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Abstract
We prove that the higher direct images Rqf��

p

Y=S
of the sheaves of relative Kähler

differentials are locally free and compatible with arbitrary base change for flat proper
families whose fibers have k-Du Bois local complete intersection singularities, for
p � k and all q � 0, generalizing a result of Du Bois (the case k D 0). We then
propose a definition of k-rational singularities extending the definition of rational
singularities, and show that, if X is a k-rational variety with either isolated or local
complete intersection singularities, then X is k-Du Bois. As applications, we discuss
the behavior of Hodge numbers in families and the unobstructedness of deformations
of singular Calabi–Yau varieties.

In an appendix, Morihiko Saito proves that, in the case of hypersurface singu-
larities, the k-rationality definition proposed here is equivalent to a previously given
numerical definition for k-rational singularities. As an immediate consequence, it fol-
lows that for hypersurface singularities, k-Du Bois singularities are .k� 1/-rational.
This statement has recently been proved for all local complete intersection singulari-
ties by Chen, Dirks, and Mustaţă.

1. Introduction
The Hodge numbers are constant in a smooth family of complex projective varieties
over a connected base. A powerful way of encoding this fundamental fact is Deligne’s
theorem (see [2]): if f W Y ! S is a smooth morphism of complex projective varieties,
then the higher direct image sheaves Rqf��

p

Y=S
of the relative Kähler differentials

are locally free and compatible with base change. This theorem fails for families of
varieties which have singular fibers (and in positive characteristic). For Y a singular
compact complex algebraic variety, Du Bois [3] showed that the Kähler–de Rham
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complex��
Y should be replaced by the filtered de Rham or Deligne–Du Bois complex

��
Y whose graded pieces �pY 2Dcoh

b
.Y / play the role of �pY (see [31, Section 7.3]).

Namely, the associated spectral sequence with Ep;q1 D Hq.Y I�
p
Y / degenerates at

E1 and computes HpCq.Y;C/ together with the Hodge filtration associated to the
mixed Hodge structure on H�.Y /. However, the associated Hodge numbers hp;q WD

dimHq.Y I�
p
Y / do not behave well in families in general.

The filtered de Rham complex is related to the complex of Kähler differentials via
the canonical comparison Kähler-to-Du Bois map �p W�

p
Y !�

p
Y . The maps �p are

isomorphisms for all p only when Y is smooth, at least when Y is a local complete
intersection (see [28, Theorem 3.39, Theorem F]). It is thus natural to consider the
case when �p is a quasi-isomorphism in a certain range. Steenbrink [41, Section 3]
introduced the notion of Du Bois singularities, which play a role in the study of com-
pactifications of moduli. By definition, Y is Du Bois if �0 is a quasi-isomorphism.
Following [25] and [11], we say that Y is k-Du Bois if �p is a quasi-isomorphism
for 0 � p � k. Thus 0-Du Bois singularities are exactly the Du Bois singularities
in Steenbrink’s terminology. A key property satisfied by Du Bois singularities is the
following.

THEOREM 1.1 (Du Bois [3, Théorème 4.6], [4, Lemme 1])
Let f W Y ! S be a flat proper family of complex algebraic varieties. Assume that
some fiber Ys has Du Bois singularities. Then, possibly after replacing S by a neigh-
borhood of s, for all q � 0, the sheaves Rqf�OY are locally free of finite type and
compatible with base change.

The theorem can be interpreted (in particular) as giving a relation between the
mixed Hodge structure H�.Y0/ of a singular fiber Y0 with the limit mixed Hodge
H�

lim associated to a one-parameter smoothing X=�. In this version, the theorem
(for dimension-2 semi-log-canonical hypersurface singularities) was independently
established by Shah [37], and plays a key role in the study of degenerations of K3
surfaces (e.g., [38]) and related objects (e.g., [19], [23]). Theorem 1.1 continues to
have important consequences for the study of compact moduli of varieties of general
type (see, e.g., [17], especially Section 2.5 there).

Here, we prove the following generalization of Theorem 1.1 for the case of a
local complete intersection (lci) morphism.

THEOREM 1.2
Let f W Y ! S be a flat proper family of complex algebraic varieties, and let s 2

S . Suppose that the fiber Ys has k-Du Bois lci singularities. Then, possibly after
replacing S by a neighborhood of s, the higher direct image sheaves Rqf��

p

Y=S
of
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the relative Kähler differentials are locally free and compatible with base change for
0� p � k and all q � 0.

Remark 1.3
We use the lci assumption to control the sheaves of Kähler and relative Kähler differ-
entials in two ways. First, a result of [28] gives an estimate on the codimension of the
singular locus for k-Du Bois lci singularities. Using this and some results of Greuel,
we prove a key technical point: under the lci assumption, the sheaves �p

X=S
are flat

over S for p � k (see Theorem 2.5). In case k D 0, both the codimension estimate
and the flatness are automatic and one recovers Theorem 1.1 as a special case.

As a corollary, we obtain the following.

COROLLARY 1.4
Let f W Y ! S be a flat proper family of complex algebraic varieties over an
irreducible base. For s 2 S , suppose that the fiber Ys has k-Du Bois lci singu-
larities. Then, for every fiber t such that Yt is smooth, dim GrpF H

pCq.Yt / D

dim GrpF H
pCq.Ys/ for every q and for 0� p � k. Equivalently, hp;q.Ys/D hp;q.Yt /

for all p � k.

In the case of hypersurface singularities, results similar to Corollary 1.4 were
obtained by Kerr and Laza [14], [15] with further clarifications given by Saito (per-
sonal communications) based on [35]. These type of results are relevant, for example,
to the study of the moduli of cubic fourfolds (see [23]).

Another application of Theorem 1.2 is the following generalization of the results
of Kawamata [13], Ran [32], and Tian [42] on the unobstructedness of deformations
for nodal Calabi–Yau varieties in any dimension, where the special case of isolated
hypersurface singularities was established in Section 6 of the first version of [7].

COROLLARY 1.5
Let Y be a canonical Calabi–Yau variety (see Definition 4.4) which is additionally a
scheme with 1-Du Bois lci (not necessarily isolated) singularities. Then the functor
Def.Y / is unobstructed.

A more well-known class of singularities are the rational singularities. By the
work of Steenbrink [41], Kovács [21], and others, a rational singularity is Du Bois.
In the context of higher Du Bois singularities, it is natural to consider higher ratio-
nal singularities. In the case of hypersurfaces X in a smooth variety, the k-Du Bois
singularities are characterized numerically by the condition Q̨X � k C 1 (see [25,
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Theorem 1.1], [11, Theorem 1]), where Q̨X is the minimal exponent invariant, a gen-
eralization of the log canonical threshold. Given that Q̨X > 1 characterizes rational
hypersurface singularities (see [33]), it is natural to define k-rational singularities
numerically by the strict inequality Q̨X > kC 1 (see [14, Definition 4.3]); this defini-
tion also occurs implicitly in [25] and [11]. While results can be obtained using this
numerical definition, it has the disadvantage of being restricted to hypersurfaces, and
to be somewhat ad hoc. A more general definition of k-rational isolated singularities,
based on local vanishing properties (see especially [27]), was given in Section 3 of
the first version of [7] (see also [29] for further discussion).

In this article, we propose a more intrinsic definition of k-rational singulari-
ties in general (Definition 3.13) and show that it agrees with the usual definition of
rational singularities for k D 0 and with the definition of [7, Section 3] (under mild
assumptions; see Corollaries 3.16 and 3.18). Additionally, for hypersurface singular-
ities, Saito proves that the new definition proposed here is indeed equivalent to the
previous numerical definition mentioned above (Theorem A.1). The main advantage
of the definition of higher rational singularities given here is that it naturally factors
through the higher Du Bois condition. In analogy with the case k D 0, we conjec-
ture that k-rational implies k-Du Bois in general. In the first version of [7, Section 3]
(and expanded in [6]), we verified this conjecture under the assumption of isolated lci
singularities. Here, we generalize this in both directions, for arbitrary isolated or lci
singularities.

THEOREM 1.6
Let X have either lci singularities (not necessarily isolated) or isolated singularities
(not necessarily lci). If X is k-rational, then X is k-Du Bois.

Remark 1.7
Mustaţă and Popa [29, Theorem B] gave an independent proof of Theorem 1.6 for the
case of lci singularities.

The isolated complete intersection case (see [6]) sheds light on the tight relation-
ship between higher rational and higher Du Bois singularities. In the first version of
this paper, we made the following conjecture.

CONJECTURE 1.8
If X has lci singularities and X is k-Du Bois, then X is .k � 1/-rational.

For an isolated hypersurface singularity, Conjecture 1.8 is an immediate conse-
quence of the following result.
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PROPOSITION 1.9
Let .X;x/ be an isolated hypersurface singularity, and let ęX;x D ęX be the minimal
exponent as defined by Saito [33]. Then
(i) X is k-Du Bois if and only if ęX � kC 1,
(ii) X is k-rational if and only if ęX > kC 1.

Here (i) follows from [11, Theorem 1] and [25, Theorem 1.1] and holds true for
a general, not necessarily isolated, hypersurface singularity, and (ii) is proved in [6,
Corollary 6.6]. In the appendix, Saito proves (ii) for the case of a general hypersurface
singularity, based on the results of [11]. This implies Conjecture 1.8 for the case
of general hypersurface singularities, not necessarily isolated (see Corollary A.2).
Mustaţă and Popa have proved Proposition 1.9(ii), and hence Conjecture 1.8 in this
case as well (cf. [29, Theorem E, Corollary F]). Additionally, in [6, Corollary 5.5],
we established Conjecture 1.8 for isolated lci singularities. Recently, Chen, Dirks, and
Mustaţă [1] have proved Conjecture 1.8 in general.

Since k-rational singularities are milder than k-Du Bois singularities, one expects
that more of the Hodge diamond is preserved in families with k-rational singulari-
ties. Indeed, this is the case as shown in [14, Corollary 4.2] (isolated hypersurface k-
rational singularities) and [16, Theorem 1] (arbitrary rational singularities). Here, we
extend these results to k-rational lci singularities, and clarify the difference between
k-Du Bois and k-rational in this context. Essentially, for k-rational singularities,
in addition to the preservation given by Corollary 1.4, one gains Hodge symmetry
in a certain range. Informally, we can say that the frontier Hodge diamond up to
coniveau k is preserved for deformations of k-rational singularities.

COROLLARY 1.10
Let f W Y ! S be a flat proper family of complex algebraic varieties over an irre-
ducible base. For s 2 S , suppose that the fiber Ys has k-rational lci singularities.
Then, for every fiber t such that Yt is smooth, and for all p � k,

hp;q.Ys/D hq;p.Ys/D hn�p;n�q.Ys/D hp;q.Yt /D hq;p.Yt /D hn�p;n�q.Yt /:

Moreover, for all p � k,

hp;q.Ys/D dim GrpF Im
�
HpCq.Ys/

��
s

��!HpCq. OYs/
�
;

where �s W OYs ! Ys is an arbitrary projective resolution.

Remark 1.11
(1) The Du Bois complex for a (connected) curve C was computed in [3, Proposi-
tion 4.9] and [31, Example 7.23(2)]. Let QC be the normalization of C , and let Cw be
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the weak normalization, so that there is a factorization QC ! Cw ! C . Let � W QC ! C

and �0 W Cw ! C be the corresponding morphisms. Then �0C D �0
�OCw and �1C D

���
1
QC
. In particular, h1;0.C /D pg.C /D g. QC/, while h0;1.C /D pa.C

w/. Thus the
only Hodge number which is always preserved in flat proper families of curves is
h0;0 D 1. Note that C has Du Bois singularities if and only if Cw Š C , and C has
rational singularities if and only if C is smooth. However, at least one of the Hodge
symmetries h1;0 ¤ h0;1 D pa.C / or h1;1 ¤ h0;0 D 1 will fail if the singularities of C
are Du Bois but not rational (depending on C of compact/noncompact type), reflect-
ing the fact that there are no rational singularities in dimension 1.

(2) Suppose that C has ordinary double points, and let ��
C be the subcomplex

of “torsion differentials” on C , that is, those sections of ��
C which pull back to 0

on QC . By [5, (1.1), (1.5)], .��
C ; d / and .��

C=�
�
C ; d / are both resolutions of C. In

fact, it is easy to see directly that (1) .��
C=�

�
C ; d / is a resolution of C, and (2) at an

ordinary double point locally defined by z1z2 D 0, �1C D C � z1dz2, �2C D C � dz1 ^

dz2, and d W �1C ! �2C is an isomorphism. Hence .��
C ; d / is acyclic and .��

C ; d /

is quasi-isomorphic to .��
C =�

�
C ; d / and thus is a resolution of C. In particular, the

spectral sequence with E1-term H q.C I�
p
C / which converges to HpCq.C I��

C / D

HpCq.C IC/ does not degenerate at E1, as d D d1 is nonzero on H 0.C I �1C / �

H 0.�1C /.
(3) More generally, if X has normal crossings, then ��

X Š ��
X=�

�
X (with the

trivial filtration), where as above ��
X is the subcomplex of torsion differentials, by (for

instance) [31, Example 7.23(1)]. Moreover, by [5, (1.1)] and generalizing the explicit
calculations of (2) above, .��

X ; d / is also a resolution of C and in particular .��
X ; d /

and .��
X=�

�
X ; d / are quasi-isomorphic. For a related result, for a general variety X ,

Guillén et al. showed in [9, Chapitre III, (1.15)] that the homomorphism ��
X !��

X

always has a section (viewed as a morphism in the derived category). However, these
results do not seem to say much about the individual homomorphisms �pX !�

p
X .

(4) Fourfolds Y with ADE hypersurface singularities (such as those occurring
in [23]) are examples of 1-rational singularities. For such fourfolds, Corollary 1.10
implies that only h2;2.Y / can vary in small deformations. Thus, any smoothing of Y
will have finite monodromy (cf. [16, Corollary 1]).

A brief description of the contents of this paper is as follows. Section 2 deals
with some basic results about Kähler differentials in the lci case. These include The-
orem 2.5 regarding the flatness of the relative Kähler differentials and Proposition 2.7
on restricting to a generic hypersurface section. In Section 3, we give a quick review
of the definition and the basic facts about higher Du Bois singularities (following
[11], [25], [7, Section 3]) and define higher rational singularities. After these prelim-
inaries, we establish Theorem 1.2. Our argument is close to the original argument in
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[4, Lemme 1] used to establish Theorem 1.1, following a suggestion of Kollár. Finally,
in Section 5, we prove Theorem 1.6 following the strategy of [21], and deduce a con-
sequence about the Hodge numbers of a smoothing along the lines of Corollary 1.4.
An appendix section by Saito discusses Conjecture 1.8 in the hypersurface case.

Finally, beyond the conjectures and speculation we have already made, we
emphasize the importance of extending these results wherever possible to the non-lci
case. Along these lines, Shen, Venkatesh, and Vo have recently posted a preprint [39]
proposing different definitions of k-Du Bois and k-rational singularities which agree
with the previous ones in the lci case.

Notation and conventions
We work in the complex algebraic category (but see Remark 4.3 for some possible
generalizations). Following our conventions from previous work [7], we use X (and
X) in the local context (e.g., statements such as Theorem 2.5 are purely local, and
hold in the analytic case as well), whereas Y and � W Y ! S are meant to be proper
over SpecC or S , respectively (e.g., in Theorem 1.2 where the properness is essen-
tial). The scheme or analytic space X is an algebraic variety if it is reduced and
irreducible. In this case, its singular locus Xsing is denoted by †. We set nD dimX
and d D dim†.

2. Some results on Kähler and relative Kähler differentials
The Kähler differentials are coherent sheaves that are determined by certain universal
properties, including compatibility with base change. For smooth families Y=S , the
proof of the constancy of the Hodge numbers uses in an essential way the semiconti-
nuity of hq.�pYt

/, which in turn depends on the flatness of�p
Y=S

. Here, we generalize

this key point, noting that, for an lci morphism, �p
X=S

is flat over S (Theorem 2.5)
for p satisfying a bound depending on the dimension d of the singular locus. Our
argument depends essentially on the lci assumption, and it is a consequence of some
depth estimates for �pX for X with lci singularities due to Greuel.

A second result (Proposition 2.7) that follows by related arguments involves
higher adjunction type results regarding restrictions of Kähler differentials to generic
hypersurface sections.

2.1. A flatness result
We begin by recalling some basic notions concerning depth. Recall that if R is a
local ring with maximal ideal m and M is an R-module, then depthM is the maxi-
mal length of a regular sequence for M (see [24, p. 120]). If F is a coherent sheaf
on a complex space X and x 2 X , let depthx F D depth Fx , viewed as an OX;x-
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module. A key technical result we will need is then the following theorem (see [36],
[8, Satz 1.2]).

THEOREM 2.1 (Scheja)
Suppose that X is an analytic space, that A is a closed analytic subspace, and that
F is a coherent sheaf on X . Let � W H 0.X I F / ! H 0.X � AIF j X � A/ be the
restriction map.
(i) If depth Fx � dimAC 1 for every x 2X , then the homomorphism � is injec-

tive.
(ii) If depth Fx � dimA C 2 for every x 2 X , then the homomorphism � is an

isomorphism.

It is well known that Kähler p-differentials on singular spaces can have torsion.
For instance, this is already the case for �1C where C is a nodal curve. However, we
have the following (see [8, Lemma 1.8]).

THEOREM 2.2 (Greuel)
Suppose that X is an lci singularity of dimension n and that dim† � d . Then, for
all x 2 X , depthx�

p
X � n � p for p � n � d . More generally, let f W X ! S be a

flat lci morphism of relative dimension n over a smooth base S , and let Xcrit denote
the critical locus of f , that is, the points of X where f is not a smooth morphism.
If dimS Dm and the relative dimension of Xcrit is at most d , then for every x 2 X,
depthx�

p

X=S
� dim X � p D nCm� p for p � n� d .

Before stating the next corollary, we fix the following notation which will be used
for the rest of the section. If f W X ! S is a morphism and s 2 S , we denote by Xs
the fiber f �1.s/ and by †s the singular locus of Xs : †s D .Xs/sing.

COROLLARY 2.3
Suppose that f W X ! S is a flat lci morphism of relative dimension n over a smooth
base S of dimension m, and that dim†s � d , with n� d � 2k C 1 for some integer
k � 1 and every point s 2 S . Let Xcrit denote the critical locus of f , that is, the points
of X where f is not a smooth morphism. Then, for every x 2 X and p � n� d ,

depthx�
p

X=S
� d CmC 2;

and, for all p � k and every open subset U of X, the restriction map

H 0.UI�
p

X=S
j U/!H 0.U � XcritI�

p

X=S
j U � Xcrit/

is an isomorphism.
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Proof
By assumption, dim Xcrit � d C m. Note that n � d � 2k C 1 � k, and hence, if
p � k, then p � n� d . Thus Theorem 2.2 implies that, for all x 2 X,

depthx�
p

X=S
� nCm� p

� n� kCm� d CmC kC 1� d CmC 2� dim Xcrit C 2:

Then H 0.UI�
p

X=S
jU/ ! H 0.U � XcritI�

p

X=S
jU � Xcrit/ is an isomorphism, by

Theorem 2.1(ii).

PROPOSITION 2.4
Suppose that f W X ! S is a flat lci morphism of relative dimension n over a smooth
base S of dimension m, and that dim†s � d , with n� d � 2k C 1 for some integer
k � 1 and every point s 2 S . Suppose that X � A � S , where A is smooth, and let
I be the defining ideal of X in A � S . Then there exists a filtration of

Vk
��
1�

1
A j

X D ��
1�

k
A j X by coherent subsheaves Ka, 0� a � k, such that K0 D ��

1�
k
A j X,

depthx Ka � d CmC 2 for all x 2 X, and, for all a � 0,

Ka=KaC1 Š

â

.I=I 2/˝�k�a
X=S :

Proof
The proof is by induction on k. The case k D 1 is the conormal sequence

0! I=I 2 ! ��
1�

1
A j X !�1X=S ! 0;

where we let K1 be the image of I=I 2. In general, for all 0 � a � k, let Ka be
the image of

Va
.I=I 2/˝ ��

1�
k�a
A jX in ��

1�
k
A j X. Thus ¹Kaº is the usual Koszul

filtration, and the proposition is clear over all points of X � Xcrit. Moreover, Kk is
either 0 or

Vk
.I=I 2/. By hypothesis, k < nD rank�1

X=S
. Let r D rankI=I 2. We

can clearly assume that r � 1. If r � k, then Kk D
Vk

.I=I 2/. If r < k, then Kk D

0, and the largest p such that Kp ¤ 0 is Kr , the image of
Vr
.I=I 2/˝��

1�
k�r
A jX.

In this case, the image of
Vr
.I=I 2/ ˝ .I=I 2/ ˝ ��

1�
k�r�1
A j X in

Vr
.I=I 2/ ˝

��
1�

k�r
A jX maps to 0 in ��

1�
k
A j X. By the inductive hypothesis, the sequence

r̂

.I=I 2/˝ .I=I 2/˝ ��
1�

k�r�1
A j X !

r̂

.I=I 2/˝ ��
1�

k�r
A j X

!

r̂

.I=I 2/˝�k�r
X=S

is exact, so there is an induced map 'r W
Vr
.I=I 2/ ˝ �k�r

X=S
! ��

1�
k
A j X. Then

the image of 'r is contained in the torsion-free sheaf Kr and is equal to Kr over
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X � Xcrit. Moreover, 'r is injective over X � Xcrit. By the inductive hypothesis on
k,

depthx

r̂

.I=I 2/˝�k�r
X=S � d CmC 2;

and hence Im'r D Kr , and 'r W
Vr
.I=I 2/˝�k�r

X=S
Š Kr D Kr=KrC1 is an iso-

morphism.
For a general a, there is a commutative diagram

0 ����! J ����!
Va
.I=I2/˝��

1
�k�a

A
jX ����!

Va
.I=I2/˝�k�a

X=S
����! 0??y ??y'a

0 ����! KaC1 ����! Ka ����! Ka=KaC1 ����! 0;

where by definition J D Ker¹
Va

.I=I 2/˝��
1�

k�a
A j X !

Va
.I=I 2/˝�k�a

X=S
º and

'a, which exists and is an isomorphism over X � Xcrit, is yet to be constructed over
all of X.

For a fixed k, arguing by descending induction on a, and starting either at k or
at r , we can assume that depthx KaC1 � d CmC 2. Moreover, KaC1 j X � Xcrit

is a subbundle of Ka j X � Xcrit, so the torsion subsheaf of Ka=KaC1 is supported
on Xcrit. If 	 is a section of Ka over some open subset U and 	 jV 2 KaC1 for an
open subset V D U �W of U, where W is an analytic subset of U, then we may
assume that W D Xcrit. Since Ka is torsion-free and depthx KaC1 � d C m C 2,
	 2 KaC1.U/. Thus Ka=KaC1 is torsion-free.

Let I be the kernel of the map

â

.I=I 2/˝ ��
1�

k�a
A j X ! Ka=KaC1:

Since Ka=KaC1 is torsion-free, a standard argument shows that, for every open sub-
set U of X, the map

H 0.UII j U/!H 0.U � XcritII j U � Xcrit/

is an isomorphism. Over X � Xcrit, there is an isomorphism I j X � Xcrit Š J j

X � Xcrit. Since
Va

.I=I 2/ is locally free, depthx J � depthx
Va

.I=I 2/˝�k�a
X=S

�

d CmC 2 by Corollary 2.3. In particular,

H 0.UIJ j U/!H 0.U � XcritIJ j U � Xcrit/

is also an isomorphism. Thus, J D I, and there is an induced injective homo-
morphism 'a as in the diagram. Since 'a is an isomorphism over X � Xcrit

and depthx
Va

.I=I 2/ ˝ �k�a
X=S

� d C m C 2, 'a is an isomorphism. Finally,
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since both depthx KaC1 � d C m C 2 and depthx Ka=KaC1 � d C m C 2,
depthx Ka � d CmC 2 as well.

A key technical step in establishing Theorem 1.2, where the lci assumption seems
crucial, is the following.

THEOREM 2.5
Suppose that f W X ! S is a flat lci morphism, where S is an arbitrary base space.
Let s 2 S , and suppose that codimXs

†s � 2k C 1. Then, possibly after replacing S
by a neighborhood of s, the sheaf of relative differentials �p

X=S
is flat over S for all

p � k. For p D 0; 1, �p
X=S

is flat over S with no assumption on the dimension of the
singular locus.

Remark 2.6
For k � 2, at least some assumption is needed for the conclusions of Theorem 2.5 to
hold. For example, ifX has simple normal crossing singularities, sayX is the product
of a nodal curve SpecCŒx; y
=.xy/ with a smooth manifold of dimension n� 1 and
X is the standard smoothing over A1 given by xy D t , then depthx�

1
X=A1 D n at a

singular point and �2
X=A1 has torsion in the fiber over the singular fiber at t D 0, and

hence is not flat over A1.
In the same spirit, with respect to Theorem 1.2, suppose that � W C !� is a fam-

ily of smooth projective curves acquiring a single ordinary double point over 0, with
the same local picture as above (so that C is also smooth). Then the sheaf �1

C=�
of

relative Kähler differentials is flat over � either by the case p D 1 of Theorem 2.5 or
by the direct computation that �1

C=�
is isomorphic in a neighborhood of the singular

point p 2 C to the maximal ideal mp , and in particular is torsion-free over O�. Let
Ct denote the fiber over t . If C0 is reducible, then the values of h0.�1Ct

/ and h1.�1Ct
/

jump up at t D 0. Hence, R1���
1
C=�

has torsion at 0, and in particular is not locally
free. This follows from very general results about cohomology and base change. In
our situation, since � is smooth of dimension 1, it follows directly by applying Ri��

to the exact sequence

0!�1C=�
�t
�!�1C=� !�1C0

! 0

to see that the dimension of the O�-module R1���
1
C=�

=tR1���
1
C=�

is larger than

the rank of R1���
1
C=�

.

Proof of Theorem 2.5
It suffices to consider the case p D k. Since every deformation is (locally) pulled back
from the versal deformation, by standard properties of flatness and wedge product
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under base change we can assume that S is smooth. First, with no assumption on the
singular locus, OX is flat over S by assumption. To see that �1

X=S
is flat over S ,

again with no assumption on the singular locus, we have the conormal sequence

0! I=I 2
u
�! ��

1�
1
A j X !�1X=S ! 0:

Let Is be the ideal of Xs in A. By the lci assumption, Is D I ˝ OS;s=ms . Then
the conormal sequence for X=S becomes the corresponding sequence for �1Xs

after
tensoring with OS;s=ms ; namely,

0! Is=I
2
s

Nu
�!�1A jXs !�1Xs

! 0:

In particular, Nu is injective. Hence, �1
X=S

D Cokeru is flat over S by the local crite-
rion of flatness (see [24, (20.E), pp. 150–151]).

For k � 2, by induction on k and descending induction on a, KaC1 and
Ka=KaC1 are flat over S for all a � 1, and hence so is Ka. Let Ka

s be the
image of

Va
.Is=I

2
s /˝ �k�a

A j Xs in �kA j Xs . Proposition 2.4 applied to the case
S D pt implies that Ka

s =K
aC1
s Š

Va
.Is=I

2
s / ˝ �k�a

Xs
. We have a commutative

diagram

0 �����! KaC1˝.OS;s =ms / �����! Ka˝.OS;s =ms / �����! Ka=KaC1˝.OS;s =ms / �����! 0??y ??y ??yŠ

0 �����! K
aC1
s �����! Ka

s �����! Ka
s =K

aC1
s �����! 0:

Here, the top row is exact for a � 1 by the flatness of Ka=KaC1 and induction on
k. By descending induction on a, the above diagram implies that the natural map
Ka ˝ .OS;s=ms/ ! Ka

s is an isomorphism for all a � 1. In particular, for a D 1,
we have the map u W K1 ! ��

1�
k
A j X with cokernel �k

X=S
, and the reduction Nu of u

mod ms is the natural inclusion K1
s !�kA jXs . Since Nu is injective,�k

X=S
D Cokeru

is flat over S by the local criterion of flatness as above. This completes the proof of
Theorem 2.5.

2.2. Kähler differentials and generic hyperplane sections

PROPOSITION 2.7
LetX be a reduced local complete intersection withXsing D†, and letH be a Cartier
divisor on X which is a generic element of a basepoint-free linear system, with ideal
sheaf OX .�H/. If codim† � 2k � 1, then, setting OH .�H/ D OX .�H/ j H , we
have that

0!�
p�1
H ˝ OH .�H/!�

p
X jH !�

p
H ! 0 .�/p

is exact for p � k.
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Proof
We can assume that X is affine and that H D .f / for a function f W X ! A1 which
has no critical points away from†. The sequence .�/p is always exact for p D 0, and
it is for p D 1 because we have the exact sequence

OH .�H/!�1X jH !�1H ! 0;

with OH .�H/ Š OH locally free and H reduced (as it is generically reduced and
lci).

By induction on k, it suffices to consider the case p D k. By the remarks above,
we can assume that k � 2. By the de Rham lemma (see [8, Lemma 1.6]), we have the
following.

LEMMA 2.8
Let d D dim†. For 0� p < n� d , the following sequence is exact:

0! OX
df ^
���!�1X

df ^
���! � � �

df ^
���!�

pC1
X :

Equivalently, for 0� p < n� d ,

df ^W �
p
X=df ^�

p�1
X !�

pC1
X

is injective.

Proof
Since f is generic, the critical set C.f / of f (in the notation of [8]) is just †.
Then the result follows immediately from [8, Lemma 1.6] (with g D h, k D 1, and
C.f;g/\N.h/D†).

From the lemma, since n� d D codim† � 2k � 1 > k, because k > 1, there is
an exact sequence

0!�k�1
X =df ^�k�2

X

df ^
���!�kX !�kX=df ^�k�1

X ! 0:

Tensoring with OH gives an exact sequence

0! TorOX

1 .�kX=df ^�k�1
X ;OH /!�k�1

H !�kX jH !�kH ! 0:

So we have to show that, for a general choice of f , TorOX

1 .�kX=df ^�k�1
X ;OH /D 0.

Since OH has the free resolution

0! OX
�f
��! OX ! OH ! 0;
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it suffices to show that �kX=df ^�k�1
X has no f -torsion, that is, that multiplication

by f is injective. Since there is an inclusion �kX=df ^ �k�1
X ! �kC1

X , it suffices
to prove that �kC1

X has no f -torsion. Let � be an f -torsion local section of �kC1
X .

Note that the support of � must be contained in † \ V.f /, since �kC1
X j X �† is

torsion-free and f is invertible on X � V.f /. By the assumption that H is general,
every component of † \ V.f / has dimension at most d � 1. By [8, Lemma 1.8],
since kC 1� 2k � 1� codim† as long as k � 2, we have, for every x 2X ,

depthx�
kC1
X � n� .kC 1/:

Using n� d � 2k � 1 gives n� k � 1� d C k � 2� d , since we are assuming that
k � 2. Thus

depthx�
kC1
X � dim

�
†\ V.f /

�
C 1:

It follows from Theorem 2.1(i) that, for every open subset U ofX , the restriction map

H 0.U I�kC1
X jU /!H 0.U � .†\ V.f /I�kC1

X jU �
�
†\ V.f /

�
is injective. In particular, � D 0. Hence, .�/p is exact for p � k.

Note that we showed the following in the course of proving Proposition 2.7.

COROLLARY 2.9
With X and H as in the statement of Proposition 2.7, TorOX

1 .�
p
X ;OH /D 0 for all

p � kC 1.

3. k-Du Bois and k-rational singularities
We now review the notion of Du Bois and higher Du Bois singularities, and propose a
general definition for higher rational singularities. After verifying that our definition
agrees with the standard definition of rational singularities, as well as with previous
definitions of higher rational singularities (under mild assumptions, expected to hold
in general), we discuss the connection between higher rational and higher Du Bois
singularities.

3.1. The filtered de Rham complex
On a smooth scheme Y proper over SpecC or a compact Kähler manifold, the Hodge–
de Rham spectral sequence with E1 page Ep;q1 D H q.Y I�

p
Y / degenerates at E1

and computes the Hodge structure on HpCq.Y;C/. For X not necessarily smooth or
proper over SpecC, Deligne showed that H�.X;C/ carries a canonical mixed Hodge
structure. Subsequently, Du Bois [3] introduced an object ��

X D .��
X ;F

���
X / in

the filtered derived category whose graded pieces �pX D GrpF �
�
X Œp
 are analogous
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to �pX in the smooth case (see [31, Section 7.3]). Since �pX is defined locally in
the étale topology, it agrees with �pX at smooth points. Near the singular locus, if
� W bX !X is a log resolution with E � bX the reduced exceptional divisor, then ��

X

is closely related to R���
�bX .logE/.�E/. More precisely, we have the following by

[31, Example 7.25] and [40, Tag 05S3].

THEOREM 3.1
If � W bX ! X is a log resolution with reduced exceptional divisor E , and we define
��
X;† D R���

�bX .logE/.�E/, where † is the singular locus of X , then there is the
distinguished triangle of relative cohomology in the filtered derived category

��
X;† !��

X !��
†

C1
��! :

Thus, in the derived category, there is a corresponding distinguished triangle

�
p
X;† !�

p
X !�

p
†

C1
��! :

In the proper case, there is the following fundamental result of Du Bois, based on
Deligne’s construction of the mixed Hodge structure on Y .

THEOREM 3.2 (Du Bois)
If Y is proper over SpecC, then the spectral sequence with E1 page Hq.Y I�

p
Y /

which converges to HpCq.Y I��
Y /DHpCq.Y IC/ degenerates at E1 and the corre-

sponding filtration onH�.Y IC/ is the Hodge filtration associated to the mixed Hodge
structure on H�.Y IC/.

The result above allows us to define Hodge numbers in the singular case.

Definition 3.3
Let Y be a compact complex algebraic variety. We define the Hodge–Du Bois num-
bers

hp;q.Y / WD dim GrpF H
pCq.Y /;

for 0 � p;q � n. In particular, if Y is smooth, then hp;q.Y /D hp;q.Y /. In general,
by Theorem 3.2,

hp;q.Y /D dimHq.Y I�
p
Y /D

X
0�r�q

h
p;r
pCq.Y /;

where hp;rpCq.Y / WD dim GrpF GrWpCrH
pCq.Y / are the Hodge–Deligne numbers asso-

ciated to the mixed Hodge structure on Y .

https://stacks.math.columbia.edu/tag/05S3
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Remark 3.4
As the example of nodal curves shows (see Remark 1.11), the Hodge–Du Bois
diamond will not satisfy either of the Hodge symmetries: hp;q D hq;p or hp;q D

hn�p;n�q . Nonetheless, some vestige of these symmetries remains (in the form of
inequalities) as those given by Lemma 3.23 below.

Another key consequence for us is the following.

COROLLARY 3.5
With notation as above, the following hold.
(i) The natural map H i .Y IC/ ! Hi .Y I��

Y =F
kC1��

Y / is surjective for all i
and k.

(ii) The spectral sequence with E1-term

E
p;q
1 D

´
Hq.Y I�

p
Y / for p � k,

0 for p > k

converging to HpCq.Y I��
Y =F

kC1��
Y / degenerates at E1.

Proof
This is a consequence of the following general fact. If .C�; d;F �C�/ is a filtered
complex, then the associated spectral sequence degenerates at the E1 page if and
only if the differential d is strict with respect to the filtration F �C�. Then, assuming
E1-degeneration, an easy argument shows thatH i .C�; d /!H i .C�=F kC1C�; d / is
surjective for every i and k. Since the induced filtration on C�=F kC1C� is also strict
with respect to d , the corresponding spectral sequence for the complex C�=F kC1C�

also degenerates at E1.

3.2. Du Bois and higher Du Bois singularities
There is a natural comparison map (see [31, p. 175])

�� W .��
X ; 	

�/! .��
X ;F

���
X /;

where 	� is the trivial or naive filtration on ��
X . Following [25] and [11], one defines

the following.

Definition 3.6
Let X be a complex algebraic variety. Then X is k-Du Bois if the natural maps

�p W�
p
X !�

p
X
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are quasi-isomorphisms for 0 � p � k. Note that the case k D 0 coincides with the
usual definition of Du Bois singularities (see [31, Definition 7.34]).

Example 3.7
Let f .z1; : : : ; znC1/D z

d1

1 C � � � C z
dnC1

nC1 define the weighted homogeneous singular-
ity X D V.f /� AnC1. Then, as a consequence of Proposition 1.9(i) and a theorem
of Saito [35, (2.5.1)] (and see also [6, Corollary 6.8]), X is k-Du Bois at 0 if and only
if

PnC1
iD1

1
di

� k C 1. In particular, an ordinary double point of dimension n is k-Du

Bois for all k � Œn�1
2

. Thus an ordinary double point of dimension 3 is 1-Du Bois,

and in fact is the unique 1-Du Bois hypersurface singularity in dimension 3 (see, e.g.,
[30, Theorem 2.2]). More generally, it is expected that k-Du Bois singularities occur
first in dimension 2k C 1. This is true at least in the lci case as the following result
shows.

THEOREM 3.8 ([11], [25], [28])
Let X be a complex algebraic variety with lci singularities. Assume that X is k-Du
Bois with k � 1. ThenX is normal and regular in codimension 2k; that is, codim†�

2kC 1.

Proof
The normality claim is [28, Corollary 5.6]. For hypersurface singularities, various
dimension bounds (covering the claim of the theorem) were obtained in both [25] and
[11]. The general lci case follows from [28, Theorem F] (numerical characterization
of k-Du Bois) and [28, Corollary 3.40] (bounds on dim† in terms of the relevant
numerical invariant).

COROLLARY 3.9
Suppose that X has lci k-Du Bois singularities and that f W X ! S is a flat mor-
phism, where S is arbitrary, with X D Xs D f �1.s/ for some s 2 S . Then, possibly
after replacing S by a neighborhood of s, the sheaf of relative differentials �p

X=S
is

flat over S for all p � k.

Proof
This is immediate from Theorems 2.5 and 3.8.

Remark 3.10
(i) Theorem 3.8 and Theorem 2.2 imply the following previously known results:
(1) If X has hypersurface k-Du Bois singularities, then �pX is torsion-free for

0� p � k (see [11, Proposition 2.2]).
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(2) If X has lci k-Du Bois singularities, then �pX is reflexive for 0� p � k (see
[28, Corollary 5.6]).

(ii) For p D 1 and lci singularities, the situation is well understood by a result of Kunz
[22, Proposition 9.7]: �1X satisfies Serre’s condition Sa if and only if X satisfies Ra
(i.e., is regular in codimension a).

Remark 3.11
For other examples of k-Du Bois and k-rational singularities, one can consult [14]
(cf. Theorem 5.3 and Section 6.1).

3.3. Higher rational singularities
The standard definition of a rational singularity involves the choice of a resolution
(e.g., [20, Definition 5.8]). As we will explain below, it is possible to give an equiv-
alent definition for rational singularities without reference to resolutions, but using
instead the dualizing complex. In addition to being more intrinsic, it generalizes to
higher rational singularities, and it factors naturally through the higher Du Bois con-
dition.

For a complex algebraic variety X of dimension n, let !�
X denote the dualizing

complex. Define the Grothendieck duality functor DX as follows:

DX .�/ WDRHom.�;!�
X /Œ�n
:

In particular, !�
X D DX .OX /Œn
.

LEMMA 3.12
For all p, there exists a natural sequence of maps in the derived category

�
p
X

�p

��!�
p
X

 p

��! DX .�
n�p
X /:

Proof
By functoriality of the filtered de Rham complex, there is a map �n�p

X !R���
n�pbX .

Applying DX gives

DX .R���
n�pbX /! DX .�

n�p
X /:

Since � is proper, Grothendieck duality gives

DX .R���
n�pbX /ŠR��D bX .�n�pbX /ŠR���

pbX :
Thus we get a sequence of maps

�
p
X !�

p
X !R���

pbX ! DX .R���
n�pbX /! DX .�

n�p
X /;
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as claimed. The map  p is easily seen to be independent of the choice of a resolution,
by the usual factorization arguments.

Definition 3.13
The variety X has k-rational singularities if the maps

�
p
X

 pı�p

�����! DX .�
n�p
X /

are quasi-isomorphisms for all 0� p � k.

Example 3.14
Let f .z1; : : : ; znC1/D z

d1

1 C � � � C z
dnC1

nC1 define the weighted homogeneous singular-
ity X D V.f /� AnC1. Then, by [6, Corollary 6.8], X is k-rational at 0 if and only ifPnC1
iD1

1
di
> kC1. In particular, an ordinary double point of dimension n is k-rational

if and only if k < n�1
2

. Thus an ordinary double point of dimension 3 is not 1-rational.
On the other hand, ADE singularities in dimension 4 are 1-rational. Conjecturally, k-
rational singularities occur in codimension at least 2.kC 1/ (cf. Theorem 3.8).

The following lemma connects our definition to more standard ones.

LEMMA 3.15
Suppose that dim†� d . Then, for all p < n� d ,

DX .�
n�p
X /ŠR���

pbX .logE/:

In particular, if codim†� 2kC1 for some k � 0, thenDX .�
n�p
X /ŠR���

pbX .logE/
for all p � k.

Proof
By Theorem 3.1, there is the distinguished triangle of relative cohomology

�
n�p
X;† !�

n�p
X !�

n�p
† ! :

Since n � p > d , �n�p
† D 0 and hence �n�p

X Š �
n�p
X;† D R���

n�pbX .logE/.�E/.
Applying Grothendieck duality, it follows as in [25, Section 2.2] that

DX .�
n�p
X /D DX

�
R���

n�pbX .logE/.�E/
�

DR��D bX�
�
n�pbX .logE/.�E/

�
DR���

pbX .logE/:

The final statement is clear since n�d � 2kC1 implies that n�p � n�k � dCkC

1 > d .
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COROLLARY 3.16
X is 0-rational if and only if X has rational singularities.

Proof
Since X is reduced, dim† � n � 1. Thus X is 0-rational if and only if the natural
map OX ! R��O bX is an isomorphism if and only if X has rational singularities in
the usual sense.

Remark 3.17
Lemma 3.15 and Grothendieck duality give the identification �nX D R��! bX , which
by Grauert–Riemenschneider vanishing is in fact a single sheaf, the Grauert–
Riemenschneider sheaf !GR

X WD ��! bX . Following [18], let us denote !X WD

DX .�
0
X /. Then the dual form of Definition 3.13 for k D 0 is: X has rational

singularities if and only if the composite map

!GR
X ! !X ! !�

X (3.1)

is a quasi-isomorphism. This formulation occurs for instance in [18], and it is equiva-
lent to that given by [20, Theorem 5.10(3)] (note that the quasi-isomorphism !GR

X Š

!�
X forces X to be Cohen–Macaulay).

In [7, Section 3], we defined k-rational singularities for an isolated singularity by
the condition that R���

pbX .logE/Š�
p
X . This is equivalent to Definition 3.13 (under

a mild assumption).

COROLLARY 3.18
In the above notation, suppose that codim†� 2kC 1.
(i) X is k-rational if and only if the natural map �pX ! R���

pbX .logE/ is an
isomorphism for all p � k.

(ii) X is k-rational if and only ifX is .k�1/-rational and�kX !R���
kbX .logE/

is an isomorphism.

In the lci case, the assumption on R0���
pbX .logE/ is automatic.

LEMMA 3.19
Suppose that X has lci singularities and that codim†� 2kC 1. Then, for all p � k,
 p ı �p W �

p
X !R0���

pbX .logE/ is an isomorphism. Hence, X is k-rational if and

only if for all p � k and all q > 0, Rq���
pbX .logE/D 0.
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Proof
This follows easily from Theorem 2.2 and Corollary 2.3, as R0���

pbX .logE/ is
torsion-free for all p.

Remark 3.20
Suppose that X has an isolated singularity x, so that†D ¹xº. Then, by Theorem 3.1,
there is the distinguished triangle of relative cohomology

��
X;x !��

X ! CŒ0
!;

where we somewhat carelessly write CŒ0
 for the skyscraper sheaf Cx , viewed as a
complex in degree 0. Hence, �pX;x ! �

p
X is an isomorphism for p > 0, so if X is

lci and n D dimX � 2k C 1, then by the same argument as that of Lemma 3.19,
�p W �

p
X ! R0���

pbX .logE/.�E/ is an isomorphism. For p D 0, if X has an iso-

lated singularity and is normal, then the map ��O bX .�E/!�0X has cokernel CŒ0

and factors through mx � OX . Hence, OX ! H0�0X is an isomorphism. Thus, if X
has an isolated lci singularity and dimX � 2k C 1, that is, k � .n� 1/=2, then X is
k-Du Bois if and only if for all p � k and all q > 0, Rq���

pbX .logE/.�E/D 0.

3.4. k-Rational vs. k-Du Bois singularities
Steenbrink [41] proved that, ifX is an isolated rational singularity, thenX is Du Bois,
and Kovács [21] generalized this, showing that any rational singularity is Du Bois.
Saito gave a different proof in [34, Theorem 5.4]. The method of [41] generalizes to
prove that isolated k-rational singularities are k-Du Bois (see [6, Theorem 3.2]), and
the method of [21] can be generalized to handle both isolated and lci singularities.
Using the ideas of [21], we shall show the following in Section 5.

THEOREM 3.21
Suppose that X has isolated singularities or that X is lci. If X is k-rational, then X
is k-Du Bois.

Assuming for the moment Theorem 3.21, we note that the k-rational assump-
tion adds additional Hodge symmetries to the k-Du Bois condition. If X is k-Du
Bois, then X is k-rational if and only if the map  p W �

p
X ! DX .�

n�p
X / is a quasi-

isomorphism for all p � k. If X is proper, then these assumptions lead to a Hodge
symmetry, Serre duality for the Hodge–Du Bois numbers.

COROLLARY 3.22
If Y is a compact complex algebraic variety of dimension n with lci k-rational singu-
larities, then, for 0� p � k,
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hp;q.Y /D dim GrpF H
pCq.Y /

D dim Grn�p
F H 2n�.pCq/.Y /D hn�p;n�q.Y /:

In particular, taking pC q D n gives hp;n�p D hn�p;p for p � k.

Proof
Using Theorem 3.2, we get the identifications

GrpF H
pCq.Y /Š Hq.Y I�

p
Y /

Š Hq
�
Y IDY .�

n�p
Y /

�
Š Hn�q.Y I�

n�p
Y /_;

where the middle isomorphism is given by the quasi-isomorphism  p (for p � k).

It remains to discuss the Hodge symmetry hp;q D hq;p , which is induced by
complex conjugation in the smooth case. We recall that the cohomology of a compact
singular algebraic variety Y carries a mixed Hodge structure .H�.Y /;F �;W�/. The
Hodge–Deligne numbers hp;ri D GrpF GrWpCrH

i .Y / satisfy the symmetry given by
conjugation: hp;ri D h

r;p
i (as GrWpCrH

i .Y / is a pure Hodge structure). Since Y is
compact, the weights on H i .Y / are at most i , and in fact between 2i � 2n and i if
i � n. It follows that, for i � n, hp;i�p D

Pi�p
rD0 h

p;r
i . However, the Hodge–Du Bois

numbers do not satisfy the same kind of symmetry as they reflect only the Hodge
filtration F �. In fact, we note the following.

LEMMA 3.23
Let Y be a compact complex algebraic variety of dimension n. For 0� p � i � n,

pX
aD0

hi�a;a �

pX
aD0

ha;i�a:

Furthermore, equality holds above for all p � k if and only if hp;i�p D hi�p;p for
all p � k if and only if GrpF Wi�1H

i .Y /D 0 for all p � k.

Proof
Clearly

Pp
aD0 h

i�a;a D
Pp
aD0 h

a;i�a for all p � k if and only if hp;i�p D hi�p;p for
all p � k.

For a fixed p, we have

pX
aD0

hi�a;a D

pX
aD0

X
q�a

h
i�a;q
i D

pX
aD0

X
q�a

h
q;i�a
i D

X
i�p�s�i
rCs�i

h
r;s
i ;
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by the Hodge symmetries, whereas

pX
aD0

ha;i�a D

pX
aD0

X
aCq�i

h
a;q
i D

X
r�p
rCs�i

h
r;s
i :

Note that, if i � p � s � i and r C s � i , then r � i � s � p, so the second sum is
greater that the first, giving the inequality. For a given p, equality holds if and only if
h
r;s
i D 0 for r � p and s � i �p � 1. Moreover, hr;si D 0 for r � p and s � i �p � 1

for some p � k if and only if hr;si D 0 for r � k, r C s � i � 1. This is equivalent to
GrpF Wi�1H

i .Y /D 0 for p � k.

Recall that, for any resolution � W OY ! Y (see, e.g., [31, Corollary 5.42]),

Wi�1H
i .Y /D Ker

�
H i .Y /

��

��!H i . OY /
�
: (3.2)

Using this, we obtain the following.

THEOREM 3.24
If Y is a compact complex algebraic variety of dimension n with either isolated or lci
k-rational singularities, then

hp;q D hq;p

for 0� p � k and 0� q � n.

Proof
In view of the discussion above, we define the discrepancy

ı
p
i WD dim GrpF Wi�1H

i .Y /D dim GrpF Ker
�
H i .Y /

��

��!H i . OY /
�
:

By Lemma 3.23, the equality hp;i�p D hi�p;p holds for p � k if and only if ıpi D 0

for p � k. The map  p occurring in the definition of higher rationality (see Defini-
tion 3.13, Lemma 3.12) factors through the resolution � W OY ! Y , and at the level
of cohomology corresponds to the GrpF piece (see also Corollary 3.22) of the natural
map

‰i WH i .Y /
��

��!H i . OY /
�

�!
PD

H 2n�i . OY /_.�n/
.��/_

����!H 2n�i .Y /_.�n/;

where all spaces are endowed with the natural Hodge structures. On the graded
piece GrpF H

i .Y / D H i�p.Y I�
p
Y /, GrpF ‰

i is the map  p W H i�p.Y I�
p
Y / !

Hn�iCp.Y I�
n�p
Y /_, which is an isomorphism if Y is both k-rational and k-Du
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Bois, and in particular if Y is k-rational and has either isolated singularities or lci
singularities. By the strictness of morphisms of Hodge filtrations, if GrpF ‰

i is an
isomorphism, then �� is injective on GrpF and hence ıpi D 0. Thus, k-rationality
implies that ıpi D 0 for p � k and all i , which in turn means that hp;i�p D hi�p;i in
this range.

Remark 3.25
As noted by one of the referees, in the above proof as well as in the proof of
Lemma 3.12, the main point is to apply relative duality to a resolution of singular-
ities morphism. Thus the proof does not take into account the full information of a
hyperresolution.

4. Proof of Theorem 1.2 and Corollary 1.5
We turn now to the global setting of a deformation of a compact analytic space or
proper scheme Y , and to the question of the local freeness of �p

Y=S
.

THEOREM 4.1
Let f W Y ! SpecA be a proper morphism of complex spaces, where A is an Artin
local C-algebra, with closed fiber Y . Let .F �; d / be a bounded complex of coherent
sheaves on Y, flat over A, where d W F i ! F iC1 is A-linear, but not necessarily OY -
linear. Finally, suppose that the natural map Hi .YIF �/ D Rif�F � ! Hi .Y IF � j

Y / is surjective for all i . Then Hi .YIF �/ is a finite A-module whose length satisfies:

`
�
Hi .YIF �/

�
D `.A/dimHi .Y IF � j Y /:

Proof
This is a minor variation on very standard arguments. Note that Hi .YIF �/ is a finite
A-module since it is the abutment of a spectral sequence with E1 page Ep;q1 D

H q.YIF p/ and such that all of the differentials in the spectral sequence are A-
module homomorphisms. Next we show that, for every finite A-module M , the natu-
ral map

‰M W Hi .YIF �/˝AM ! Hi .YIF � ˝AM/

is surjective. The proof is via induction on `.M/, the case `.M/ D 1 being the
hypothesis of the theorem. The inductive step follows from: given an exact sequence
0!M 0 !M !M 00 ! 0 such that ‰M 0 and ‰M 00 are surjective, then ‰M is sur-
jective. This follows from the commutative diagram
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Hi .YIF �/˝A M
0 ����! Hi .YIF �/˝A M ����! Hi .YIF �/˝A M

00 ����! 0??y‰M 0

??y‰M

??y‰M 00

Hi .YIF � ˝A M
0/ ����! Hi .YIF � ˝A M/ ����! Hi .YIF � ˝A M

00/

where the top row is exact since tensor product is right exact and the second is exact
since F � is A-flat.

To prove the theorem, we argue by induction on `.A/. The result is clearly true if
`.A/D 1. For the inductive step, write A as a small extension 0! I !A!A=I !

0, so that I Š A=m and F � ˝A I Š F � ˝A .A=m/D F � j Y . By flatness, there is
an exact sequence

� � � ! Hi .YIF � ˝A I /! Hi .YIF �/! Hi .YIF � ˝A A=I/! � � � :

Then the above implies that Hi .YIF �/! Hi .YIF � ˝A A=I/ is surjective for all i .
Hence the long exact sequence breaks up into short exact sequences and thus

`
�
Hi .YIF �/

�
D `

�
Hi .YIF � ˝A I /

�
C `

�
Hi .YIF � ˝A A=I/

�
D dimHi .Y IF � j Y /C `.A=I /dimHi .Y IF � j Y /

D `.A/dimHi .Y IF � j Y /:

This concludes the inductive step.

Now assume that f W Y ! SpecA is a proper morphism, where Y is a scheme of
finite type over SpecC and A is an Artin local C-algebra, with closed fiber Y . Con-
sider the complex ��

Y=SpecA and the quotient complex ��
Y=SpecA=	

�kC1��
Y=SpecA.

For the closed fiber Y , we also have the complex ��
Y =	

�kC1��
Y .

LEMMA 4.2
With notation as above, suppose that Y is k-Du Bois. Then:
(i) For every i , the natural map

Hi .YI��
Y=SpecA=	

�kC1��
Y=SpecA/! Hi .Y I��

Y =	
�kC1��

Y /

is surjective.
(ii) The spectral sequence with E1-term

E
p;q
1 D

´
H q.Y I�

p
Y / for p � k,

0 for p > k

converging to HpCq.Y I��
Y =	

�kC1��
Y / degenerates at E1. Hence, for every

i ,
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dimHi .Y I��
Y =	

�kC1��
Y /D

X
pCqDi
p�k

dimH q.Y I�
p
Y /:

Proof
By the k-Du Bois condition, the natural map ��

Y =	
�kC1��

Y !��
Y =F

kC1��
Y is a

quasi-isomorphism of filtered complexes. Thus there are isomorphisms

Hi .Y I��
Y =	

�kC1��
Y /Š Hi .Y I��

Y =F
kC1��

Y /;

H q.Y I�
p
Y /Š Hq.Y I�

p
Y / .p � k/:

By Corollary 3.5(ii), the spectral sequence with E1 page Hq.Y I�
p
Y / for p � k and 0

otherwise degenerates at E1. Hence the same is true for the spectral sequence in (ii).
To prove (i), arguing as in [4], there is a commutative diagram

H i .YIC/ ����! Hi .YI��
Y=SpecA/ ����! Hi .YI��

Y=SpecA=	
�kC1��

Y=SpecA/��� ??y ??y
H i .Y IC/ ����! Hi .Y I��

Y / ����! Hi .Y I��
Y =	

�kC1��
Y /:

By Corollary 3.5(i), H i .Y IC/! Hi .Y I��
Y =	

�kC1��
Y /Š Hi .Y I��

Y =F
kC1��

Y / is
surjective. Hence

Hi .YI��
Y=SpecA=	

�kC1��
Y=SpecA/! Hi .Y I��

Y =	
�kC1��

Y /

is surjective as well.

Proof of Theorem 1.2
By Corollary 3.9, possibly after shrinking S , �p

Y=S
is flat over S . By a standard

reduction to the case of Artin local algebras, it is enough to show the following.
Let A be an Artin local C-algebra, and let f W Y ! SpecA be a proper morphism
whose closed fiber Y is isomorphic to Ys . Then Rqf��

p

Y=SpecA DH q.YI�
p

Y=SpecA/

is a free A-module, compatible with base change. In fact, by [10, Theorem 12.11],
it is enough to show that, for every q and quotient A! A=I D A, the natural map
H q.YI�

p

Y=SpecA/!H q.YI�
p

Y=SpecA
/ is surjective, where Y D Y �SpecA SpecA.

By Theorem 4.1 and Lemma 4.2, for every i ,

`
�
Hi .YI��

Y=SpecA=	
�kC1��

Y=SpecA/
�

D `.A/dimHi .Y I��
Y =	

�kC1��
Y /

D `.A/
X
pCqDi
p�k

dimH q.Y I�
p
Y /:
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On the other hand, by analogy with Lemma 4.2(ii), there is the spectral sequence
converging to Hi .YI��

Y=SpecA=	
�kC1��

Y=SpecA/ with E1 page

E
p;q
1 D

´
H q.YI�

p

Y=SpecA/ for p � k,

0 for p > k.

Thus `.Hi .YI��
Y=SpecA=	

�kC1��
Y=SpecA// �

P
pCqDi
p�k

`.H q.YI�
p

Y=SpecA//, with

equality if and only if the spectral sequence degenerates at E1. Moreover, a straight-
forward induction on `.A/ along the lines of the proof of Theorem 4.1 shows
that `.H q.YI�

p

Y=SpecA// � `.A/dimH q.Y I�
p
Y /, with equality holding for all

q if and only if for every q and every quotient A ! A=I D A, the natural map
H q.YI�

p

Y=SpecA/!H q.YI�
p

Y=SpecA
/ is surjective. Combining, we have

`
�
Hi .YI��

Y=SpecA=	
�kC1��

Y=SpecA/
�

�
X

pCqDi
p�k

`
�
H q.YI�

p

Y=SpecA/
�

�
X

pCqDi
p�k

`.A/dimH q.Y I�
p
Y /

D `.A/dimHi .Y I��
Y =	

�kC1��
Y /

D `.Hi .YI��
Y=SpecA=	

�kC1��
Y=SpecA/:

Thus all of the inequalities must have been equalities, and then H q.YI�
p

Y=SpecA/!

H q.YI�
p

Y=SpecA
/ is surjective for every q and for every quotient A!A. This com-

pletes the proof, by the remarks in the first paragraph of the proof.

Remark 4.3
Instead of assuming that Y is a scheme of finite type proper over SpecC, it is enough
to assume that Y is a compact analytic space with isolated singularities and that there
exists a resolution of singularities of Y which satisfies the @N@-lemma. Roughly speak-
ing, the argument is as follows. The main point is to construct the analogue of the com-
plex ��

Y in this case, using Hironaka’s resolution of singularities, and to note that all
of the smooth varieties arising from a cubical hyperresolution satisfy the @N@-lemma.
Such varieties arise in two different ways: first, there is one such which is a resolution
of singularities of Y . A standard argument (cf. [31, proof of Theorem 2.29]) shows
that in fact every resolution of singularities of Y satisfies the @N@-lemma. The remain-
ing varieties in the construction can all be assumed to be smooth projective varieties
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coming from proper transforms of blowups of subvarieties of the exceptional divisors
of the blowup of Y along Ysing or by iterating this procedure. In particular, for every
such variety, its cohomology carries a pure Hodge structure and the restriction mor-
phisms between the various cohomology groups are morphisms of Hodge structures.
From this, it follows that the Hodge spectral sequenceEp;q1 D Hq.Y I�

p
Y / converging

to HpCq.Y IC/ degenerates at E1. Then the argument of Theorem 1.2 applies.
It seems likely that there is a more general result, in the nonisolated case, assum-

ing sufficiently strong conditions on every subvariety of Ysing.

We turn now to a proof of Corollary 1.5. First, we define canonical Calabi–Yau
varieties following [7, Definition 6.1].

Definition 4.4
A canonical Calabi–Yau variety Y is a scheme proper over SpecC (resp., a compact
analytic space) which is reduced, Gorenstein, with canonical singularities, and such
that !Y Š OY .

Proof of Corollary 1.5
It suffices by [13] to show that Y has the T 1-lifting property. In fact, we show
the following somewhat stronger statement. Let A be an Artin local C-algebra, let
� W Y ! SpecA be a deformation of Y over A, and let I be an ideal of A with
ADA=I with Y D Y �SpecA SpecA; the natural map

Ext1.�1Y=SpecA;OY/! Ext1.�1
Y=SpecA

;OY/

is surjective. Arguing as in [13, Lemma 3], we claim that !Y=SpecA Š OY . To
see this, note that, as Y is 1-Du Bois it is 0-Du Bois, and hence by Theorem 1.1
Ri��OY D H i .YIOY/ is a free A-module for all i , compatible with base change.
In particular, Rn��OY is a free rank-1 A-module. An application of relative duality
then shows that .Ri��OY/

_ Š Rn�i!Y=SpecA, and hence Rn�i!Y=SpecA is a free
A-module for all i . Thus R0��!Y=SpecA is a free rank-1 A-module and the natural
map R0��!Y=SpecA ˝A OY ! !Y=SpecA is an isomorphism. Hence !Y=SpecA Š OY .

By a similar application of relative duality, and since Ri���
1
Y=SpecA D H i .YI

�1
Y=SpecA/ is a free A-module for all i , there is an isomorphism of A-modules

Ext1.�1Y=SpecA;OY/Š Ext1�.�
1
Y=SpecA;!Y=SpecA/

Š HomA

�
Hn�1.YI�1Y=SpecA/;A

�
:

Then the T 1-lifting criterion follows from the fact that Hn�1.YI�1
Y=SpecA/ is a free

A-module and that the natural map
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Hn�1.YI�1Y=SpecA/˝A A!Hn�1.YI�1
Y=SpecA

/

is an isomorphism.

Remark 4.5
A similar argument using Remark 4.3 shows that, if Y is a compact analytic space
with isolated lci 1-Du Bois singularities such that !Y Š OY and there exists a resolu-
tion of singularities of Y satisfying the @N@-lemma, then Def.Y / is unobstructed.

5. Proof of Theorem 3.21
For X an algebraic variety, let †k D†k.X/ be the set of points where X is not k-Du
Bois. Thus, for all k, †k �†kC1 �†. It is easy to see that †k is a closed subvariety
of X . In fact, completing the morphism �p W �

p
X !�

p
X to a distinguished triangle

�
p
X !�

p
X ! Gp

C1
��!;

by definition we have

†k D
[
i;p

0�p�k

Supp H iGp:

In order to prove that k-rational singularities are k-Du Bois, we will need to
consider situations more general than k-rational (as in the statement of Theorem 5.9).
Recall that a left inverse to the map �p W �

p
X !�

p
X is a map hp W �

p
X !�

p
X such

that hp ı �p D Id. Of course, left inverses need not exist in general. More generally,
we consider a set of k C 1 left inverses ¹hpºkpD0. If X is k-Du Bois, then �p is an

isomorphism for p � k and so ¹hpºkpD0 D ¹.�p/�1ºkpD0 is a set of left inverses. In
this case, we shall always use �p to identify �pX with �pX , and thus hp D Id for
p � k.

If there exists a left inverseHk W ��
X=F

kC1 !��
X=	

�kC1 in the filtered derived
category, then ¹GrpHkºkpD0 defines a set of kC1 left inverses. The following lemma

shows that, conversely, given a set of k C 1 left inverses ¹hpºkpD0, we can modify

them so as to arrange a left inverse Hk W ��
X=F

kC1 ! ��
X=	

�kC1 in the filtered
derived category.

LEMMA 5.1
If the map ��

X=	
�kC1 !��

X=F
kC1 has a set of k C 1 left inverses ¹hpºkpD0, then

there exists a left inverse Hk W ��
X=F

kC1 !��
X=	

�kC1 in the filtered derived cate-
gory.
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Remark 5.2
We do not claim that the left inverse Hk constructed in the proof satisfies hp D

GrpHk for all p � k.

Proof of Lemma 5.1
We argue by induction on k, where the case k D 0 is obvious. There is a diagram

�kX Œ�k
 ����! ��
X=F

kC1 ����! ��
X=F

k C1
����!??yhk

??yHk�1

�kX Œ�k
 ����! ��
X=	

�kC1 ����! ��
X=	

�k C1
����! :

We can thus complete the diagram to find a morphism H 0
k

W ��
X=F

kC1 ! ��
X=

	�kC1 in the filtered derived category which yields a morphism of distinguished

triangles. The composition Gk W ��
X=	

�kC1 ! ��
X=F

kC1
H 0

k
��! ��

X=	
�kC1 is

an isomorphism since it is an isomorphism on the graded pieces. Set Hk D

G�1
k

ı H 0
k

W ��
X=F

kC1 ! ��
X=	

�kC1. Then Hk is a left inverse to the map
��
X=	

�kC1 !��
X=F

kC1.

Next we define a special class of left inverses.

Definition 5.3
Let ˛ 2H 0.X I�1X /. Then ˛ pulls back to some fixed hyperresolution and so defines
a map ˛^W �

p�1
X ! �

p
X . Two left inverses hp and hp�1 are compatible if, for all

p � k and all ˛ 2H 0.X I�1X /,

hp ı .˛^/D .˛^/ ı hp�1:

IfX is k-Du Bois, then, for all p � k, the left inverses hp and hp�1 are isomorphisms.
In fact, after identifying �pX and �p�1

X with �pX and �p�1
X , respectively, we can

assume that hp D Id for all p � k. With this convention, necessarily hp ı .˛^/ D

.˛^/ ı hp�1; hence hp and hp�1 are compatible.
Finally, the set of k C 1 left inverses ¹hpºkpD0 is compatible if, for all p � k, hp

and hp�1 are compatible.

LEMMA 5.4
If X is k-rational, then there exists a compatible set of kC 1 left inverses ¹hpºkpD0.
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Proof
The following diagram commutes up to a sign (all vertical maps are ˛^):

�
p�1
X ����! �

p�1
X ����! R���

p�1bX ����! DX .�
n�pC1
X /??y ??y ??y ??y

�
p
X ����! �

p
X ����! R���

pbX ����! DX .�
n�p
X /:

For p � k, let hp be the left inverse to the map �pX ! �
p
X defined by taking the

inverse to the isomorphism �p D  p ı �p W �
p
X ! DX .�

n�p
X / and composing it

with the map �pX ! DX .�
n�p
X /. Since �p ı .˛^/D .˛^/ ı �p�1, .�p/�1 ı .˛^/D

.˛^/ ı .�p�1/�1 and thus hp ı .˛^/D .˛^/ ı hp�1.

We now deal with the case where dim†k D 0, following the method of proof of
Kovács [21, Theorem 2.3] and [31, p. 186].

PROPOSITION 5.5
Suppose that dim†k D 0 and that there is a left inverse Hk W ��

X=F
kC1 !

��
X=	

�kC1 to the map ��
X=	

�kC1 !��
X=F

kC1. Then ��
X=	

�kC1 Š��
X=F

kC1.

Proof
Let Y be some projective completion ofX , so that Y �X DD. LetZ DD[†k � Y .
By hypothesis,†k is finite, henceZ is closed. Let U DX �†k D Y �D�†k . Thus
U is k-Du Bois. Now consider the commutative diagram

H
i�1.U I��

U =��kC1/ �����! H
i
Z .Y I��

Y =��kC1/ �����! H
i .Y I��

Y =��kC1/ �����! H
i .U I��

U =��kC1/??yŠ

??y ??y Š

??y
H

i�1.U I��
U =F kC1/ �����! H

i
Z .Y I��

Y =F kC1/ �����! H
i .Y I��

Y =F kC1/ �����! H
i .U I��

U =F kC1/:

We claim that Hi .Y I��
Y =	

�kC1/ ! Hi .Y I��
Y =F

kC1/ is surjective: this is the
usual argument that H i .Y IC/! Hi .Y I��

Y =F
kC1/ is surjective and factors through

H i .Y IC/ ! Hi .Y I��
Y =	

�kC1/. Then HiZ.Y I��
Y =	

�kC1/ ! HiZ.Y I��
Y =F

kC1/

is surjective. We have compatible direct sum decompositions

HiZ.Y I��
Y =	

�kC1/
Š

����! HiD.Y I��
Y =	

�kC1/˚Hi†k
.Y I��

Y =	
�kC1/??y ??y

HiZ.Y I��
Y =F

kC1/
Š

����! HiD.Y I��
Y =F

kC1/˚Hi†k
.Y I��

Y =F
kC1/:

Hence, Hi†k
.Y I��

Y =	
�kC1/ ! Hi†k

.Y I��
Y =F

kC1/ is surjective. By excision,

Hi†k
.Y I��

Y =	
�kC1/Š Hi†k

.X I��
X=	

�kC1/ and similarly for Hi†k
.Y I��

Y =F
kC1/.
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Thus,

Hi†k
.X I��

X=	
�kC1/! Hi†k

.X I��
X=F

kC1/

is surjective. However, the existence of the left inverse Hk gives a map
Hi†k

.X I��
X=F

kC1/ ! Hi†k
.X I��

X=	
�kC1/ such that the composed map

Hi†k
.X I��

X=	
�kC1/! Hi†k

.X I��
X=	

�kC1/ is the identity. Hence,

Hi†k
.X I��

X=	
�kC1/! Hi†k

.X I��
X=F

kC1/

is also injective, and thus an isomorphism. Since �pX j X �†k !�
p
X j X �†k is

an isomorphism, it then follows from the “localization principle” of [31, p. 186] that
��
X=	

�kC1 Š��
X=F

kC1.

The following corollary then deals with the case dim†D 0 of Theorem 3.21, in
fact under the somewhat weaker hypothesis that dim†k D 0.

COROLLARY 5.6
Suppose that dim†k D 0 and that there exists a left inverse Hk W ��

X=F
kC1 !

��
X=	

�kC1 to the map ��
X=	

�kC1 ! ��
X=F

kC1. Then X is k-Du Bois. In par-
ticular, if X is k-rational and dim†k D 0, then X is k-Du Bois.

Proof
The proof is by induction on k. There is a morphism of distinguished triangles

�kX Œ�k
 ����! ��
X=	

�kC1 ����! ��
X=	

�k C1
����!??y ??y ??y

�kX Œ�k
 ����! ��
X=F

kC1 ����! ��
X=F

k C1
����! :

Here, the center vertical arrow is an isomorphism by Proposition 5.5 and the right
vertical arrow is an isomorphism by induction. Thus, the left vertical arrow is an
isomorphism as well.

To handle the case where dim†k > 0, we consider the effect of passing to a gen-
eral hyperplane section. Note that, ifH is an effective Cartier divisor onX , then since
OH is quasi-isomorphic to the complex OX .�H/! OX , we can define the opera-
tion

N
L

OH on the (bounded) derived category, and similarly for
N

L
OH .�H/. For

a coherent sheaf F on X , if TorOX

1 .F ;OH / D 0, then F ˝L OH D F ˝ OH . In
particular, by Corollary 2.9, if codim†� 2k � 1, then �pX ˝L OH D�

p
X ˝ OH for

all p � kC 1.
The following is due to Navarro Aznar (see [9, Chapitre V, (2.2.1)]).
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PROPOSITION 5.7 (Navarro Aznar)
If X is an algebraic variety and H is a general element of a basepoint-free linear
system on X , then there is a distinguished triangle

�
p�1
H ˝L OH .�H/

df ^
���!�

p
X ˝L OH !�

p
H

C1
��! :

Here the term �
p�1
H ˝L OH .�H/ refers to the tensor product as OH -modules,

that is, to �p�1
H ˝L

OH
OH .�H/, and we could write this as �p�1

H ˝ OH .�H/ or

simply as �p�1
H in case OH .�H/Š OH .

Recall that, in Proposition 2.7, we defined the (not necessarily exact) sequence

0!�
p�1
H ˝ OH .�H/!�

p
X jH !�

p
H ! 0: .�/p

Since the maps in the above distinguished triangle are clearly compatible with the
augmentation maps �p , we get the following.

COROLLARY 5.8
If .�/p is exact, then there is a morphism of distinguished triangles

�
p�1
H ˝ OH .�H/

df ^
����! �

p
X ˝ OH ����! �

p
H

C1
����!??y ??y ??y

�
p�1
H ˝L OH .�H/

df ^
����! �

p
X ˝L OH ����! �

p
H

C1
����! :

In particular, if X is .k � 1/-Du Bois and lci, then .�/p is exact for p � k, and hence
there is a morphism of distinguished triangles as above for p � k.

Proof
We only need to check the final statement. By Theorem 3.8, codim†� 2k� 1. Thus,
for a general H , by Proposition 2.7, the sequence .�/p is exact for all p � k.

The key step is then the following.

THEOREM 5.9
Let X be a reduced local complete intersection, and suppose that there exists a com-
patible set of kC 1 left inverses ¹hpºkpD0. Then X is k-Du Bois.

Proof
We will assume that †k.X/D†k ¤ ; and derive a contradiction. As this is a local
question, we can assume that X is affine. The proof is by induction both on k and on
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dim†k . The cases k D 0 and dim†k D 0 have been proved by Kovács [21] or Propo-
sition 5.5, or follow by starting the induction at k D �1. Assume inductively that the
theorem has been proved for all j < k and for all varieties H with dim†k.H/ <
dim†k . In particular, X is .k � 1/-Du Bois, and hence codim† � 2k � 1. Choose
a general H as in Proposition 5.7. Here the hypothesis that H is general means in
particular that (i) dim†k \H < dim†k , and (ii) if dim†k > 0, then †k \H ¤ ;.
We claim that †k.H/ ¤ ;. For otherwise H is k-Du Bois, and hence �pH Š �

p
H

for all p � k. Then �kX ˝L OH Š�kX ˝L OH as follows from the morphism of dis-
tinguished triangles in Corollary 5.8. On the other hand, we have the distinguished
triangle

�kX ˝L OH !�kX ˝L OH ! G k ˝L OH
C1
��! :

Since OH has the projective resolution OX
�f
��! OX , for all p � k, and all i , there is

an exact sequence

0! TorOX

1 .H iGp;OH /! H i .Gp ˝L OH /! .H iGp/˝ OH ! 0:

Thus
S

i;p
0�p�k

Supp H i .Gp ˝L OH / D †k \ H ¤ ;, and hence �kX ˝L OH !

�kX ˝L OH is not an isomorphism.
For all p � k, we claim that we can find a compatible set of p C 1 left inverses

¹ Nhiº
p
iD0. Again, we argue by induction on p and the case p D 0 is clear. For the

inductive step, assume that there exists a compatible set of p left inverses ¹ Nhiº
p�1
iD0

for H . By the inductive hypothesis, H and X are .p � 1/-Du Bois, and thus we can
take Nhi D Id for all i � p � 1. Also, as noted above, by Corollary 2.9, �pX ˝L OH D

�
p
X ˝ OH . In what follows, we fix the function f and will omit the factor OH .�H/

as it is trivialized.
By the assumption of compatibility, there is a commutative diagram

�
p�1
X ˝ OH

df ^
����! �

p
X ˝L OH??yD

??yhp˝Id

�
p�1
X ˝ OH

df ^
����! �

p
X ˝ OH :

There is an induced diagram

�
p�1
X ˝ OH ����! �

p�1
H

df ^
����! �

p
X ˝L OH??yD

??yD

??yhp˝Id

�
p�1
X ˝ OH ����! �

p�1
H

df ^
����! �

p
X ˝ OH :
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Here, the left-hand square is commutative and the outer rectangle is commutative.
Since all terms except for �pX ˝L OH are sheaves and the morphism �

p�1
X ˝ OH !

�
p�1
H is surjective, a straightforward argument shows that the right-hand square is

commutative as well.
There is a diagram of distinguished triangles

�
p�1
H Š�

p�1
H

df ^
����! �

p
X ˝L OH ����! �

p
H

C1
����!??yD

??yhp˝Id

�
p�1
H

df ^
����! �

p
X ˝ OH ����! �

p
H

C1
����! :

Thus, we can complete the diagram by finding Nhp which makes the diagram commute,
and it is automatically a left inverse to the map �pH !�

p
H since �pX ˝ OH !�

p
H

is surjective. We claim that any such Nhp is compatible with Nhp�1 D Id. Since�p�1
H Š

�
p�1
H , there is a commutative diagram with vertical arrows given by ˛^:

�
p�1
H Š�

p�1
H

D
����! �

p�1
H??y ??y

�
p
H

Nhp

����! �
p
H :

As Nhp is a left inverse, for all ' 2�
p�1
H Š�

p�1
H , Nhp.˛^'/D ˛^' D ˛^ Nhp�1.'/.

It follows that Nhp is compatible with Nhp�1. This completes the inductive step for p.
But then, since dim†k.H/ < dim†k , by the inductive hypothesis H is k-Du

Bois and hence †k.H/D ;. This contradicts the statement that †k.H/¤ ;.

The following is then the lci case of Theorem 3.21.

COROLLARY 5.10
If X is a k-rational algebraic variety with lci singularities, then X is k-Du Bois.

Proof
This follows from Lemma 5.4 and Theorem 5.9.

In fact, the proof also shows the following result of Mustaţă and Popa [28, Theo-
rem 9.17].

COROLLARY 5.11
If X is an algebraic variety with k-Du Bois singularities, then a general complete
intersection H1 \ � � � \Ha of X is k-Du Bois.
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As an application of Corollary 5.10, we have the following.

PROPOSITION 5.12
Let f W Y ! S be a flat proper family of complex algebraic varieties of relative dimen-
sion n over an irreducible base S . For s 2 S , suppose that the fiber Ys has k-rational
lci singularities. Then, for every fiber t such that Yt is smooth, dim GrpF H

pCq.Yt /D

dim Grn�p
F H 2n�p�q.Ys/ for every q and for 0� p � k. Equivalently, for such p and

q,

hp;q.Yt /D hn�p;n�q.Yt /D hp;q.Ys/D hn�p;n�q.Ys/:

Proof
By Corollary 5.10, Ys is k-Du Bois. By Theorem 1.2, for p � k,Rqf��

p

Y=S
is locally

free in a neighborhood of s and compatible with base change. Thus,

dim GrpF H
pCq.Yt /DH q.Yt I�

p
Yt
/D dimH q.YsI�

p
Ys
/:

Then dim GrpF H
pCq.Yt / D dimHq.YsIDYs

.�
n�p
Ys

//. By Grothendieck duality,
Hq.YsIDYs

.�
n�p
Ys

// is dual to Hn�q.YsI�
n�p
Ys

/. Computing dimensions gives the
result.

In fact, combining the above with the Hodge symmetries given by Theorem 3.24,
we obtain Corollary 1.10 announced in the introduction. This is modeled in [16, The-
orem 1] (case k D 0). Note, however, that [16, Theorem 1] does not assume lci sin-
gularities, and works in the analytic category.

Appendix. Proof of Conjecture 1.8 for hypersurfaces

MORIHIKO SAITO

We prove that two definitions of higher k-rational singularities for hypersurfaces
coincide (see Theorem A.1 below). (The case kD0was treated in [33].) This implies a
proof of Conjecture 1.8 for hypersurfaces using the converse of a theorem of Mustaţă
et al. [25, Theorem 1.1] (see [11, Theorem 1]).

THEOREM A.1
Assume that X is a reduced hypersurface of a smooth complex algebraic variety Y .
Then for k 2 Z>0, we have ęX > kC1 if and only if X has only k-rational singulari-
ties.
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Proof
Assume that ęX > kC1. We may assume that X 	 Y is defined by a function f
shrinking X , Y if necessary. Since ęX > kC1, we have by [11, Theorem 2] the
canonical isomorphism

�
dX �k
X D 	�0

�
��

Y ŒdY�k
jX ;df ^
�
; (A.1)

where dY WD dimY . Applying the functor D, we get the isomorphisms

D.�
dX �k
X /D D

�
	�0

�
��

Y ŒdY�k
jX ;df ^
��

D C
�
f W 	�0

�
��

Y Œk
;df ^
�

! 	�0

�
��

Y Œk
;df ^
��
ŒdY�1
; (A.2)

since D.L/DL_˝OY
!Y ŒdY 
 for a locally free OY -module L in general.

It is well known (see, e.g., [11, Propositions 1–2]) that

H j .��

Y ;df ^/D 0 if j < codimY SingX; (A.3)

ęX < 1

2
codimY SingX: (A.4)

These imply the quasi-isomorphism

	�0

�
��

Y Œk
;df ^
� �

�!�kY =df ^�k�1
Y ; (A.5)

together with the injection

�kY =df ^�k�1
Y ,!�kC1

Y ; (A.6)

which gives f -torsion-freeness of�kY =df ^�k�1
Y . We thus get the canonical isomor-

phism

D.�
dX �k
X /Œ�dX 
D�kX : (A.7)

Here k can be replaced by any j 2 Œ0; k�1
. So X has only k-rational singularities.
Assume now that X has only k-rational singularities. This means that the com-

position

�kX !�kX ! D.�
dX �k
X /Œ�dX 
 (A.8)

is an isomorphism (hence �kX is a direct factor of �kX ) and the same holds with k
replaced by any j 2 Œ0; k�1
. We will consider the morphisms obtained by applying
the functor D to these morphisms. We argue by induction on k. Note that

ęX > k; (A.9)
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since X has only .k�1/-rational singularities by definition. This implies that

kC1 < codimY SingX; (A.10)

using (A.4), since codimY SingX�2. By the same argument as above, we then get
that

D.�kX /Œ�dX 
D 	�0

�
��

Y ŒdY�k
jX ;df ^
�
: (A.11)

On the other hand, we have (by [34, Theorem 4.2])

�kX D GrkFDR
�
Qh;X ŒdX 


�
Œk�dX 
; (A.12)

hence

D.�kX /Œ�dX 
D GrdX �k
F DRD

�
Qh;X .dX /ŒdX 


�
ŒdX�k
: (A.13)

By the theory of Hodge ideals (see [11], [12], [26], [35]) and using (A.9), we can get
the isomorphism

D.�kX /Œ�dX 
ŠK.k/;� 	 	�0

�
��

Y ŒdY�k
jX ;df ^
�
; (A.14)

whereK.k/;j WD�
jCdY �k
Y jX if j ¤ k, andK.k/;k WD Ik.X/�

dY

Y =f �
dY

Y with Ik.X/
the Hodge ideal.

If ęX2.k; kC1/ so that Ik.X/¤ OY (see, e.g., [35, Corollary 1]), then by (A.11)
and (A.14) the canonical morphism

Hk�dXD.�kX /! Hk�dXD.�kX / (A.15)

is never surjective. Indeed, since �kX is a direct factor of �kX , the mapping cone of a
morphism �W�kX!�kX is independent of � as long as it induces an isomorphism on
Xn SingX . Note that H0

SingX�
k
XD0, since the proof of Proposition 2.2 in [11] holds

also for qDpC1 (where the last inequality in the proof of Proposition 2.2 becomes
qC1DpC2 < codimY SingX ). Hence the dual of the composition (A.8) cannot be
an isomorphism.

Assume now that ęXDkC1. (Here �kXD�kX ; see [11], [25].) The canonical iso-
morphism (A.1) and the second morphism of (A.8) are induced by the canonical mor-
phism of mixed Hodge modules (see [11, Section 3.1])

Qh;X ŒdX 
! D
�
Qh;X .dX /ŒdX 


�
: (A.16)

Note that this coincides with the composition of

Qh;X ŒdX 
!��Qh; eX ŒdX 
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with its dual, where �W eX!X is a desingularization. Let .M 0;F /, .M 00;F / be the
underlying filtered DY -modules of its kernel and cokernel, respectively. Then the
condition ęXDkC1 implies that

min¹p 2 Z j FpM
0 ¤ 0º> dX�k; min¹p 2 Z j FpM

00 ¤ 0º D dX�k; (A.17)

using [35, (1.3.2–1.3.4)] and [11, Section 3.1] together with the N -primitive decom-
position (see, e.g., [16, (2.2.4)]). We then see that the morphism (A.16) cannot induce
an isomorphism

GrdX �k
F DR

�
Qh;X ŒdX 


� �
�! GrdX �k

F DR
�
D

�
Qh;X .dX /ŒdX 


��
: (A.18)

This means that the composition (A.8) cannot be an isomorphism in view of (A.12)–
(A.13). This is a contradiction. We thus get ęX > kC1. This finishes the proof of
Theorem A.1.

Combining Theorem A.1 with the converse of a theorem of Mustaţă et al. [25,
Theorem 1.1] (see [11, Theorem 1]), we can get a positive answer to Conjecture 1.8
for hypersurfaces as follows.

COROLLARY A.2
Assume that X is a reduced hypersurface of a smooth complex algebraic variety Y ,
and has only k-Du Bois singularities .k�1/. Then X has only .k�1/-rational singu-
larities.

Remark A.3
In [11], an assertion slightly stronger than the converse of [25, Theorem 1.1] is proved
(since it is not assumed that the isomorphism is induced by the canonical morphism).
The assertion can be proved rather easily using the extension of [11, Proposition 2.2]
to the case qDpC1 as is explained after (A.15) and assuming that the restriction of
the isomorphism to the smooth points of D is the identity. Indeed, the argument in
[11, Section 2.3] is very complicated, since even this natural condition is not assumed.
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