HIGHER DU BOIS AND HIGHER RATIONAL
SINGULARITIES

ROBERT FRIEDMAN and RADU LAZA

Appendix by Morihiko Saito

Abstract

We prove that the higher direct images R f, Q§ /s of the sheaves of relative Kdhler
differentials are locally free and compatible with arbitrary base change for flat proper
families whose fibers have k-Du Bois local complete intersection singularities, for
p <k and all g > 0, generalizing a result of Du Bois (the case k = 0). We then
propose a definition of k-rational singularities extending the definition of rational
singularities, and show that, if X is a k-rational variety with either isolated or local
complete intersection singularities, then X is k-Du Bois. As applications, we discuss
the behavior of Hodge numbers in families and the unobstructedness of deformations
of singular Calabi-Yau varieties.

In an appendix, Morihiko Saito proves that, in the case of hypersurface singu-
larities, the k-rationality definition proposed here is equivalent to a previously given
numerical definition for k-rational singularities. As an immediate consequence, it fol-
lows that for hypersurface singularities, k-Du Bois singularities are (k — 1)-rational.
This statement has recently been proved for all local complete intersection singulari-
ties by Chen, Dirks, and Mustatd.

1. Introduction

The Hodge numbers are constant in a smooth family of complex projective varieties
over a connected base. A powerful way of encoding this fundamental fact is Deligne’s
theorem (see [2]): if f : ¥ — § is a smooth morphism of complex projective varieties,
then the higher direct image sheaves R? f*QIy’ /s of the relative Kahler differentials
are locally free and compatible with base change. This theorem fails for families of
varieties which have singular fibers (and in positive characteristic). For Y a singular
compact complex algebraic variety, Du Bois [3] showed that the Kdhler-de Rham
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complex 23} should be replaced by the filtered de Rham or Deligne—Du Bois complex
Q3% whose graded pieces Q5 € D§(Y) play the role of Q% (see [31, Section 7.3]).
Namely, the associated spectral sequence with Ef*? = H?(Y; Q%) degenerates at
E; and computes H?14(Y,C) together with the Hodge filtration associated to the
mixed Hodge structure on H*(Y). However, the associated Hodge numbers 179 :=
dim Hq(Y;QI;) do not behave well in families in general.

The filtered de Rham complex is related to the complex of Kéhler differentials via
the canonical comparison Kéhler-to-Du Bois map ¢ : Q’; — Q’;. The maps ¢? are
isomorphisms for all p only when Y is smooth, at least when Y is a local complete
intersection (see [28, Theorem 3.39, Theorem F]). It is thus natural to consider the
case when ¢? is a quasi-isomorphism in a certain range. Steenbrink [41, Section 3]
introduced the notion of Du Bois singularities, which play a role in the study of com-
pactifications of moduli. By definition, Y is Du Bois if ¢° is a quasi-isomorphism.
Following [25] and [11], we say that Y is k-Du Bois if ¢? is a quasi-isomorphism
for 0 < p < k. Thus 0-Du Bois singularities are exactly the Du Bois singularities
in Steenbrink’s terminology. A key property satisfied by Du Bois singularities is the
following.

THEOREM 1.1 (Du Bois [3, Théoréeme 4.6], [4, Lemme 1])

Let f:Y — S be a flat proper family of complex algebraic varieties. Assume that
some fiber Y has Du Bois singularities. Then, possibly after replacing S by a neigh-
borhood of s, for all ¢ > 0, the sheaves RY f,.Oy are locally free of finite type and
compatible with base change.

The theorem can be interpreted (in particular) as giving a relation between the
mixed Hodge structure H*(Yy) of a singular fiber Yy with the limit mixed Hodge
Hl?m
(for dimension-2 semi-log-canonical hypersurface singularities) was independently
established by Shah [37], and plays a key role in the study of degenerations of K3
surfaces (e.g., [38]) and related objects (e.g., [19], [23]). Theorem 1.1 continues to
have important consequences for the study of compact moduli of varieties of general
type (see, e.g., [17], especially Section 2.5 there).

Here, we prove the following generalization of Theorem 1.1 for the case of a

associated to a one-parameter smoothing X /A. In this version, the theorem

local complete intersection (Ici) morphism.

THEOREM 1.2

Let f:Y — S be a flat proper family of complex algebraic varieties, and let s €
S. Suppose that the fiber Yy has k-Du Bois Ici singularities. Then, possibly after
replacing S by a neighborhood of s, the higher direct image sheaves R4 f Q:II;/S of



HIGHER DU BOIS AND HIGHER RATIONAL SINGULARITIES 1841

the relative Kdihler differentials are locally free and compatible with base change for
0<p<kandallg>0.

Remark 1.3

We use the Ici assumption to control the sheaves of Kéhler and relative Kéhler differ-
entials in two ways. First, a result of [28] gives an estimate on the codimension of the
singular locus for k-Du Bois Ici singularities. Using this and some results of Greuel,
we prove a key technical point: under the Ici assumption, the sheaves Q’;C /s are flat
over S for p <k (see Theorem 2.5). In case k = 0, both the codimension estimate
and the flatness are automatic and one recovers Theorem 1.1 as a special case.

As a corollary, we obtain the following.

COROLLARY 1.4

Let f: Y — S be a flat proper family of complex algebraic varieties over an
irreducible base. For s € S, suppose that the fiber Yy has k-Du Bois Ici singu-
larities. Then, for every fiber t such that Y; is smooth, dimGer HPY(Y;) =
dim Gr%. H?%4(Y;) for every q and for 0 < p < k. Equivalently, h?*7(Yy) = h?4(Y;)
forall p <k.

In the case of hypersurface singularities, results similar to Corollary 1.4 were
obtained by Kerr and Laza [14], [15] with further clarifications given by Saito (per-
sonal communications) based on [35]. These type of results are relevant, for example,
to the study of the moduli of cubic fourfolds (see [23]).

Another application of Theorem 1.2 is the following generalization of the results
of Kawamata [13], Ran [32], and Tian [42] on the unobstructedness of deformations
for nodal Calabi—Yau varieties in any dimension, where the special case of isolated
hypersurface singularities was established in Section 6 of the first version of [7].

COROLLARY 1.5

Let Y be a canonical Calabi-Yau variety (see Definition 4.4) which is additionally a
scheme with 1-Du Bois Ici (not necessarily isolated) singularities. Then the functor
Def(Y) is unobstructed.

A more well-known class of singularities are the rational singularities. By the
work of Steenbrink [41], Kovécs [21], and others, a rational singularity is Du Bois.
In the context of higher Du Bois singularities, it is natural to consider higher ratio-
nal singularities. In the case of hypersurfaces X in a smooth variety, the k-Du Bois
singularities are characterized numerically by the condition &y > k + 1 (see [25,
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Theorem 1.1], [11, Theorem 1]), where &y is the minimal exponent invariant, a gen-
eralization of the log canonical threshold. Given that &x > 1 characterizes rational
hypersurface singularities (see [33]), it is natural to define k-rational singularities
numerically by the strict inequality &y > k + 1 (see [14, Definition 4.3]); this defini-
tion also occurs implicitly in [25] and [11]. While results can be obtained using this
numerical definition, it has the disadvantage of being restricted to hypersurfaces, and
to be somewhat ad hoc. A more general definition of k-rational isolated singularities,
based on local vanishing properties (see especially [27]), was given in Section 3 of
the first version of [7] (see also [29] for further discussion).

In this article, we propose a more intrinsic definition of k-rational singulari-
ties in general (Definition 3.13) and show that it agrees with the usual definition of
rational singularities for k = 0 and with the definition of [7, Section 3] (under mild
assumptions; see Corollaries 3.16 and 3.18). Additionally, for hypersurface singular-
ities, Saito proves that the new definition proposed here is indeed equivalent to the
previous numerical definition mentioned above (Theorem A.1). The main advantage
of the definition of higher rational singularities given here is that it naturally factors
through the higher Du Bois condition. In analogy with the case k = 0, we conjec-
ture that k-rational implies k-Du Bois in general. In the first version of [7, Section 3]
(and expanded in [6]), we verified this conjecture under the assumption of isolated Ici
singularities. Here, we generalize this in both directions, for arbitrary isolated or Ici
singularities.

THEOREM 1.6
Let X have either Ici singularities (not necessarily isolated) or isolated singularities
(not necessarily Ici). If X is k-rational, then X is k-Du Bois.

Remark 1.7
Mustatd and Popa [29, Theorem B] gave an independent proof of Theorem 1.6 for the
case of Ici singularities.

The isolated complete intersection case (see [6]) sheds light on the tight relation-
ship between higher rational and higher Du Bois singularities. In the first version of
this paper, we made the following conjecture.

CONJECTURE 1.8
If X has Ici singularities and X is k-Du Bois, then X is (k — 1)-rational.

For an isolated hypersurface singularity, Conjecture 1.8 is an immediate conse-
quence of the following result.
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PROPOSITION 1.9

Let (X, x) be an isolated hypersurface singularity, and let &x 5, = ox be the minimal
exponent as defined by Saito [33]. Then

(i) X is k-Du Bois if and only if ax >k + 1,

(i) X is k-rational if and only if ax >k + 1.

Here (i) follows from [11, Theorem 1] and [25, Theorem 1.1] and holds true for
a general, not necessarily isolated, hypersurface singularity, and (ii) is proved in [6,
Corollary 6.6]. In the appendix, Saito proves (ii) for the case of a general hypersurface
singularity, based on the results of [11]. This implies Conjecture 1.8 for the case
of general hypersurface singularities, not necessarily isolated (see Corollary A.2).
Mustatd and Popa have proved Proposition 1.9(ii), and hence Conjecture 1.8 in this
case as well (cf. [29, Theorem E, Corollary F]). Additionally, in [6, Corollary 5.5],
we established Conjecture 1.8 for isolated Ici singularities. Recently, Chen, Dirks, and
Mustata [1] have proved Conjecture 1.8 in general.

Since k-rational singularities are milder than k-Du Bois singularities, one expects
that more of the Hodge diamond is preserved in families with k-rational singulari-
ties. Indeed, this is the case as shown in [14, Corollary 4.2] (isolated hypersurface k-
rational singularities) and [16, Theorem 1] (arbitrary rational singularities). Here, we
extend these results to k-rational Ici singularities, and clarify the difference between
k-Du Bois and k-rational in this context. Essentially, for k-rational singularities,
in addition to the preservation given by Corollary 1.4, one gains Hodge symmetry
in a certain range. Informally, we can say that the frontier Hodge diamond up to
coniveau k is preserved for deformations of k-rational singularities.

COROLLARY 1.10

Let f: Y — S be a flat proper family of complex algebraic varieties over an irre-
ducible base. For s € S, suppose that the fiber Ys has k-rational Ici singularities.
Then, for every fiber t such that Y; is smooth, and for all p <k,

BP9 (Y0) = W7 (Ys) = BP0 (Y) = P9 (Vi) = WP (V) = BP0 (),
Moreover, for all p <k,

hP9(Y,) = dim Grl Im(H P+ (Ys) 2> HPH(Yy),

A

where 7w : Yy — Y is an arbitrary projective resolution.

Remark 1.11
(1) The Du Bois complex for a (connected) curve C was computed in [3, Proposi-
tion 4.9] and [31, Example 7.23(2)]. Let C be the normalization of C, and let C¥ be
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the weak normalization, so that there is a factorization C—>C¥%—>C.Letv: C > C
and v': C* — C be the corresponding morphisms. Then Q% =v,0Ocw and QIC =
v«Q[. In particular, 1M(C) = pe (C) = g(C), while k! (C) = p,(C™). Thus the
only Hodge number which is always preserved in flat proper families of curves is
h%% = 1. Note that C has Du Bois singularities if and only if C* =~ C, and C has
rational singularities if and only if C is smooth. However, at least one of the Hodge
symmetries 1'% #£ h%! = p,(C) or k"' # h®® = 1 will fail if the singularities of C
are Du Bois but not rational (depending on C of compact/noncompact type), reflect-
ing the fact that there are no rational singularities in dimension 1.

(2) Suppose that C has ordinary double points, and let 7. be the subcomplex
of “torsion differentials” on C, that is, those sections of SZ'C which pull back to 0
on C. By [5, (1.1), (1.5)], (¢.d) and (2¢ /2. d) are both resolutions of C. In
fact, it is easy to see directly that (1) (2% /7¢.d) is a resolution of C, and (2) at an
ordinary double point locally defined by z;z, = 0, ‘Cé =C-z1dz,, ré =C-dz; A
dzp, and d : ‘Cé — ré is an isomorphism. Hence (z¢,d) is acyclic and (Q2¢..d)
is quasi-isomorphic to (2¢/7¢.d) and thus is a resolution of C. In particular, the
spectral sequence with Eq-term H4(C; Qg) which converges to H?T9(C; Q) =
H?t4(C;C) does not degenerate at E;, as d = d; is nonzero on HO(C;‘Cé) C
H°(Q}).

(3) More generally, if X has normal crossings, then Q% = Q5 /r} (with the
trivial filtration), where as above 7} is the subcomplex of torsion differentials, by (for
instance) [31, Example 7.23(1)]. Moreover, by [5, (1.1)] and generalizing the explicit
calculations of (2) above, (2%, d) is also a resolution of C and in particular (2%, d)
and (Q%/ty.d) are quasi-isomorphic. For a related result, for a general variety X,
Guillén et al. showed in [9, Chapitre III, (1.15)] that the homomorphism Q% — Q%
always has a section (viewed as a morphism in the derived category). However, these
results do not seem to say much about the individual homomorphisms Q‘;’( —Q 5’(.

(4) Fourfolds Y with ADE hypersurface singularities (such as those occurring
in [23]) are examples of 1-rational singularities. For such fourfolds, Corollary 1.10
implies that only A%(Y) can vary in small deformations. Thus, any smoothing of ¥
will have finite monodromy (cf. [16, Corollary 1]).

A brief description of the contents of this paper is as follows. Section 2 deals
with some basic results about Kéhler differentials in the Ici case. These include The-
orem 2.5 regarding the flatness of the relative Kéhler differentials and Proposition 2.7
on restricting to a generic hypersurface section. In Section 3, we give a quick review
of the definition and the basic facts about higher Du Bois singularities (following
[11], [25], [7, Section 3]) and define higher rational singularities. After these prelim-
inaries, we establish Theorem 1.2. Our argument is close to the original argument in
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[4, Lemme 1] used to establish Theorem 1.1, following a suggestion of Kollar. Finally,
in Section 5, we prove Theorem 1.6 following the strategy of [21], and deduce a con-
sequence about the Hodge numbers of a smoothing along the lines of Corollary 1.4.
An appendix section by Saito discusses Conjecture 1.8 in the hypersurface case.

Finally, beyond the conjectures and speculation we have already made, we
emphasize the importance of extending these results wherever possible to the non-Ici
case. Along these lines, Shen, Venkatesh, and Vo have recently posted a preprint [39]
proposing different definitions of k-Du Bois and k-rational singularities which agree
with the previous ones in the Ici case.

Notation and conventions

We work in the complex algebraic category (but see Remark 4.3 for some possible
generalizations). Following our conventions from previous work [7], we use X (and
X’) in the local context (e.g., statements such as Theorem 2.5 are purely local, and
hold in the analytic case as well), whereas ¥ and 7: ¥ — § are meant to be proper
over SpecC or S, respectively (e.g., in Theorem 1.2 where the properness is essen-
tial). The scheme or analytic space X is an algebraic variety if it is reduced and
irreducible. In this case, its singular locus X, is denoted by X. We set n = dim X
and d =dim X.

2. Some results on Kiihler and relative Kihler differentials
The Kéhler differentials are coherent sheaves that are determined by certain universal
properties, including compatibility with base change. For smooth families ¥/S, the
proof of the constancy of the Hodge numbers uses in an essential way the semiconti-
nuity of h? (Q‘;ﬁt ), which in turn depends on the flatness of Q; /s Here, we generalize
this key point, noting that, for an lci morphism, SZ‘;C /s is flat over S' (Theorem 2.5)
for p satisfying a bound depending on the dimension d of the singular locus. Our
argument depends essentially on the Ici assumption, and it is a consequence of some
depth estimates for Qf( for X with Ici singularities due to Greuel.

A second result (Proposition 2.7) that follows by related arguments involves
higher adjunction type results regarding restrictions of Kéhler differentials to generic
hypersurface sections.

2.1. A flatness result

We begin by recalling some basic notions concerning depth. Recall that if R is a
local ring with maximal ideal m and M is an R-module, then depth M is the maxi-
mal length of a regular sequence for M (see [24, p. 120]). If ¥ is a coherent sheaf
on a complex space X and x € X, let depth, ¥ = depth , viewed as an Oy x-
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module. A key technical result we will need is then the following theorem (see [36],
[8, Satz 1.2]).

THEOREM 2.1 (Scheja)

Suppose that X is an analytic space, that A is a closed analytic subspace, and that

F is a coherent sheaf on X. Let p: H*(X; ) — H°(X — A; F | X — A) be the

restriction map.

(1) If depth F, > dim A + 1 for every x € X, then the homomorphism p is injec-
tive.

(i)  If depth F, > dim A + 2 for every x € X, then the homomorphism p is an
isomorphism.

It is well known that Kéhler p-differentials on singular spaces can have torsion.
For instance, this is already the case for QIC where C is a nodal curve. However, we
have the following (see [8, Lemma 1.8]).

THEOREM 2.2 (Greuel)

Suppose that X is an lci singularity of dimension n and that dim X < d. Then, for
all x € X, depth, Q% >n — p for p <n —d. More generally, let : X — S be a
flat lci morphism of relative dimension n over a smooth base S, and let X, denote
the critical locus of f, that is, the points of X where f is not a smooth morphism.
If dim S = m and the relative dimension of X is at most d, then for every x € X,
deptth‘;’C/S >dimX —p=n+m—pforp<n-—d.

Before stating the next corollary, we fix the following notation which will be used
for the rest of the section. If f: X — S is a morphism and s € S, we denote by X
the fiber f~!(s) and by = the singular locus of X;: Xy = (Xs)sing-

COROLLARY 2.3

Suppose that f: X — S is a flat lci morphism of relative dimension n over a smooth
base S of dimension m, and that dim X5 < d, with n —d > 2k + 1 for some integer
k > 1 and every point s € S. Let X, denote the critical locus of f, that is, the points
of X where f is not a smooth morphism. Then, for every x € X, and p <n —d,

depth, Q% ¢ >d +m +2,
and, for all p <k and every open subset U of X, the restriction map
H°(U; QI;C/S | U) — HO(U — Xeii: QI;C/S | U — Xerir)

is an isomorphism.
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Proof
By assumption, dim X < d 4+ m. Note that n —d > 2k + 1 > k, and hence, if
p <k, then p <n —d. Thus Theorem 2.2 implies that, for all x € X,

deptth‘;C/SZn—i—m—p
>n—k+m>d+m+k+1>d+m+2>dim X + 2.

Then HO(U; Qx/S|‘U) — HO(U — Xeii; Q x/s|‘u Xeie) is an isomorphism, by
Theorem 2.1(ii). O

PROPOSITION 2.4

Suppose that f: X — S is a flat lci morphism of relative dimension n over a smooth
base S of dimension m, and that dim X5 < d, with n —d > 2k + 1 for some integer
k > 1 and every point s € S. Suppose that X, C A x S, where A is smooth, and let
I be the defining ideal of X in A x S. Then there exists a filtration of /\k 9}4 |
X =] Q’jl | X by coherent subsheaves K%, 0 <a <k, such that X° = r} Q’jl | X,
depth, K¢ >d +m+ 2 forall x € X, and, for alla >0,

Jca/xa-i-l ~ /\(1/12) ® QX/S

Proof
The proof is by induction on k. The case k = 1 is the conormal sequence

0—>1/1? > 7 QY| X — Q)5 0,

where we let X! be the image of //I2. In general, for all 0 < a < k, let K¢ be
the image of A\“(I/1?) ® n} QK74 X in 77 QK | X. Thus {K¢} is the usual Koszul
filtration, and the proposition is clear over all points of X — X... Moreover, K¥ is
either O or /\ (1/1?). By hypothesis, k <n = ranka/S Let r =rank//I%. We
can clearly assume that » > 1. If r > k, then X* = /\ (I/1?).1fr <k, then X* =

0, and the largest p such that X7 # 0is K", the image of \" (I /1?) ® an’fl "1X.
In this case, the image of A" (1/1%) ® (I/1?) @ ny QK1 | X in AN"(I/1?) ®

Qk "1 X maps to 0 in 7} QI;; | X. By the inductive hypothes1s the sequence

NI/ &U/ )@ty X > AU/ 1) @il | X

—>/\(1/12)®Qx/s

is exact, so there is an induced map ¢,: A\ (I/1%) ® QX/S — 74 91;1 | X. Then
the image of ¢, is contained in the torsion-free sheaf K" and is equal to K" over
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X — Xerit- Moreover, ¢, is injective over X — X By the inductive hypothesis on
k’

,
depth, \(1/17) ® Q5 =d +m +2,

and hence Img, = X", and ¢,: N\ (I/1%) ® Q’;C_/g ~ K" = XK"/X " is an iso-
morphism.
For a general a, there is a commutative diagram

0 —— g —— AYU/Ierel X —— AU/I)eek 4 —— o

| I

0 —— xatl —— X —  KYxett —— o,

where by definition § = Ker{ A“(//I?) @ QK™ | X - N“(I/1H) ® 52];6_/‘3} and
©q, which exists and is an isomorphism over X — X, is yet to be constructed over
all of X.

For a fixed k, arguing by descending induction on a, and starting either at k or
at r, we can assume that depth, K9*! > d + m + 2. Moreover, K41 | X — X
is a subbundle of K¢ | X — X, so the torsion subsheaf of K¢/ K% is supported
on X If o is a section of K% over some open subset U and o |V € K *! for an
open subset V = U — W of U, where W is an analytic subset of U, then we may
assume that W = X Since K¢ is torsion-free and depth, X atl > d 4 m+ 2,
o € X9 1 (U). Thus K4/K ! is torsion-free.

Let 4 be the kernel of the map

a
NI/ @ wf Q¥ | X — K4 /Kt
Since K¢ /K 4T is torsion-free, a standard argument shows that, for every open sub-
set U of X, the map
H(U:d | U) — HO(U = Xerie: 4 | U = Keri)

is an isomorphism. Over X — X, there is an isomorphism d | X — X = & |
X — Xerir- Since A\?(1/1?) is locally free, depth, ¢ > depth,, A“(1/1?) ® Q’;C_/‘g >
d + m + 2 by Corollary 2.3. In particular,

Ho(u; 51 | u) - HO(u — Xerit g | U- xcrit)

is also an isomorphism. Thus, § = 4, and there is an induced injective homo-
morphism ¢, as in the diagram. Since ¢, is an isomorphism over X — X4
and depth, A“(1/1%) ® Q’;C_/‘g >d +m+ 2, ¢, is an isomorphism. Finally,
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since both depth, K9t! > d + m + 2 and depth, K/ KT > d + m + 2,
depth, K¢ >d + m + 2 as well. O

A key technical step in establishing Theorem 1.2, where the Ici assumption seems
crucial, is the following.

THEOREM 2.5
Suppose that f: X — S is a flat lci morphism, where S is an arbitrary base space.
Let s € S, and suppose that codimy, Xy > 2k + 1. Then, possibly after replacing S
by a neighborhood of s, the sheaf of relative differentials QI;C /s is flat over S for all
p=<k.Forp=0,1, QS)C/S is flat over S with no assumption on the dimension of the
singular locus.

Remark 2.6

For k > 2, at least some assumption is needed for the conclusions of Theorem 2.5 to
hold. For example, if X has simple normal crossing singularities, say X is the product
of a nodal curve Spec C[x, y]/(xy) with a smooth manifold of dimension » — 1 and

X is the standard smoothing over A! given by xy = ¢, then depth,, Q;C a1 =nata

2
X /Al
hence is not flat over Al.

In the same spirit, with respect to Theorem 1.2, suppose that 7 : € — A is a fam-
ily of smooth projective curves acquiring a single ordinary double point over 0, with

singular point and €2 has torsion in the fiber over the singular fiber at # = 0, and

the same local picture as above (so that € is also smooth). Then the sheaf Q% /A of
relative Kdhler differentials is flat over A either by the case p = 1 of Theorem 2.5 or
by the direct computation that Q‘le /A is isomorphic in a neighborhood of the singular
point p € € to the maximal ideal m,, and in particular is torsion-free over Q. Let
C; denote the fiber over 7. If Cy is reducible, then the values of h°(Q¢, ) and /' (R2¢,)
jump up at ¢ = 0. Hence, Rln*Qé/A has torsion at 0, and in particular is not locally
free. This follows from very general results about cohomology and base change. In
our situation, since A is smooth of dimension 1, it follows directly by applying R’ .
to the exact sequence

1 Xt ~1 1
0—>Q.€/A—>Q.€/A—>QCO—>O
to see that the dimension of the @A-module R, QL /A /IR ' QL /a is larger than

the rank of Rln*Qé/A.

Proof of Theorem 2.5
It suffices to consider the case p = k. Since every deformation is (locally) pulled back
from the versal deformation, by standard properties of flatness and wedge product
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under base change we can assume that S is smooth. First, with no assumption on the
singular locus, O« is flat over S by assumption. To see that Qgc /s is flat over S,
again with no assumption on the singular locus, we have the conormal sequence

0—1/1>5 QY | X — Q) /s — 0.

Let I, be the ideal of X in A. By the Ici assumption, Iy = I ® Og/m;. Then
the conormal sequence for X/ /S becomes the corresponding sequence for Q;X after
tensoring with O s /m;; namely,

0—I;/125 QY | X, — QY —o.

In particular, u is injective. Hence, Q;C /s = Cokeru is flat over S by the local crite-
rion of flatness (see [24, (20.E), pp. 150-151]).

For k > 2, by induction on k and descending induction on a, K%' and
K4/ K1 are flat over S for all @ > 1, and hence so is K¢. Let K¢ be the
image of \“(I;/1%) ® Qﬁ_“ | X5 in fol | X. Proposition 2.4 applied to the case
S = pt implies that K¢/K&T! = A\*(I;/12) ® Q& 4. We have a commutative
diagram ‘

0 —> KH®(Os.5/ms) ——> KIQ(Os,s/ms) —> K/ KHMQOs,5/my) —> 0

l l =

0 —> KIT!  — Ke — Fa ) Fedt! — 0.

Here, the top row is exact for a > 1 by the flatness of K¢/JKX%*! and induction on
k. By descending induction on a, the above diagram implies that the natural map
K¢ ® (Os,s/ms) — K¢ is an isomorphism for all @ > 1. In particular, for a =1,
we have the map u: X! — anﬁ | X with cokernel Q’;C/S, and the reduction u of u
mod m; is the natural inclusion X! — 52{‘4 | X;s. Since u is injective, Q’;C /s = Cokeru
is flat over S by the local criterion of flatness as above. This completes the proof of
Theorem 2.5. (]

2.2. Kdhler differentials and generic hyperplane sections

PROPOSITION 2.7

Let X be areduced local complete intersection with X, = X, and let H be a Cartier
divisor on X which is a generic element of a basepoint-free linear system, with ideal
sheaf Ox(—H). If codim X > 2k — 1, then, setting Og(—H) = 0Ox(—H) | H, we
have that

0> Q%' ®@0u(—H) > Q% |H - Q% -0 (%)

is exact for p <k.
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Proof

We can assume that X is affine and that H = (f) for a function f: X — A! which
has no critical points away from X. The sequence (), is always exact for p = 0, and
itis for p = 1 because we have the exact sequence

On(—H)— Q% |H— QL —0,

with Oy (—H) = Og locally free and H reduced (as it is generically reduced and
Ici).

By induction on k, it suffices to consider the case p = k. By the remarks above,
we can assume that k > 2. By the de Rham lemma (see [8, Lemma 1.6]), we have the
following.

LEMMA 2.8
Let d =dim X. For 0 < p <n —d, the following sequence is exact:

d d d
0> 0x L5 oy L5 U8 gret

Equivalently, for0 < p <n —d,
-1 +1
df n: Q% /df AQE T — QF
is injective.

Proof

Since f is generic, the critical set C(f) of f (in the notation of [8]) is just X.
Then the result follows immediately from [8, Lemma 1.6] (with g = h, k = 1, and
C(f.g) N N(h) =X). O

From the lemma, since n — d = codim X > 2k — 1 > k, because k > 1, there is
an exact sequence

d
0— @k 1/df Ak D0 ok ok jar Akt o,
Tensoring with Qg gives an exact sequence
0— Tor?X(Q])‘(/df A QI)‘(_I,@H) — Q];_I_I — Qlf( | H— Qlfq — 0.

So we have to show that, for a general choice of f, Tor?x (Ql)‘(/df A Q’)‘(_l ,O0g) =0.
Since O g has the free resolution

0- 0y L 0y > 04 >0,
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it suffices to show that Q’)‘( /df A Q’)C(_l has no f-torsion, that is, that multiplication
by f is injective. Since there is an inclusion Q’)‘( /df A Q’)‘(_l — Q’}“, it suffices
to prove that Ql}‘(“ has no f-torsion. Let T be an f-torsion local section of QI)}H.
Note that the support of T must be contained in X N V(f), since Q’;{H | X — X is
torsion-free and f is invertible on X — V(f). By the assumption that H is general,
every component of ¥ N V(f) has dimension at most d — 1. By [8, Lemma 1.8],
since k + 1 <2k — 1 <codim X as long as k > 2, we have, for every x € X,

depth, Q5T > 1 — (k + 1).

Usingn—d >2k —1givesn—k —1>d 4+ k —2 > d, since we are assuming that
k > 2. Thus

depth, Q5T > dim(Z NV (f)) + 1.
It follows from Theorem 2.1(i) that, for every open subset U of X, the restriction map
HOWU: Q5 [U) - HYU — (= nV(f): @5 U - (TnV(f))

is injective. In particular, T = 0. Hence, (), is exact for p < k. O
Note that we showed the following in the course of proving Proposition 2.7.

COROLLARY 2.9
With X and H as in the statement of Proposition 2.7, Tor?x (Q%.0g) =0 for all
p<k+1

3. k-Du Bois and k-rational singularities

We now review the notion of Du Bois and higher Du Bois singularities, and propose a
general definition for higher rational singularities. After verifying that our definition
agrees with the standard definition of rational singularities, as well as with previous
definitions of higher rational singularities (under mild assumptions, expected to hold
in general), we discuss the connection between higher rational and higher Du Bois
singularities.

3.1. The filtered de Rham complex

On a smooth scheme Y proper over Spec C or a compact Kihler manifold, the Hodge—
de Rham spectral sequence with E; page EY? = H4(Y; Q%) degenerates at E;
and computes the Hodge structure on H?14(Y, C). For X not necessarily smooth or
proper over Spec C, Deligne showed that H*(X, C) carries a canonical mixed Hodge
structure. Subsequently, Du Bois [3] introduced an object Q% = (2%, F*QY%) in
the filtered derived category whose graded pieces Q% = GrfF Q%[p] are analogous
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to fo in the smooth case (see [31, Section 7.3]). Since fo is defined locally in
the étale topology, it agrees with Q at smooth points. Near the singular locus, if
71 X — X is a log resolution with E C X the reduced exceptional divisor, then £2 QY
is closely related to Rn*Q')?(log E)(—E). More precisely, we have the following by
[31, Example 7.25] and [40, Tag 05S3].

THEOREM 3.1

If : X—>Xisa log resolution with reduced exceptional divisor E, and we define
Q:X,E = Rn*Q;?(log E)(—E), where X is the singular locus of X, then there is the
distinguished triangle of relative cohomology in the filtered derived category

+1
Qyx — L — Ly —

Thus, in the derived category, there is a corresponding distinguished triangle
+1
P p p
Qyy—> Ly~ 0y —

In the proper case, there is the following fundamental result of Du Bois, based on
Deligne’s construction of the mixed Hodge structure on Y.

THEOREM 3.2 (Du Bois)

If Y is proper over SpecC, then the spectral sequence with E; page H1(Y ; QY y)
which converges to HPT4(Y; Q%) = HP*4(Y ; C) degenerates at E, and the corre-
sponding filtration on H*(Y ; C) is the Hodge filtration associated to the mixed Hodge
structure on H*(Y ; C).

The result above allows us to define Hodge numbers in the singular case.

Definition 3.3
Let Y be a compact complex algebraic variety. We define the Hodge—Du Bois num-
bers

hP4(Y) :=dimGrh H?*4(Y),

for 0 < p,q < n. In particular, if Y is smooth, then 4?*9(Y) = h?4(Y). In general,
by Theorem 3.2,

RPA(Y) =dimHI(Y: Q) = Y hbl (V).

0<r=<q

where h§+q (Y) :=dim GrF Grp+r HPY4(Y) are the Hodge—Deligne numbers asso-

ciated to the mixed Hodge structure on Y.
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Remark 3.4

As the example of nodal curves shows (see Remark 1.11), the Hodge-Du Bois
diamond will not satisfy either of the Hodge symmetries: h”*¢ = h?? or h?? =
A"7P"74 Nonetheless, some vestige of these symmetries remains (in the form of
inequalities) as those given by Lemma 3.23 below.

Another key consequence for us is the following.

COROLLARY 3.5

With notation as above, the following hold.

(1) The natural map H'(Y;C) — Hi(Y;Q;,/FkHQ;,) is surjective for all i
and k.

(ii) The spectral sequence with E1-term

pra _ [HUY:Q)) forp <k,
! 0 for p >k
p

converging to HP+4(Y ; Q% / F¥+1Q%) degenerates at E;.

Proof

This is a consequence of the following general fact. If (€°,d, F°*€®) is a filtered
complex, then the associated spectral sequence degenerates at the E; page if and
only if the differential d is strict with respect to the filtration ¥ *€*. Then, assuming
E1-degeneration, an easy argument shows that H (€®,d) — H'(€*/F*T1e* d) is
surjective for every i and k. Since the induced filtration on €/ F*+1€* is also strict
with respect to d, the corresponding spectral sequence for the complex €°/Fk+1¢e®
also degenerates at E;. O

3.2. Du Bois and higher Du Bois singularities
There is a natural comparison map (see [31, p. 175])

¢%: (Q%.0%) — (R, F*QY%).

where o® is the trivial or naive filtration on Q2% . Following [25] and [11], one defines
the following.

Definition 3.6
Let X be a complex algebraic variety. Then X is k-Du Bois if the natural maps

¢p:Q‘;—>Q§
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are quasi-isomorphisms for 0 < p < k. Note that the case k = 0 coincides with the
usual definition of Du Bois singularities (see [31, Definition 7.34]).

Example 3.7

Let f(z1,...,2Zn41) = Z;il +- 4 z:fiﬁl define the weighted homogeneous singular-
ity X = V(f) € A"™1. Then, as a consequence of Proposition 1.9(i) and a theorem
of Saito [35, (2.5.1)] (and see also [6, Corollary 6.8]), X is k-Du Bois at 0 if and only
if Z:’: 11 di,- > k + 1. In particular, an ordinary double point of dimension n is k-Du
Bois for all k < [%] Thus an ordinary double point of dimension 3 is 1-Du Bois,
and in fact is the unique 1-Du Bois hypersurface singularity in dimension 3 (see, e.g.,
[30, Theorem 2.2]). More generally, it is expected that k-Du Bois singularities occur
first in dimension 2k + 1. This is true at least in the Ici case as the following result

shows.

THEOREM 3.8 ([11], [25], [28])

Let X be a complex algebraic variety with Ici singularities. Assume that X is k-Du
Bois with k > 1. Then X is normal and regular in codimension 2k ; that is, codim ¥ >
2k + 1.

Proof

The normality claim is [28, Corollary 5.6]. For hypersurface singularities, various
dimension bounds (covering the claim of the theorem) were obtained in both [25] and
[11]. The general Ici case follows from [28, Theorem F] (numerical characterization
of k-Du Bois) and [28, Corollary 3.40] (bounds on dim X in terms of the relevant
numerical invariant). U

COROLLARY 3.9

Suppose that X has Ici k-Du Bois singularities and that f: X — S is a flat mor-
phism, where S is arbitrary, with X = X; = f~1(s) for some s € S. Then, possibly
after replacing S by a neighborhood of s, the sheaf of relative differentials QI;C /s is
flat over S forall p <k.

Proof
This is immediate from Theorems 2.5 and 3.8. O

Remark 3.10

(i) Theorem 3.8 and Theorem 2.2 imply the following previously known results:

(1)  If X has hypersurface k-Du Bois singularities, then Qf;( is torsion-free for
0 < p <k (see [11, Proposition 2.2]).
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2) If X has Ici k-Du Bois singularities, then Qé} is reflexive for 0 < p <k (see
[28, Corollary 5.6]).

(ii) For p = 1 and Ici singularities, the situation is well understood by a result of Kunz

[22, Proposition 9.7]: Q}( satisfies Serre’s condition S, if and only if X satisfies R,

(i.e., is regular in codimension a).

Remark 3.11
For other examples of k-Du Bois and k-rational singularities, one can consult [14]
(cf. Theorem 5.3 and Section 6.1).

3.3. Higher rational singularities
The standard definition of a rational singularity involves the choice of a resolution
(e.g., [20, Definition 5.8]). As we will explain below, it is possible to give an equiv-
alent definition for rational singularities without reference to resolutions, but using
instead the dualizing complex. In addition to being more intrinsic, it generalizes to
higher rational singularities, and it factors naturally through the higher Du Bois con-
dition.

For a complex algebraic variety X of dimension 7, let w% denote the dualizing
complex. Define the Grothendieck duality functor Dy as follows:

Dx (=) := RHom(—, w%)[—n].
In particular, 0§ = Dy (Ox)[n].

LEMMA 3.12
For all p, there exists a natural sequence of maps in the derived category

P ¢[) V4 wp n—p
Qy — 2y —Dx(Qy 7).

Proof
By functoriality of the filtered de Rham complex, there is a map Q’;p — R, Q;’{p .
Applying Dy gives

]D)X(Rn*Q')'{p) —Dx(Q% ?).
Since = is proper, Grothendieck duality gives
Thus we get a sequence of maps

Qf - Qf — Rn*QI;? — ]D)X(RJT*Q';?_I’) —Dx(Q% 7).
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as claimed. The map 12 is easily seen to be independent of the choice of a resolution,
by the usual factorization arguments. O

Definition 3.13
The variety X has k-rational singularities if the maps

p ¥7o9” n—p
Qy ——Dx(2y )

are quasi-isomorphisms for all 0 < p <k.

Example 3.14

Let f(z1,...,Zn41) = zf' 4+ z;{’jjl define the weighted homogeneous singular-

ity X = V(f) € A"*1. Then, by [6, Corollary 6.8], X is k-rational at 0 if and only if
Z?: 11 d_l, > k + 1. In particular, an ordinary double point of dimension # is k-rational

if and only if k < ”2;1 Thus an ordinary double point of dimension 3 is not 1-rational.
On the other hand, ADE singularities in dimension 4 are 1-rational. Conjecturally, k-
rational singularities occur in codimension at least 2(k + 1) (cf. Theorem 3.8).

The following lemma connects our definition to more standard ones.

LEMMA 3.15
Suppose that dim X < d. Then, forall p <n —d,

Dx(2y 7) = Rm.Q7 (log £).

In particular, if codim X > 2k + 1 for some k > 0, then Dy (Q’;(_p) ~ RJT*Q;}(IOg E)
forall p <k.

Proof
By Theorem 3.1, there is the distinguished triangle of relative cohomology
Qys -y -5 7 —.
Since n — p > d, Q5 ? = 0 and hence Qy ¥ = Q¥ = Rn*Q’;{p(log E)(—E).
Applying Grothendieck duality, it follows as in [25, Section 2.2] that
Dy (Q')’(_p) =Dy (Rn* Q')’{p (logE) (—E))
= RmDy (Q')’{p (log E)(—E))
= Rn*QI;?(log E).

The final statement is clear since n —d > 2k + 1 impliesthatn —p >n—k >d + k +
1>d. O
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COROLLARY 3.16
X is O-rational if and only if X has rational singularities.

Proof

Since X is reduced, dim¥ < n — 1. Thus X is O-rational if and only if the natural
map Oy — RO ¢ is an isomorphism if and only if X has rational singularities in
the usual sense. O

Remark 3.17

Lemma 3.15 and Grothendieck duality give the identification Q% = Rm.wg, which
by Grauert-Riemenschneider vanishing is in fact a single sheaf, the Grauert-
Riemenschneider sheaf a))(gR = mxwg. Following [18], let us denote wy :=
ID)X(Q%). Then the dual form of Definition 3.13 for k = 0 is: X has rational

singularities if and only if the composite map

oR >0y — oy (3.1)

is a quasi-isomorphism. This formulation occurs for instance in [ 18], and it is equiva-
lent to that given by [20, Theorem 5.10(3)] (note that the quasi-isomorphism a)ggR =~

wy forces X to be Cohen—Macaulay).

In [7, Section 3], we defined k-rational singularities for an isolated singularity by
the condition that Rn*Q;(log E) =~ Q% . This is equivalent to Definition 3.13 (under
a mild assumption).

COROLLARY 3.18

In the above notation, suppose that codim X > 2k + 1.

() X is k-rational if and only if the natural map Q% — RJr*QI;?(log E) is an
isomorphism for all p <k.

(i) X is k-rational if and only if X is (k —1)-rational and Q])‘( — Rn*Q’}(log E)
is an isomorphism.

In the Ici case, the assumption on Ron*Q;(log E) is automatic.

LEMMA 3.19

Suppose that X has Ici singularities and that codim X > 2k + 1. Then, for all p <k,
YPo?: Qf( — Ron*Ql;?(log E) is an isomorphism. Hence, X is k-rational if and
only if for all p <k and all g > 0, an*Q;’?(log E)=0.
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Proof

This follows easily from Theorem 2.2 and Corollary 2.3, as ROJr*Qf?(log E) is
torsion-free for all p. O
Remark 3.20

Suppose that X has an isolated singularity x, so that ¥ = {x}. Then, by Theorem 3.1,
there is the distinguished triangle of relative cohomology

QY x = 2% = C[0] —,

where we somewhat carelessly write C[0] for the skyscraper sheaf C,, viewed as a
complex in degree 0. Hence, Qé’(,x — Qé’( is an isomorphism for p > 0, so if X is
Ici and n = dim X > 2k + 1, then by the same argument as that of Lemma 3.19,
7 QF — ROJT*SZI;?(log E)(—E) is an isomorphism. For p = 0, if X has an iso-
lated singularity and is normal, then the map 7.0 ¢ (—E) — Q())( has cokernel C[0]
and factors through m, € @x. Hence, Ox — #° Q())( is an isomorphism. Thus, if X
has an isolated Ici singularity and dim X > 2k + 1, that is, k < (n — 1)/2, then X is
k-Du Bois if and only if for all p <k and all ¢ > 0, an*Q;’?(log E)—E)=0.

3.4. k-Rational vs. k-Du Bois singularities

Steenbrink [41] proved that, if X is an isolated rational singularity, then X is Du Bois,
and Koviécs [21] generalized this, showing that any rational singularity is Du Bois.
Saito gave a different proof in [34, Theorem 5.4]. The method of [41] generalizes to
prove that isolated k-rational singularities are k-Du Bois (see [6, Theorem 3.2]), and
the method of [21] can be generalized to handle both isolated and Ici singularities.
Using the ideas of [21], we shall show the following in Section 5.

THEOREM 3.21
Suppose that X has isolated singularities or that X is Ici. If X is k-rational, then X
is k-Du Bois.

Assuming for the moment Theorem 3.21, we note that the k-rational assump-
tion adds additional Hodge symmetries to the k-Du Bois condition. If X is k-Du
Bois, then X is k-rational if and only if the map y?: Q% — Dx(Q ?) is a quasi-
isomorphism for all p < k. If X is proper, then these assumptions lead to a Hodge
symmetry, Serre duality for the Hodge—Du Bois numbers.

COROLLARY 3.22
If Y is a compact complex algebraic variety of dimension n with Ici k-rational singu-
larities, then, for 0 < p <k,
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h?(Y) = dimGrh HP14(Y)
=dimGrly ? H*"~PFO(y) = "~ P"74(Y).

In particular, taking p + q = n gives h?"~? = i"7P°? for p <k.

Proof
Using Theorem 3.2, we get the identifications

Grh HPT(Y) ~HI(Y: Q%)
=~ H?(Y;Dy(Q}) 7)) = H"9(Y:Q} 7)Y,

where the middle isomorphism is given by the quasi-isomorphism 7 (for p < k).
O

It remains to discuss the Hodge symmetry h?9 = h?-?, which is induced by
complex conjugation in the smooth case. We recall that the cohomology of a compact
singular algebraic variety Y carries a mixed Hodge structure (H*(Y), F*, W,). The
Hodge—Deligne numbers hf’ T = Grf, Gr”
conjugation: 17" = h}'? (as Gr;V+r
compact, the weights on H'(Y') are at most i, and in fact between 2i —2n and i if
i > n. It follows that, fori <n, h? 7P = Zi_:l(’) h?"". However, the Hodge-Du Bois
numbers do not satisfy the same kind of symmetry as they reflect only the Hodge

pir H 1(Y) satisfy the symmetry given by

H'(Y) is a pure Hodge structure). Since Y is

filtration F'°. In fact, we note the following.

LEMMA 3.23
Let Y be a compact complex algebraic variety of dimension n. For 0 < p <i <n,

p
hi—a,a < 2 :ha,i—a
0 a=0

Furthermore, equality holds above for all p <k if and only if h?* ™7 = h' PP for
all p <k if and only ifGrf, Wi, H (Y) =0 forall p<k.

p

a=

Proof
Clearly Y7_ h'=*% = "P_ h*'~ forall p < k if and only if A" ~? = h'~P? for
all p <k.

For a fixed p, we have

Zp:hi—a,a — Xp: Zhi—a,q — Xp: Zhiq,i—a — Z h:’s,
a=0

a=04g=<a a=04g=<a i—p<s<i
r+s<i
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by the Hodge symmetries, whereas

4 p
Zha,i—a — Z Z h;l,q — Z h;‘,s.
a=0

a=0a+qg<i r<p
rs<i

Note that, if i — p <s<iandr+s <i,thenr <i —s < p, so the second sum is
greater that the first, giving the inequality. For a given p, equality holds if and only if
h* =0forr < pands <i— p—1.Moreover, h;* =0forr <pands <i—p—1
for some p <k if and only if h;’s =0 forr <k,r +s <i— 1. This is equivalent to
Grh Wi_1H'(Y) =0 for p <k. O

Recall that, for any resolution r : Y >Y (see, e.g., [31, Corollary 5.42]),
Wi H (Y) = Ker(H (Y) > H' (V). (3.2)
Using this, we obtain the following.

THEOREM 3.24
If Y is a compact complex algebraic variety of dimension n with either isolated or Ici
k-rational singularities, then

pPd — 9P
for0<p<kand0<gq<n.

Proof
In view of the discussion above, we define the discrepancy

87 ;= dimGrl Wi H'(Y) = dimGr% Ker(H' (Y) > H'(Y)).

By Lemma 3.23, the equality 1”7 = h' 77 holds for p <k if and only if §” =0
for p < k. The map ¥? occurring in the definition of higher rationality (see Defini-
tion 3.13, Lemma 3.12) factors through the resolution x : Y — Y, and at the level
of cohomology corresponds to the Grll’F piece (see also Corollary 3.22) of the natural
map

W) TS (D) s B2 (0 (mn) S B2 (Y)Y (),
where all spaces are endowed with the natural Hodge structures. On the graded

piece Grh. H'(Y) = H'"P(Y;Q%), Grf W' is the map y?: H'"P(Y;Q%) —
H"™+P(Y;QY7?)V, which is an isomorphism if Y is both k-rational and k-Du
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Bois, and in particular if Y is k-rational and has either isolated singularities or Ici
singularities. By the strictness of morphisms of Hodge filtrations, if Gr‘;’7 Ul is an
isomorphism, then 7* is injective on Grf,- and hence 85’ = 0. Thus, k-rationality
implies that §7 = 0 for p < k and all i, which in turn means that PP = TP g
this range. O

Remark 3.25

As noted by one of the referees, in the above proof as well as in the proof of
Lemma 3.12, the main point is to apply relative duality to a resolution of singular-
ities morphism. Thus the proof does not take into account the full information of a
hyperresolution.

4. Proof of Theorem 1.2 and Corollary 1.5
We turn now to the global setting of a deformation of a compact analytic space or
proper scheme Y, and to the question of the local freeness of Qf,; /s

THEOREM 4.1

Let f: Y — Spec A be a proper morphism of complex spaces, where A is an Artin
local C-algebra, with closed fiber Y. Let (¥°,d) be a bounded complex of coherent
sheaves on Y, flat over A, where d : Fi— FitY s A-linear, but not necessarily Oy-
linear. Finally, suppose that the natural map H:(Y; F*) =R £, F* - H (Y; F* |
Y) is surjective for all i. Then H' (Y; F*) is a finite A-module whose length satisfies:

LH (Y, F°)) = L(A) dimH (Y; F° | Y).

Proof

This is a minor variation on very standard arguments. Note that H (¥; ¥ *) is a finite
A-module since it is the abutment of a spectral sequence with E; page E f’ 4 =
H2(Y; ¥ 7?) and such that all of the differentials in the spectral sequence are A-
module homomorphisms. Next we show that, for every finite A-module M, the natu-
ral map

Uy H(Y: F) QUM —>H (Y, F* @4 M)

is surjective. The proof is via induction on £(M), the case £(M) = 1 being the
hypothesis of the theorem. The inductive step follows from: given an exact sequence
0—>M —> M —> M" — 0 such that Wy, and Wy~ are surjective, then Wy, is sur-
jective. This follows from the commutative diagram
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H(Y;F)@aM —— H(Y;F)@uM —— H(Y;F)@4M" — 0
l\p,w lw,w lxp,w

H(Y;F*QuM) —— H (Y, F*QuM) —— H(Y;F* Q4 M")

where the top row is exact since tensor product is right exact and the second is exact
since ¥ is A-flat.

To prove the theorem, we argue by induction on £(A). The result is clearly true if
£(A) = 1. For the inductive step, write A as a small extension0 — 1 — A — A/l —
O,sothat ] @ A/mand F°* Q41 = F°* R4 (A/m) = F*|Y. By flatness, there is
an exact sequence

s (Y F @u ) > H (Y F) > H (Y. F QuA/])— -

Then the above implies that H (¥; °*) — H/ (¥; F°* ®4 A/I) is surjective for all i.
Hence the long exact sequence breaks up into short exact sequences and thus

(HN(Y; 7)) = (Y; 5 @4 1)) + L(H (Y F° ®4 A/T))
=dimH (Y;F*|Y) +L(A/])dmH (Y;F*|Y)
=L(A)dimH (Y;F*|Y).
This concludes the inductive step. U
Now assume that f: ¥ — Spec A is a proper morphism, where ¥ is a scheme of

finite type over Spec C and A is an Artin local C-algebra, with closed fiber Y. Con-
sider the complex 3, /spec A and the quotient complex 23, /spec A JoZkT1Qs

Y/SpecA*
For the closed fiber Y, we also have the complex 23,/ ozk+1 Q%.

LEMMA 4.2
With notation as above, suppose that Y is k-Du Bois. Then:
1) For every i, the natural map

Hi (y’ Q;//SpecA/o—Zk—HQ;//SpecA) - Hi (Y’ Q;'/O-Zk—i_lQ.Y)

is surjective.
(i1) The spectral sequence with E1-term

EPO— HY(Y:;Q%) forp<k,
0 for p>k

converging to HPT4(Y ; Q}/ozkﬂﬂ}) degenerates at E. Hence, for every
i)
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dmH (Y: Q5 /0Z* Q) = Y~ dimHI(Y:QP).
p+g=i
p=<k

Proo
By t}]:e k-Du Bois condition, the natural map Q3 /0=¥T1QS5 — Q3 /FFT1Q3 isa
quasi-isomorphism of filtered complexes. Thus there are isomorphisms
H (Y:Qy /o=41Q5y) = B (Y: Q3 / FFQ3).
HY(Y:Qy) =HI(Y:Qp) (p <k).
By Corollary 3.5(ii), the spectral sequence with £ page HY (Y ; Q?) for p <k and 0

otherwise degenerates at £. Hence the same is true for the spectral sequence in (ii).
To prove (i), arguing as in [4], there is a commutative diagram

H (:y (C) H’ (:y Q:y/SpccA) H (y QZ’l/SpecA/O>k+19./SpecA)
H(Y;C) —— H(Y;Q}) —— Hi(Y; Q% /oZk Q).

By Corollary 3.5(), H! (Y;C) — H! (Y; Q% /o= F1Q5) = HI(Y; Q5 /FFT1Q5 ) is
surjective. Hence

H (Y: 23 5poc /0> zk+1gye Y/ speca) = H (Y Q} /oZk1QY)

is surjective as well. O

Proof of Theorem 1.2

By Corollary 3.9, possibly after shrinking S, Qly’ /s is flat over §. By a standard
reduction to the case of Artin local algebras, it is enough to show the following.
Let A be an Artin local C-algebra, and let f: ¥ — Spec A be a proper morphism
whose closed fiber Y is isomorphic to Y. Then R? f*52§ JSpecd = = HY(Y, Q Y/ Spec 4)
is a free A-module, compatible with base change. In fact, by [10, Theorem 12.11],
it is enough to show that, for every ¢ and quotient A — A/ = A, the natural map
HY(Y; QP /SpeCA) — H1(Y; Q:y/s ) is surjective, where ¥ = ¥ Xgpec 4 Spec A.

By Theorem 4.1 and Lemma 4. 2 for every i,

¢(H (Y; Qy/specA/a> +1 QY speca) = L(A)dimH (Y; Q3 /o=kT1Q3)
=0(A) Y dimHY(Y:Q}).

ptq=i
p=<k
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On the other hand, by analogy with Lemma 4.2(ii), there is the spectral sequence
converging to H' (¥; Qy/SpecA/o> +1Q:'y/speCA) with E; page

Ef”qz H1(Y; Qy/specA) for p <k,
0 for p > k.

Thus £(HY (Y5 QY g0 4/ 01 QY 000 4) < Ersg=i LHIY: QY < eca)) With

equality if and only if the spectral sequence degenerates at E. Moreover, a straight-
forward induction on £(A) along the lines of the proof of Theorem 4.1 shows
that £(HY(Y; Q7 /SpecA)) < L(A)dim HY(Y;Q%), with equaliiy holding for all
q if and only if for every g and every quotient A — A/I = A, the natural map

HY(Y, Q Y/ Spec 4 — HY Y:Q y/s _) is surjective. Combining, we have

>k °
( (y Qy/SpecA/G i Q /SpecA))

= Z ¢ Hq(y £ /SpecA))

ptq=i
p=<k

< > UA)dmHY(Y:QY)

p+q=i

p=<k
= L(A) dimH (Y; Q3 /o=kT1Q3)
_Z(Hl(y §23 /SpecA/6>k+IQ./SpecA)

Thus all of the inequalities must have been equalities, and then HY(¥Y; Q Y/s 4~
pec

H1(Y:Q y /Spe

pletes the proof by the remarks in the first paragraph of the proof. O

_) is surjective for every ¢ and for every quotient A — A. This com-

Remark 4.3

Instead of assuming that Y is a scheme of finite type proper over Spec C, it is enough
to assume that Y is a compact analytic space with isolated singularities and that there
exists a resolution of singularities of ¥ which satisfies the 30-lemma. Roughly speak-
ing, the argument is as follows. The main point is to construct the analogue of the com-
plex Q% in this case, using Hironaka’s resolution of singularities, and to note that all
of the smooth varieties arising from a cubical hyperresolution satisfy the 30-lemma.
Such varieties arise in two different ways: first, there is one such which is a resolution
of singularities of Y. A standard argument (cf. [31, proof of Theorem 2.29]) shows
that in fact every resolution of singularities of Y satisfies the 99-lemma. The remain-
ing varieties in the construction can all be assumed to be smooth projective varieties
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coming from proper transforms of blowups of subvarieties of the exceptional divisors
of the blowup of ¥ along Y;,, or by iterating this procedure. In particular, for every
such variety, its cohomology carries a pure Hodge structure and the restriction mor-
phisms between the various cohomology groups are morphisms of Hodge structures.
From this, it follows that the Hodge spectral sequence E f’ 4 =H4(Y; Q{i) converging
to HP14(Y;C) degenerates at E;. Then the argument of Theorem 1.2 applies.

It seems likely that there is a more general result, in the nonisolated case, assum-
ing sufficiently strong conditions on every subvariety of Y.

We turn now to a proof of Corollary 1.5. First, we define canonical Calabi—Yau
varieties following [7, Definition 6.1].

Definition 4.4

A canonical Calabi—Yau variety Y is a scheme proper over Spec C (resp., a compact
analytic space) which is reduced, Gorenstein, with canonical singularities, and such
that wy = Oy.

Proof of Corollary 1.5

It suffices by [13] to show that Y has the T'!-lifting property. In fact, we show
the following somewhat stronger statement. Let A be an Artin local C-algebra, let
m: Y — Spec A be a deformation of ¥ over A, and let I be an ideal of A with
A=A/l with¥ =Y Xspec 4 Spec A; the natural map

1,01 1,01
Ext (Qy/SpecA’Oy) — Ext (Qy/SpecZ’Oy)

is surjective. Arguing as in [13, Lemma 3], we claim that wy/specq4 = Oy. To
see this, note that, as Y is 1-Du Bois it is 0-Du Bois, and hence by Theorem 1.1
Rim Oy = H'(Y;Oy) is a free A-module for all i, compatible with base change.
In particular, R" 7,y is a free rank-1 A-module. An application of relative duality
then shows that (R'74Oy)Y = R" Wy spec 4, and hence R" ' wy/spec 4 is a free
A-module for all i. Thus R%m,wy /spec A 18 a free rank-1 A-module and the natural
map RO,y spec 4 ® 4 Oy — WY/ spec 4 is an isomorphism. Hence wy; spec 4 = Oy.

By a similar application of relative duality, and since Rin*Q:Iy JSpecAd = H'(Y;
Q;, / Spec A) is a free A-module for all i, there is an isomorphism of A-modules

Ext! (Qy spec 4> O) = Exty (Y spec 4> @Y/ spec 4)
2= Homa (H" ™ (¥: Ry 5pec 4)» A)-

Then the 7'!-lifting criterion follows from the fact that H"~!(¥:Qy, Jspeca) 18 @ free
A-module and that the natural map



HIGHER DU BOIS AND HIGHER RATIONAL SINGULARITIES 1867

-1 ol - —-1/q.01
H" ¥, Qy/Slf'ecA) ®44—>H" ¥ Qy/spﬁcz)

is an isomorphism. U

Remark 4.5

A similar argument using Remark 4.3 shows that, if ¥ is a compact analytic space
with isolated Ici 1-Du Bois singularities such that wy =~ Oy and there exists a resolu-
tion of singularities of Y satisfying the 99-lemma, then Def(Y) is unobstructed.

5. Proof of Theorem 3.21

For X an algebraic variety, let X3 = X (X) be the set of points where X is not k-Du
Bois. Thus, for all k, ¥ € X1 € X. Itis easy to see that 3y is a closed subvariety
of X. In fact, completing the morphism ¢7 : fo — fo to a distinguished triangle

QF —Qf —g” i
by definition we have

Sk = U Supp H'1 g7,
i,p
0<p=<k

In order to prove that k-rational singularities are k-Du Bois, we will need to
consider situations more general than k-rational (as in the statement of Theorem 5.9).
Recall that a left inverse to the map ¢?: Q% — Q% is amap h?: Qf — Q% such
that 1?7 o ¢? =1d. Of course, left inverses need not exist in general. More generally,
we consider a set of k + 1 left inverses {hp}’;,:O. If X is k-Du Bois, then ¢? is an
isomorphism for p < k and so {h"}’;zo = {(¢1’)_1}’;=0 is a set of left inverses. In
this case, we shall always use ¢? to identify Q% with Q%, and thus h? = 1d for
p<k.

If there exists a left inverse Hy: Q% /F*¥t! — Q%,/0=kT1 in the filtered derived

category, then {Gr” H, k}];=0 defines a set of k + 1 left inverses. The following lemma

k
p=09

them so as to arrange a left inverse Hy: Q}/F"‘|r1 — Q:,(/(fzkJrl in the filtered
derived category.

shows that, conversely, given a set of k + 1 left inverses {h?} we can modify

LEMMA 5.1
If the map Q}/ozk"'l — Q%/F**! has a set of k + 1 left inverses {hp}llc)zo, then
there exists a left inverse Hy : Q%/Fk"'l — Q;(/O'Zk+1 in the filtered derived cate-

8ory.
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Remark 5.2
We do not claim that the left inverse Hj constructed in the proof satisfies h? =
Gr? Hy forall p <k.

Proof of Lemma 5.1
We argue by induction on k, where the case kK = 0 is obvious. There is a diagram

Qk[k] —— Q% /o=k+ — Q3 /ozk
We can thus complete the diagram to find a morphism H; : Q% /F k1 Q%/
0Zk*1 in the filtered derived category which yields a morphism of distinguished

H
triangles. The composition Gi: Q%/0=*+1 — Q% /Fk*! BN QS /o=kT1 s
an isomorphism since it is an isomorphism on the graded pieces. Set Hy =
Gyl o Hy: Qy/FF*! — Q% /0=¥T!. Then Hy is a left inverse to the map
Q% /oZk - Q% /FFHL O

Next we define a special class of left inverses.

Definition 5.3

Leta € HO(X; Q}(). Then « pulls back to some fixed hyperresolution and so defines
a map oA: Qf;l — Q% Two left inverses h? and h?~! are compatible if, for all
p<kandalla € H*(X:Q}%),

h? o (@A) = (@A) o hP7 L,

If X is k-Du Bois, then, for all p < k, the left inverses h? and 27~ are isomorphisms.
In fact, after identifying Q% and Q% ' with Q% and Q% ', respectively, we can
assume that 47 = Id for all p < k. With this convention, necessarily 7?7 o (¢ A) =
(aA) o hP~1; hence h? and h?~! are compatible.

Finally, the set of k + 1 left inverses {h? }’1‘,20 is compatible if, for all p <k, h?
and h?~1 are compatible.

LEMMA 5.4
If X is k-rational, then there exists a compatible set of k + 1 left inverses {h? }ll‘,zo.
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Proof
The following diagram commutes up to a sign (all vertical maps are ¢ A):

Q! —— ' —— R Q5" b Dy@% 7

! l l l

QF —— Qf —— Rn*QI;? — Dx(Q% 7).

For p <k, let h? be the left inverse to the map Q% — Q% defined by taking the
inverse to the isomorphism y? = 7 o ¢7: Q% — Dy (Q - 7) and composing it
with the map Q% — Dx (2’ ). Since y? o (a/\) (@n)oy?=L (yP)"lo(an) =
(@A) o (yP~1)~1 and thus 7? o (@A) = (@A) o hP~L, O

We now deal with the case where dim X3 = 0, following the method of proof of
Kovécs [21, Theorem 2.3] and [31, p. 186].

PROPOSITION 5.5
Suppose that dimXy, = 0 and that there is a left inverse Hp: Q:X/F’”'l —
Q% /0= 10 the map Q% /oZK T — Q% /F¥FL. Then Q% JoZk+1 =~ Q% /FF+1.

Proof

Let Y be some projective completion of X,sothatY — X =D.LetZ=DUX; CY.
By hypothesis, X is finite, hence Z isclosed. Let U = X —3; =Y — D — Xj. Thus
U is k-Du Bois. Now consider the commutative diagram

BN Uy /oZkt)) ——— HL(Y:Q} /oZk ) ——— B (¥V:Q} /oKt ——— B (U:Q}, /oZKt])

I | | -

HTHU3RY /FEH) ———> BL(V:Qy/FFtD) ——— B (V:Qy /FK) ———> W (Ui /FFH).

We claim that Hi (Y; Q% /o=l — Hi(Y; Q% /F**1) is surjective: this is the
usual argument that H(Y;C) — H! (Y; Q% /F k +1) is surjective and factors through
Hi(Y;C) — HI(Y; Q% /o=kF1). Then HL (Y; Q3% /o=kt1) — HL (Y; Q% /F*F+)
is surjective. We have compatlble direct sum decompositions

HL (Y Q% /oZF+l)y —— H (Y; Q8% /oZF 1) @ HE (V595 /o=KHT)

l !

HL (Y:Qy/F) —— Hy(Y:Qy/F*) @ Y (V:Qy/FF).

Hence HE, (Y5 Q3 s /ozktly - HE (Y95 3 /F**1) is surjective. By excision,
5, (V395 /o>k+1)~H’ (X5 Q5 /o>k+1)and51m11arlyforH’ Neg Q3 /Fk+1),
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Thus,
L (X Q% /oTF T S HY (X:Q%/FF)

is surjective. However, the existence of the left inverse Hj gives a map
]I-]I’:Ek(X;QB(/Fk“) — Hgk(X;Q}(/oZk“) such that the composed map
HE, (X; Qs /o=k) - HY, (X; Q% /0=FF1) is the identity. Hence,

L (X Q% /oTF T S HE (X Q% /FF)

is also injective, and thus an isomorphism. Since fo | X — 2 — Qé’( | X — 2 is
an isomorphism, it then follows from the “localization principle” of [31, p. 186] that
Q;(/O.zk-i-l gQ}/Fk+l. O

The following corollary then deals with the case dim ¥ = 0 of Theorem 3.21, in
fact under the somewhat weaker hypothesis that dim X = 0.

COROLLARY 5.6

Suppose that dim Xy = 0 and that there exists a left inverse Hy: Q% /F k+1
Q% /0= 10 the map QS /o=k T — Q% /F¥*1. Then X is k-Du Bois. In par-
ticular, if X is k-rational and dim X = 0, then X is k-Du Bois.

Proof
The proof is by induction on k. There is a morphism of distinguished triangles
Qk[—k] —— Q% /o=k+ — Q3 /ozk
+1

Qk[-k] —— Q%/FK*' —— Q% /FF —— .

Here, the center vertical arrow is an isomorphism by Proposition 5.5 and the right
vertical arrow is an isomorphism by induction. Thus, the left vertical arrow is an
isomorphism as well. O

To handle the case where dim ¥; > 0, we consider the effect of passing to a gen-
eral hyperplane section. Note that, if H is an effective Cartier divisor on X, then since
Op is quasi-isomorphic to the complex Oy (—H) — Oy, we can define the opera-
tion ®H‘ O g on the (bounded) derived category, and similarly for ®L Op(—H). For
a coherent sheaf ¥ on X, if Tor?x(?,(%]) =0,then ¥ YOy =F @ Og. In
particular, by Corollary 2.9, if codim ¥ > 2k — 1, then Q% ®“ Oy = Q% ® Oy for
all p<k+1.

The following is due to Navarro Aznar (see [9, Chapitre V, (2.2.1)]).
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PROPOSITION 5.7 (Navarro Aznar)
If X is an algebraic variety and H is a general element of a basepoint-free linear
system on X, then there is a distinguished triangle

_ d
e g op(—H) YN b gt oy - ob L

Here the term Q?I_l ®" Oy (—H) refers to the tensor product as @ z-modules,
that is, to Q2! ®”@H O (—H), and we could write this as % ' ® Oy (—H) or
simply as Q% " in case O (—H) = Op.

Recall that, in Proposition 2.7, we defined the (not necessarily exact) sequence

0— Q' @0(—H) - Q% | H — Q% — 0. (%)

Since the maps in the above distinguished triangle are clearly compatible with the
augmentation maps ¢?, we get the following.

COROLLARY 5.8
If (%) is exact, then there is a morphism of distinguished triangles

- df A +1
Q' ® Op(—H) Q% ® Oy Qb

— df A +1
5 @ O (—H) —— 2% ®" 0y Qb

In particular, if X is (k — 1)-Du Bois and Ici, then (%), is exact for p <k, and hence
there is a morphism of distinguished triangles as above for p <k.

Proof
We only need to check the final statement. By Theorem 3.8, codim X > 2k — 1. Thus,
for a general H, by Proposition 2.7, the sequence (%), is exact for all p <k. O

The key step is then the following.

THEOREM 5.9
Let X be a reduced local complete intersection, and suppose that there exists a com-
patible set of k + 1 left inverses {hp}l;=0. Then X is k-Du Bois.

Proof
We will assume that Xz (X) = X4 # 0 and derive a contradiction. As this is a local
question, we can assume that X is affine. The proof is by induction both on k and on
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dim X. The cases k = 0 and dim X} = 0 have been proved by Kovécs [21] or Propo-
sition 5.5, or follow by starting the induction at k = —1. Assume inductively that the
theorem has been proved for all j < k and for all varieties H with dim X (H) <
dim X. In particular, X is (k — 1)-Du Bois, and hence codim ¥ > 2k — 1. Choose
a general H as in Proposition 5.7. Here the hypothesis that H is general means in
particular that (i) dim X5 N H < dim X, and (ii) if dim X > 0, then Xz N H # @.
We claim that S (H) # @. For otherwise H is k-Du Bois, and hence Q%, =~ Q%
for all p < k. Then Q’)‘( QL Oy =~ Q’}‘( ®" O as follows from the morphism of dis-
tinguished triangles in Corollary 5.8. On the other hand, we have the distinguished
triangle

Q])(( ®L(9H —>Ql)€( ®E‘(9H —>§k ®]L(9Hi>.

. . . xf . .
Since O g has the projective resolution Oy — Oy, for all p <k, and all i, there is
an exact sequence

0— TorP¥ (K g7, 0y) — H' (87 & Oy) — (H'E7) ® Oy — 0.

Thus | J ip SuppH' (7 @ On) = i N H # 0, and hence Q% ) Oy —
0<p<k
Q’)‘( Q-0 ; is not an isomorphism.

For all p <k, we claim that we can find a compatible set of p + 1 left inverses
{h}P_,. Again, we argue by induction on p and the case p = 0 is clear. For the
inductive step, assume that there exists a compatible set of p left inverses {ﬁi}f =—01
for H. By the inductive hypothesis, H and X are (p — 1)-Du Bois, and thus we can
take h! = Id for all i < p — 1. Also, as noted above, by Corollary 2.9, Q‘;’( L0y =
Q‘; ® Oy . In what follows, we fix the function f and will omit the factor O g (—H)
as it is trivialized.

By the assumption of compatibility, there is a commutative diagram

_ d
Qf( 1®(9H i) Q§(®L(9H

l= lhﬁ@ld

_ d
Q' woy Y @b goy.

There is an induced diagram

- 1 d
ey 'eoy —— Q! LQ?K@L(DH

e

_ _ d
Qlwoy —— ot Y ar g oy.
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Here, the left-hand square is commutative and the outer rectangle is commutative.
Since all terms except for 2% ® O are sheaves and the morphism Q% ' ® O —
QZ_I is surjective, a straightforward argument shows that the right-hand square is
commutative as well.

There is a diagram of distinguished triangles

- -1 dfA +1
Qitx ot — Qf @ 0y Qy
|- e
- afn +1
bt = QP 0y Qb

Thus, we can complete the diagram by finding h? which makes the diagram commute,
and it is automatically a left inverse to the map Q% — Q% since Q% ® Oy — QF,
is surjective. We claim that any such A2 is compatible with /?~! = Id. Since Qz_l o
QZ_I, there is a commutative diagram with vertical arrows given by o A:

p—1 __ ~p-1 = p—1
Q= — b

! !

P h? P
Qy — Q.
As h? is a left inverse, for all ¢ € QPH__I = QP P (@ng) =ang =anhP(p).
It follows that h? is compatible with #7~!. This completes the inductive step for p.
But then, since dim X (H) < dim X, by the inductive hypothesis H is k-Du
Bois and hence X (H) = @. This contradicts the statement that Xz (H) # 0. O

The following is then the Ici case of Theorem 3.21.

COROLLARY 5.10
If X is a k-rational algebraic variety with Ici singularities, then X is k-Du Bois.

Proof
This follows from Lemma 5.4 and Theorem 5.9. O

In fact, the proof also shows the following result of Mustatd and Popa [28, Theo-
rem 9.17].

COROLLARY 5.11

If X is an algebraic variety with k-Du Bois singularities, then a general complete
intersection Hy N --- N H, of X is k-Du Bois.
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As an application of Corollary 5.10, we have the following.

PROPOSITION 5.12

Let f :Y — S be a flat proper family of complex algebraic varieties of relative dimen-
sion n over an irreducible base S. For s € S, suppose that the fiber Y has k-rational
lci singularities. Then, for every fiber t such that Y; is smooth, dim Grf, HPY(Y,) =
dimGr’y ¥ H2"~P~4(Y;) for every q and for 0 < p < k. Equivalently, for such p and
q,

hPA(Y,) = HPIY,) = RPY(Y,) = TPy,

Proof
By Corollary 5.10, Y is k-Du Bois. By Theorem 1.2, for p <k, qu*Qly)/S is locally
free in a neighborhood of s and compatible with base change. Thus,

dimGrf, H?*9(Y,) = H(Y;:Q},) = dim H(Y;; Q7).

Then dimGry H?*4(Y;) = dimH(Yy; Dy, (Qy 7). By Grothendieck duality,
HY (Ys; Dy, (Q’I',S_p )) is dual to H"*™¢ (YS;Q';ZP ). Computing dimensions gives the
result. O

In fact, combining the above with the Hodge symmetries given by Theorem 3.24,
we obtain Corollary 1.10 announced in the introduction. This is modeled in [16, The-
orem 1] (case k = 0). Note, however, that [16, Theorem 1] does not assume Ici sin-
gularities, and works in the analytic category.

Appendix. Proof of Conjecture 1.8 for hypersurfaces

MORIHIKO SAITO

We prove that two definitions of higher k-rational singularities for hypersurfaces
coincide (see Theorem A.1 below). (The case k=0 was treated in [33].) This implies a
proof of Conjecture 1.8 for hypersurfaces using the converse of a theorem of Mustata
et al. [25, Theorem 1.1] (see [11, Theorem 1]).

THEOREM A.1

Assume that X is a reduced hypersurface of a smooth complex algebraic variety Y .
Then for k € Z~q, we have dx > k+1 if and only if X has only k-rational singulari-
ties.



HIGHER DU BOIS AND HIGHER RATIONAL SINGULARITIES 1875

Proof

Assume that @y > k+1. We may assume that X C Y is defined by a function f
shrinking X, Y if necessary. Since @y > k+1, we have by [11, Theorem 2] the
canonical isomorphism

QT = 050(Qy [dy—k]|x.df 1), (A.1)
where dy :=dim Y. Applying the functor D, we get the isomorphisms
D(R5* ™) = D(ox0(R5 [dy —k]|x.df 1))
=C(f :0<0(Qy[k].dfA) > 0<0(QY [k].dfA))[dy—1].  (A2)

since D(L) = LY ®g, wy [dy] for a locally free Oy-module L in general.
It is well known (see, e.g., [1 1, Propositions 1-2]) that

ij(Q' ,dfA)=0 ifj <codimySingX, (A.3)
_ r .
oy < ECOdle Sing X. (A4)

These imply the quasi-isomorphism
0<0(Qy[k].df A) —> QK /df QYT (A.5)
together with the injection
QY /dfAQT s Qb (A.6)

which gives f -torsion-freeness of Q’{, /df /\Qlf,_l. We thus get the canonical isomor-
phism

DR ) [—dx] = 2%. (A7)

Here k can be replaced by any j € [0,k—1]. So X has only k-rational singularities.
Assume now that X has only k-rational singularities. This means that the com-
position

Q% — Q% - DY ) [—dx] (A8)

is an isomorphism (hence Q’)‘( is a direct factor of Q’)‘() and the same holds with k
replaced by any j € [0, k—1]. We will consider the morphisms obtained by applying
the functor ID to these morphisms. We argue by induction on k. Note that

aX >k, (A'9)
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since X has only (k—1)-rational singularities by definition. This implies that
k+1 < codimy Sing X, (A.10)

using (A.4), since codimy Sing X >2. By the same argument as above, we then get
that

D(Q%)[—dx] = 020(Q% [dy—k]x.df A). (A.11)
On the other hand, we have (by [34, Theorem 4.2])
Q% = Grl: DR(Qy x [dx]) k—dx]. (A.12)
hence
D(Q)[~dx] = Gr{* " DRD(Qp x (dx)[dx]) [dx—k]. (A.13)

By the theory of Hodge ideals (see [11], [12], [26], [35]) and using (A.9), we can get
the isomorphism

D(QK)[~dx] = K®* C 020 (QY [dy —k]|x.df A), (A.14)

where K®)J .= QI =K |y if j £ ko and KO .= 1, (X)QL /£ QL with [ (X)
the Hodge ideal.

Ifaye(k,k+1)sothat I (X) # Oy (see, e.g., [35, Corollary 1]), then by (A.11)
and (A.14) the canonical morphism

gk —dxp(@k) — kX k) (A.15)

is never surjective. Indeed, since Q’)‘( is a direct factor of Qk , the mapping cone of a
morphism ¢:Q]§(—>Q§( is independent of ¢ as long as it induces an isomorphism on
X\ Sing X . Note that Jes"mgxsz’;(:o, since the proof of Proposition 2.2 in [11] holds
also for g=p-+1 (where the last inequality in the proof of Proposition 2.2 becomes
q+1=p+2 < codimy Sing X). Hence the dual of the composition (A.8) cannot be
an isomorphism.

Assume now that @y =k +1. (Here Q¥ =Qk ;see [11], [25].) The canonical iso-
morphism (A.1) and the second morphism of (A.8) are induced by the canonical mor-
phism of mixed Hodge modules (see [ 1, Section 3.1])

Qun,x[dx] — D(Qu,x (dx)[dx]). (A.16)

Note that this coincides with the composition of

Qn.x[dx]—p«Qy gldx]
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with its dual, where p:X —X is a desingularization. Let (M, F), (M", F) be the
underlying filtered Dy -modules of its kernel and cokernel, respectively. Then the
condition @y =k +1 implies that

min{p € Z | F,M' # 0} > dx—k, min{p € Z| F,M" #0} =dx—k, (A.17)

using [35, (1.3.2-1.3.4)] and [1 1, Section 3.1] together with the N -primitive decom-
position (see, e.g., [ 16, (2.2.4)]). We then see that the morphism (A.16) cannot induce
an isomorphism

G2 *DR(Qy x [dx]) — Gr&X *DR(D(Qy x (dx)[dx]))- (A.18)

This means that the composition (A.8) cannot be an isomorphism in view of (A.12)-
(A.13). This is a contradiction. We thus get @x > k-+1. This finishes the proof of
Theorem A.1. O

Combining Theorem A.l with the converse of a theorem of Mustatd et al. [25,
Theorem 1.1] (see [11, Theorem 1]), we can get a positive answer to Conjecture 1.8
for hypersurfaces as follows.

COROLLARY A.2

Assume that X is a reduced hypersurface of a smooth complex algebraic variety Y,
and has only k-Du Bois singularities (k>1). Then X has only (k—1)-rational singu-
larities.

Remark A.3

In[11], an assertion slightly stronger than the converse of [25, Theorem 1.1] is proved
(since it is not assumed that the isomorphism is induced by the canonical morphism).
The assertion can be proved rather easily using the extension of [11, Proposition 2.2]
to the case g=p+1 as is explained after (A.15) and assuming that the restriction of
the isomorphism to the smooth points of D is the identity. Indeed, the argument in
[11, Section 2.3] is very complicated, since even this natural condition is not assumed.
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