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Abstract— Recent SRAM-based in-memory computing (IMC)
hardware demonstrates high energy efficiency and throughput
for matrix—vector multiplication (MVM), the dominant kernel
for deep neural networks (DNNs). Earlier IMC macros have
employed analog-mixed-signal (AMS) arithmetic hardware. How-
ever, those so-called AIMCs suffer from process, voltage, and
temperature (PVT) variations. Digital IMC (DIMC) macros,
on the other hand, exhibit better robustness against PVT
variations, but they tend to require more silicon area. This
article proposes novel DIMC hardware featuring approximate
arithmetic (DIMCA) to improve area efficiency without hurting
compute density (CD). We also propose an approximation-aware
training model and a customized number format to compensate
for the accuracy degradation caused by the approximation hard-
ware. We prototyped the test chip in 28-nm CMOS. It contains
two versions: the DIMCA with single-approximate hardware
(DIMCA1) and DIMCA with double-approximate hardware
(DIMCA2). The measurement results show that DIMCA1 sup-
ports a 4 b-activation and 1 b-weight (4 b/1 b) CNN model,
achieving 327 kb/mm?, 458-990 TOPS/W (normalized to 1 b/1
b), 8.27-392 TOPS/mm? (normalized to 1 b/1 b), and 90.41%
accuracy for CIFAR-10. DIMCAZ2 supports a 1 b/1 b CNN model,
achieving 485 kb/mm?, 932-2219 TOPS/W, 14.4-607 TOPS/mm?,
and 86.96% accuracy for CIFAR-10.

Index Terms— Approximate computing, approximation-aware
training, deep learning, in-memory computing (IMC), neural
network accelerators.

I. INTRODUCTION

EEP neural network (DNN)-based inference has gained

a large amount of research and development attention as
it achieves unprecedented accuracy in a range of cognitive
tasks such as image classification, object detection, speech
recognition, and language processing [1], [2], [3], [4], [5]-

Manuscript received 17 January 2023; revised 25 April 2023 and
15 August 2023; accepted 1 September 2023. Date of publication
28 September 2023; date of current version 27 February 2024. This article
was approved by Associate Editor Meng-Fan Chang. This work was supported
in part by the Semiconductor Research Corporation (SRC) under Grant Task
2810.034 and in part by NSF under Grant 1919147. (Corresponding author:
Mingoo Seok.)

Chuan-Tung Lin, Dewei Wang, Bo Zhang, and Mingoo Seok are with
the Department of Electrical Engineering, Columbia University, New York,
NY 10027 USA (e-mail: ms4415@columbia.edu).

Gregory K. Chen, Phil C. Knag, and Ram Kumar Krishnamurthy are with
the Circuit Research Laboratory, Intel Corporation, Hillsboro, OR 97229 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/1SSC.2023.3313519.

Digital Object Identifier 10.1109/JSSC.2023.3313519

i Digitalbased AMS based
DAy, It
ol : D e A
' Loy =X
v
.
.
wWio) T — *r—9
1 — 11
wwio] T S_Ie - _ e
® H ®
WL[1] a o o o
[ 1 [ 1
w1 g o A ; -
WL[M] + +
[ 1 [ 1
wapn 21 ~ He1t
BL[0] BLB[0] BL[N] BLB[N]

Fig. 1.  Typical SRAM-based IMC circuits employing digital or AMS
arithmetic hardware.

However, DNN-based inference incurs much computational
complexity. To mitigate the complexity, recent works have
proposed specialized hardware architectures [6], [7], [8], [9],
[10]. Especially, the matrix—vector multiplication (MVM), the
dominant computational kernel of DNN-based inference work-
loads, involves many on-chip SRAM accesses because we can
access SRAM in a row-by-row fashion. This poses a bottleneck
to further improve performance and energy efficiency, even in
the specialized processors.

To overcome the memory-access bottleneck, the concept
and the circuit implementation for SRAM-based in-memory
computing (IMC) hardware have been proposed. The IMC
hardware aims to merge computing elements and memory
elements at the array and bitcell levels. Some recent test chips
demonstrate accessing all rows and performing multiply-and-
accumulate (MAC) in one cycle, avoiding the slow row-by-row
data access and demonstrating orders of magnitude improve-
ment in energy efficiency and computing throughput [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20].
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Fig. 2. PVT variations negatively affect AMS computing hardware’s
accuracy. The results are based on the simulation of a capacitor-based IMC
SRAM macro. Jiang et al. [12] computed a 256-D binary dot product.

Fig. 1 shows the typical architecture of an SRAM-based
IMC macro. Most earlier macros employ analog-mixed-signal
(AMS) circuits to reduce area overhead and power consump-
tion [12], [18], [20], [21], [22]. However, these so-called
AIMC macros exhibit significant variability across process,
voltage, and temperature (PVT) variations, degrading compu-
tation accuracy. As shown in Fig. 2, we also confirm the large
root-mean-square error (RMSE) of 22.5% at the worst-case
PVT corner via simulations.

On the other hand, digitally implemented IMC circuits
can achieve better robustness over PVT variations [23], [24],
[25], [26], [27], [28], [29], [30], [31]. This so-called digital
IMC (DIMC) can also achieve better technology and volt-
age scalability. However, due to the bulky digital arithmetic
gates, DIMC consumes more area than its AMS counterparts.
Note that a CMOS full adder (FA) cell requires 28 transis-
tors. The large area overhead degrades the weight density
(kb/mm?). To reduce the area overhead, recent works propose
to time-share arithmetic gates among multiple bitcells [29].
While the time-sharing approach can reduce the area overhead,
it inevitably reduces the compute density (CD) (TOPS/mm?).

To improve area efficiency while maintaining CD, we pro-
pose employing digital approximate arithmetic circuits in this
work. The approximate circuits incur the error in the computa-
tion result, but this error is deterministic and some of them can
be compensated in the DNN training process. Based on this
idea, we prototype the DIMC hardware featuring approximate
arithmetic (DIMCA) in a 28-nm CMOS. Specifically, we cre-
ate two versions: DIMCA with single-approximate hardware
(DIMCAU1) that employs single-approximate compressors and
supports 1-4 b activations and 1 b weights and DIMCA
with double-approximate hardware (DIMCA2) that employs
double-approximate compressors and supports 1 b activations
and 1 b weights. We also develop and adopt a customized
number representation, called multibit XNOR (MB-XNOR), for
both versions.

The measurement results show that DIMCAI achieves
327 kb/mm?, 458-990 TOPS/W (normalized to 1 b/l b acti-
vation/weight), 8.27-392 TOPS/mm? (normalized to 1 b/1 b),
and 90.41% accuracy for CIFAR-10 with a 4 b-activation
and 1 b-weight (4 b/l b) CNN model. DIMCA2 achieves
485 kb/mm?, 932-2219 TOPS/W, 14.4-607 TOPS/mm?, and
86.96% accuracy for CIFAR-10 with a 1 b/1 b CNN model.
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Fig. 3. Architecture of the proposed DIMCA macro.
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Fig. 4. DIMCA bitcell design and the XNOR operand table.

The remainder of this article is as follows. In Section II,
we will present the proposed DIMCA architecture and cir-
cuits, the associated training model, and the custom number
representation. In Section III, we will show the chip prototype
and measurement results. Section IV presents the analytical
models of DIMC hardware and the design space exploration
using the models. Finally, Section V concludes this article.

II. DIMC WITH APPROXIMATE ARITHMETIC
A. Macro Architecture

Fig. 3 illustrates the architecture of DIMCA consisting
of 256 x 64 bitcells. Each column contains 256 bit-
cells, 16 double-approximate compressors, one 16-input
adder tree, and one 11-b shift accumulator. DIMCAI1 uses
single-approximate compressors, while DIMCA2 double-
approximate compressors. The single-approximate compressor
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exhibits a smaller error, while the double-approximate com-
pressor requires a smaller number of transistors. We will
compare them in detail in Section II-B.

Fig. 4 shows the bitcell consists of: 1) the standard 6T
SRAM bitcell to store a binary weight and 2) two other pass
transistors to perform XNOR (multiplication). It can support an
input activation of up to 4 bits. We feed the input activation in a
bit serial fashion through a pair of MAC wordline (MWL) and
MWLB. The multiplication result on the MAC bitline (MBL)
goes to the compressor.

A compressor counts the number of 1’s in the Input. The
compressor’s input is in the unsigned integer format. For
example, the standard 15-4 compressor generates a 2°-23
unsigned integer from 15 2° weighted input bits.

The adder tree is responsible for adding 16 unsigned inte-
gers that 16 compressors produce. The result is sent to the shift
accumulator, which accumulates the adder tree outputs, while
the multibit input activations are fed in a bit serial fashion.
Therefore, it takes a total of four clock cycles for DIMCA to
multiply a 4 b 256-D input activation vector with a 1 b 256 x
64-D weight matrix.

Note that from the shift-and-accumulator output, we subtract
the number of —1s, which is equal to 256-(the number of +1s),
and produce the final output in the 2’s complement format.

B. Compressor and Adder Tree Optimization

If implemented based on the exact (nonapproximate) arith-
metic, each column of DIMC employing binary multipliers,
compressors, and an adder tree, requires a total of 247 FA
cells, marking the device efficiency of 19.5 transistors per bit
(T/b). Therefore, we aim to improve the device efficiency by
leveraging approximate compressors [32], [33], [34] and other
circuit techniques.

As shown in Fig. 5, we have designed three compressor
circuits based on [32]. They support three different levels
of approximation: exact, single-approximate, and double-
approximate. The approximate compressors replace FAs with
much smaller AND and OR gates. Interleaved AND and OR
gates remove the bias of the error. For example, an AND gate
can potentially cause a “—1” error, while an OR can cause a
“+1” error. Therefore, interleaving AND and OR gates helps
minimize the mean value of errors.

In Fig. 5, the double-approximate compressor results in
55% fewer transistors than an exact compressor, and the
single-approximate compressor consumes 40% fewer transis-
tors. However, the simulation shows that they exhibit nonzero
RMSE values ranging from 4.03% to 6.76%. Yet, since
DIMCA uses digital circuits, the error that it produces is
deterministic.

To further reduce the area, we propose a pass-gate-based
FA (see Fig. 6) and design a ripple-carry-adder (RCA) using
those FAs [see Fig. 7(a)]. However, the pass-gate logic incurs
V, drop, and if accumulated across more than three pass
gates, it can largely hurt the noise margin of the circuits.
Hence, we have identified all the nodes in an FA that do not
have full-swing signals [marked in red in Fig. 6(a)] and have
inserted inverters such that the number of series-connected
pass-gates is less than two.
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However, naive inverter insertion often requires inserting
two inverters to remove data inversion, increasing area over-
head. As shown in Fig. 8, it could increase the silicon area
by 73%. Therefore, we designed a custom 12T FA cell [see
Fig. 6(a)] employing both pass- and transmission-gates. The
layout [see Fig. 6(c)] takes the area of 1.764 um?. Also,
we designed the second version of the 12T FA cell which has
the inverted inputs [see Fig. 6(b)]. These techniques reduce the
number of inserted inverters, enabling 17% silicon area savings
(see Fig. 8). Note that the pass-gate logic can increase the static
power because the V; drop cannot fully turn off the PMOS of
the inserted inverter. The simulation of the adder tree shows
the static power consumption of 28.9 uW and the dynamic
power consumption of 111.9 uW at 0.9 V, confirming that
the static power still takes a smaller portion than the dynamic
power.

Fig. 7(b) shows the block diagram of one DIMCA col-
umn, which employs the approximate compressor (CPRS)
and RCAs [see Fig. 7(a)]l. As shown in Fig. 9, the FA
cell level optimization reduces the transistor count by 39%.
The approximate compressors led to the total transistor count
reduction of 46.4%-56.4%. The DIMCA?2 column exhibits the
device efficiency of 13.67 T/b, a 30% reduction compared to
the exact arithmetic counterpart.

C. Approximate-Aware Training Model

The approximate compressors produce positive and neg-
ative errors. As a result, DIMCA1 (DIMCA2) exhibits the
worst-case RMSE error of 4.03% (6.76%). Although these
worst-case RMSEs are smaller than that of AIMC, they
degrade inference accuracy. We have DIMCA to perform a
VGG-like 1 b/1 b activation/weight CNN model for CIFAR-
10.! Trained by the conventional training model, DIMCA1
(DIMCA2) achieves a poor accuracy of 50.9% (25.2%). As a
comparison, the exact arithmetic hardware achieves 89.6%.

To improve the inference accuracy, we propose an
approximation-aware training algorithm based on [35].
We employ approximate arithmetic such as bitwise AND,
OR, and FA to emulate the behavior of single-approximate
and double-approximate compressors in the forward path
computation. The backpropagation does not use approximate
arithmetic. As shown in Fig. 10, DIMCA1 (DIMCA2) now
can achieve a much higher accuracy of 89.0% (86.9%).

D. Custom Number Representation

In addition to the 1 b/1 b CNN model, we have DIMCA
to perform a 4 b/1 b CNN model for CIFAR-10. However,
as shown in Fig. 11, the 4 b/1 b CNN model achieves
lower accuracy than the 1 b/l b counterpart. This is because
the multibit activation model generally requires more precise
arithmetic. Also, conventionally, multibit activations are in
the 2’s complement format, which also requires weights to
be in the same 2’s complement format for simple arithmetic

'The CNN model has the following topology: 128C3-128C3-P2-256C3-
256C3-P2-512C3-512C3-P2-FC1024-FC1024-FC10, where 128C3 represents
128 features 3 x 3 convolution, P2 represents 2 x 2 pooling, and FC1024
represents a 1024 fully-connected layer.
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TABLE I
MB-XNOR TO 2°S COMPLEMENT MAPPING FOR 4 B ACTIVATIONS

MB-XNOR 2's 1 MB-XNOR 2's 1
1111 01111 0111 11111
1110 01101 0110 11101
1101 01011 0101 11011
1100 01001 0100 11001
1011 00111 0011 10111
1010 00101 0010 10101
1001 00011 0001 10011
1000 00001 0000 10001

hardware implementation. However, in the 2’s complement
format, a 1 b weight represents —1 or 0, while our 1 b
weight represents —1 or 4-1. This discrepancy further degrades
inference.

To better support a multibit activation CNN model, we pro-
pose a new custom number format titled MB-XNOR based on
the bipolar encoding scheme [36]. We make each 1 b weight
represent +1 or —1 (instead of —1 or 0) and use a similar

format for an N-bit activation

by_1bn—2, ..., by = Zb,» X (1)

where b; is +1 or —I1. If the inputs of DIMCA are in
the 2’s complement, we need to convert them from the 2’s
complement to our MB-XNOR format, which can be done
with a small lookup table. Table I shows one to support 4
b activations.

Our DIMCA hardware shows a higher signal-to-noise ratio
(SNR) that achieves a higher inference accuracy with the
proposed MB-XNOR format than the 2’s complement format.
We formulate the SNR as follows:

SNR = Z ytzrue/ Z()’true - yappmx)z 2)

where yuye 1S the ground truth of the dot product between a
256-dimension 1-4 b Gaussian-distributed input vector and a
256-dimension binomial-distributed weight vector and y,pprox
is the same dot product results yet using DIMCA . Fig. 12(a)
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shows the SNR simulation results. The DIMCA2 employ-
ing the proposed MB-XNOR format achieves a 0.15 higher
SNR than 2’s complement. On the other hand, as shown in
Fig. 12(b), we also analyze the signal-to-quantization noise
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ratio (SQNR). The SQNR increases with higher activation pre-
cision because of smaller quantization noise. The lower SNR
than [15] because we include the approximate circuits, such as
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Fig. 14. Die micrograph.

single-approximate compressors and double-approximate com-
pressors, in our simulation, whereas [15] does not employ any
approximation scheme. Although the approximation degrades
the SNR, the proposed DIMCA causes a deterministic error
only, which the approximation-aware training can restore
significantly.

We also evaluate the CNN inference accuracy. DIMCA1
using the MB-XNOR format achieves a 5.4% higher inference
accuracy (see Fig. 11). DIMCA?2 using the MB-XNOR format
also improves the accuracy by 6% compared to the 2’s
complement, but the accuracy is low (78.6%) for the 1 b/4
b weight/activation model. Therefore, we consider DIMCA?2
to use only 1 b/1 b weight/activation models.

One caveat is that this number format disallows the use
of some activation functions, such as ReLU, because it cannot
represent 0. We can still use other popular activation functions
such as hyperbolic tangent (tanh) (see Fig. 13) and leaky
ReLU. It would be possible to support high-precision (8 b
or 16 b) arithmetic only with a better approximation scheme.
Currently, the proposed approximate scheme relies on bit
serial input, and the error increases for the MSB-related
computation.

III. CHIP PROTOTYPE AND MEASUREMENT

We prototyped the DIMCA test chip in a 28-nm CMOS
technology. Fig. 14 shows the chip photograph. The 16-kb
DIMCA1 consumes 0.049 mm? and the 16-kb DIMCA?2 takes
0.033 mm?.

We measure the two DIMCA macros across 0.5-1.1 V at
25 °C. As shown in Fig. 15(a), DIMCA2 achieves 932-2219
TOPS/W and 475-20032 GOPS; DIMCALI attains 458-990
TOPS/W and 405-19215 GOPS. The energy efficiency and
throughput metrics are all normalized to 1 b/l b. As shown
in Fig. 15(b), we also measured the energy efficiency and
throughput across five chips at the nominal voltage of 0.9 V.
Both energy efficiency and throughput measurements show
only a small distribution. Fig. 15(c) shows the energy effi-
ciency measurements across VDDs at 25% and 50% input
toggle rates (TRs). In the SRAM mode, both macros take
340 ns (256 cycles at 752 MHz) to update all 16-kb weights
at 0.9 V and 25 °C.

We also measure the energy efficiency and throughput
across different temperatures. As shown in Fig. 16(a), the

energy efficiency degrades with higher temperatures. The
reason is that the leakage power dissipation increases steeper
than the throughput does. At 0.9 V from —15 °C to 25 °C,
the energy efficiency still increases because the leakage only
accounts for 10%—-25% of the total power consumption. At 25
°C and above, the leakage starts to consume a more significant
portion of the total power consumption (32%-58%). We also
measure the leakage power across the supply voltages and
temperatures. As shown in Fig. 16(b), the leakage power
increases exponentially with temperature.

Fig. 16(c) shows the energy consumption breakdown. For
DIMCALI, the adder trees account for 43.03% of the total
energy consumption, and the compressors take 38.05%. The
shift accumulators and MWL drivers consume 9.11% and
8.62%, respectively. The bitcell array accounts for only 1.2%.
Fig. 16(d) shows the area breakdown.

Table II compares the proposed hardware to the recent
works. Compared with [25], DIMCA?2 attains 53% higher
weight density, 2.4x higher CD, and 10% higher energy
efficiency. On the other hand, Yan et al. [29] adopt a
time-sharing architecture and trade the throughput and CD
for the weight density. As a result, Yan et al. [29] achieve
a high weight density of 1067 kb/mm? but achieve a lower
CD of 178 TOPS/mm?, which is 49% lower than DIMCAZ2.
The proposed DIMCA macros achieve high CD and weight
density at the same time while maintaining state-of-the-art
energy efficiency and CNN inference accuracy.

IV. MODELING AND DESIGN SPACE EXPLORATION

This section aims to develop the parameterized analytical
models of SRAM-based DIMC macros for quick design space
exploration. Fig. 17 shows the high-level block diagram of
the DIMC array, which we assume in the modeling process.
The array contains macros and additional adders to sum the
outputs of the macros. The model development considers the
following design parameters: array dimensions, activation and
weight precisions, approximation schemes, and the degree of
arithmetic hardware multiplexing (aka reuse and time-sharing).
Then, we calibrate the developed models based on the two
recent DIMC test chips’ measurements (see [25] and [37]),
which we call the base DIMC hardware hereafter. Then,
we will use these models to estimate/predict the energy effi-
ciency, throughput, area, and RMSE of various SRAM-based
DIMC macros.

A. Silicon Area

In this section, we develop the area model of the DIMC
array. First of all, we formulate the size (memory capacity) of
a DIMC array in kb as follows:

N, row ° N, col

Spmvc = T 3)

where Ny is the total number of rows of the DIMC array
and N is the total number of columns of the DIMC array.
Refer to Fig. 17 for the definitions.

On the other hand, the total silicon area of the IMC array
is roughly proportional to S,r.y. However, it is impractical
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Fig. 15. (a) Energy efficiency and throughput across different supply voltages. (b) Multichip measurements of energy efficiency and throughput at 0.9 V

supply. (c) Energy efficiency at 25% and 50% TRs.
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Fig. 16. (a) Energy efficiency and throughput measurements of DIMCA?2 across temperatures at 0.9 V. (b) Leakage power consumption of DIMCA2 across
supply voltages and temperatures. (c) Energy breakdown of the two proposed DIMCA macros. (d) Area breakdown of the two proposed DIMCA macros.
TABLE 11
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART AIMC AND DIMC MACROS
This work Jia, ISSCC’21 | Jiang, JSSC'20 | Yan,ISSCC'22 | Tu,ISSCC'22  |Fujiwara, ISSCC'22| Chih, ISSCC'21 | Kim,JSSC'21 | He,ISSCC'23 | Yue, ISSCC'23
DMCA DIMCAT [15] 12 [29] 28] 26] [25] [24] 130] [31]
Technology[nm] 28 28 16 65 28 28 5 22 65 28 28
MAC operation Digital Digital AMS AMS Digital Digital Digital Digital Digital Digital Analog + digital
Armay size 16Kb 16Kb 4.5Mb 16Kb 32b 96Kb 64Kb 64Kb 16Kb 16Kb 36Kb
Macro area [mm¢] 0.033 0.049 1 0.081 0.030 0.941 0.0133 0.202 0.227 0.028 0.0524
Weight density [Kbimm?] 485 321 419 198 1067 102 4812 317 705 571 687
Supply voltage [V] 0.45-1.10 0.45-1.10 08 08 08 056-1 0509 072 0608 054-0.9 0609
Activation precision [bit] 1 14 18 1 1-8 8/16 4 18 116 28 18
Weight precision [bif] 1 1 18 1 11418 8/16 4 41811216 4/812/16 28 18
Operating frequency [MHz] 280 250 20 50 333 50-220 360-1140 500 138 20-230 50-286
Input toggle rate 25% 25% NA NA NA NA NA 18% NA 18% NA
1,108@09V | 154@0.9V (4blb)
Energy efficiency [TOPSIW] 121@08V (4bdb) | 671 @08V  [27.38 @ 0.8V (8b8b)|57.8 @ 0.65V (8b8b)| 254 @ 0.5V (4bdb) | 89 @ 0.72V (4bdb) | 117 @ 0.6V (1b1b) 102 @ 0.54V (8b8b)1158 @ 0.6V (1bby
2219@05V | 248@0.5V (4bib)
9175@09V (2,035 @ 0.9V (4b1b)
[GOPS]: 41@08V (4bdb) | 1638 @08V | 267 @ 0.8V (8b8b)| 225@ 1V (8b8b) [737.5@ 0.9V (4bdb)| 825 @ 0.72 (4bdb) |567 @ 0.8V (1bb)| 118 @ 0.9V (8b8b) | 560 @ 0.9V (1b1b)
20032@11V  |4,804@1.1V (4b1b)
Compute density [TOPS/mm] 607 (1b1b) 98 (4b1b) 2,67 (4bdb) 20.22 (1b1b) 0.178 (8b8b) 143 (8b8b) 221 (4bdb) 16 (4bdb) 25 (1b1b) 4.2 (8b8b) 27.36 (1b1b)
CIFARA0 accuracy 86.96% 90.41% 9151% 85.50% NA NA NA NA NA NA NA

1- Computed from throughput and array size; 2 Normalized array size to 16kb.

to create one macro with very large N, and N, since
the long bitlines and wordlines slow down the read and
write operations. Therefore, we assume that each macro has
256 rows and 64 columns while having multiple macros to
create a large DIMC array. We also assume to have additional
adders to sum up the results from the macros in an array. As a
result, we can formulate the area of a DIMC array Appc as
follows:

ApmMc = Amacros + Aadders

“4)

where Aacros 1S the area of all IMC macros and A,qqer 1S the
area of the additional adders.

We formulate Apacros While considering the degree of
multiplexing (aka hardware reuse or time-sharing) arithmetic
hardware. The fully digital design of DIMC hardware makes it
straightforward for columns to reuse the arithmetic hardware.
If we time-share the arithmetic hardware across Dpuiplex
columns, only one column of weights, out of every Dpyuiplex
columns, performs MVMs with the MWLs/MWLBs. The
higher degree of time-sharing can save area at a throughput
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Ncol

NcoIO

IMC
macro

N!OW

| Additional adders

Nrowo

\4

Fig. 17. High-level block diagram of the DIMC array we assume in the
model development. The array contains macros and additional adders to sum
the outputs of the macros.

penalty. Based on this idea, we formulate Ap,cros as follows:

Tarith ] (5)
D multiplex

where Aq is the area of the base DIMC macro and Niowo
and N represent Ny, and N, of the base macro. ryin
is the ratio of the area of the arithmetic hardware, that is,
compressors, adder trees, and shift accumulators to the total
macro area. Dmuiplex 18 the number of columns that share
arithmetic hardware.

On the other hand, approximate-arithmetic compressors, like
those used in DIMCA, can effectively reduce the area of the
base DIMC macro (Ap). Our DIMCA employs approximate
compressors. To develop a more detailed model for Ay,
we formulate the area of the exact compressors as follows:

I — Fasim +
N, row( N, col0

Aacros = Ao

Aexact = {(N + 1) - 10g2 (N + 1) - 1} . AFA : Nexact (6)

where N is the number of inputs, Aga is the area of one FA
cell, and Nex,cr is the number of exact compressors in a DIMC
macro.

Then, we formulate the area of the single-approximate
compressors as follows:

N N
Aapproxl = 5 - 10g2 Ni-Ap+ ? - Aanp
. Nsinglefapprox (7)

where A,np is the area of an AND gate and Nypproxi i
the number of single-approximate compressors in one macro.
Similarly, the area of the double-approximate compressors can
be formulated as follows:

N N
Aappron = [AFA + (_ + _) : AAND] ) Napprox2 (®)

2 4
where Nypprox2 18 the number of double-approximate compres-
SOrs in one macro.

Finally, we create a model for A,ggers by assuming we
need to accumulate only across the rows of DIMC. Under
this assumption, a DIMC array having N, and N, needs
to accumulate Moy /Nrowo partial sums for all N, columns.
Therefore, we can formulate A,qders as follows:

Aadders = AFA * Nadders

Nrow
NCO] 10g2 Nrow0 -1

NcolO =0
i Nrow .
x 12" - BWout + 10g2 —1—1i (9)
NrowO

where Aga is the area of the one FA cell, Nagders 1S the total
number of additional FA cells, and BW,, is the bit width of
the output of each macro.

N, adders —

B. Throughput and CD

In this section, we create the models for computing through-
put in TOPS and CD in TOPS/mm?Z. First of all, we formulate
compute throughput (CT) as follows:

1 N, oW N, col BWinO Bth()
Dmultiplex N row( NcolO Bwin wat
where CTj is the throughput of the base DIMC, BWjy is the
bit width of input activation (BWj,) of the base DIMC, and
BWy, is the bit width of weights (BWy,) of the base DIMC.

Based on (4) and (10), we can formulate CD as follows:

CT

Apmvc’
The second row of (10) shows that CD increases proportionally
with Sprvic. The third row of (10) normalizes CD to the
activation and weight bit widths (precision).

CT = CT, -

(10)

CDh =

(11

C. Energy Efficiency

In this section, we create the energy efficiency model in
TOPS/W. We can formulate the energy efficiency of DIMC
hardware (EE) as follows:

TN BWino BWypo
EE =EE)- — . -0 2 "wo
TNy BW;, BWy

where EEj is the energy efficiency of the base DIMC hardware
and TNy is the technology node (TN) of the base DIMC
hardware uses. The second and third rows of (12) are added to
normalize EE to the TN and activation and weight bit widths of
the base DIMC hardware. (12) does not contain N,q, and N
since the amount of arithmetic hardware in DIMC scale with
Nriow and Nop. In other words, EE remains almost unchanged
across different Nows and N.os. Note that we ignore the
energy consumption of the additional adders (those adders to
sum the outputs of the macros) since it is later found to be
insignificant compared to total power consumption.

12)

D. Normalized Root Mean Squared Error (NRMSE)

In this section, we introduce the NRMSE model of DIMCA
hardware. We denote the MAC result of the ith column to be
M® and its error to be e, For simplicity, we denote the max
value of M¥Ys to be Mp,x and the minimum value of M®s
to be Mpyi,. Without the loss of generality, we assume that
the error from each column follows the Gaussian distribution.
We also assume that the error is independent of the errors

from other columns, that is, e £ N(O, 002). Based on those
assumptions, we can create the NRMSE model of a single
column as follows:
00
NRMSESingle—col =

1
Mmax - ( 3)

M, min
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Fig. 18. Area for double-approximate and exact IMC across different IMC
array sizes.

The binary-weighted sum across BWy, columns is M =
S PV 2i-ly @ The variance of the binary-weighted sum
error (e) is

BWy

Z Var[2i1e®]
i=1

BW, 4wat _ 1

= ; 47162 = —5

As a result, the binary-weighted sum error (e) across BWy,
columns is

Var[e] =

og. (14)

BWy ) ) 4Ble 1
e = Z 201 ~ N(O, TOOZ)'
i=1

2Bwa

15)

Since the full range of M is ( — D(Mpax — Mmnin),
we can formulate the NRMSE of M for BW, columns as
follows:

1 P o
NRMSEgw,,—col = BT 3 M — M

max min

(16)

We can find from (16) that the NRMSE of the multi-
column sum is the product of the single-column NRMSE
(00/Mpax — M) and a factor which depends on BW,,.

Finally, since the activation and weights are interchangeable,
we can treat the impact of multibit input activation on NRMSE
as similar to the multibit weights. Therefore, for BWj,-bit
input activations and BWy,-bit weights, we can formulate the
NRMSE as follows:

NRMSE = : . \/m
2BWin — ] 3
T
. 2BWwe — 1] - 3 . Mmax — Mmin.

E. Model Calibration and Model-Based Design Exploration

7

We calibrate the developed models against the measurement
results. We use [25] for the exact arithmetic and [37] for
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Fig. 19. Model-predicted TOPS/W and GOPS values across different

activation and weight bit widths for DIMCA?2 and exact DIMC. One operation
refers to either 1-b addition or 1-b multiplication.

DIMCA2
3'0E-4-”"-(16Kb,1b1b)
2.5E-4
' DIMCA1
‘I-g 2.0E-4 ' (16Kb,1b1b)
= 1 5E-4-W . Double-approx
ﬂzf : . (64Kb, 4b4b)
eeoene s - ,,,,, ‘.
1.0E-4-DIMCA1 .1.68X increase
(1,6,Kbgub1b),: W.Single-approx
1 - - - . 7 (64Kb,4bdb
5.0E-5 1 1.49X k:duction; ( ) Chih, ISSCC'21
P ‘ 1.67X reduction  (64Kb,4b4b)
0.0 — T l< --------- ™ ‘- 1
1.0E1 2.0E1 3.0E1 4.0E-1
Area (mm?)

Fig. 20. NRMSE and area across different approximation schemes.

approximate arithmetic as our base DIMC macros. Fig. 18
shows the measurement results lie on the model-predicted
area curves. On the other hand, Fig. 19 shows the mea-
surement results lie on the model-predicted energy-efficiency
curves. It also shows the measurement results lie on the
model-predicted throughput curves. Similarly, Fig. 20 shows
that we calibrate the NRMSE model based on the measure-
ments from [25] and this work.

We use the models to predict the area, energy effi-
ciency, throughput, and NRMSE across several design points.
As shown in Fig. 18, the area of the DIMC is roughly propor-
tional to the DIMC’s total size. The additional adders exhibit
a proportionally larger area with respect to the DIMC size
but consume only <3% of the total area. On the other hand,
for the same DIMC size, double-approximate compressors can
reduce DIMC area by ~2.46x.

Fig. 19 shows the predicted energy efficiency and through-
put. The double-approximate compressors improve energy
efficiency by 1.6x and throughput by 1.53x compared to
the exact counterparts. Also, the figure shows that both input
and weight bitwidth (BW;, and BW,,) linearly decrease
throughput and energy efficiency. Yan et al. [29] time-share the
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Fig. 22. Number of FAs required for adding four columns (4 b-weight) with
256 bitcells in each column.

arithmetic gate across multiple bitcells. This reuse architecture
improves area efficiency (um? per bit) by 2.2x and energy
efficiency by 6.3% at 5.2x throughput degradation.

Fig. 20 shows the model-predicted tradeoff between the area
and NRMSE. DIMCA?2 has the smallest area but the largest
NRMSE. On the other hand, the exact-arithmetic DIMC con-
sumes more area. The 64 kb and 4 b/4 b, single-approximate
DIMC consumes 1.67x less area than the counterpart [25].
The model predicts a 1 b/l b single-approximate DIMC
exhibit 1.47x worse NRMSE than 4 b/l b. Note that the
double-approximate DIMC can gain an additional 1.49x area
reduction, but it exhibits 1.68 x worse NRMSE, which matches
the measurement results (see Fig. 5). We also show the
model-predicted NRMSE across different bit widths in Fig. 21.
NRMSE decreases as the input and weight bitwidth increase,
and double-approximate DIMC generates 1.7 x larger NRMSE
than single-approximate DIMC across 1-8 b.

We also compare the area of macros employing different
adder tree architectures. DIMCA integrates an adder tree in
each column and sums the partial products of multibit weights
and activations. In contrast, Chih et al. [25] employ one adder
tree every four columns and process the multibit partial sums
in a single adder tree. Fig. 22 shows the comparison results
of the number of FA cells for those two architectures, which
shows the total area is roughly the same. In both cases,
we consider the nonapproximate arithmetic.

V. CONCLUSION

This article proposes two DIMCA prototypes, DIMC
macros which employ approximate arithmetic hardware for
improving area and power efficiency. The 28-nm test chip mea-
surements show that DIMCA2 (DIMCA1) achieves the weight
density of 485 kb/mm? (327 kb/mm?), the energy efficiency
of 2219 TOPS/W (990 TOPS/W), the CD of 607 TOPS/mm?
(392 TOPS/mm?), and 86.96% CIFAR-10 accuracy for a
1 b/1 b CNN model (90.41%). We also develop parameterized
analytical models for the area, energy efficiency, throughput,
and NRMSE of a DIMC array for design space exploration.
We calibrate the models to recent test chip results.
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