-
anisms of inactive timeout (i.e., no further packets are
received in ↵ seconds) and active timeout (i.e., long
entries are split for every � seconds) to separate flows into
sequences. We set the values of ↵ and � to 30 seconds
and 150 seconds, respectively.

• Vectorization: For each packet, four ordinal fields are
extracted to form a vector p: IP length (IL), payload
length (PL), direction (DIR, 0 for LAN to WAN and 1
for WAN to LAN) and inter-arrival time (IAT). For the
first packet of a sequence, its IAT is set to zero.

• Segmentation: Each sequence is segmented or cycle
padded to a fixed length of packets as the input of most
sequential models requires. A segmented sequence is
denoted by P = [p1,p2, ...,pm] 2 Rm⇥4.

• Normalization: Dimension k 2 {1, 2, 3, 4} of the vectors
is first standardized to a distribution with zero mean and
unit variance by

S
k =

P
k � µk

D

�k
D

, (4)

and then normalized to the range of [�r, r] by

P
k
= 2r ·

 
S
k �mink

D

maxk
D�mink

D

� 1

2

!
, (5)

where µD, �D, minD, maxD 2 R4 are the mean,
standard deviation, minimum and maximum of the dataset
D, respectively, and r is a scalar. A vector sD stores the
five statistics for the use of traffic parser and deparser.
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Fig. 4. Architecture of PS-GAN (Packet Sequence GAN).

B. Packet Sequence GAN (PS-GAN)

To generate synthetic traffic of packet-level sequential data,
we design PS-GAN, a generative adversarial network (GAN)
for sequences of ordinal packet fields. Its architecture is
illustrated in Fig. 4. It is essentially a zero-sum game between
a generator that attempts to produce packet sequences as real
as possible from a noise distribution, and a discriminator as
an adversary to distinguish the synthetic data from the real
data. With iterations of this competition, the generator learns
the mapping from the noise space to the distribution of the
real data, and ultimately generates synthetic sequences of good
quality. We elaborate on the two components and the process
of training and execution as follows.

1) The Generator: We use the multilayer Long Short-
Term Memory (LSTM) as the generator. The LSTM [48] is
known for its capability of discerning time-series relationships,
enabling the generator to synthesize the correlation within
consecutive packets (e.g., packets of a TCP bidirectional flow
usually alternate between two directions due to ACKs). For-
mally, for a vectorized packet pt at position t in a sequence, an

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3426600

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 03:19:32 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

LSTM cell at position t can add or remove information to the
cell state by a mechanism called gate, which includes a forget
gate (parametrized by Wf ), an input gate (parametrized by Wi)
and an output gate (parametrized by Wo). By investigating the
packet vector pt and the output of the previous cell ht�1, the
workflow of an LSTM cell is as follows.

The forget gate decides the proportion of the old information
to be abandoned by

ft = �(Wf · [ht�1,pt]). (6)

The input gate decides the proportion of the new information
to be stored by

it = �(Wi · [ht�1,pt]). (7)

The output gate decides what to output for the next cell by

ot = �(Wo · [ht�1,pt]). (8)

The state of the current cell ct is calculated by the weighted
sum of a candidate state value ect, calculated as

ect = tanh(Wc · [ht�1,pt]), (9)

and the previous cell state

ct = ft · ct�1 + it · ect. (10)

The final output ht is the multiplication of the output gate
and the current cell state with activation and is given as:

ht = ot · tanh(ct). (11)

The generator takes a random noise sequence that follows
the standard normal distribution as the input and outputs a
synthetic sequence by the LSTM and an activation function
of hyperbolic tangent

tanh(x) =
e
x � e

�x

ex + e�x
. (12)

The output range of the activation function is (�1, 1). The
scalar r during the normalization should be less than 1 to make
sure the generator can mimic the full values of the real data.
In practice, to avoid the vanishing gradient problem happening
when the output value is close to the range boundary of
activation function tanh, we empirically choose r = 0.75.

2) The Discriminator: It incorporates a bidirectional LSTM
layer, in conjunction with a fully connected layer. This ar-
chitecture serves the purpose of evaluating the authenticity
of input data by taking into account information from both
directions within the sequence. In alignment with the design
principles established in the Wasserstein GAN (WGAN) [49],
the discriminator in our model does not produce a probability
using sigmoid functions but rather outputs a scalar score,
aiming to mitigate issues associated with unstable training.

It is worth emphasizing that our selection of distinct model
architectures for the generator and the discriminator stems
from the intrinsic nature of their respective functions. The
unidirectional LSTM employed within the generator is tailored
to simulate the packet-by-packet generation process akin to
that of a network card. Meanwhile, the bidirectional LSTM
utilized in the discriminator is designed to emulate the traffic

Algorithm 2: PS-GAN Training Process
Input: Real IP packet dataset D, batch size n

Output: Generator g
1 P, sD  trafficParser(D);
2 Initialize a generator g and a discriminator d;
3 while d not converged do
4 Sample a batch of real data {P i}ni=1 ⇢ P;
5 Lreal

d  1
n

Pn
i=1 d(P i);

6 Sample a batch of noise {zi}ni=1 ⇠ N (0, 1);
7 Lfake

d  � 1
n

Pn
i=1 d(g(zi));

8 Ld  Lreal
d + Lfake

d ;
9 d backUpdate(d,Lfake

d );
10 Sample a batch of noise {zi}ni=1 ⇠ N (0, 1);
11 Lg  1

n

Pn
i=1 d(g(zi));

12 g  backUpdate(g,Lg);
13 end while
14 return g;

Algorithm 3: PS-GAN Execution Process
Input: Number of data to generate N , generator g
Output: Synthetic packet dataset D̂

1 Sample N number of noise {zi}Ni=1 ⇠ N (0, 1);
2 P̂0 = {P̂ 0

i}Ni=1  g({zi}Ni=1);
3 D̂ trafficDeparser(P̂0

, sD);
4 return D̂;

analysis process executed by an expert, who may consider
information from both directions in traffic flows. This nuanced
architectural difference aligns with the specific objectives and
functionalities of these components within our model.

3) Training: The training process of PS-GAN is described
by Algorithm 2. In line 8, the loss function of the discriminator
can also be formalized as follows:

Ld = Ex⇠preal(x)[d(x)] + Ez⇠N (0,1)[�d(g(z))], (13)

which means to increase its probability of distinguishing
between real and fake data. In line 11, the loss function of
the generator can also be formalized as follows:

Lg = Ez⇠N (0,1)[d(g(z))], (14)

which means to increase the probability of fooling the discrim-
inator. Their parameters are updated alternately until reaching
a convergence when the discriminator cannot tell between real
and fake data2. At the end of the training, only the generator is
kept for the generation of synthetic traffic during the execution.

4) Execution: The execution process of traffic generation is
described by Algorithm 3. During this process, the generator
samples the noise data from the standard normal distribution
by the given number of synthetic data to generate and outputs
the data samples. Each of them is a multivariant sequence that
represents the ordinal fields of consecutive packets in a flow.

2In practice, the discriminator can be updated multiple times before one
update of the generator for better convergence.
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In other words, the generator of PS-GAN can generate packet-
level data and meanwhile keep the sequential relationships
among packets in real traffic, which increases the fidelity of the
synthetic traffic and promotes the usability to the downstream
systems using various types of features and models.

C. Traffic Deparser

It is responsible for eventually forming the consecutive
packet-level data of a flow, which includes the restoration of
ordinal fields and the fabrication of nominal fields.

1) Restoration of Ordinal Fields: For the sequences of
ordinal fields P

0 2 Rm⇥4 generated by the PS-GAN, the
restoration process involves the following steps:

• Denormalization: It is the inverse process of normaliza-
tion. For each dimension k of the vectors in P

0
, it is

realized using the stored vector of statistics sD by

Ŝ
k = (maxk

D �mink
D)(

P
0

2r
+

1

2
) +mink

D, (15)

and
P̂

k = Ŝ · �k
D + µk

D, (16)

• Truncation: For the fields of IL, PL and DIR, the gener-
ated values are truncated to integers as in real packets.

2) Fabrication of Nominal Fields: While PS-GAN effec-
tively generates ordinal fields as part of traffic data, nominal
fields are not generated by models due to their inherent
determinacy or the presence of randomness that lacks inter-
pretability. As a result, the process of generating nominal fields
necessitates a different approach.

We emphasize the notable advantage that our Behavior Pro-
filing confers upon the fabrication of these fields. The 5-tuple
fields derived from BPs exhibit a level of precision that sets
them apart from the approximately generated values produced
by alternative methods [17], [20]. For IP addresses, our ap-
proach permits the manual configuration of the device address.
The determination of the destination address is facilitated
through a DNS query, which resolves the addr field within
the BP. In cases where a port field is identified as a range
identifier within the BP (e.g., “dyn”), it signifies the random
utilization of ports to establish distinct flows associated with
the same behavior. Consequently, we employ a random value
within the specified range as the port number for a given flow
sequence (e.g., 32768 to 65535 for “dyn”). Taking into account
the specific characteristics of the considered behaviors, this
approach ensures that the nominal fields are appropriately
fabricated, and contributes to the overall precision of our traffic
generation process.

VII. DEPLOYMENT

A. Usage Configuration

To facilitate the deployment of the two modules within a
pipeline for customized traffic generation, we adopt a Finite
State Machine (FSM) as a means to configure the manner in
which a user interacts with an IoT device. This FSM-driven
approach effectively orchestrates the generation of synthetic

traffic data in accordance with specified user operations, offer-
ing a structured framework for customized traffic generation.
An example of presenting such an FSM using a JSON file is
as follows:

{
"state0": {

"dev_ip": "192.168.1.10",
"start_time": "2023-01-01 12:00:00",

},
"states": {

"func1": {"cond": "12:30", "ac": "5min", "nxt": "idle"},
"func2": {"cond": "12:50", "ac": "once", "nxt": "idle"},
"idle": {"cond": "", "ac": "", "nxt": ""}

},
"end_time": "2023-01-01 15:00:00"

}

Within the provided FSM representation, the initial state,
denoted as state0, serves the purpose of initializing key
parameters such as the device IP address and the start time
of the operation. This start time serves as the foundational
timestamp for the subsequently generated traffic.

The states section comprises various states within the
FSM, each of which refers to the utilization of a specific IoT
function. Each state is characterized by three key attributes: a
condition (cond), an action (ac), and a next state (nxt).

• Condition (cond): This parameter represents the tempo-
ral trigger point for a given function.

• Action (ac): It signifies the duration of utilization for
a persistent function (e.g., “5min”) or the frequency of
successively triggering a transient function (e.g., “once”).
During the execution, our framework employs the bipar-
tite graph in the Device Modeling Module to identify
which network behaviors are associated with the triggered
function. Subsequently, it activates the generators respon-
sible for these behaviors to produce synthetic traffic data.

• Next State (nxt): Upon completion of the defined ac-
tions, the current state transitions to the next state. The
next state then initiates its own traffic generation process.

The traffic generation process concludes when the packet
timestamp reaches the specified end_time. During the gen-
eration of packet data, the absolute timestamp is incrementally
calculated using the generated inter-arrival time (IAT) value as
an offset, in addition to the initially configured start time.

B. Usage Generation and Validation

To cater to both flexible customized usage and streamlined
data generation tests that do not require specific details, we
offer three distinct methods for generating configurations in
the form of FSMs: 1) manual assignment by users according
to their needs and usage patterns; 2) translation from time-
based automation rules for users who utilize IoT automation
platforms, such as “turn on the light at 7:30 am” of a bulb.
Given that these automation rules often share syntactical
similarities with FSMs (e.g., trigger, action/event), a parsing
script can effectively convert them into our user configuration
format; 3) random generation of function triggers, in instances
where users seek to introduce variability or simplicity into
their data generation tests.
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In addition, it is essential to maintain a degree of realism
in the generated configurations to ensure the practicality of
resulting traffic data. We establish two constraints for the
validation of usage configurations: 1) functions triggered by
app interactions are constrained to not be activated during
late night hours (e.g., between 12 am and 6 am) by default,
unless specified otherwise by users; 2) by default, the next
state following the execution of a function is set to the
idle state, unless manually altered to other states by users.
Non-compliance with these constraints may render a user
configuration invalid, and the generation process will fail until
the user rectifies the configuration. These constraints are in
place to ensure that the generated traffic data remains plausible
and in accordance with realistic usage patterns.

VIII. EVALUATION

In this section, we evaluate IoTGemini by answering the
following three questions:

• How is the effectiveness of the device modeling, such
as the number of functions, the number of BPs and the
relations between functions and BPs? (Section VIII-B)

• How is the fidelity of our synthetic traffic, i.e., the quality
of generated traffic data compared with real IoT traffic
data? (Section VIII-C)

• How is the usability of our synthetic traffic to various
downstream traffic analysis tasks as training data for
models? (Section VIII-D)

A. Experimental Setup

IoT Testbed. We build a real-world testbed consisting
of 19 IoT devices covering diverse types of devices (e.g.,
appliance, camera, audio, TV light, IoT hub, sensors) and most
mainstream manufacturers in China (e.g., Xiaomi, Huawei,
TP-Link). The devices are connected to a wireless router that
allows communication with the Internet. All the traffic through
the router is collected using a Scapy script, including both the
traffic inside the LAN and the traffic between the LAN and
the Internet. In addition, as mentioned in Section V-A, a PC
is installed with an Android emulator, the IoT apps and an
automation script to control the devices for the triggers of
their functions and network behaviors. We run the testbed for
10 days and collect a traffic dataset of 10.1 GB in PCAP files.

Datasets. Four real-world IoT traffic datasets are used for
the evaluation of traffic generation as Table II describes; the
complete device list is in our appendix. In addition to our
own dataset, we include three public IoT traffic datasets as
benchmarks. As collected in different regions (United States,
United Kingdom, and Australia), using different device types
(e.g., smart TV, smart brewer) and manufacturers (e.g., Ama-
zon, Google, Apple, Samsung) from ours, they improve the
generality of the experiment. We denote the datasets by the
abbreviation of the regions in the rest of the paper. All of these
datasets are in PCAP files while the public datasets truncate
the packet payload. Each of the datasets is randomly split by
a ratio of 6:4 for training and testing. The training dataset is
used for the training process of data generators, and the testing

TABLE II
DESCRIPTION OF IOT TRAFFIC DATASETS.

Dataset
Notation

PCAP
Size

Time
Span

Device
Number

Packet
Number

Flow
Number

CN (ours) 10.1 GB 10 days 19 5,849,411 344,983
US [12] 1.8 GB 3 days 41 1,872,002 186,339
UK [12] 488 MB 3 days 33 1,588,821 203,693
AU [13] 2.7 GB 10 days 12 9,615,898 204,181

dataset is used as the real data for the comparison of fidelity
to the synthetic traffic and the testing of downstream systems.

Besides the IoT traffic datasets, during the experiment on
downstream tasks like intrusion detection or anomaly detec-
tion, two attack datasets are used as the samples to be detected.
One dataset provides the traffic of IoT malware including
Mirai and Bashlite [50], and the other dataset provides the
traffic of three types of DDoS attacks, two types of scanning
attacks and two types of data exfiltration attacks [51]. Both
datasets are also stored in PCAP files.

Baselines. To highlight the improvement of IoTGemini, we
compare the synthetic traffic of IoTGemini to the synthetic
traffic of three types of prior works as baselines, including two
approaches for packet-level data (i.e., independent packets in
tabular data) generation and one approach for sequential data
generation:

• Gaussian Copula (GC) [52]: A statistical approach for
synthetic data generation. It uses copula functions to
model the cumulative multivariate distribution of each
field.

• Conditional Tabular GAN (CTGAN) [37]: A state-of-the-
art GAN-based approach for synthetic data generation.
It uses multiple tabular data-specific designs and outper-
forms many GAN-based baselines in terms of fidelity.

• Probabilistic AutoRegressive (PAR) [32]: A multivariant
machine learning approach for sequential data generation.
It has the ability to generate synthetic data with the time-
series association learned from the real data.

All the baselines are trained by packet-level traffic. For the
tabular approaches (GC, CTGAN), the dataset of a device is
transformed to CSV tabular data by treating each packet as
a row and extracting the same packet fields of IoTGemini as
columns. For the sequential approach (PAR), the dataset of a
device is firstly split by 5-tuple flows, and then the packets of
a flow are segmented into multivariant sequences, and every
packet consists of the same fields as the tabular data. All the
data are properly normalized following the requirement of each
baseline method. Note that the training dataset of the baselines
will not be split by behaviors, which is the effort only made
by the Device Modeling Module of our framework.

Downstream Tasks. To evaluate the usability of the syn-
thetic traffic, we demonstrate three ML/DL-based downstream
traffic analysis tasks:

• Network Intrusion Detection System (NIDS): The NIDS
uses traffic features to classify network traces into be-
nign traffic and malicious traffic by supervised learning
algorithms. We employ three ML-based approaches used
in [2], including Linear Regression (LR), Decision Tree
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(DT) and Random Forest (RF), and one DL-based ap-
proach used in [53], the bidirectional LSTM (BLSTM).

• Anomaly Detection System (ADS): The ADS is typically
based on unsupervised learning algorithms to detect de-
viation from the normal status like attacks and network
failure. We employ three ML-based approaches used
in [2], including Local Outlier Factor (LOF), Cluster-
based Local Outlier Factor (CBLOF) and Isolation Forest
(IF), and one DL-based approach used in [6], the 1D-
CNN autoencoder (CNN-AE).

• Device Fingerprinting (DF): The DF helps the network
administrator identify the types of devices connected
within its network, which is a supervised learning task.
We employ one ML-based approach called DarkSide [54]
and one DL-based approach called HomeMole [8].

To conduct experiments on these tasks, data alignment is
necessary as the format of synthetic traffic differs from the
input of these models. Hence, we write a script for feature
extraction that can convert both the packet-level data and
sequential data to the required input. For the ML models of
these approaches, the input is tabular data of flow statistics,
including mean, maximum, minimum, sum, standard deviation
and variance of packet lengths and inter-arrival time. For the
DL models, the input is packet-level sequential data similar
to the output of IoTGemini and PAR, which are multivariant
sequences of packet fields.

Metrics. We consider two categories of metrics respectively
for the fidelity of data distribution and the usability to down-
stream tasks. For the evaluation of fidelity (i.e., similarity to
real data), three metrics are used, all of which suggest better
quality of synthetic data by higher scores:

• Field Similarity: It describes the overall distribution sim-
ilarity of each packet field between real and synthetic
data. Numerical fields (e.g., packet length) are compared
by the Kolmogorov–Smirnov statistic, which is the max-
imum difference between the CDFs of real and synthetic
data. Categorical fields (e.g., L4 protocol) are compared
by the Total Variation Distance (TVD) as Equation 17
formulates, where ! is a possible value for a field ⌦, and
freqR(!) and freqS(!) represent the frequency of value
! in real data and synthetic data. The average value of
the similarity of each field is calculated as the final score,
which ranges between 0 and 1.

1� 1

2

X

!2⌦

|freqR(!)� freqS(!)| (17)

• Pair Trend: It reflects how a pair of fields vary in relation
to each other (e.g., direction and inter-arrival time). For
a pair of the fields ⌦1 and ⌦2, it is calculated by
Equation 18, where corrR(⌦1,⌦2) and corrS(⌦1,⌦2) is
the Pearson correlation coefficient of the field pair in real
data and synthetic data. The final score is calculated by
the average value for all possible combinations of field
pairs, which ranges between 0 and 1.

1� 1

2
|corrR(⌦1,⌦2)� corrS(⌦1,⌦2)| (18)

• Sequentiality: It describes the difficulty of telling apart
real data from synthetic data that represent an ordered
multivariant sequence of packet fields. We utilize the
tool implemented by the SDMetrics library [55]. It first
creates an augmented table with both real and synthetic
data, and adds an extra column to keep track of whether
each sequence is real or synthetic. Then it splits the
augmented data into multiple training and validation
sets. An LSTM classifier is trained on the training split
and predicts whether each sequence is real or synthetic
on the validation set. The final output is one minus
the classification accuracy; a higher value close to 0.5
indicates better sequentiality of synthetic data.

From the perspective of data format, the field similarity
and the pair trend evaluate the quality of synthetic traffic
as independent packets, and the sequentiality is to tell the
sequential fidelity of synthetic traffic as sequential data.

For the evaluation of usability, we use the relative error
of F1 score for the tasks of network intrusion detection and
anomaly detection. It is calculated by

|F1R � F1S |
F1R

(19)

where F1R is the F1 score of models trained by real data and
F1S is the F1 score of models trained by synthetic data. A
lower difference indicates better usability of the synthetic data.
The F1 score is a tradeoff metric between precision and recall,
and is suitable for the evaluation of models under imbalanced
scenarios like attack detection. For device fingerprinting, we
use identification accuracy as the metric.

B. Effectiveness of Device Modeling

The modeling result of the devices in our IoT testbed
is shown in Table III. Among the 19 devices, 12 devices
have more than 3 functions and 8 devices have more than
5 BPs, which coincides with the trend of IoT being more
functional nowadays and in future. In particular, cameras and
audio devices possess more functions and BPs than other
devices. As a typical type of smart devices, the increasing
functionalities promote their usability in various scenarios,
meanwhile highlighting the need for modeling devices to
understand their behaviors. For appliances like lights and
plugs, we do not observe any persistent functions on them
(Pers. in Table III), as their functions are usually limited to
remote control that is a transient function (Trans. in Table III).

To better understand the relations between functions and
behaviors, we draw a Sankey diagram (Fig. 5) that illustrates
the bipartite graph of the TP-Link camera as an example.
On the left side are the functions including two persistent
functions (“watch”, “mov-detect”), two transient functions
(“photo”, “rotate”) and the idle state. On the right are the
seven BPs. The width of the flows indicates packet numbers
collected in 24 hours, when each function is triggered by 20
times and each persistent function runs for one minute per
trigger, and keeping the device idle for the rest of the time. We
observe that one function can be associated with multiple BPs.
It means that the execution of a function probably needs the
assistance of multiple services. Besides, it shows that the data
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TABLE III
DEVICE MODELING OF OUR IOT TESTBED.

No. Device
Type Vendor Functions BPs RelationTrans. Pers.

1 power strip Honyar 1 0 10 12
2 plug Xiaomi 2 0 5 8
3 plug Gree 1 0 3 6
4 light Wiz 2 0 2 5

5 camera Xiaomi 6 2 11 22
6 camera Skyworth 1 2 4 9
7 camera TP-Link 2 2 7 12
8 camera HiChip 2 1 4 8
9 camera Mercury 2 2 9 12
10 camera EZVIZ 2 2 4 13
11 camera Philips 2 1 2 10
12 camera 360 3 2 6 15

13 hub Xiaomi 1 1 5 7
14 hub Aqara 1 1 1 3
15 hub Huawei 2 1 3 7
16 hub Gree 1 0 1 3

17 audio MiAI 5 1 13 25
18 audio Baidu 2 1 4 10
19 audio Alibaba 3 2 2 14

proportion of different functions and BPs is highly imbalanced
and susceptible to user habits. For example, the device traffic
pattern can be greatly changed if a user does not use the
companion app to watch. This suggests the difficulty of using
existing methods to generate custom traffic data, and highlights
the need for dissecting device functions and behaviors as our
framework.

We also evaluate the influence of two hyperparameters on
behavior profiling, i.e., the threshold d1 of spatial correlation
and the threshold d2 of temporal correlation for statistical
constraint. As shown in Fig. 6, we find that the number of BPs
converges when d1 and d2 are over 0.1. Since our knowledge-
based constraint provides prior information on clustering, this
makes the statistical-based constraint easier to satisfy, thus
reducing the difficulty of hyperparameter selection.

For the other datasets, though we cannot obtain their func-
tions and relations due to lack of their physical devices, we
can still obtain the BPs using their traffic data. In Table IV,
we compare the granularity of BPs to 5-tuples which is used
as a unit of traffic in [31]. It can be seen that the number of
BPs is significantly smaller than the number of 5-tuples for
all the datasets and devices. It means that, compared to traffic
generators built by each 5-tuple, the number of generators in
IoTGemini can be reduced by over 99%, which significantly
reduces the complexity of the overall system.

Therefore, the experiment shows that IoTGemini achieves
effective device modeling, including network behavior profil-
ing with proper granularity and the relations between device
functions and network behaviors. It also lays the foundation
for customized and high-quality traffic generation.

C. Fidelity of Data Distribution

To verify the validity of choosing the LSTM as the main
component in the traffic generator of IoTGemini (i.e., PS-
GAN), we first conduct an ablation experiment by replacing

Fig. 5. An illustration of device modeling on TP-Link camera.

(a) d1 (b) d2

Fig. 6. Influence of two threshold hyperparameters in Behavior Profiling.

the LSTM with other neural networks and keeping the training
process unchanged. The candidates include the Convolutional
Neural Network (CNN) and the Multilayer Perceptron (MLP).
We use the CN traffic dataset for the experiment. As Fig. 7
shows, the generator using the LSTM produces the best quality
of synthetic traffic by all the metrics. We attribute the result to
its superior ability to learn the sequential relationships between
the packets of traffic, which is an important feature for many
downstream tasks.

Subsequently, we compare the overall quality of synthetic
traffic generated by IoTGemini with the real traffic of the four
datasets using the metrics. The quantitative evaluation results
in each dataset are depicted in Fig. 8. We find that IoTGemini
shows good results on most of the datasets and metrics.
Specifically, IoTGemini greatly outperforms the baselines by
the metric of sequentiality, which highlights its advantage
of using the sequential model and data format for traffic
generation. Among the baselines, CTGAN and GC barely have
any ability to generate sequential data; PAR as a sequential
data generation approach exhibits relatively good sequentiality,
but the result is still far inferior to the result of IoTGemini. The
experiment result demonstrates that IoTGemini can generate

Fig. 7. Overall quality of synthetic traffic compared to real traffic using
different components in PS-GAN.
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(a) CN (b) US (c) UK (d) AU

Fig. 8. Overall quality of synthetic traffic compared to real traffic in four datasets.

(a) Appliance-IL (b) Camera-IL (c) Hub-IL (d) Audio-IL (e) TV-IL

(f) Appliance-IAT (g) Camera-IAT (h) Hub-IAT (i) Audio-IAT (j) TV-IAT

Fig. 9. Distribution of real and synthetic packet lengths (IL) and inter-arrival time (IAT) in different types of devices.

TABLE IV
COMPARISON BETWEEN THE NUMBER OF 5-TUPLES AND BPS.

Dataset Device
Type

Device
Number

Average
5-tuples

Average
BPs

Reduce
By

CN

Appliance 4 687.3 5.0 99.27%
Camera 8 24294.13 5.75 99.98%

Hub 4 68.25 2.5 96.34%
Audio 3 49431.67 6.33 99.99%

US

Appliance 16 165.08 4.72 97.14%
Camera 9 1713.3 5.36 99.69%

Hub 7 1360.0 2.8 99.79%
Audio 4 7881.75 29 99.63%

TV 5 1965.5 38.75 98.03%

UK

Appliance 11 98.77 1.7 98.28%
Camera 7 480.66 4.42 99.08%

Hub 6 2153.5 3.2 99.85%
Audio 5 15111.8 23.2 99.85%

TV 4 5050.0 24.66 99.51%

AU

Appliance 3 816.7 2.67 99.67%
Camera 5 7548.0 16.0 99.79%

Hub 2 4399.5 3.0 99.93%
Audio 2 12763.0 10.0 99.92%

synthetic traffic with high fidelity from the view of both
packet-level data and sequential data.

Besides the overall quality, we are also curious about the
fidelity of each important packet field. We primarily explore
two packet fields – IP packet length (IL) and inter-arrival time
(IAT), as these two fields are remarkably used by almost every
traffic analysis model (e.g., [2], [3], [5], [6], [8], [9], [21]).

We measure the field values on the real traffic of different
device types (appliance, camera, hub, audio, TV) and the
synthetic traffic of these devices, and illustrate their cumula-
tive distribution functions (CDF) for qualitative analysis. The

(a) Ours (b) US

(c) UK (d) AU

Fig. 10. Quality of synthetic aggregate features compared to KE-GAN [36].

results are in Fig. 9. It can be seen that the synthetic traffic of
IoTGemini (curve in light blue) exhibits the most similar trend
to the real traffic (curve in orange). In particular, we find a
pattern of the real traffic that many CDF curves go alternately
steep and flat. It means that many field values fall within differ-
ent small ranges, implying the existence of multiple behaviors
inside the device traffic. We observe that only IoTGemini can
best mimic this pattern. In contrast, baselines such as GC
and PAR cannot generate similar shapes of distribution but
produce relatively smooth curves. It can be explained by the
baselines failing to generate the variety of the distribution,
while IoTGemini benefits from its device modeling that splits
network behaviors to decrease the difficulty of learning the
traffic patterns. This experiment again shows the high fidelity
of the synthetic traffic generated by IoTGemini.

In addition to straightforward packet-level synthetic data
fidelity assessment, we also evaluate the quality of aggregate
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(a) CN (b) US (c) UK (d) AU

Fig. 11. Relative error of F1 score of network intrusion detection approaches trained by synthetic traffic and tested by real traffic, compared to the approaches
trained by real traffic.

(a) CN (b) US (c) UK (d) AU

Fig. 12. Relative error of F1 score of anomaly detection approaches trained by synthetic traffic and tested by real traffic, compared to the approaches trained
by real traffic.

traffic features post feature extraction. In this experiment, we
employ the state-of-the-art Knowledge Enhanced GAN (KE-
GAN) as our baseline method, as described in [36]. It is
worth noting that KE-GAN does not generate packet-level
data; instead, it produces three aggregate features for each
IoT device, including total packet count within a flow, average
packet length within a flow, and inter-arrival time. For com-
parative purposes with KE-GAN, we first utilize IoTGemini
to generate packet-level traffic and subsequently compute the
same aggregate features. As shown in Fig. 10, the quality
of these aggregate features is compared with those of real
traffic across four datasets. The results indicate that IoTGemini
closely aligns with KE-GAN’s performance and even exhibits
superior performance on some datasets. It is important to note
that KE-GAN directly learns from the aggregate features of
real traffic, whereas IoTGemini only learns from packet-level
data and then transforms synthetic data into aggregate features.
The results demonstrate that IoTGemini maintains a high level
of fidelity to real traffic even after further feature aggregation
process that introduces additional information loss.

D. Usability to Downstream Tasks

To verify the usability of synthetic traffic to downstream
traffic analysis tasks, we use the synthetic traffic of IoTGemini
and the baselines to train the models of the tasks and use
the real traffic to test the trained models. To demonstrate
the versatility of generated packet-level traffic that can be
converted into other data formats, for the models of the three
downstream tasks in the experiment, we employ at least one
ML-based approach that inputs flow-level statistics and one
DL-based approach that inputs packet-level sequential data.

NIDS. Four supervised learning models are trained as binary
classifiers to distinguish between IoT traffic (as benign traffic)
and malicious traffic. The experiment results are shown in
Fig. 11. IoTGemini outperforms the baselines for most of the
datasets and the NIDS approaches. In addition, the superiority
of IoTGemini to the baselines can be significant. For example,

(a) DarkSide (b) HomeMole

Fig. 13. Identification accuracy of device fingerprinting approaches trained
by synthetic traffic and tested by real traffic.

in the AU dataset, the relative error of IoTGemini on the LR
approach is only 1.45 ⇥ 10�3, whereas the relative error of
the baseline GC is much higher (0.239).

ADS. Four unsupervised learning models are trained us-
ing only the IoT traffic (as benign traffic), and the trained
models output anomaly scores to tell the anomalous traffic.
As shown in Fig. 12, the synthetic traffic of IoTGemini can
train the models with the lowest relative error for most of the
datasets and approaches. Note that the relative errors of ADS
approaches are mostly higher than the relative errors of NIDS
approaches. It is because some unsupervised learning models
are more difficult to train than supervised learning models. For
example, the F1 score of the LOF on the CN dataset is only
0.365 even trained by real data. Accordingly, the high relative
errors obtained by the synthetic traffic are also reasonable.
We find that IoTGemini achieves much lower relative error
than the baselines for the CNN-AE approach. As it is a DL-
based approach using packet sequences as input, the advantage
of IoTGemini can be attributed to its ability to generate the
sequential relationships among packets as the real traffic.

DF. One ML-based approach (DarkSide) and one DL-based
approach (HomeMole) are trained to identify device types
using the IoT traffic. As Fig. 13 illustrates, the approaches
trained by the real data achieve the highest accuracy. As for the
approaches trained by the synthetic traffic, IoTGemini outper-
forms other baselines for all the datasets, and its superiority is
greater on HomeMole. Again, it suggests the compatibility of
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IoTGemini with DL-based approaches that require the learning
of temporal/spatial relationships. As the DL-based approaches
to traffic analysis are becoming more popular for their better
performance, the advantage of IoTGemini is also highlighted.

To sum up, the experiments demonstrate IoTGemini’s high
usability of synthetic traffic generation to facilitate various
downstream tasks, and its good compatibility with different
models and data formats used by the approaches of these tasks.
At this point, all three questions raised at the beginning of this
section are properly answered.

IX. DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations and open questions
of IoTGenimi. We also offer insights on the possible solutions
and future directions for optimization.

Scope and generalization. This paper primarily concen-
trates on IP traffic, as IP-enabled devices hold a major share of
the IoT market, especially for the emerging intelligent devices
in many scenarios (e.g., smart homes, smart cities) [56]. In our
future work, we expect to expand the scope of device modeling
to a wider range of protocol stacks, such as Zigbee and Z-
Wave. With these protocol stacks, a revised Device Modeling
Module is required as their traffic cannot be described by 5-
tuples. A possible solution could be constructing BPs using
their specific description of traffic (e.g., the fields in NWK
layer, APS layer and APL layer of Zigbee). The Traffic
Generation Module can be easily generalized with just minor
adjustments, considering the universal characteristics of data
transmission by packets among the protocol stacks. For further
study, research on generating higher-resolution traffic data is
meaningful, such as in units of 100ms or 10ms to meet today’s
low-latency trend of IoT networking.

Function acquisition automation. In IoTGemini, we use
a Bash script with ADB to automate the triggers of device
functions. Writing the script can be labor-consuming as we
need to beforehand explore the UI of IoT companion apps.
The function acquisition could be incomplete, since our script
is difficult to cope with multi-layer menus or text input UI
components in the apps. In future work, to build a larger IoT
testbed, we expect to address these two issues by exploiting
some UI component recognition tools (e.g., OCR [57]). For
open-source apps, the function acquisition of these apps can
hugely benefit from automated code analysis tools.

Stability of modeling. As time goes by, a device may obtain
connections to a new domain due to domain migration, which
affects the completeness of BPs. A device may also exhibit
new traffic patterns due to firmware update that changes the
protocol, which affects the performance of synthetic traffic
generators. To guarantee stability, one of our future work is to
integrate the continuous learning technique with our IoTGem-
ini framework for model updates. Besides, we are also curious
if the latest time-series modeling approach Transformer [58]
can achieve better stability on certain complex behaviors, given
its attention structure and the larger number of parameters.

Security considerations. We assume the physical devices
are located in a safe environment. In practice, many devices
have to work in an open space where malware is likely to

compromise the devices. The malicious behaviors may be
propagated from the malware to the generated data, which
is undesirable for downstream tasks. To address the security
concern, we can deploy a traffic cleaning system before the
downstream tasks to filter unwanted traffic data.

X. CONCLUSION

This paper proposes IoTGemini, a framework for the gener-
ation of IoT synthetic traffic, which consists of a Device Mod-
eling Module and a Traffic Generation Module. The Device
Modeling Module enables the lifecycle modeling of device
functions and network behaviors. For each of the network
behaviors, the Traffic Generation Module builds a GAN-based
generator to produce synthetic traffic. Accordingly, IoTGemini
supports the customized use of device functions and the gen-
eration of the corresponding traffic. Our evaluation shows that
IoTGemini achieves great effectiveness in device modeling,
high fidelity of synthetic traffic and remarkable usability in
various downstream traffic analysis tasks.
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