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Abstract

Continuous-time Markov decision processes (CTMDPs) are
canonical models to express sequential decision-making
under dense-time and stochastic environments. When the
stochastic evolution of the environment is only available
via sampling, model-free reinforcement learning (RL) is the
algorithm-of-choice to compute optimal decision sequence.
RL, on the other hand, requires the learning objective to be
encoded as scalar reward signals. Since doing such transla-
tions manually is both tedious and error-prone, a number of
techniques have been proposed to translate high-level objec-
tives (expressed in logic or automata formalism) to scalar re-
wards for discrete-time Markov decision processes. Unfortu-
nately, no automatic translation exists for CTMDPs.
We consider CTMDP environments against the learning
objectives expressed as omega-regular languages. Omega-
regular languages generalize regular languages to infinite-
horizon specifications and can express properties given in
popular linear-time logic LTL. To accommodate the dense-
time nature of CTMDPs, we consider two different semantics
of omega-regular objectives: 1) satisfaction semantics where
the goal of the learner is to maximize the probability of spend-
ing positive time in the good states, and 2) expectation seman-
tics where the goal of the learner is to optimize the long-run
expected average time spent in the “good states” of the au-
tomaton. We present an approach enabling correct translation
to scalar reward signals that can be readily used by off-the-
shelf RL algorithms for CTMDPs. We demonstrate the effec-
tiveness of the proposed algorithms by evaluating it on some
popular CTMDP benchmarks with omega-regular objectives.

Introduction
Reinforcement learning (RL) is a sequential optimization
approach where a decision maker learns to optimally resolve
a sequence of choices based on feedback received from the
environment. This feedback often takes the form of rewards
and punishments with strength proportional to the fitness
of the decisions taken by the agent as judged by the envi-
ronment towards some higher-level learning objectives. This
paper develops convergent RL algorithms for continuous-
time Markov decision processes (CTMDP) against learning
requirements expressed in ω-regular languages.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Need for Reward Translation. Due to a combination
of factors—including the success of deep neural net-
works (Goodfellow, Bengio, and Courville 2016) and a
heavy intellectual and monetary investment from the indus-
try and the academia (Mnih et al. 2015; Silver et al. 2016)—
RL has emerged as a leading human-AI collaborative de-
sign paradigm where the key role of the human designers
reduces to designing the appropriate scalar reward signals,
while the RL algorithm creates an optimal schedule driven
by the reward signal. Unfortunately, then, the de-facto com-
munication between the human designers and the RL algo-
rithms is quite rigid: it forces the human programmers to
think in the language suitable for the learning agents and not
in a way that comes naturally to humans: declarative or im-
perative languages. To meet this challenge, a recent trend is
to enable logic (Sadigh et al. 2014; Camacho et al. 2019;
Li, Vasile, and Belta 2017) and automatic structures (Hahn
et al. 2019; Icarte et al. 2018, 2022) to express learning in-
tent in RL. The common thread among these approaches is
to encode the specification as an automaton based reward
structure and derive scalar rewards with every discrete in-
teraction with the environment. However, when the problem
domain is continuous-time, aforementioned approaches are
not applicable as they support the discrete-time semantics
modeled as finite-state Markov decision processes (MDP or
DTMDP for emphasis).

This paper aims to enable the use of RL in unknown
CTMDPs against high-level specifications expressed as ω-
automata (Vardi and Wolper 1986; Baier and Katoen 2008).

Continuous-Time Reinforcement Learning. Semi-
MDPs (Baykal-Gürsoy 2011) model environments where
the interaction between the decision maker and the environ-
ment may occur at any dense time point. CTMDPs (Guo
and Hernández-Lerma 2009) are subclasses of semi-Markov
decision processes where the exact time and the resolution
of the next state is governed by an exponential distribution
with a rate parameter that is dependent on the current state
and the action chosen. The classical RL algorithms for
DTMDPs have been elegantly generalized to CTMDPs for
both discounted (Bradtke and Duff 1994) and average (Das
et al. 1999) objectives. We employ the Q-learning algorithm
for CTMDPs (Bradtke and Duff 1994) to compute optimal
schedules for ω-regular learning objectives.
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The ω-Regular Objectives. Finite automata on infinite
words—or ω-automata—may be equipped with a variety of
equally expressive infinitary acceptance conditions (e.g., de-
terministic Rabin and nondeterministic Büchi) with well-
understood succinctness and complexity trade-offs. From
their first application in solving Church’s synthesis prob-
lem (Thomas 2009) to becoming the lingua franca in ex-
pressing specifications of safety-critical systems (Baier and
Katoen 2008), ω-automata are a key part of the compu-
tational backbone to automated verification and synthesis.
Linear temporal logic (LTL) (Baier and Katoen 2008) is a
popular declarative language to express properties of infi-
nite sequences. Specifications expressed using ω-automata
form a strict superset of specifications expressed as LTL for-
mulas. Given an LTL formula, one can effectively construct
an ω-automaton (Vardi and Wolper 1986). For this reason,
we focus on ω-automata based specifications.

The expanding role of RL in safety-critical systems has
prompted the use of ω-automata in expressing learning ob-
jectives due to improved expressiveness and interpretability
over scalar rewards. In this work, we use nondeterministic
Büchi automata to express ω-regular specifications.

Continuous-Time in Büchi Automata. Büchi automata
are finitary structures accepting infinite sequences of letters
that visit a distinguished set of good (accepting) states in-
finitely often. For scheduling problems over stochastic sys-
tems modeled as DTMDPs, the optimal schedules can be
specified via schedules that maximize the measure of ac-
cepted system behaviors. While for discrete-time system the
naturalness of such discrete infinitary visitation semantics
is well-established, for continuous-time systems it is imper-
ative that the acceptance criterion must heed to the actual
time spent in such good states. Two distinct interpretations
of good dense-time behavior are natural: While the focus of
the satisfaction semantics is on maximizing the measure of
behaviors that visit good states infinitely often, the expecta-
tion semantics focuses on maximizing the long-run expected
time spent in good states. We develop RL algorithms for CT-
MDPs with Büchi specifications under both semantics.

A recent work (Oura and Ushio 2022) studies an alterna-
tive objective for semi-MDPs against multi-objective spec-
ifications composed of an ω-regular objectives (satisfaction
semantics) and a risk objective (expected risk). The key dis-
tinction between Oura and Ushio’s approach and ours (vis-à-
vis the satisfaction semantics) is that the former is based on
bounded synthesis paradigm that requires a bound parame-
ter on co-Büchi states visitation and thus reduces the spec-
ification to a safety objective (where reward translation is
straightforward). In contrast, our approach does not require
any bound from the practitioner and is capable of handling
general ω-regular objectives. Moreover, the expectation se-
mantics has not been explored in any existing literature.

Contributions. Our key contributions are as follows:

1. We present a novel (expectation) semantics for Büchi au-
tomata to capture time-critical properties for CTMDPs.

2. We present procedures to translate Büchi automata with
satisfaction and expectation semantics to reward ma-

chines (Icarte et al. 2018) in a form that enables ap-
plication of the off-the-shelf CTMDP RL algorithms.
We show that one needs distinct reward mechanisms for
these two semantics, and we establish the correctness and
effectiveness of these reward translations.

3. We present an experimental evaluation to demonstrate
the effectiveness of the proposed approach.
A full version of the paper with the detailed proofs can be

found in (Falah, Guha, and Trivedi 2023).

Satisfaction Vs. Expectation Semantics
We motivate for the satisfaction and the expectation seman-
tics by presenting a simple example. The CTMDP shown in
Figure 1, adapted from (Hahn et al. 2019), represents four
zones (s0 to s3 in the figure) on the Mars surface. Suppose
that a mission to Mars arrives in Zone 0 (a known, safe terri-
tory) and is expected to explore the terrain in a safe fashion,
gather and transmit information, and stay alive to maximize
the return on the mission. For simplicity, assume that Zone
1 (purple) models a crevasse harmful to the safe operations,
while zones 2 and 3 are central to exploration mission and
are analogous in their information contents.

Given the unknown uncertainty of the terrain of Mars, the
system is modeled as a CTMDP with associated uncertainty
on the time of various actions where the exit rate of action a
from Zone (state) 0 is denoted by λ(0, a). In other words,
when selected an action a in a state s, the probability of
spending t time units in s before taking a is given by the
cumulative distribution function 1 − e−λ(0,a)t. Each tran-
sition have a rate associated with it and it determines the
probability of taking that transition. Assume that the action
b from Zone 0 goes to Zone 2 with rate r (high probability)
and to Zone 1 with rate (λ(0, b)− r) (low probability). The
mission objective is to avoid Zone 1 (purple zone) while in-
finitely often visiting the Zone 2 or 3 (the green zones). It
can be captured in LTL (Baier and Katoen 2008) as:

ϕ = (G¬p) ∧ (G(F g))

specifying that across the infinite horizon always (i.e. at ev-
ery step expressed as temporal modality, G) avoid the purple
region (¬b), and always eventually (i.e. at some time in the
future expressed as temporal modality, F) reach the green
region, i.e. (G(F g)). The GFφ modality is often referred
as infinitely often φ. LTL combines these temporal operators
using the standard propositional logic connectives such as:
and (∧), or (∨), not (¬), and implication (→).

This declarative specification can also be expressed using
the Büchi automaton shown in Figure 1 (center) where the
double circled states (here, q1) denote accepting states. The
Büchi automaton can be used as a monitor to check the be-
havior of the learner over the environment. For our example,
it is visualized by taking the synchronous product of the CT-
MDP with the automaton shown in Figure 1 (right).

For the satisfaction semantics on the product CTMDP, our
goal is to maximize the probability that every infinite hori-
zon behavior visits the accepting state infinitely often, while
for the expectation semantics the goal is to maximize the
expected time the system dwells in the accepting state.
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Figure 1: The mars surveillance example where a CTMDP (left) can be in four different states where states s0 has the label
{¬p,¬g}, state s2 and s3 have label {¬p, g}, and state s1 have the label {p,¬g}. The rates of each transition (if not 1) is written
in the figure. A deterministic Büchi automata for the ω-regular objective ϕ = (G¬p)∧(GF g) (center). Product CTMDP (right)
where each zone has two components for denoting the CTMDP and the Büchi automaton parts. All the zones whose second
component is q2 is combined as one. The exit rate of an action from a zone (s, qi) in the product CTMDP is same as the exit
rate of the action from s in the original CTMDP.

• Satisfaction Objective. Consider the case where we
have one Mars rover in this mission. Hence, our goal is
to maximize the probability of visiting green zones in-
finitely often while avoiding the purple zone (the satis-
faction semantics). In this case, the optimal schedule is
to choose actions a and c indefinitely, i.e. the schedule
(a → c)ω , that satisfies the objective with probability 1.
Note that action b is always sub-optimal irrespective of
the probability to move to the purple zone.

• Expectation Objective. Consider an alternative setting
where we have a fleet of drones (we are okay in losing
some drones as long as we maximize the mission objec-
tive) that needs to be sent to the surveillance of zone 2
or 3. Suppose that due to unforeseeable circumstances
the mission may cease operation any time, and hence the
goal is to maximize total expected time spent in the green
zones (2 and 3). The schedule (a → c)ω is not optimal
anymore as it may dwell a considerable amount in the
Zone 0. On the other hand any drone that chooses b in
Zone 0 risks moving to Zone 1 with a small probability.
As our goal is to maximize the expected time spent in the
green zone over a large group of drones, the expectation
semantics captures this intent and the optimal schedule is
to start with action b.

Preliminaries
We write N,Q and Q≥0 for the sets of natural numbers, ra-
tional numbers, and non-negative rational numbers, respec-
tively. For a natural number n ∈ N, we denote by [n] the
set {1, . . . , n}. Given a finite set A, a (rational) probability
distribution overA is a function p : A → [0, 1]∩Q such that∑

a∈A p(a) = 1 and Supp(p) = {a∈A | p(a)>0} is the
support of p. We denote the set of probability distributions
on A by D(A).

Continuous-Time MDPs. A (discrete-time) Markov de-
cision process (MDP) is a tuple of the form M =

(S, s0,Act,T), where S is a finite set of states, s0∈S is the
initial state, Act is a finite set of actions, and T : S×Act →
D(S) is a transition function. Let Act(s) be the set of actions
enabled in the state s∈S. An MDP is called a Markov chain
if for every s∈S, the set Act(s) is singleton.

A continuous-time MDP (CTMDP) is a tuple of the form
M = (S, s0,Act,R), where R : S×Act×S → R≥0 is a
transition rate function, while the rest of the parameters are
same as that of an MDP. For s∈S and a∈Act(s), we define
λ(s, a) =

∑
s′ R(s, a, s

′) > 0 to be the exit rate of a in s.
We define a probability matrix, PM, where

PM(s, a, s′) =

{
R(s,a,s′)
λ(s,a) if λ(s, a) > 0

0 otherwise

WhenM is clear from the context, we simply denote PM by
P . The residence time for action a in s is exponentially dis-
tributed with mean λ(s, a). For a given state s and an action
a, the probability of spending t time units in s before taking
the action is given by the cumulative distribution function
F (t|s, a) = 1 − e−λ(s,a)t of the exponential distribution.
The probability of a transition from state s to s′ on an action
a in t time units is pa(s, s′, t) = P (s, a, s′) · F (t|s, a). A
CTMDP is called a continuous-time Markov chain (CTMC)
if for every state s ∈ S, the set Act(s) is singleton.

Uniformization. A uniform CTMDP has a constant exit
rate C for all state-action pairs i.e, λ(s, a) = C for all states
s ∈ S and actions a ∈ Act(s). The procedure of convert-
ing a non-uniform CTMDP into a uniform one is known
as uniformization. Consider a non-uniform CTMDPM. Let
C∈R≥0 be such that C≥λ(s, a) for all (s, a) ∈ S×Act. We
obtain a uniform CTMDPMC by changing the rates to R′:

R′(s, a, s′) =

{
R(s, a, s′) if s ̸= s′

R(s, a, s′) + C − λ(s, a) if s = s′

For every action a ∈ Act(s) from each state s in the new
CTMDP we have a self loop if λ(s, a) < C. A uniformized
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CTMDP has a constant transition rate C for all actions and
because of this, the mean interval time between any two suc-
cessive actions is constant.

Schedules. An infinite run of the CTMDP is an ω-word
(s1, (t1, a1), s2, (t2, a2), . . .) ∈ S × ((R≥0 × Act) × S)ω

where si ∈ S, ai ∈ Act(si) and ti is the time spent on state
si. A finite run is of the form (s1, t1, a1, . . . , tn−1, an−1, sn)
for some n ∈ N. The set of infinite and the set of finite runs
in M are denoted by RunsM and FRunsM respectively.
Similarly,RunsM(s) and FRunsM(s) represents the finite
and infinite runs starting from state s. For r ∈ FRunsM, we
denote by last(r) the last state in the run r.

We use a schedule to resolve non-determinism in a CT-
MDP. A schedule is a function σ : FRunsM → D(Act),
where D(Act) is a probability distribution on the set of en-
abled actions. For a finite run r ∈ FRunsM, a schedule
gives a probability distribution over all actions enabled in
last(r). A schedule is deterministic if D(Act) is Dirac, i.e,
a single action is chosen in the distribution, otherwise it is
randomized. Further, a schedule σ is stationary if for all
r,r′ ∈ FRunsM with last(r) = last(r′), we have that
σ(r) = σ(r′). A pure schedule is a deterministic stationary
schedule. Let ΣM be the set of all schedules.

A CTMDP M under a schedule σ acts as a contin-
uous time Markov chain (CTMC) which is denoted by
M[σ]. The set of infinite and the set of finite runs in
M[σ] are denoted by RunsMσ and FRunsMσ respectively.
The behavior of a CTMDP M under a schedule σ and
starting state s ∈ S is defined on a probability space
(RunsMσ (s), FRunsMσ (s),PrMσ (s)) over the set of infinite
runs of σ with starting state s. Given a random variable
f : RunsMσ → R, we denote by EM

σ (s){f} the expecta-
tion of f over the runs of M[σ]. For n ≥ 1, we write Xn,
Yn, Dn, and Tn for the random variables corresponding to
the n-th state, action, time-delay in the n-th state, and time-
stamp (time spent up to the n-th state). We letD0 = T0 = 0.

Rewardful CTMDPs. A rewardful CTMDP (M, rew) is
a CTMDP and a reward function rew : S∪(S×Act) → R≥0

which assigns a reward-rate to each state and a scalar reward
to each state-action pair. Thus spending t time-units in s ∈ S
gives rew(s) · t of (state-delay) reward and choosing a from
s gives rew(s, a) (action) reward.

Continuous time discounting is done with respect to a dis-
count parameter α>0 where one unit of reward obtained at
time t in the future gets a value of e−αt. Formally, the ex-
pected discounted reward for an arbitrary schedule σ from a
state s is given by:

DRM[σ](α)(s) = EM
σ (s)

[ ∞∑

n=1

e−αTn−1

(
rew(Xn, Yn)+

∫ Tn

Tn−1

e−α(t−Tn−1)rew(Xn)dt
)]

.

Here, we multiply the expected reward obtained at the n−th
state with e−αTn−1 as per the continuous time discounting.
The initial term in the parenthesis corresponds to the reward
obtained from stateXn by picking action Yn (action reward)

and the second term corresponds to the state-delay reward
i.e reward obtained with respect to the reward-rate rew(Xn)
which is discounted over the time (t− Tn−1).

The expected average reward from s under σ is given by:

ARM[σ](s) = lim inf
N→∞

EM
σ (s)

[
1

TN
·
( N∑

n=1

rew(Xn, Yn)+

∫ Tn

Tn−1

rew(Xn)dt
)]

,

where the first and second term corresponds to the action
and state-delay reward respectively. Recall that TN is the
total time spent upto the n-th state. Consider an objective
O ∈ {DR,AR}. The expected reward obtained by schedule
σ on s ∈ S is denoted byOM[σ](s). A schedule σ∗ is optimal
for O if OM[σ∗](s) = supσ∈ΣMOM[σ](s) for all s ∈ S.

For a given CTMDP M, one can compute the optimal
schedule for the discounted-sum objective or the expected
average by using policy iteration, value iteration or linear
programming (Feinberg and Shwartz 2002; Puterman 2014)
on the uniformized CTMDPMC . When the CTMDP is un-
known (unknown rates and states), an optimal schedule can
be computed via reinforcement learning.

Reinforcement Learning (RL). RL allows us to obtain an
optimal schedule by repeatedly interacting with the environ-
ment and thereby observing a reward. A training episode is
a finite sequence of states, actions and rewards which ter-
minates on certain specified conditions like when the num-
ber of samples drawn is greater than some threshold. The
RL obtains information about rates and rewards of the CT-
MDP model by running several training episodes. Broadly,
there are two categories of RL, model-based and model-
free. We focus on space efficient model-free RL algorithms
as they compute optimal schedule without constructing the
state transition system (Strehl et al. 2006).

One of the most successful model-free learning algo-
rithm for DTMDPs is the Q-learning algorithm (Watkins and
Dayan 1992). It aims at learning (near) optimal schedules in
a (partially unknown) MDP for the discounted sum objec-
tive. Bradtke and Duff (Bradtke and Duff 1994) introduced
the Q-learning algorithm for CTMDPs. We give here a brief
description of Q-learning algorithm for CTMDPs.

For a given discount parameter α>0, the one-step ex-
pected discounted reward for an action a from state s is
given by ρ(s, a) = rew(s, a)+ rew(s)

α+λ(s,a) (Puterman 2014,
Eq. 11. 5. 3). The Q-function for a state s and an action a
under schedule σ, denoted Qσ(s, a), is defined as

ρ(s, a) +
λ(s, a)

λ(s, a) + α

∑

s′∈S

P (s, a, s′) · Qσ(s
′,σ(s′)).

It gives the total expected discounted reward obtained by
taking action a from s, and following σ afterwards. The op-
timal Q-function, denoted Q∗ is given by,

ρ(s, a) +
λ(s, a)

λ(s, a) + α

∑

s′∈S

P (s, a, s′) · max
a′∈Act

Q∗(s′,α′).

581



Q-learning uses stochastic approximation (Sutton and Barto
2018) to estimate the Q∗ function. When a transition from
state s to s′ on an action a with delay τ is observed, the Qf

estimates are updated as (Bradtke and Duff 1994, Eq 12):

Q(k+1)
f (s, a) := (1− βk)Q(k)

f (s, a)+

βk

(
r(s, a, s′) + e−ατ max

a′
Q(k)

f (s′, a′)
)
,

where r(s, a, s′) is the sampled reward from state s to s′,
the sampled transition time is τ , and βk is the learning rate.
The RL algorithm samples through states and updates the Q-
function iteratively. The optimal schedule is generated after
completion of some number of episodes by taking the action
that gives the highest Q-value from each state.

We focus on how to automatically obtain reward mecha-
nisms for ω-regular objectives for CTMDPs so that off-the-
shelf RL algorithms can learn an optimal schedule.

Problem Statement
Omega-regular Objectives. An ω-regular objective is
defined by a nondeterministic Büchi automaton A =
(Σ, Q, q0, δ, F ) where Σ is a finite alphabet, Q is a finite set
of states, q0 ∈ Q is an initial state, δ : Q×Σ → 2Q is a tran-
sition function and F ⊆ Q is the set of accepting states. A
Büchi automaton is deterministic, if δ(q, a) is singleton for
all (q, a) ∈ Q×Σ. We define the extended transition func-
tion δ̂ : Q×Σ∗ → 2Q, derived from δ, as δ̂(q, ε) = {q} and
δ̂(q, ax) = ∪q′∈δ(q,a)δ̂(q

′, x), for q ∈ Q and ax ∈ ΣΣ∗.
A run r of A is an infinite sequence (r0, w0, r1, w1, . . .)

where r0 = q0, ri ∈ Q, wi ∈ Σ and ri+1 ∈ δ(ri, wi)
for all i ∈ N. The word of a run r = (r0, w0, r1, w1, . . .)
is L(r) = (w0w1 · · · ) . Let the set of runs of A be RA.
We say that a run r ∈ RA is accepting if there exists a
qf ∈ F such that qf occurs infinitely often in r. An ω-word
w = (w0w1 · · · ) is accepted by A if there exists an accept-
ing run rw = (r0, w0, r1, w1, . . .) of A. The language of the
automaton A, denoted L(A) is the set of all words that is
accepted by the automaton.

CTMDPs and Omega-regular Objectives. In order to
express the properties of a CTMDP M using a Büchi au-
tomaton, we introduce the notion of a labelled CTMDP. A
labelled CTMDP is a triple (M,AP, L) where M is a CT-
MDP,AP is a set of atomic propositions, and L : S → 2AP is
a labelling function. Let A = (2AP, Q, q0, δ, F ) be a Büchi
automaton expressing the learning objectives ofM.

Recall that for a CTMDPM under a schedule σ we write
Xn, Yn, Dn, and Tn for the random variables correspond-
ing to the n-th state, action, time-delay at the n-th state, and
time-stamp (total time spent up to the n-th state). We intro-
duce the random variable Fn to indicate if the sequence of
observations of the CTMDP leads to an accepting state on
A in n-steps, i.e., Fn = [δ̂(L(X0) ·L(X1) · · ·L(Xn))∩F ].

For a CTMDP (M,AP, L) and automaton A =
(2AP, Q, q0, δ, F ), we study the following problems:
1. Satisfaction Semantics. Compute a schedule of M that

maximizes the probability of visiting accepting states F

ofA infinitely often. We define the satisfaction probabil-
ity of a schedule σ from starting state s as:

PSemM
A (s,σ)=PrMσ (s) {∀i∃j≥iFj} .

Intuitively, it describes the probability of runs from state
s under σ in the CTMDP such that the correspond-
ing run in A visits the accepting states infinitely often.
The optimal satisfaction probability PSemM

A (s) for A
is defined as supσ∈ΣM PSemM

A (s,σ), and we say that
a schedule σ ∈ ΣM is optimal for A if PSemM

A (s,σ) =
PSemM

A (s) for all s ∈ S.
2. Expectation Semantics. Compute a schedule of M that

maximizes the long-run expected average time spent in
the accepting states of A. We define the expected satis-
faction time of a schedule σ from starting state s as:

ESemM
A (s,σ) = EM

σ (s)

{
lim inf
n→∞

∑n
i=1 Fi ·Di

Tn

}
.

The optimal expected satisfaction time ESemM
A (s) for

specification A is defined as supσ∈ΣM ESemM
A (s,σ),

and we say that σ ∈ ΣM is an optimal expectation max-
imisation schedule forA if ESemM

A (s,σ) = ESemM
A (s).

Product Construction. Given a labelled CTMDP
(M,AP, L) where AP is a set of atomic propositions, and
L : S → 2AP is a labelling function, and a Büchi automaton
A = (2AP, Q, q0, δ, F ), the product CTMDP is defined as
M×A = ((S ×Q), (s0, q0),Act,R×, F×) where the rates
are R× : (S × Q) × Act × (S × Q) → R≥0 such that
R×((s, q), a, (s′, q′)) = R(s, a, s′) if R(s, a, s′) > 0 and
δ(q, L(s)) = {q′}. If F is the set of accepting states in A,
then the accepting condition is a set F× of states where
(s, q) ∈ F× iff q ∈ F .

Good-for-CTMDP Automata. From the definition of
both the semantics, it is clear that the optimal schedule re-
quires some memory to monitor the run in the Büchi au-
tomaton (see Example 2 in Appendix D in (Falah, Guha, and
Trivedi 2023)). For the right kind of Büchi automata (Hahn
et al. 2020), the amount of memory required can be equal
to the size of the automata. A key construction to compute
these schedules is the product construction, where the CT-
MDP and the automaton are combined together as a CTMDP
with accepting states governed by the accepting states of the
Büchi automata. On the other hand, not every Büchi automa-
ton can be used for this construction. The class of Büchi au-
tomata where the semantic value of satisfaction of the prop-
erty on the MDP equals to the corresponding problems on
the product structure, are called good-for-MDP (GFM) au-
tomata (Hahn et al. 2020).

If a Büchi automaton is GFM, then one can show via
uniformization that it is also good-for-CTMDPs. (See Ap-
pendix C in (Falah, Guha, and Trivedi 2023) for a formal
definition of good-for-CTMDPs.) There exist several syntac-
tic characterizations of good-for-MDP automata including
suitable limit-deterministic Büchi automata (SLDBA) (Sick-
ert et al. 2016) and slim automata (Hahn et al. 2020). More-
over, every LTL specification can be effectively converted
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into a GFM Büchi automata and there exist tools (OWL and
Spot) to convert LTL objectives to good-for-CTMDP au-
tomaton. Hence, in this paper, w.l.o.g., we assume that ω-
regular objectives are given as good-for-CTMDP automata.

Problem Definition. Given a CTMDP M with unknown
transition structure and rates, and an ω-regular objective φ
given as a good-for-CTMDP Büchi automata A, we are in-
terested in the following reward translation problem for the
satisfaction semantics and for the expectation semantics.

Problem 1 (Reward Translation Scheme). Design a reward
scheme for A such that any off-the-shelf RL algorithm opti-
mizing the discounted reward in CTMDPs converges to an
optimal schedule for satisfaction (expectation) semantics.

In Section we provide a solution for the satisfaction se-
mantics, while in Section we sketch a solution for this prob-
lem for the expectation semantics. We reduce these prob-
lems to average reward maximization for CTMDPs. Since
average-reward RL algorithms for CTMDPs and MDPs re-
quire strong assumptions on the structure (such as com-
municating MDPs) (Sutton and Barto 2018), we solve the
average-reward RL problem by reducing it to a discounted-
reward problem using the following result.

Theorem 2. For every CTMDP M, there exists a pure
schedule σ∗ and a threshold 0≤γM

α0
<1 such that for every

discount-rate function γα, where γα(s, a) ≥ γM
α0

for every
valid state-action pair (s, a), the schedule σ∗ is an optimal
schedule maximising the expected discounted reward. More-
over, σ∗ also maximizes the expected average reward.

This schedule σ∗ is known as a Blackwell optimal sched-
ule. We show that we need different reward translation
schemes for the two semantics.

RL for Satisfaction Semantics
We reduce the problem of satisfaction semantics of an ω-
regular objective in a CTMDP to an expected average re-
ward objective. Using Blackwell optimality result stated in
Theorem 2, we further reduce this to an expected discounted
reward objective which allows us to use off-the-shelf RL for
CTMDP for learning schedules for ω-regular objectives.

To find a schedule satisfying an ω-regular objective in a
CTMDP, we identify the accepting end-components where
an accepting end-component (De Alfaro 1998) is a sub-
MDP that is closed under probabilistic transitions and con-
tains an accepting state. It is known (De Alfaro 1998) that
as an end-component C of an CTMDP is entered, there is a
schedule that visits every state-action pair in C with proba-
bility 1 and stays in C forever. Hence, a schedule that max-
imizes the probability of satisfaction of a given ω-regular
objective maximizes the probability of reaching the accept-
ing end-components. The CTMDP in Figure 2(top) is itself
an accepting end-component since the state q0 is accepting.

We further reduce the problem to an average reward prob-
lem as described below and then specify a reward function
such that the schedule maximising the expected average re-
ward maximizes the probability of satisfying the objective.

q0 q1q2

a, r1a, r2

b, r3

c, r4

d, r4

q0 q1q2

t

a, r1 · ζa, r2 · ζ

b, r3

c, r4 a, r1 + r2 · (1− ζ)

a′,λ(t, a′)

d, r4

Figure 2: A product CTMDP (M × A) (top) and its corre-
sponding augmented product CTMDPMζ (bottom).

Reduction to Average Reward. Before describing our
RL algorithm for unknown CTMDP, we first describe the
reduction when an input CTMDP is fully known to explain
the intuition behind our algorithm. Consider a CTMDPM, a
GFMA, and letM×A denote the product CTMDP. For our
reduction, we define a constant ζ ∈ (0, 1) and an augmented
product CTMDP, denoted byMζ . The CTMDPMζ is con-
structed fromM×A by adding a new sink state twith a self
loop labelled by an action a′ and with rate λ(t, a′) > 0, and
making it the only accepting state in Mζ . Further, in Mζ ,
the rates of each outgoing transition from an accepting state
inM×A is multiplied by ζ. Also, for each action a from an
accepting state s inM×A, inMζ we add a new transition
to the sink state t with rate λ(s, a) · (1 − ζ) where λ(s, a)
is the exit rate of the state-action pair (s, a) inM×A. Fig-
ure 2 shows an example of this construction. Note that in
the figure, q0 is the only accepting state in the product CT-
MDP. There are two outgoing transitions from q0 on action
a to q1 and q2 with rates r1 and r2 respectively, and hence
λ(q0, a) = r1 + r2. We then add a transition from q0 to t
with rate (r1 + r2) · (1− ζ).

With a slight abuse of notation, if σ is a schedule in the
augmented CTMDPMζ , then we also denote by σ a sched-
ule inM×A obtained by removing t from the domain of σ.
Thus fix a schedule σ in bothMζ and inM×A. Note that
for every state in an accepting end-component, the probabil-
ity of reaching the sink t in Mζ is 1. Similarly, for every
state in a rejecting end-component, the probability of reach-
ing t inMζ is 0. The probability of reaching t inMζ under
σ overapproximates the probability of reaching the accept-
ing end-components inM×A under σ. The difference in the
two probabilities occurs since in Mζ , from the transient ac-
cepting states, with probability 1− ζ, one can reach the sink
t. This approximation error tends to 0 as ζ tends to 1. We
define a reward function in Mζ such that a schedule max-
imising the expected average reward in Mζ maximizes the
probability of satisfying the ω regular objective inM×A.
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Reward Function. The reward function provides a reward
of 1 per time unit for staying in the accepting sink t, while
the reward is 0 otherwise, i.e.

rew(s) =

{
1 if s = t
0 otherwise

As there is only a single action a′ from state t in Mζ

which is a self loop, we can conclude that any schedule that
maximizes the probability of reaching t also maximizes the
expected average reward in Mζ . Following the discussion
above, for high values of ζ, the schedule also maximizes the
probability of satisfying the ω-regular objective in M ×A.
We thus have the following.
Theorem 3. There exists a threshold ζ ′ ∈ (0, 1) such that
for all ζ > ζ ′, and for every state s, a schedule maximising
the expected average reward in t in Mζ is (1) an optimal
schedule in the product CTMDPM×A from s for satisfying
the ω-regular objective φ. Further, since A is a GFM, we
have that (2) σ induces an optimal schedule for the CTMDP
M from s with objective φ.

From the above theorem, we have that for a large ζ value,
a schedule maximising the expected average reward in Mζ

also maximizes the probability of satisfying the ω-regular
property inM×A. Therefore, when the CTMDP is known,
the problem of satisfaction semantics of an ω-regular prop-
erty is reduced to an expected average reward objective.

The case of unknown CTMDP. Recall that we consider a
CTMDP model with unknown rate and transition structure.
For such unknown CTMDPmodels, an RL algorithm cannot
construct the product M × A explicitly. From Theorem 3,
we can conclude that any schedule maximising the expected
average reward that is accrued by visiting the sink state t in
Mζ where ζ > ζ ′ for some ζ ′ ∈ (0, 1) also maximizes the
probability of satisfying the ω-regular objective φ inM×A.
This leads to a very simple model-free RL algorithm which
does not require the augmented product CTMDP Mζ to be
constructed explicitly. We define the following reward func-
tion rew′ to be used by the RL algorithm:

rew′((s, q), a) =

⎧
⎨

⎩

1 with probability 1− ζ if (s, q) is
accepting

0 otherwise

Recall that in the augmented product Mζ , for each action
from an accepting state, we add a transition to sink state t
with probability 1−ζ, and give a reward of 1 for staying in t
per unit time. The RL algorithm simulates this in the follow-
ing way:When a transition from an accepting state is visited,
the learning agent tosses a biased coin and obtains a reward
of 1 with probability 1 − ζ. Therefore, any schedule max-
imising the expected average reward w.r.t. rew′ also max-
imizes the probability of satisfying the objective. As Theo-
rem 2 shows the existence of Blackwell optimal schedules in
CTMDPs, we can conclude that for a high enough discount
factor, any off-the-shelf model-free RL algorithm for CT-
MDP maximising the expected discounted reward gives an
optimal schedule maximising the satisfaction of φ. A pseu-
docode of our algorithm is given in the appendix of (Falah,
Guha, and Trivedi 2023).

RL for Expectation Semantics
We study the expectation semantics of ω-regular objective
and show that the problem can be reduced to maximising
the expected average reward problem in CTMDPs. Using
Theorem 2, this reduces to maximising expected discounted
reward for a large discount factor. We then describe the cor-
responding reward machine to maximize the expected satis-
faction time in the good states.

Reduction to Average Reward. For an ω-regular objec-
tive φ, let A be a GFM corresponding to φ with a set F of
Büchi accepting states. LetM be a CTMDP andM×A be
the product CTMDP of M and A. For a state s in M × A,
we define the expected satisfaction time of a schedule σ from
starting state s as:

ESatM×A
σ (s)=EM×A

σ (s)

{
lim inf
n→∞

∑n
i=1[Xi ∈ F×]·Di

Tn

}
.

It gives the long-run expected average time spent in the ac-
cepting states. The reward rate function r′ : S → {0, 1}
for M×A is defined such that r′(s) = 1 if s ∈ F×, and
r′(s) = 0, otherwise. Thus the reward is r′(s) · t = t for
s ∈ F× if t time is spent in s. The following lemma gives
an equivalence between the expected satisfaction time and
expected average reward obtained inM×A.
Lemma 4. For a product CTMDP M × A where A is a
GFM for an ω-regular objective and for a schedule σ, the
expected average reward obtained w.r.t. the reward function
r′ is equal to the expected satisfaction time in (M×A)
and there exists a pure schedule that maximizes this.

Using the results from Lemma 4 and Theorem 2, we can
conclude that a schedule maximising the discounted reward
objective for a large discount factor in M × A with reward
function r′ also maximizes the expected satisfaction time.

Algorithm for Expectation Semantics. Here, we provide
a brief description of the algorithm. The Q-function is de-
fined on the states of the product CTMDP, i.e, Qf : (S ×
Q) × Act → R where S is the set of states of the CTMDP
M and Q is the set of states of the GFM A. Initially, the
state space is unknown to the agent and the agent will have
information only on the initial state. States seen are stored
in a Q-table where the Q-value of the state is stored. The
initial value of a state in the Q-table is zero. The number
of episodes to be conducted and the length of each episode
are defined by the user, let these be denoted by k and eplen
respectively. In each episode, the RL agent picks an action
from its current state in the CTMDP according to the RL
schedule and observes the next state and the time spent in the
current state. It also picks the transition in the GFM based on
the observed state in the CTMDP. For each transition taken,
the reward obtained is based on the reward function r′. The
Q-function is updated according to the Q-learning rule de-
fined in Section . An episode ends when the length of the
episode reaches eplen. After the completion of k episodes,
we obtain a schedule σ by choosing the action that gives the
highest Q-value from each state. The schedule learnt by the
algorithm converges to an optimal schedule as the number
of training episodes tend to infinity. A pseudocode of the
algorithm is provided in (Falah, Guha, and Trivedi 2023).
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Name states prod. Sat. Prob. Est. Sat. Time 1 Exp. Val. Est. Exp. Time 2
RiskReward 4 8 1 1 1.713 0.9 0.9 0.967
DynamicPM-tt 3 qs 2 816 825 1 1 3.586 1 1 3.62
QS-lqs 1 rqs 1 jt 2 266 282 1 1 3.401 1 1 3.486
QS-lqs 1 rqs 1 jt 5 3977 4152 1 1 5.482 1 1 5.524
QS-lqs 2 rqs 2 jt 3 11045 24672 1 1 15.158 1 1 15.395
ftwc 001 mrmc 82 122 0.999779 0.999779 94.288 0.999779 0.999779 98.256
PollingSystem-jt1 qs4 348 352 1 1 3.423 1 1 3.421
PollingSystem-jt1 qs7 1002 1006 1 1 3.576 1 1 3.580
ErlangStages-k500 r10 508 509 1 1 112.581 1 1 312.86
SJS-procn 6 jobn 2 17 21 1 1 3.253 1 1 3.257
SJS-procn 2 jobn 6 7393 7405 1 1 4.336 1 1 4.234

Table 1: Q-learning results. The default values of the learner hyperparameters are: ζ = 0.99 (for satisfaction semantics), ϵ = 0.1
(used in picking ϵ-greedy actions in Q-learning), β = 0.01 (learning rate), tol= 0.01 (tolerance for numerical approximation),
ep-l= 300 (episode length), and ep-n= 20000 (episode numbers). We used ep-l = 3000 and ep-n = 200000 for ErlangStages-
k500 r10 to get convergence. Times are in seconds.

Experimental Evaluation
We implemented the reward schemes described in the pre-
vious sections in a C++-based tool MUNGOJERRIE (Hahn
et al. 2021) which reads CTMDPs described in the PRISM
language (Kwiatkowska, Norman, and Parker 2011) and ω-
regular automata written in the Hanoi Omega Automata for-
mat (Babiak et al. 2015). Our implementation provides an
Openai-gym (Brockman et al. 2016) style interface for RL
algorithms and supports probabilistic model checking for
CTMDPs based on uniformization.

Table 1 shows the evaluation of our algorithms on a
set of CTMDP benchmarks from the Quantitative Verifica-
tion Benchmark set (https://qcomp.org). RiskReward is
based on the model in Section with λ(0, b) = 10 and
r = 9. DynamicPM-tt 3 qs 2 models dynamic power
management problem based on (Simunic et al. 2000). Queu-
ing System (QS) models QS-lqs i rqs j jt k are based
on a CTMDP modelling of queuing systems with arrival
rate i, service rate j, and jump rate k as the key parame-
ters. ftwc 001 mrmc models consist of two networks of
n workstations where each network is interconnected by
a switch communicating via a backbone. The components
may fail arbitrarily, but can only be repaired one at a time.
The initial state is where all components are functioning,
and the goal state is where in both networks either all the
workstations or all the switches are broken. The Polling Sys-
tem examples PollingSystem-jt1 qsj consist of j
stations and 1 server. Here, the incoming requests of j types
are buffered in queues of size k each, until they are processed
by the server and delivered to their station. The system starts
in a state with all the queues being nearly full. We consider
2 goal conditions: (i) all the queues are empty and (ii) one
of the queues is empty. The ErlangStages-k500 r10
model has two different paths to reach the goal state: a
fast but risky path or a slow but sure path. The slow path
is an Erlang chain of length 500 and rate 10. The objec-
tive is to check which path gives faster reachability to a
safe target state. The stochastic job scheduling benchmarks
SJS-procn i jobn j model multiple processors (i) and
independent jobs (j) with a goal of job completion.

The results are summarized in Table 1. For each model,
we provide the number of states in the CTMDP (states) and
in the product CTMDP (prod), the probability of satisfaction
(Sat. Prob.) for the satisfaction semantics, estimated prob-
ability by the RL algorithm (Est. Sat.), and time (Time 1)
spent in learning that schedule. The value (expected satis-
faction time) for the expectation semantics (Exp. Val.), esti-
mated value obtained by the RL algorithm (Est. Exp.), and
the learning time (Time 2) for the expectation semantics are
provided next. All of our timings and values are averaged
over three runs with randomly chosen seeds. We use the hy-
perparameters as shown in the caption of Table 1.

Our experimental results demonstrate that the proposed
RL algorithms are effective in handling medium sized CT-
MDPs. For both semantics, one may note that the RL algo-
rithms efficiently estimate the optimal values and compute
the optimal schedules. The results for both the semantics for
the benchmarks from the QComp set are similar as they were
used for reachability objective with the target states being
terminal states havng self loops.

Conclusion
Continuous-time MDPs are canonical models to express
nondeterministic and stochastic behavior under dense-
time semantics. Reinforcement learning (RL) provides a
sampling-based method to compute an optimal schedule in
the absence of an explicit environment model. The RL ap-
proach for CTMDPs has recently received considerable at-
tention (Guo and Zhang 2016; Rabe and Schewe 2013). Our
work enabled the specification of learning objectives in CT-
MDPs as ω-regular specifications. To accommodate tempo-
ral modelling, we consider two semantics of ω-regular spec-
ifications (that include LTL objectives) and provide trans-
lations to scalar reward forms amenable for model-free re-
inforcement learning. We believe that this work will open
doors to study and develop model-free reinforcement learn-
ing for continuous-time models that go beyond CTMDPs
and allow temporal constraints on planner’s choices and
residence-time requirements.
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