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AbstractÐ Recent SRAM-based in-memory computing (IMC)
hardware demonstrates high energy efficiency and throughput
for matrix±vector multiplication (MVM), the dominant kernel
for deep neural networks (DNNs). Earlier IMC macros have
employed analog-mixed-signal (AMS) arithmetic hardware. How-
ever, those so-called AIMCs suffer from process, voltage, and
temperature (PVT) variations. Digital IMC (DIMC) macros,
on the other hand, exhibit better robustness against PVT
variations, but they tend to require more silicon area. This
article proposes novel DIMC hardware featuring approximate
arithmetic (DIMCA) to improve area efficiency without hurting
compute density (CD). We also propose an approximation-aware
training model and a customized number format to compensate
for the accuracy degradation caused by the approximation hard-
ware. We prototyped the test chip in 28-nm CMOS. It contains
two versions: the DIMCA with single-approximate hardware
(DIMCA1) and DIMCA with double-approximate hardware
(DIMCA2). The measurement results show that DIMCA1 sup-
ports a 4 b-activation and 1 b-weight (4 b/1 b) CNN model,
achieving 327 kb/mm2, 458±990 TOPS/W (normalized to 1 b/1
b), 8.27±392 TOPS/mm2 (normalized to 1 b/1 b), and 90.41%
accuracy for CIFAR-10. DIMCA2 supports a 1 b/1 b CNN model,
achieving 485 kb/mm2, 932±2219 TOPS/W, 14.4±607 TOPS/mm2,
and 86.96% accuracy for CIFAR-10.

Index TermsÐ Approximate computing, approximation-aware
training, deep learning, in-memory computing (IMC), neural
network accelerators.

I. INTRODUCTION

D
EEP neural network (DNN)-based inference has gained

a large amount of research and development attention as

it achieves unprecedented accuracy in a range of cognitive

tasks such as image classification, object detection, speech

recognition, and language processing [1], [2], [3], [4], [5].
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Fig. 1. Typical SRAM-based IMC circuits employing digital or AMS
arithmetic hardware.

However, DNN-based inference incurs much computational

complexity. To mitigate the complexity, recent works have

proposed specialized hardware architectures [6], [7], [8], [9],

[10]. Especially, the matrix±vector multiplication (MVM), the

dominant computational kernel of DNN-based inference work-

loads, involves many on-chip SRAM accesses because we can

access SRAM in a row-by-row fashion. This poses a bottleneck

to further improve performance and energy efficiency, even in

the specialized processors.

To overcome the memory-access bottleneck, the concept

and the circuit implementation for SRAM-based in-memory

computing (IMC) hardware have been proposed. The IMC

hardware aims to merge computing elements and memory

elements at the array and bitcell levels. Some recent test chips

demonstrate accessing all rows and performing multiply-and-

accumulate (MAC) in one cycle, avoiding the slow row-by-row

data access and demonstrating orders of magnitude improve-

ment in energy efficiency and computing throughput [11], [12],

[13], [14], [15], [16], [17], [18], [19], [20].

0018-9200 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:10 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: DIMCA: AN AREA-EFFICIENT DIMC MACRO FEATURING APPROXIMATE ARITHMETIC HARDWARE 961

Fig. 2. PVT variations negatively affect AMS computing hardware’s
accuracy. The results are based on the simulation of a capacitor-based IMC
SRAM macro. Jiang et al. [12] computed a 256-D binary dot product.

Fig. 1 shows the typical architecture of an SRAM-based

IMC macro. Most earlier macros employ analog-mixed-signal

(AMS) circuits to reduce area overhead and power consump-

tion [12], [18], [20], [21], [22]. However, these so-called

AIMC macros exhibit significant variability across process,

voltage, and temperature (PVT) variations, degrading compu-

tation accuracy. As shown in Fig. 2, we also confirm the large

root-mean-square error (RMSE) of 22.5% at the worst-case

PVT corner via simulations.

On the other hand, digitally implemented IMC circuits

can achieve better robustness over PVT variations [23], [24],

[25], [26], [27], [28], [29], [30], [31]. This so-called digital

IMC (DIMC) can also achieve better technology and volt-

age scalability. However, due to the bulky digital arithmetic

gates, DIMC consumes more area than its AMS counterparts.

Note that a CMOS full adder (FA) cell requires 28 transis-

tors. The large area overhead degrades the weight density

(kb/mm2). To reduce the area overhead, recent works propose

to time-share arithmetic gates among multiple bitcells [29].

While the time-sharing approach can reduce the area overhead,

it inevitably reduces the compute density (CD) (TOPS/mm2).

To improve area efficiency while maintaining CD, we pro-

pose employing digital approximate arithmetic circuits in this

work. The approximate circuits incur the error in the computa-

tion result, but this error is deterministic and some of them can

be compensated in the DNN training process. Based on this

idea, we prototype the DIMC hardware featuring approximate

arithmetic (DIMCA) in a 28-nm CMOS. Specifically, we cre-

ate two versions: DIMCA with single-approximate hardware

(DIMCA1) that employs single-approximate compressors and

supports 1±4 b activations and 1 b weights and DIMCA

with double-approximate hardware (DIMCA2) that employs

double-approximate compressors and supports 1 b activations

and 1 b weights. We also develop and adopt a customized

number representation, called multibit XNOR (MB-XNOR), for

both versions.

The measurement results show that DIMCA1 achieves

327 kb/mm2, 458±990 TOPS/W (normalized to 1 b/1 b acti-

vation/weight), 8.27±392 TOPS/mm2 (normalized to 1 b/1 b),

and 90.41% accuracy for CIFAR-10 with a 4 b-activation

and 1 b-weight (4 b/1 b) CNN model. DIMCA2 achieves

485 kb/mm2, 932±2219 TOPS/W, 14.4±607 TOPS/mm2, and

86.96% accuracy for CIFAR-10 with a 1 b/1 b CNN model.

Fig. 3. Architecture of the proposed DIMCA macro.

Fig. 4. DIMCA bitcell design and the XNOR operand table.

The remainder of this article is as follows. In Section II,

we will present the proposed DIMCA architecture and cir-

cuits, the associated training model, and the custom number

representation. In Section III, we will show the chip prototype

and measurement results. Section IV presents the analytical

models of DIMC hardware and the design space exploration

using the models. Finally, Section V concludes this article.

II. DIMC WITH APPROXIMATE ARITHMETIC

A. Macro Architecture

Fig. 3 illustrates the architecture of DIMCA consisting

of 256 × 64 bitcells. Each column contains 256 bit-

cells, 16 double-approximate compressors, one 16-input

adder tree, and one 11-b shift accumulator. DIMCA1 uses

single-approximate compressors, while DIMCA2 double-

approximate compressors. The single-approximate compressor
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exhibits a smaller error, while the double-approximate com-

pressor requires a smaller number of transistors. We will

compare them in detail in Section II-B.

Fig. 4 shows the bitcell consists of: 1) the standard 6T

SRAM bitcell to store a binary weight and 2) two other pass

transistors to perform XNOR (multiplication). It can support an

input activation of up to 4 bits. We feed the input activation in a

bit serial fashion through a pair of MAC wordline (MWL) and

MWLB. The multiplication result on the MAC bitline (MBL)

goes to the compressor.

A compressor counts the number of 1’s in the Input. The

compressor’s input is in the unsigned integer format. For

example, the standard 15-4 compressor generates a 20±23

unsigned integer from 15 20 weighted input bits.

The adder tree is responsible for adding 16 unsigned inte-

gers that 16 compressors produce. The result is sent to the shift

accumulator, which accumulates the adder tree outputs, while

the multibit input activations are fed in a bit serial fashion.

Therefore, it takes a total of four clock cycles for DIMCA to

multiply a 4 b 256-D input activation vector with a 1 b 256 ×

64-D weight matrix.

Note that from the shift-and-accumulator output, we subtract

the number of −1s, which is equal to 256-(the number of +1s),

and produce the final output in the 2’s complement format.

B. Compressor and Adder Tree Optimization

If implemented based on the exact (nonapproximate) arith-

metic, each column of DIMC employing binary multipliers,

compressors, and an adder tree, requires a total of 247 FA

cells, marking the device efficiency of 19.5 transistors per bit

(T/b). Therefore, we aim to improve the device efficiency by

leveraging approximate compressors [32], [33], [34] and other

circuit techniques.

As shown in Fig. 5, we have designed three compressor

circuits based on [32]. They support three different levels

of approximation: exact, single-approximate, and double-

approximate. The approximate compressors replace FAs with

much smaller AND and OR gates. Interleaved AND and OR

gates remove the bias of the error. For example, an AND gate

can potentially cause a ª−1º error, while an OR can cause a

ª+1º error. Therefore, interleaving AND and OR gates helps

minimize the mean value of errors.

In Fig. 5, the double-approximate compressor results in

55% fewer transistors than an exact compressor, and the

single-approximate compressor consumes 40% fewer transis-

tors. However, the simulation shows that they exhibit nonzero

RMSE values ranging from 4.03% to 6.76%. Yet, since

DIMCA uses digital circuits, the error that it produces is

deterministic.

To further reduce the area, we propose a pass-gate-based

FA (see Fig. 6) and design a ripple-carry-adder (RCA) using

those FAs [see Fig. 7(a)]. However, the pass-gate logic incurs

Vt drop, and if accumulated across more than three pass

gates, it can largely hurt the noise margin of the circuits.

Hence, we have identified all the nodes in an FA that do not

have full-swing signals [marked in red in Fig. 6(a)] and have

inserted inverters such that the number of series-connected

pass-gates is less than two.

However, naïve inverter insertion often requires inserting

two inverters to remove data inversion, increasing area over-

head. As shown in Fig. 8, it could increase the silicon area

by 73%. Therefore, we designed a custom 12T FA cell [see

Fig. 6(a)] employing both pass- and transmission-gates. The

layout [see Fig. 6(c)] takes the area of 1.764 µm2. Also,

we designed the second version of the 12T FA cell which has

the inverted inputs [see Fig. 6(b)]. These techniques reduce the

number of inserted inverters, enabling 17% silicon area savings

(see Fig. 8). Note that the pass-gate logic can increase the static

power because the Vt drop cannot fully turn off the PMOS of

the inserted inverter. The simulation of the adder tree shows

the static power consumption of 28.9 µW and the dynamic

power consumption of 111.9 µW at 0.9 V, confirming that

the static power still takes a smaller portion than the dynamic

power.

Fig. 7(b) shows the block diagram of one DIMCA col-

umn, which employs the approximate compressor (CPRS)

and RCAs [see Fig. 7(a)]. As shown in Fig. 9, the FA

cell level optimization reduces the transistor count by 39%.

The approximate compressors led to the total transistor count

reduction of 46.4%±56.4%. The DIMCA2 column exhibits the

device efficiency of 13.67 T/b, a 30% reduction compared to

the exact arithmetic counterpart.

C. Approximate-Aware Training Model

The approximate compressors produce positive and neg-

ative errors. As a result, DIMCA1 (DIMCA2) exhibits the

worst-case RMSE error of 4.03% (6.76%). Although these

worst-case RMSEs are smaller than that of AIMC, they

degrade inference accuracy. We have DIMCA to perform a

VGG-like 1 b/1 b activation/weight CNN model for CIFAR-

10.1 Trained by the conventional training model, DIMCA1

(DIMCA2) achieves a poor accuracy of 50.9% (25.2%). As a

comparison, the exact arithmetic hardware achieves 89.6%.

To improve the inference accuracy, we propose an

approximation-aware training algorithm based on [35].

We employ approximate arithmetic such as bitwise AND,

OR, and FA to emulate the behavior of single-approximate

and double-approximate compressors in the forward path

computation. The backpropagation does not use approximate

arithmetic. As shown in Fig. 10, DIMCA1 (DIMCA2) now

can achieve a much higher accuracy of 89.0% (86.9%).

D. Custom Number Representation

In addition to the 1 b/1 b CNN model, we have DIMCA

to perform a 4 b/1 b CNN model for CIFAR-10. However,

as shown in Fig. 11, the 4 b/1 b CNN model achieves

lower accuracy than the 1 b/1 b counterpart. This is because

the multibit activation model generally requires more precise

arithmetic. Also, conventionally, multibit activations are in

the 2’s complement format, which also requires weights to

be in the same 2’s complement format for simple arithmetic

1The CNN model has the following topology: 128C3-128C3-P2-256C3-
256C3-P2-512C3-512C3-P2-FC1024-FC1024-FC10, where 128C3 represents
128 features 3 × 3 convolution, P2 represents 2 × 2 pooling, and FC1024
represents a 1024 fully-connected layer.
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Fig. 5. (a) Exact, (b) single-approximate, and (c) double-approximate compressor circuits and the corresponding RMSE errors in computing 256-D binary
dot products.

Fig. 6. Schematics of the 12T FA with (a) regular inputs and (b) complementary inputs. (c) Layout of the 12T FA circuits.

TABLE I

MB-XNOR TO 2’S COMPLEMENT MAPPING FOR 4 B ACTIVATIONS

hardware implementation. However, in the 2’s complement

format, a 1 b weight represents −1 or 0, while our 1 b

weight represents −1 or +1. This discrepancy further degrades

inference.

To better support a multibit activation CNN model, we pro-

pose a new custom number format titled MB-XNOR based on

the bipolar encoding scheme [36]. We make each 1 b weight

represent +1 or −1 (instead of −1 or 0) and use a similar

format for an N -bit activation

bN−1bN−2, . . . , b0 =
∑

i

bi · 2i (1)

where bi is +1 or −1. If the inputs of DIMCA are in

the 2’s complement, we need to convert them from the 2’s

complement to our MB-XNOR format, which can be done

with a small lookup table. Table I shows one to support 4

b activations.

Our DIMCA hardware shows a higher signal-to-noise ratio

(SNR) that achieves a higher inference accuracy with the

proposed MB-XNOR format than the 2’s complement format.

We formulate the SNR as follows:

SNR =
∑

y2
true

/
∑

(ytrue − yapprox)
2 (2)

where ytrue is the ground truth of the dot product between a

256-dimension 1±4 b Gaussian-distributed input vector and a

256-dimension binomial-distributed weight vector and yapprox

is the same dot product results yet using DIMCA . Fig. 12(a)
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Fig. 7. (a) 4 b RCA circuits. (b) Block diagram of one DIMCA column.

Fig. 8. Proposed RCA minimizes Vt drop at 17% less area than the RCA
with a naïve inverter insertion.

Fig. 9. Approximate arithmetic hardware reduces the transistor count per bit
by 46.4%±56.4%.

shows the SNR simulation results. The DIMCA2 employ-

ing the proposed MB-XNOR format achieves a 0.15 higher

SNR than 2’s complement. On the other hand, as shown in

Fig. 12(b), we also analyze the signal-to-quantization noise

Fig. 10. CIFAR-10 accuracy: the conventional versus the proposed
approximation-aware training model.

Fig. 11. MB-XNOR format offers better CIFAR-10 accuracy than the 2’s
complement format for the DIMCA.

Fig. 12. (a) MB-XNOR format provides a greater SNR than the 2’s
complement format for the DIMCA. (b) SQNR of the proposed MB-XNOR

format across 1±4 b activation.

Fig. 13. Tanh activation quantized to 3 b in the MB-XNOR format.

ratio (SQNR). The SQNR increases with higher activation pre-

cision because of smaller quantization noise. The lower SNR

than [15] because we include the approximate circuits, such as
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Fig. 14. Die micrograph.

single-approximate compressors and double-approximate com-

pressors, in our simulation, whereas [15] does not employ any

approximation scheme. Although the approximation degrades

the SNR, the proposed DIMCA causes a deterministic error

only, which the approximation-aware training can restore

significantly.

We also evaluate the CNN inference accuracy. DIMCA1

using the MB-XNOR format achieves a 5.4% higher inference

accuracy (see Fig. 11). DIMCA2 using the MB-XNOR format

also improves the accuracy by 6% compared to the 2’s

complement, but the accuracy is low (78.6%) for the 1 b/4

b weight/activation model. Therefore, we consider DIMCA2

to use only 1 b/1 b weight/activation models.

One caveat is that this number format disallows the use

of some activation functions, such as ReLU, because it cannot

represent 0. We can still use other popular activation functions

such as hyperbolic tangent (tanh) (see Fig. 13) and leaky

ReLU. It would be possible to support high-precision (8 b

or 16 b) arithmetic only with a better approximation scheme.

Currently, the proposed approximate scheme relies on bit

serial input, and the error increases for the MSB-related

computation.

III. CHIP PROTOTYPE AND MEASUREMENT

We prototyped the DIMCA test chip in a 28-nm CMOS

technology. Fig. 14 shows the chip photograph. The 16-kb

DIMCA1 consumes 0.049 mm2 and the 16-kb DIMCA2 takes

0.033 mm2.

We measure the two DIMCA macros across 0.5±1.1 V at

25 ◦C. As shown in Fig. 15(a), DIMCA2 achieves 932±2219

TOPS/W and 475±20 032 GOPS; DIMCA1 attains 458±990

TOPS/W and 405±192 15 GOPS. The energy efficiency and

throughput metrics are all normalized to 1 b/1 b. As shown

in Fig. 15(b), we also measured the energy efficiency and

throughput across five chips at the nominal voltage of 0.9 V.

Both energy efficiency and throughput measurements show

only a small distribution. Fig. 15(c) shows the energy effi-

ciency measurements across VDDs at 25% and 50% input

toggle rates (TRs). In the SRAM mode, both macros take

340 ns (256 cycles at 752 MHz) to update all 16-kb weights

at 0.9 V and 25 ◦C.

We also measure the energy efficiency and throughput

across different temperatures. As shown in Fig. 16(a), the

energy efficiency degrades with higher temperatures. The

reason is that the leakage power dissipation increases steeper

than the throughput does. At 0.9 V from −15 ◦C to 25 ◦C,

the energy efficiency still increases because the leakage only

accounts for 10%±25% of the total power consumption. At 25
◦C and above, the leakage starts to consume a more significant

portion of the total power consumption (32%±58%). We also

measure the leakage power across the supply voltages and

temperatures. As shown in Fig. 16(b), the leakage power

increases exponentially with temperature.

Fig. 16(c) shows the energy consumption breakdown. For

DIMCA1, the adder trees account for 43.03% of the total

energy consumption, and the compressors take 38.05%. The

shift accumulators and MWL drivers consume 9.11% and

8.62%, respectively. The bitcell array accounts for only 1.2%.

Fig. 16(d) shows the area breakdown.

Table II compares the proposed hardware to the recent

works. Compared with [25], DIMCA2 attains 53% higher

weight density, 2.4× higher CD, and 10% higher energy

efficiency. On the other hand, Yan et al. [29] adopt a

time-sharing architecture and trade the throughput and CD

for the weight density. As a result, Yan et al. [29] achieve

a high weight density of 1067 kb/mm2 but achieve a lower

CD of 178 TOPS/mm2, which is 49% lower than DIMCA2.

The proposed DIMCA macros achieve high CD and weight

density at the same time while maintaining state-of-the-art

energy efficiency and CNN inference accuracy.

IV. MODELING AND DESIGN SPACE EXPLORATION

This section aims to develop the parameterized analytical

models of SRAM-based DIMC macros for quick design space

exploration. Fig. 17 shows the high-level block diagram of

the DIMC array, which we assume in the modeling process.

The array contains macros and additional adders to sum the

outputs of the macros. The model development considers the

following design parameters: array dimensions, activation and

weight precisions, approximation schemes, and the degree of

arithmetic hardware multiplexing (aka reuse and time-sharing).

Then, we calibrate the developed models based on the two

recent DIMC test chips’ measurements (see [25] and [37]),

which we call the base DIMC hardware hereafter. Then,

we will use these models to estimate/predict the energy effi-

ciency, throughput, area, and RMSE of various SRAM-based

DIMC macros.

A. Silicon Area

In this section, we develop the area model of the DIMC

array. First of all, we formulate the size (memory capacity) of

a DIMC array in kb as follows:

SDIMC =
Nrow · Ncol

1024
(3)

where Nrow is the total number of rows of the DIMC array

and Ncol is the total number of columns of the DIMC array.

Refer to Fig. 17 for the definitions.

On the other hand, the total silicon area of the IMC array

is roughly proportional to Sarray. However, it is impractical
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Fig. 15. (a) Energy efficiency and throughput across different supply voltages. (b) Multichip measurements of energy efficiency and throughput at 0.9 V
supply. (c) Energy efficiency at 25% and 50% TRs.

Fig. 16. (a) Energy efficiency and throughput measurements of DIMCA2 across temperatures at 0.9 V. (b) Leakage power consumption of DIMCA2 across
supply voltages and temperatures. (c) Energy breakdown of the two proposed DIMCA macros. (d) Area breakdown of the two proposed DIMCA macros.

TABLE II

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART AIMC AND DIMC MACROS

to create one macro with very large Nrow and Ncol since

the long bitlines and wordlines slow down the read and

write operations. Therefore, we assume that each macro has

256 rows and 64 columns while having multiple macros to

create a large DIMC array. We also assume to have additional

adders to sum up the results from the macros in an array. As a

result, we can formulate the area of a DIMC array ADIMC as

follows:

ADIMC = Amacros + Aadders (4)

where Amacros is the area of all IMC macros and Aadder is the

area of the additional adders.

We formulate Amacros while considering the degree of

multiplexing (aka hardware reuse or time-sharing) arithmetic

hardware. The fully digital design of DIMC hardware makes it

straightforward for columns to reuse the arithmetic hardware.

If we time-share the arithmetic hardware across Dmultiplex

columns, only one column of weights, out of every Dmultiplex

columns, performs MVMs with the MWLs/MWLBs. The

higher degree of time-sharing can save area at a throughput
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Fig. 17. High-level block diagram of the DIMC array we assume in the
model development. The array contains macros and additional adders to sum
the outputs of the macros.

penalty. Based on this idea, we formulate Amacros as follows:

Amacros = A0 ·
Nrow

Nrow0

·
Ncol

Ncol0

·

{

1 − rarith +
rarith

Dmultiplex

}

(5)

where A0 is the area of the base DIMC macro and Nrow0

and Ncol0 represent Nrow and Ncol of the base macro. rarith

is the ratio of the area of the arithmetic hardware, that is,

compressors, adder trees, and shift accumulators to the total

macro area. Dmultiplex is the number of columns that share

arithmetic hardware.

On the other hand, approximate-arithmetic compressors, like

those used in DIMCA, can effectively reduce the area of the

base DIMC macro (A0). Our DIMCA employs approximate

compressors. To develop a more detailed model for A0,

we formulate the area of the exact compressors as follows:

Aexact = {(N + 1) − log2 (N + 1) − 1} · AFA · Nexact (6)

where N is the number of inputs, AFA is the area of one FA

cell, and Nexact is the number of exact compressors in a DIMC

macro.

Then, we formulate the area of the single-approximate

compressors as follows:

Aapprox1 =

{{

N

2
− log2 N

}

· AFA +
N

2
· AAND

}

· Nsingle−approx (7)

where AAND is the area of an AND gate and Napprox1 is

the number of single-approximate compressors in one macro.

Similarly, the area of the double-approximate compressors can

be formulated as follows:

Aapprox2 =

{

AFA +

(

N

2
+

N

4

)

· AAND

}

· Napprox2 (8)

where Napprox2 is the number of double-approximate compres-

sors in one macro.

Finally, we create a model for Aadders by assuming we

need to accumulate only across the rows of DIMC. Under

this assumption, a DIMC array having Nrow and Ncol needs

to accumulate Nrow/Nrow0 partial sums for all Ncol columns.

Therefore, we can formulate Aadders as follows:

Aadders = AFA · Nadders

Nadders =
Ncol

Ncol0

· 6
log2

Nrow
Nrow0

−1

i=0

×

{

2i ·

(

BWout + log2

Nrow

Nrow0

− 1 − i

)}

(9)

where AFA is the area of the one FA cell, Nadders is the total

number of additional FA cells, and BWout is the bit width of

the output of each macro.

B. Throughput and CD

In this section, we create the models for computing through-

put in TOPS and CD in TOPS/mm2. First of all, we formulate

compute throughput (CT) as follows:

CT = CT0 ·
1

Dmultiplex

·
Nrow

Nrow0

·
Ncol

Ncol0

·
BWin0

BWin

·
BWwt0

BWwt

(10)

where CT0 is the throughput of the base DIMC, BWin0 is the

bit width of input activation (BWin) of the base DIMC, and

BWwt0 is the bit width of weights (BWwt) of the base DIMC.

Based on (4) and (10), we can formulate CD as follows:

CD =
CT

ADIMC

. (11)

The second row of (10) shows that CD increases proportionally

with SDIMC. The third row of (10) normalizes CD to the

activation and weight bit widths (precision).

C. Energy Efficiency

In this section, we create the energy efficiency model in

TOPS/W. We can formulate the energy efficiency of DIMC

hardware (EE) as follows:

EE = EE0 ·
TN

TN0

·
BWin0

BWin

·
BWwt0

BWwt

(12)

where EE0 is the energy efficiency of the base DIMC hardware

and TN0 is the technology node (TN) of the base DIMC

hardware uses. The second and third rows of (12) are added to

normalize EE to the TN and activation and weight bit widths of

the base DIMC hardware. (12) does not contain Nrow and Ncol

since the amount of arithmetic hardware in DIMC scale with

Nrow and Ncol. In other words, EE remains almost unchanged

across different Nrows and Ncols. Note that we ignore the

energy consumption of the additional adders (those adders to

sum the outputs of the macros) since it is later found to be

insignificant compared to total power consumption.

D. Normalized Root Mean Squared Error (NRMSE)

In this section, we introduce the NRMSE model of DIMCA

hardware. We denote the MAC result of the i th column to be

M (i) and its error to be e(i). For simplicity, we denote the max

value of M (i)s to be Mmax and the minimum value of M (i)s

to be Mmin. Without the loss of generality, we assume that

the error from each column follows the Gaussian distribution.

We also assume that the error is independent of the errors

from other columns, that is, e(i) i.i.d
∼ N (0, σ 2

0 ). Based on those

assumptions, we can create the NRMSE model of a single

column as follows:

NRMSEsingle−col =
σ0

Mmax − Mmin

. (13)
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Fig. 18. Area for double-approximate and exact IMC across different IMC
array sizes.

The binary-weighted sum across BWwt columns is M =
∑BWwt

i=1 2i−1 M (i). The variance of the binary-weighted sum

error (e) is

Var[e] =

BWwt
∑

i=1

Var[2i−1e(i)]

=

BWwt
∑

i=1

4i−1σ 2
0 =

4BWwt − 1

3
σ 2

0 . (14)

As a result, the binary-weighted sum error (e) across BWwt

columns is

e =

BWwt
∑

i=1

2i−1e(i) ∼ N

(

0,
4BWwt − 1

3
σ 2

0

)

. (15)

Since the full range of M is (2BWwt − 1)(Mmax − Mmin),

we can formulate the NRMSE of M for BWwt columns as

follows:

NRMSEBWwt−col =
1

2BWwt−1
·

√

4BWwt − 1

3
·

σ0

Mmax − Mmin

.

(16)

We can find from (16) that the NRMSE of the multi-

column sum is the product of the single-column NRMSE

(σ0/Mmax − Mmin) and a factor which depends on BWwt.

Finally, since the activation and weights are interchangeable,

we can treat the impact of multibit input activation on NRMSE

as similar to the multibit weights. Therefore, for BWin-bit

input activations and BWwt-bit weights, we can formulate the

NRMSE as follows:

NRMSE =
1

2BWin − 1
·

√

4BWin − 1

3

·
1

2BWwt − 1
·

√

4BWwt − 1

3
·

σ0

µmax − µmin

. (17)

E. Model Calibration and Model-Based Design Exploration

We calibrate the developed models against the measurement

results. We use [25] for the exact arithmetic and [37] for

Fig. 19. Model-predicted TOPS/W and GOPS values across different
activation and weight bit widths for DIMCA2 and exact DIMC. One operation
refers to either 1-b addition or 1-b multiplication.

Fig. 20. NRMSE and area across different approximation schemes.

approximate arithmetic as our base DIMC macros. Fig. 18

shows the measurement results lie on the model-predicted

area curves. On the other hand, Fig. 19 shows the mea-

surement results lie on the model-predicted energy-efficiency

curves. It also shows the measurement results lie on the

model-predicted throughput curves. Similarly, Fig. 20 shows

that we calibrate the NRMSE model based on the measure-

ments from [25] and this work.

We use the models to predict the area, energy effi-

ciency, throughput, and NRMSE across several design points.

As shown in Fig. 18, the area of the DIMC is roughly propor-

tional to the DIMC’s total size. The additional adders exhibit

a proportionally larger area with respect to the DIMC size

but consume only <3% of the total area. On the other hand,

for the same DIMC size, double-approximate compressors can

reduce DIMC area by ∼2.46×.

Fig. 19 shows the predicted energy efficiency and through-

put. The double-approximate compressors improve energy

efficiency by 1.6× and throughput by 1.53× compared to

the exact counterparts. Also, the figure shows that both input

and weight bitwidth (BWin and BWwt) linearly decrease

throughput and energy efficiency. Yan et al. [29] time-share the
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Fig. 21. NRMSE across different activation and weight bit widths.

Fig. 22. Number of FAs required for adding four columns (4 b-weight) with
256 bitcells in each column.

arithmetic gate across multiple bitcells. This reuse architecture

improves area efficiency (µm2 per bit) by 2.2× and energy

efficiency by 6.3% at 5.2× throughput degradation.

Fig. 20 shows the model-predicted tradeoff between the area

and NRMSE. DIMCA2 has the smallest area but the largest

NRMSE. On the other hand, the exact-arithmetic DIMC con-

sumes more area. The 64 kb and 4 b/4 b, single-approximate

DIMC consumes 1.67× less area than the counterpart [25].

The model predicts a 1 b/1 b single-approximate DIMC

exhibit 1.47× worse NRMSE than 4 b/1 b. Note that the

double-approximate DIMC can gain an additional 1.49× area

reduction, but it exhibits 1.68× worse NRMSE, which matches

the measurement results (see Fig. 5). We also show the

model-predicted NRMSE across different bit widths in Fig. 21.

NRMSE decreases as the input and weight bitwidth increase,

and double-approximate DIMC generates 1.7× larger NRMSE

than single-approximate DIMC across 1±8 b.

We also compare the area of macros employing different

adder tree architectures. DIMCA integrates an adder tree in

each column and sums the partial products of multibit weights

and activations. In contrast, Chih et al. [25] employ one adder

tree every four columns and process the multibit partial sums

in a single adder tree. Fig. 22 shows the comparison results

of the number of FA cells for those two architectures, which

shows the total area is roughly the same. In both cases,

we consider the nonapproximate arithmetic.

V. CONCLUSION

This article proposes two DIMCA prototypes, DIMC

macros which employ approximate arithmetic hardware for

improving area and power efficiency. The 28-nm test chip mea-

surements show that DIMCA2 (DIMCA1) achieves the weight

density of 485 kb/mm2 (327 kb/mm2), the energy efficiency

of 2219 TOPS/W (990 TOPS/W), the CD of 607 TOPS/mm2

(392 TOPS/mm2), and 86.96% CIFAR-10 accuracy for a

1 b/1 b CNN model (90.41%). We also develop parameterized

analytical models for the area, energy efficiency, throughput,

and NRMSE of a DIMC array for design space exploration.

We calibrate the models to recent test chip results.
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