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ABSTRACT

While deep learning models have high representation power and
promising performances, there is often a lack of evidence to in-
terpret potential reasons behind the predictions, which is a major
concern limiting their usability for scientific discovery. We propose
a Neural Additive Convolutional Neural Network (NA-CNN) to
enhance the interpretability of the model to facilitate scientific dis-
coveries in climate science. To investigate the interpretation quality
of NA-CNN, we perform experiments on the El Nifio identification
task where the ground truth for El Nifio patterns is known and can
be used for validation. Experiment results show that compared to
Spatial Attention and state-of-the-art post-hoc explanation tech-
niques, NA-CNN has higher interpretation precision, remarkably
improved physical consistency, and reduced redundancy. These
qualities provide an encouraging ground for domain scientists to
focus their analysis on potentially relevant patterns and derive laws
governing phenomena with unknown physical processes.
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1 INTRODUCTION

In recent years, deep learning has been widely applied in various
Earth Science domains, including climate science, geology, and
oceanography. With the emergence of eXplainable Artificial Intelli-
gence (XAI), deep learning’s usability extends beyond traditional
classification and predictive tasks. For instance, [8] used patterns
detected by XAI to calibrate model trust. Most prominently, prior
work [9] investigated the usability of XAI for scientific discovery by
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attempting to re-discover known scientific patterns using XAI ex-
planations. [9] applied Layer-wise Relevance Propagation (LRP) [2],
a gradient-based post-hoc XAI method, to uncover learned patterns
from trained CNN and re-discover the ENSO’s Sea Surface Tem-
perature (SST) patterns. Their results demonstrated that — when
applied to the study of unknown phenomena — XAI holds promises
to help domain scientists narrow down hypotheses and accelerate
the detection of scientifically meaningful yet undiscovered patterns.
Despite the advancements, model-agnostic post-hoc XAl paradigms
such as LRP [2], CAM [3, 7, 10], and DeepSHAP [4] are shown to
have a number of limitations, including shattering gradients and
disentangling positive/negative contributions, impacting the trust-
worthiness of their interpretations [5]. Our experiments in Fig. 2
also indicate that post-hoc XAI algorithms produce highly varied
interpretations even for identical model weights. This instability
further limits the credibility of the resulting interpretation.

2 PROPOSED APPROACH

Inspired by the Neural Additive Model [1], we introduce the Neural
Additive Convolutional Network (NA-CNN) whose design is more
naturally interpretable. NA-CNN’s primary advantage is that its
interpretation is aligned with how we interpret simple linear models
(e.g., logistic regression), which are generally appreciated by their
interpretability. This design allows domain scientists to interpret
the individual contribution of each feature in a straightforward and
intuitive manner. Moreover, since NA-CNN does not use gradients
for producing interpretation, it is less vulnerable to problems such
as gradient shattering and saturation [5].
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Figure 1: Neural Additive CNN Architecture (image-level
binary classification with intermediate interpretation).
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NA-CNN consists of two primary building blocks: (1) convo-
lutional layers for spatial feature extraction and (2) neural ad-
ditive networks, each acting as a shape function for individual
spatial locations. Formally, convolutional layers can be defined as
feonp : REXHXW _, REXHXW then there are b’ X w’ independent
fully-connect networks: f]ic ‘R — R, wherei € [1, ”” xw’]. Each
fully connected network maps the representation in each spatial
location to a scalar value. The mapped scalars from all locations are
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Figure 2: Output interpretations of candidate methods for sampled El Nifio cases. Note that the model is trained with scene-level
binary classification, and the maps are intermediate interpretation results.

then additively combined and activated by the sigmoid function,
which is shown in Fig. 1. Suppose X is the input SST map, the
end-to-end algorithmic flow is as follows:

Mc’xh'xw’ :fwm)(XC‘XHXW) (1)
ol :j;ic(Ml-) Vie[l, W xw] 2
' xw
7 = sigmoid ( Z o%) 3)
i=1

The linear additive operation in Neural Additive architecture
makes it straightforward to identify high-contribution locations in
the SST map. Furthermore, as shown in [1], we can also visualize
specific shape function f; }C to gain concrete insights into how SST

anomalies variations at a particular region relevant to El Niflo.

3 EXPERIMENT RESULTS

To illustrate the effectiveness of NA-CNN, we validate its capa-
bility to discover known ground-truth patterns of the El Nifio-
Southern Oscillation (ENSO). Specifically, we train our model on
the global monthly Sea Surface Temperature (SST) anomalies to
perform scene-level binary classification of El Nifio (class 1) and
La Nifia (0). SST anomaly maps are from the NOAA PSL Climate
Data Repository [6], covering 1578 monthly observations from 1891
to 2020. To label El Nifio and La Nifa phases, we use the Nifo3.4
index - spatial average of equatorial Pacific Ocean SST anomalies
(5°N —5°S, 170°W — 120°W) - where cases with Nifio3.4 > 0.5 and
Nifio3.4 < —0.5 correspond to El Nifio and La Nifia, respectively.
NA-CNN’s predictive performance is comparable to the perfor-
mance of conventionally black-box models with overall accuracy,
precision, and recall of 99.8%, 99.98%, and 99.7%, respectively. To
compare the interpretability of NA-CNN with other XAl approaches,
we show their interpretations on 3 randomly selected SST maps
of anomalies. All post-hoc XAI techniques (Integrated Gradient,
LRP, XGrad-CAM, DeepSHAP) are applied on the same base CNN.
We qualitatively evaluate the interpretation based on 3 primary
criteria: (1) Pattern alignment: The interpretation should high-
light locations with high overlap with Nifio3.4 region (5°N — 5°S,
170°W —120°W), which is the true pattern based on domain knowl-
edge. (2) Physical consistency: Since El Nifio is defined by only
SST anomalies within the Nifio3.4 region, the interpretation should
consistently highlight attributions at the Nino3.4 region across dif-
ferent observations. Such consistency is critical to guide where
domain scientists should focus their pattern analysis for scientific

discovery. (3) Reduced distraction: Interpretation should min-
imize identifying less useful or irrelevant features, avoiding pro-
viding unimportant noises and distracting domain scientists from
the real signals. In this case study, the significance of a location
is inversely proportional to its distance from the Nifio3.4 region.
Fig. 2 shows that NA-CNN’s interpretations has the highest level
of pattern alignment and reduced distracting patterns compared
to other methods. It consistently highlights interpretation in the
same area, which is important for pinpointing major hypotheses.

4 CONCLUSION AND FUTURE WORK

We proposed the NA-CNN framework to enhance model inter-
pretability to facilitate scientific discoveries. Our experiments on
climate science datasets for El Nifio confirmed the improvements of
NA-CNN in consistently aligning the interpretable evidence with
known physical patterns. Our future work will integrate this with
other architectures (e.g., ViT) and domain problems. Furthermore,
NA-CNN focuses on interpreting spatial patterns and lacks the abil-
ity to interpret more complex spatio-temporal patterns. In future
work, we will extend NA-CNN to interpret spatio-temporal models.
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